
Dissertation zur Erlangung des akademischen Grades
Dr. rer. soc. oec.

im Doktoratsstudium der Sozial- und Wirtschaftswissenschaften

FedDW: a Model-Driven

Approach for Querying

Federations of Autonomous Data

Marts

Angefertigt am

Institut für Wirtschaftsinformatik -
Data & Knowledge Engineering

Johannes Kepler Universität Linz

Eingereicht von

Mag. Stefan Berger

Betreut von

o. Univ.-Prof. Dipl.-Ing. Dr. Michael Schrefl

a. Univ.-Prof. Dr. Josef Küng

Linz, Juni 2009

Johannes Kepler Universität Linz, Altenberger Straße 69, 4040 Linz, Austria

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig
und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfs-
mittel nicht verwendet und die den benutzten Quellen wörtlich oder inhaltlich
entnommenen Stellen deutlich als solche kenntlich gemacht habe.

Linz, Juni 2009

(Stefan Berger)

i

ii

Danksagung

“Was wir am Nötigsten brauchen, ist ein Mensch, der uns
zwingt, das zu tun, was wir können.”

Ralph Waldo Emerson (1803–82), amerikanischer Philosoph und Dichter

An dieser Stelle bedanke ich mich bei allen Personen, die in unterschiedlicher
Form ihren Anteil am Gelingen dieser Dissertation haben.

Zuerst sei Michael Schrefl erwähnt, dessen schier unerschöpfliches Ideen-
Reservoir und fachliches Wissen wesentlich beigetragen haben, die in dieser
Dissertation präsentierten Ansätze im Detail auszuarbeiten. Er hatte zu jeder
Tages- und Nachtzeit ein offenes Ohr, wenn ich Unterstützung brauchte. In
zahlreichen Diskussionen schaffte Michael Schrefl, meine wissenschaftliche Neu-
gier zu fördern, meinen Ehrgeiz anzustacheln, sowie konstruktive Ratschläge
zu liefern. Sehr wertvoll war für mich die große Freiheit bei der Erfüllung der
wissenschaftlichen Ziele, die mir genügend Raum für persönliche Entfaltung ließ.

Weiters danke ich Josef Küng, der die Zweitbetreuung dieser Arbeit
übernommen hat. Seine Rückmeldungen gaben mir zusätzliche Anregungen und
Motivation bei der Fertigstellung der Dissertation.

Großer Dank gilt meinen KollegInnen Christian Eichinger, Margit Brandl,
Michael Karlinger, Bernd Neumayr, Katharina Grün, Mathias Goller und
Günter Preuner, die in den vergangenen Jahren für ein stets positives und an-
genehmes Arbeitsklima am Institut für Data & Knowledge Engineering gesorgt
haben. Ich danke ihnen für die oftmalige Hilfsbereitschaft beim Korrekturlesen
von Publikationen sowie für die in vielen Diskussionen eingebrachten Vorschläge,
Ideen und frischen Sichtweisen. Weiters danke ich meinen Diplomanden Wolf-
gang Brunneder, Thomas Rossgatterer, Peter Schweinzer und Lorenz Maislinger,
die Teile dieser Dissertation in prototypischen Werkzeugen implementierten.

Meiner Familie bin ich dankbar, dass sie mir das Studium an der Universität
ermöglicht und mich finanziell sowie moralisch auf meinem Weg unterstützt
haben. Ich danke meinen Freunden, insbesondere Mathias Goller, dass sie für
Ausgleich gesorgt und meine “Probleme” in das rechte Licht gerückt haben.

Ein besonderer Dank gebührt Karin, die in den vergangenen Monaten mit
bewundernswerter Geduld auf viel gemeinsame Zeit verzichtet hat. Karin gab
mir die notwendige Unterstützung und Motivation, indem sie mich stets bestärkt
hat, meinen Weg zu beschreiten. Ihr liebevoller Rückhalt war für das Gelingen
dieser Arbeit von unschätzbarem Wert.

iii

iv

Kurzfassung

Information ist längst zum wichtigsten Gut des modernen Wirtschaftssystems
geworden. Um im internationalen Wettbewerb zu bestehen, sind moderne Un-
ternehmen auf aktuelle und exakte Information als fundierte Grundlage stra-
tegischer Entscheidungen angewiesen. Analytische Informationssysteme – Data
Warehousing und OLAP Technologien – sind im letzten Jahrzehnt dank immens
gesteigerter Rechenleistung und Speicherkapazität von Computern zu Standard-
technologien geworden. Im Falle von Unternehmens-Zusammenschlüssen ist hin-
gegen die Frage zu beantworten, wie die Daten aus bestehenden Data Marts
effizient gemeinsam genutzt werden können.

Die Integration von Data Marts führt nicht nur angesichts sehr großer Da-
tenmengen zu neuen Herausforderungen. Zum einen sind Data Marts nach dem
multi-dimensionalen Modell entworfen, das eine ausdrucksstärkere Aufbereitung
der Daten in OLAP-Anwendungen ermöglicht. Dafür steigt die Wahrschein-
lichkeit, dass Fakten und Dimensionen unabhängiger Schemata heterogen sind.
Zum anderen enthalten Data Marts oft vertrauliche Daten, auf die kein unbe-
schränkter Zugriff möglich ist. Deshalb sind bewährte Ansätze zur Integration
von Datenbanken für analytische Informationssysteme unzureichend.

Diese Dissertation behandelt “FedDW”, einen modell-basierten, föderierten
Ansatz zur Integration von Data Marts auf logischer Schemaebene. FedDW
definiert ein globales, multi-dimensionales Schema zwischen autonomen, hete-
rogenen Data Marts. Das globale Schema steht direkt für OLAP-Anfragen der
Analysten zur Verfügung. Alle Heterogenitäten zwischen den Data Marts be-
hebt das System transparent mit Hilfe semantischer Mappings. So erweitert
sich die Datenbasis für strategische Entscheidungen, ohne dass die Benutzer die
heterogenen Schemata der autonomen Data Marts exakt kennen müssen.

Der FedDW-Ansatz bietet zahlreiche Vorteile. Erstens, die Integration logi-
scher Schemata belässt bestehenden Data Mart Systemen volle Autonomie, da
alle Daten in den ursprünglichen Systemen bleiben. Zweitens, die Autonomie er-
leichtert den Schutz sensibler Daten. Drittens konvertiert FedDW alle Daten und
Metadaten in ein kanonisches Modell, um Implementierungsplattformen unter-
schiedlicher Hersteller zu unterstützen. Viertens, FedDW definiert semantische
Mappings “von lokal zu global”. Das globale Schema bleibt dadurch stabil, was
die Robustheit und Erweiterbarkeit des föderierten Systems begünstigt.

Die Dissertation stellt zwei Prototypen vor, die den FedDW-Ansatz erfolg-
reich implementieren. “Global Schema Architect” modelliert die semantischen
Mappings, basierend auf UML. Das “Query Tool” beantwortet OLAP-Anfragen
im globalen Schema direkt aus den autonomen Data Marts.

v

vi

Abstract

In today’s economy, timely access to accurate business information has become
an often critical key success factor. Due to rapidly increasing processing power
and storage capacity, Data Warehousing and OLAP have emerged to stan-
dard technologies in strategic business decision support. Business cooperations,
mergers or acquisitions commonly entail the integration of business information
among preexisting Data Marts.

The integration of analytical Data Marts poses new challenges for two rea-
sons. First, Data Marts conform to the multi-dimensional model, which in-
creases the expressiveness of data models for business analysts but also causes
potentially more heterogeneity. Second, analytical data is often confidential. If
privacy policies restrict access to sensitive data, physical integration of Data
Marts with well-established techniques is out of question.

The FedDW approach introduced in this thesis provides model-driven de-
sign of Data Mart federations. FedDW provides a global “mediated”, multi-
dimensional schema across the analytical data stores of several autonomous
and heterogeneous Data Marts. Thus, FedDW allows strategic analysts to run
Business Intelligence applications over larger repositories of data across organi-
zational boundaries, enabling better business decisions.

The advantages of FedDW are manifold. First, FedDW integrates multi-
dimensional data at the logical schema level while the underlying Data Marts
remain autonomous. Second, the privacy of confidential or sensitive data is en-
sured by FedDW’s conceptual architecture. Every participating organization is
entitled to decide which business Data Mart(s) to disclose within the federation.
Third, FedDW is system independent because it represents all multi-dimensional
schemas, data and the mappings in an internal “canonical” data model. Fourth,
FedDW uses source-to-target mappings from autonomous Data Marts to the fed-
erated layer. Thus, the global schema remains stable despite possible changes
of local Data Mart schemas, and the federation is easier to extend.

This thesis demonstrates the viability of the FedDW Data Mart integration
approach with two prototypes. Global Schema Architect supports visual, semi-
automatic integration of logical, multi-dimensional Data Mart schemas with
a UML-based notation. In turn, FedDW’s Query Tool transparently answers
user queries against the global schema. The tool ships and reconciles local,
heterogeneous Data Mart data according to the semantic matches generated
with the Global Schema Architect.

vii

viii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Challenges . 3

1.3 State of the Art . 5

1.4 Objectives . 7

1.5 Contributions of the FedDW Approach 8

1.6 Prototype implementation of FedDW Tools 9

1.7 Outline . 9

I The Need for Federated Data Warehouse Systems 13

2 Case Study 15

3 State of the Art 23

3.1 Data Warehousing and OLAP . 25

3.1.1 Data Warehouses . 25

3.1.2 Data Marts . 26

3.1.3 On-Line Analytical Processing (OLAP) 27

3.2 Federated and Multi-databases 28

3.3 Physical Integration . 29

3.4 Logical Integration . 30

3.4.1 Multi-system Query Languages 31

3.4.2 Global-As-View Approaches 35

3.4.3 Local-As-View Approaches 36

3.4.4 Both-As-View Data Integration 37

3.4.5 Data Integration Approaches for Multi-dimensional Systems 38

3.5 Multi-dimensional Schema Integration 39

3.6 Model Driven Architecture (MDA) 42

3.7 DW Modelling and Design with UML 43

3.8 Summary and Requirements . 44

ix

x CONTENTS

II Architecture and Concepts of Federated Data Ware-
houses 49

4 Conceptual Data Model 51

4.1 Data Marts . 53

4.2 Dimensions . 53

4.3 Functions and Properties of Dimensions 54

4.4 Cubes . 56

4.5 Names of Dimension and Cube Schemas 57

5 Taxonomy of Conflicts 59

5.1 Schema versus Instance Conflicts 62

5.2 Schema Level Conflicts . 63

5.2.1 Naming Conflicts . 63

5.2.2 Conflicts among Dimension Schemas 65

5.2.3 Conflicts among Cube Schemas 68

5.3 Instance Level Conflicts . 71

5.3.1 Conflicts among Dimension Instances 72

5.3.2 Conflicts among Cube Instances 74

5.4 Summary . 75

6 Federated DW Architecture 81

III Enabling the Federated Data Warehouse—the
FedDW Approach 87

7 Integration Methodology 89

7.1 Dimension/Fact Algebra Expressions 90

7.1.1 Dimension Algebra . 91

7.1.2 Fact Algebra . 94

7.2 Defining Semantic Mappings . 98

7.2.1 Resolve Schema-Instance Conflicts 103

7.2.2 Integrate Dimension and Fact Schemata 104

7.2.3 Consolidate Dimension and Fact Instances 111

7.3 Summary . 115

8 SQL-MDi Language 117

8.1 Repairing Schema-Instance Heterogeneities 121

8.2 Repairing Schema Level Heterogeneities 124

8.2.1 Naming Conflicts . 124

8.2.2 Diverse Aggregation Hierarchies 125

CONTENTS xi

8.2.3 Dimensionality Conflicts 127

8.2.4 Domain Conflicts . 127

8.3 Repairing Instance Level Heterogeneities 131

8.3.1 Heterogeneous Roll-up Functions 131

8.3.2 Value Conflicts among Non-dimensional Attributes 132

8.3.3 Overlapping Sets of Dimension Members 133

8.3.4 Disjoint Sets of Dimension Members 135

8.3.5 Overlapping Cells . 135

8.3.6 Disjoint Cells . 138

8.4 Summary of SQL-MDi . 138

IV Realizing the Federated Data Warehouse 141

9 Prototype Implementation 143

9.1 Implementation Architecture of FedDW 147

9.2 Modelling Primitives . 150

9.2.1 Representing Multi-dimensional Schemas 150

9.2.2 Representing Semantic Mappings 153

9.3 Global Schema Architect Prototype 155

9.3.1 Design Rationale of GSA Schema Editor 155

9.3.2 Design Rationale of the GSA Mapping Editors 158

9.3.3 Import and Export Functionality of FedDW GSA 159

9.4 Query Tool Prototype . 160

9.4.1 FedDW Query Tool Usage Example 161

9.4.2 FedDW Query Tool Implementation 163

9.5 Experimental Results . 166

10 Conclusions 169

10.1 Summary of the FedDW Approach 170

10.1.1 Multi-dimensional Conflict Taxonomy 170

10.1.2 Federated DW Reference Architecture 171

10.1.3 FedDW Integration Methodology 171

10.1.4 Conversion Language SQL-MDi 172

10.1.5 Prototypes of FedDW Tool Suite 172

10.2 Future Work . 173

xii CONTENTS

References 187

Appendix 191

List of Figures 192

List of Tables 193

List of Definitions 196

List of Examples 198

A Syntax Specification of SQL-MDi 199

A.1 SQL-MDi Syntax Version 1.1 . 200
A.2 Changes in SQL-MDi Syntax Version 1.2 205

Curriculum Vitae 207

B Stefan Berger 209

*

Chapter 1

Introduction

Contents
1.1 Motivation . 2

1.2 Challenges . 3

1.3 State of the Art . 5

1.4 Objectives . 7

1.5 Contributions of the FedDW Approach 8

1.6 Prototype implementation of FedDW Tools . . . 9

1.7 Outline . 9

This chapter introduces the topics of this thesis in general, motivating the
business case for Federated Data Warehouses in Section 1.1. Section 1.2 de-
scribes the main challenges addressed and Section 1.3 briefly reviews related
work. Based on the objectives stated in Section 1.1, the so-called “FedDW” ap-
proach taken in this thesis is briefly explained in Section 1.5. Next, Section 1.6
introduces the prototype implementation of FedDW’s tool suite. Finally, Sec-
tion 1.7 summarizes the overall outline of this thesis.

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

Data Warehouses (DWs) and Decision Support Systems (DSS) have evolved
into indispensable tools for strategic decision makers. In contrast to database
systems, a DW is optimized for analytical workload rather than transactional
data processing [Bauer and Günzel, 2006, Chaudhuri and Dayal, 1997]. To this
end, an organization’s DW collects and consolidates the data on all subject areas
that are considered helpful for the support of strategic business decisions. Deci-
sion makers access the DW data to gain a clearer picture about the organization,
which enables better, more well-grounded decisions.

Typically, the Data Warehouse represents the enterprise-wide “single source
of truth” and corporate memory of all business process data [Inmon, 2005].
Business processes both produce and consume data. Various operational sys-
tems—databases, cash registers, inventory management systems, etc.—record
data about the states and outcomes of business processes. The DW, in turn,
collects and stores all relevant data from those disparate sources. It overcomes
existing heterogeneities among the operational data sources during the so-called
ETL process (i.e., Extraction, Transformation, Loading) that converts all data
to the reconciled multi-dimensional schema.

Data Marts (DMs) are more specific repositories of business data designed
on top of the DW, often on a coarser level of detail. The usual purpose of a
Data Mart is to deliver particular subsets of the DW data to a particular group
of users, e.g. the sales division [Kimball, 2002]. Both the Data Warehouse and
Data Marts typically conform to the multi-dimensional data model, organizing
the items of interest (“measures”) in data cubes, i.e. within the analysis space
along several axes (“dimensions”) that represent different business perspectives
[Inmon, 2005]. The cube metaphor of the multi-dimensional data model is very
illustrative since it is coherent with the analysts’ intuitive understanding of
business data.

When accessing the DW’s data repository, business analysts and decision
makers perform aggregations over the multi-dimensional schema in order to
compute financial ratios. Typically, these operations—denoted as On-Line An-
alytical Processing (OLAP)—allow to change the perspective on data, drilling up
and down the hierarchies of dimensions, and so on [Chaudhuri and Dayal, 1997].
Moreover, so-called Business Intelligence (BI) tools assist the analysts in gener-
ating spreadsheet based reports, graph visualizations, etc.

Decision making means setting intentional management actions that change
the organizational environment, based on knowledge gained from the DW with
BI applications. The decision making process is cyclic since the consequences
of every previous decision are reflected in the DW through the regular updates
of its information, that in turn will influence future decisions [Thomsen, 2002].
For example, assume that the sales management of a trading company decides
to promote a new coffee brand “XY” with a special 20 % discount for two
weeks, due to dissatisfying sales figures over the past four weeks’ period. The
decision will either lead to increased sales of “XY coffee”, or the sales manager
will ultimately conclude to better remove the product from the assortment.

Nowadays, in answer to high competitiveness of the modern economy, many
organizations integrate their businesses. Corporations of any scale commonly

1.2. CHALLENGES 3

merge, acquire others or strategically cooperate with competitors, suppliers
and/or customers to obtain strategic advantages. Thus, the number of large
to very large private and public organizations is steadily growing.

Corporations may integrate their businesses either horizontally or vertically.
Horizontal integration is characterized by several independent companies co-
operating within some particular market sector. Usually, horizontal business
integration aims at achieving economies of scale and/or economies of scope. In
contrast, vertical integration means that some enterprise cooperates with other
organizations along the production chain, but in different economic sectors. As
such, vertical integration concerns the upstream suppliers and/or downstream
buyers. The goal of vertical business integration is to give each participating
organization an edge on information within their respective markets to improve
competitiveness of all partners.

Mergers and acquisitions of large corporations often entail the tedious in-
tegration of their existing Data Warehouses. If the cooperating organizations
share their data, both sides usually benefit from the wider pool of information
upon which to base their strategic business decisions. With current technol-
ogy, however, typical DW integration projects involve the migration of existing
systems to the chosen target DW, or even the implementation of a new, inte-
grated DW. Such projects usually take several months or even years to complete
[Kimball, 2002].

1.2 Challenges

Timely access to accurate and comprehensive business data is the key factor
of success in business integration scenarios. Moreover, efficiency of business
processes and accuracy of strategic business decisions are critical to any organi-
zation’s economic survival. Data Warehouses help large scaled organizations to
thoroughly investigate their business processes and locate potential cost savings.

Thus, data integration across autonomous organizations is the necessary
prerequisite for any successful business integration. The integration of database
systems is the traditional approach that has been researched for several decades
[Halevy et al., 2006]. Federated Database Systems [Sheth and Larson, 1990] are
the most prominent example of data integration systems.

Integrating Data Warehouses provided by different corporations or public
organizations widens the knowledge base for the partners’ business analysts,
thus enabling better founded strategic decisions. The concrete goals of DW
integration projects depend on the organizational background. As far as the
private sector is concerned, for example, retail trade companies commonly share
the chain stores’ sales data with their food suppliers. Consequently, both the
retail trader and its food suppliers may forecast the demand more accurately
and safe costs. Considering the public sector, health insurance organizations
are often divided into autonomous sub-organizations per federal state. Analysis
over the data of all sub-organizations enables—among other applications—more
effective fraud analysis and better control of treatment costs.

However, the integration of DW schemas and data is tedious and error-prone
[Kimball, 2002]. Schema and data integration in the multi-dimensional model is

4 CHAPTER 1. INTRODUCTION

more complex than in the relational model because the multi-dimensional model
is semantically richer. It introduces the additional dimension entity, whereas
the multi-dimensional fact entity corresponds with the relation entity of the
“traditional” relational data model. In particular, the possibility of organizing
dimensions hierarchically along hierarchies of aggregation levels introduces new
classes of potential heterogeneity that DW integration must account for.

In the highly competitive modern markets, though, corporations simply can-
not afford to wait for several months or years until the integrated Data Ware-
house is finally operational. Multi-dimensional schema and data integration is
less complex when focused on smaller Data Marts instead of complete Data
Warehouses. Using this strategy, the efforts of integration concentrate on a
single, relatively small data repository. The scale of problems to solve remains
easier manageable.

If autonomous organizations share their analytical data stores, the integra-
tion of DMs is better performed on the logical level by establishing a federa-
tion. The simplest solution for integrating autonomous DMs—on the physical
level, copying the data from the sources to the global DW—is often not feasible
due to access restrictions or technical limitations (e.g., network topology). Un-
der such constraints, the advantages of the federated approach are well known
from the field of databases. In federated database systems, the dedicated ac-
cess layer works on top of autonomous data sources to hide heterogeneity (e.g.,
data models, query languages, and so forth) from the applications and users
[Sheth and Larson, 1990, Litwin et al., 1990]. The local databases participat-
ing in the federation can be queried with a uniform language. Tightly coupled
federated systems additionally provide a global schema expressed in the com-
mon, “canonical” data model [Sheth and Larson, 1990].

Besides the obvious advantages of business integration and Data Mart inte-
gration, privacy policies often constrain access to sensitive data in an organi-
zation’s DW. It is therefore necessary to ensure the confidentiality of sensitive
data before sharing access to the DW with the strategic partners. For exam-
ple, retail trade companies could agree to share aggregated sales data—e.g., on
a weekly basis—with their food suppliers, but refuse access to detailed sales
figures. As far as the public sector is concerned, legal obligations have to be
respected. For instance, analysis over the Data Warehouses of health insurance
sub-organizations must ensure the confidentiality of patients’ personal data (e.g.,
their medical records).

The main challenges addressed by the FedDW approach are (1) integration
of multi-dimensional data at the logical schema level, and (2) query processing
against the global schema. In particular, this thesis analyzes and classifies the
conflicts at the schema and at the instance level of multi-dimensional data that
commonly occur among autonomous Data Marts. Moreover, queries against
the global schema of a FedDW Data Mart federation are answered from a vir-
tual instance of the global schema that represents the current snapshot of the
reconciled distributed data.

In order to integrate the facts and dimensions of multi-dimensional schemas,
Data Warehouse administrators and designers need tool support. In particular,
DW practitioners lack tools that adequately assist in (1) the design of integrated,
mediated schemas, and (2) the definition of mappings between different schemas.

1.3. STATE OF THE ART 5

Although some promising approaches have employed UML profiles to model DW
schemas—e.g., [Luján-Mora et al., 2006]—or mappings between DW schemas—
e.g., [Luján-Mora et al., 2004]—comprehensive tools that support both these
tasks of Data Mart integration have not been proposed yet.

Processing and answering queries against the global mediated schema is
closely related to query answering over views. Relations in distributed database
systems are typically union compatible across autonomous nodes. Therefore, the
global query plan is relatively easy to determine. Distributed systems provide a
component called query coordinator to manage query and data shipping between
the nodes [Özsu and Valduriez, 1999]. In the case of federated systems, however,
query answering must also consider that conflicts between autonomous nodes—
concerning the schemas and/or the tuples—may have to be repaired. Besides
that, federated systems need query rewriting capabilities to coordinate some
global query plan as well, transforming the original query into a series of partial
queries against the nodes.

1.3 State of the Art

Data Warehouse integration is more challenging than relational data integra-
tion because of the additional dimension entity. Compared to the relational
model—which provides the “relation” as its only conceptual entity—the multi-
dimensional model distinguishes facts and dimensions, whereby the facts link to
the dimensions. In particular, so called “(data) cubes” store facts in measure
attributes that are categorized by the attributes of several dimensions. The
dimensions, in turn, can be organized in hierarchies of aggregation levels. Thus,
mappings of multi-dimensional schemas have to consider (1) the attributes in
facts and dimensions, (2) the dependencies between facts and dimensions, and
(3) the aggregation hierarchies.

Current research on multi-dimensional integration is inspired by sev-
eral previous approaches, mainly in the field of distributed databases
[Özsu and Valduriez, 1999] and federated databases [Sheth and Larson, 1990].
In general, federated systems rely on semantic mappings to repair hetero-
geneities across the schemas and data. At query time, the mappings enable the
translation of distributed data across the different schemas into a common rep-
resentation. This approach—called mediated schema—enables a uniform query
interface that frees the user from querying each data source and converting the
result data manually [Doan and Halevy, 2005]. Typically, the schema and data
heterogeneities in federated databases remain transparent to the user.

Two different strategies for describing an integrated schema over heteroge-
neous data sources with mappings are known from database research: global-
as-view (GAV) and local-as-view (LAV). In both approaches, the actual data is
physically stored among distributed autonomous sources. While GAV systems
specify the global schema as view expressions over the sources, LAV systems con-
versely describe the sources as views over the global schema [Halevy et al., 2006].
It is known from theoretical database research that GAV mappings facilitate
query processing, whereas LAV mappings are easier to maintain and evolve
[Lenzerini, 2002, Halevy, 2001].

6 CHAPTER 1. INTRODUCTION

Federated data integration systems are more flexible compared to the physi-
cal migration of existing data into a mediated, global schema designed from the
existing schemas. Integrating only the logical schemas to build the federation—
instead of physically unifying existing data—allows the participating organi-
zations to remain autonomous. This means that every organization discloses
parts of their logical Data Warehouse schemas (e.g., by defining a “public”
Data Mart), but is still entitled to change the local, logical schema. Especially
if confidential and sensible data is shared through the federated system, such
autonomous schema and data management is advantageous.

In contrast, loosely coupled federations of Data Marts without a global
schema need other mechanisms for overcoming heterogeneity. A common ap-
proach has been to extend query languages with conflict resolution features.
For example, Mangisengi et al. have proposed an XML-based query language,
the operators of which allow the ad-hoc integration of autonomous Data Marts
[Mangisengi et al., 2003]. The XML layer of their approach is responsible for
the exchange of meta-data between autonomous schemas and supports some
simple transformation of the data. The work of [Abelló et al., 2002], in turn,
simply defines relationships based on structural similarity between Data Marts
that enable drill-across queries. Clearly, the disadvantage of such systems is
that the user is responsible for repairing all conflicts within the query.

Data Mart integration with semantic mappings among autonomous, logical
schemas addresses two major aspects: dimension integration and fact integra-
tion. The dimension integration problem is more complex than traditional,
relational schema integration because dimension attributes are structured in
hierarchies of aggregation levels. In contrast, fact integration corresponds to
the traditional challenges of schema matching and data matching among rela-
tional entities [Doan and Halevy, 2005]. However, the interdependencies among
dimensions and facts complicate the fact integration problem as well since fact
schemas reference dimension attributes as foreign keys. This way, combinations
of dimension attribute values uniquely identify “coordinates” of cells in cubes
[Golfarelli et al., 1998].

Several authors in the fields of distributed and federated Data Warehousing
have addressed the integration of dimension schemas as an isolated problem. For
example, Torlone and Panella developed the visual tool “DaWaII” for dimen-
sion integration [Torlone and Panella, 2005]. DaWaII allows the user to specify
mappings between similar dimensions and check them for correctness, based on
the concept of dimension compatibility [Cabibbo and Torlone, 2005]. Lately, in
order to automatically discover semantic mappings among autonomous dimen-
sion schemas, Banek et al. have proposed a matching algorithm that combines
structural schema comparison with linguistic heuristics to compute a numeric
similarity measure [Banek et al., 2007].

In contrast, fact integration has not received much attention. While the in-
tegration techniques developed for databases (e.g., see [Zhao and Ram, 2007])
also provide basic operations for the Data Warehousing field, these techniques
do not address the interplay between fact and dimension integration. Due to the
interconnections between facts and dimensions in the multi-dimensional model,
a comprehensive approach for Data Mart integration must consider that map-
pings among autonomous dimensions potentially affect the facts connected with
these dimensions.

1.4. OBJECTIVES 7

Altogether, traditional data integration techniques and systems are insuffi-
cient for the integration of Data Marts, as this thesis will show in Chapter 3.
The numerous heterogeneities that occur in the multi-dimensional model call
for (1) extended federated system architectures for multi-dimensional schemas
and data, and (2) a semantic mapping mechanism powerful enough to han-
dle all multi-dimensional heterogeneity. With existing technology, mappings
among facts and dimensions of multi-dimensional schemas can only be defined
separately, using different tools that lack comfortable interfaces and base upon
diverse data models. The manual integration of facts with existing database
technology is known to be very laborious and error-prone [Kimball, 2002].

1.4 Objectives

The primary goal of this thesis is to enable the model-driven integration of
autonomous, heterogeneous Data Marts. To address the challenges discussed in
Section 1.2, the thesis presents the novel approach “FedDW”. In particular, the
thesis pursues the following goals:

• Integration at the logical schema level: Since Data Warehouses con-
tain huge amounts of data, enable the integration of multi-dimensional
Data Marts at the logical schema level, using semantic mappings. Thus,
avoid the time-consuming migration of existing data at the physical level.

• Autonomy of federated Data Marts: Ensure that the organizations
participating in a federation of Data Marts can retain their schema and
data management autonomy. In particular, the privacy of confidential and
sensitive data must be respected.

• Comprehensive methodology: Define a systematic and comprehensive
classification of heterogeneities that occur among the schemas and exten-
sions of autonomous, multi-dimensional Data Marts. Address the entire
range of heterogeneities that may occur at the schema and at the instance
level of the multi-dimensional data model. Provide solutions to repair all
of those within the semantic mappings between logical schemas.

• Tool Support: Provide model-driven tool support for DW designers
and business analysts, facilitating all stages of the Data Mart integration
project. Design the tool suite as user-friendly as possible, provide eas-
ily comprehensible and intuitive user interfaces. Moreover, comply with
open, official standards (e.g., the Common Warehouse Metamodel CWM)
to support the DW products and platforms of multiple vendors. Use off-
the-shelf technology for tool implementation. Test the practical viability
of the FedDW approach and tools.

This thesis focuses on enabling the model-driven integration of autonomous
Data Marts, but not on performance optimization of the query mechanism.
To process queries over several, autonomous Data Marts—given the semantic
mapping between logical schemas—the FedDW approach presented in this thesis
uses only an elementary query plan.

The primary goal of our work is to demonstrate the viability of Model-Driven
Architecture based concepts for two distinct phases of Data Mart integration:
(1) definition of semantic mappings (including schema modelling of a global

8 CHAPTER 1. INTRODUCTION

schema), and (2) basic OLAP query processing, using these mappings. Query
rewriting techniques or sophisticated optimizing algorithms of the query plan are
out of the scope of this thesis. Therefore, the test results present experimental
results of a case study, but no detailed performance studies.

1.5 Contributions of the FedDW Approach

Integration of Data Marts at the logical schema level offers numerous advan-
tages. First, the federated architecture integrates multi-dimensional data while
the underlying systems remain autonomous. Schema and data management
autonomy is particularly important if protection of sensitive data is an issue.
Second, FedDW’s conceptual architecture addresses the privacy concerns of par-
ticipating organizations. The multi-tier schema management of the FedDW ap-
proach gives every organization the autonomy to exclude confidential or sensitive
data from the export schema. Third, FedDW’s internal “canonical” data model
supports various Data Mart implementation platforms. All multi-dimensional
schemas, data and the mappings are represented on the logical level. Fourth, the
semantic mappings between autonomous Data Marts and the global schema are
defined in source-to-target direction. These source-to-target mappings combine
the advantages of the global-as-view and local-as-view integration paradigms—
i.e., straightforward generation of query plans (GAV) with extensibility of ex-
isting mappings (LAV). FedDW’s global schema remains stable despite possible
changes of the local Data Mart schemas. If some local schema evolves, the ac-
cording mapping becomes invalid and has to be updated analogously, but the
global schema as well as the other mappings are not affected.

This thesis extends the State of the Art in two areas. For the Federated
DW administrators, FedDW supports the tasks of designing the global schema
and defining mappings among the heterogenous schemas of autonomous Data
Marts with a comprehensive mapping and conversion language. These concepts
are implemented in a visual integration tool called “Global Schema Architect”
(GSA) that supports both, global schema design and semantic mapping design
among the heterogenous schemas of autonomous Data Marts. From the users’
viewpoint, FedDW provides a global cube with integrated schema and processes
the user queries based on the mappings defined between the Data Marts and
the global schema. All heterogeneity among the DMs remains transparent to
users. FedDW Query Tool implements these concepts and provides a meta-data
interface to the Global Schema Architect, enabling the business analysts to use
the mappings designed by the Federated DW administrator. Thus, FedDW
supports the entire workflow of Data Mart integration to enable faster business
integration across organizational boundaries.

FedDW enables visual, model-driven integration of multi-dimensional Data
Mart schemas with an easy-to-comprehend notation that is based on the Unified
Modelling Language (UML). The UML-based notation of the Global Schema
Architect’s user interface depicts facts and dimensions of the autonomous Data
Marts in an intuitive and user-friendly manner. The GSA user configures the
Data Mart federation by both, designing the global multi-dimensional schema
and specifying semantic mappings between the Data Marts and the global
schema. While the visual design environment of the GSA tool supports a rich

1.6. PROTOTYPE IMPLEMENTATION OF FEDDW TOOLS 9

palette of conversion operators that address schema and instance conflicts among
facts and dimensions, user interaction is reduced to a minimum possible extent.

FedDW’s query processing algorithm uses algebraic optimization of the con-
version operators within mappings, and data shipping from the Data Marts to
the federation layer in order to compute the query result. This approach depends
on several optimization strategies in order to achieve acceptable performance—
e.g., caching of facts, replication of dimensions. While the prototype of FedDW
Query Tool introduced in this thesis only implements a basic query processing
algorithm, demonstrating the viability of the approach, there is also enough po-
tential for additional performance optimization, as discussed in the final Part IV
of the thesis.

1.6 Prototype implementation of FedDW Tools

In order to demonstrate the viability and practicality of the FedDW approach
for Data Mart integration proposed in this thesis, we developed the FedDW tool
suite, comprising prototypes of “Global Schema Architect” (GSA) and “Query
Tool”. GSA is a visual, model-driven design environment for the integration
of autonomous Data Marts, while FedDW Query Tool executes SQL OLAP
queries over the global, federated Data Marts designed with GSA. Together,
FedDW’s Global Schema Architect and Query Tool provide the functionality of
a Federated DW System, according to the reference architecture introduced in
Chapter 6 of this thesis.

The prototypes of the FedDW tool suite demonstrate a possible object-
oriented implementation of the concepts proposed in Parts III and IV of this
thesis. The goal of our implementation was to proof our concept, not to optimize
the performance of query processing with FedDW Query Tool across the Data
Marts in the Federated DW system. Investigating the potential of both, various
strategies for determining an optimal query plan, and different query processing
algorithms is an interesting direction for future research on Federated Data
Warehouses. As discussed in our conclusions (Chapter 10), the implementation
architecture of the FedDW tool suite presented in Chapter 9 allows numerous
strategies for performance optimization (e.g., caching global cubes, exploiting
the SQL OLAP query for optimization of the query plan, and so forth).

1.7 Outline

The remainder of this thesis is organized into four parts. Part I (Chapters 2 and
3) motivates the need for Federated Data Warehouse systems, describes a typical
scenario in which a Federated DW system is an adequate technology, and reviews
related work that enable Federated DW systems. Part II (Chapters 4, 5 and 6)
develops the basic concepts for Federated DW systems, presenting a conceptual
model for multi-dimensional data—that unifies the common concepts of Data
Warehouse schemas—and analyzing the heterogeneities that can occur among
autonomous Data Marts that conform to this model. Moreover, Chapter 6 de-
fines the basic architecture of Federated DW systems. Part III (Chapters 7 and
8) introduces our approach to Data Mart integration that is named “FedDW”,

10 CHAPTER 1. INTRODUCTION

presenting the methodology we propose for repairing heterogeneity among the
schemas and instances of autonomous Data Marts, and defining the syntax and
semantics of a query language to supports the integration methodology. Finally,
Part IV (Chapters 9 and 10) explains our proof-of-concept implementation of
Federated DW technology and presents test results. We conclude the thesis by
highlighting the most challenging research questions left up for future work.

Chapter 2 – Case Study presents a use case from the health care sector,
motivating the need for Federated Data Warehouse systems.

Chapter 3 – State of the Art discusses the enabling technologies of Feder-
ated DW systems. The chapter summarizes contributions of previous work in
the field of Data Warehousing and related fields—e.g., federated databases, data
integration—towards the integration of multi-dimensional data sources. It ex-
plains the preliminaries of, and identifies detailed requirements for the FedDW
approach.

Chapter 4 – Conceptual Data Model formally defines the typical multi-
dimensional concepts data mart, cube, measure, dimension, hierarchy, aggre-
gation level, roll-up attribute, and non-dimensional attribute at the conceptual
level, i.e. independent of any implementation aspects. Moreover, the data model
introduces the dimension functions members and level. Thus, the FedDW con-
ceptual model represents the formal foundation for a systematic classification
of heterogeneity in multi-dimensional systems.

Chapter 5 – Taxonomy of Conflicts introduces the classification of hetero-
geneities in the multi-dimensional model. It analyzes in depth a taxonomy of
heterogeneities among autonomous Data Marts in five categories, defined along
the two dimensions modelling scope (schema – instance) and model entity (di-
mension – fact), plus the “cross-categorial” schema versus instance category.

Chapter 6 – Federated DW Architecture introduces the reference architec-
ture for Federated DW systems, which is based on the “classical”, general five-
level architecture for federated databases [Sheth and Larson, 1990]. This ref-
erence architecture provides four-tiered multi-dimensional schemas (component
schema, export schema, import schema, application schema). The separation
of schemas to several layers supports the integration of several Data Marts
at the logical schema level, while these retain full autonomy for local schema
and data management. Compared to previous approaches in the field of multi-
dimensional source integration, we propose to add (i) a stable, global schema,
(ii) the Meta-data Dictionary, and (iii) the Dimension Repository to Federated
DW systems.

Chapter 7 – Integration Methodology proposes a general methodology for
the conjoint integration of dimensions and facts among multi-dimensional data
sources. The integration methodology systematically addresses the categories
of heterogeneity classified in Chapter 5. Its general idea is to produce source-to-
target semantic mappings (i.e., from the autonomous Data Marts to a stable,
global schema), such as demanded in the reference architecture. The proposed
integration paradigm is the minimum use strategy between autonomous, multi-
dimensional schemas and extensions, which is quite restrictive since it only keeps
the elements of import schemas shared among all local Data Marts. Moreover,
Chapter 7 defines the conversion operators of the Dimension Algebra and Fact
Algebra, which provide the “building blocks” of FedDW’s semantic mappings.

1.7. OUTLINE 11

Chapter 8 – SQL-MDi Language introduces the novel language SQL-MDi,
which allows the integration of logical, relational Data Mart schemas. SQL-
MDi provides high-level conversion clauses for the heterogeneities analyzed in
Chapter 5. The language is suited for both, the ad-hoc integration of multi-
dimensional Data Marts, and the permanent definition of semantic mappings in
the Federated DW reference architecture. The conversion clauses available in
SQL-MDi correspond exactly to the operators of the Dimension/Fact Algebra.
Thus, the Dimension Algebra and Fact Algebra represent one possible, proce-
dural implementation of the SQL-MDi clauses. Chapter 8 defines the syntax of
SQL-MDi precisely, and illustrates its use with numerous examples.

Chapter 9 – Prototype Implementation presents the prototype implemen-
tation of the FedDW tool suite, comprising the Global Schema Architect and
Query Tool. The motivation behind these two tools is to facilitate the busi-
ness analysts’ tasks. Ideally, the users want to integrate and query autonomous
Data Marts without having to write SQL-MDi code of the semantic mappings
by hand. FedDW Global Schema Architect demonstrates that the model-driven
architecture is well suited for the Data Warehousing domain. FedDW Query
Tool, in turn, acts as the mediator of the Federated DW reference architec-
ture. It processes queries across autonomous Data Marts, using the SQL-MDi
statements designed with the Global Schema Architect.

Chapter 10 – Conclusions concludes this thesis. The Chapter summarizes
the concepts for model-driven integration of autonomous, heterogeneous Data
Marts proposed in the FedDW approach, and gives an outlook on interesting
and challenging future research questions.

12 CHAPTER 1. INTRODUCTION

Part I

The Need for Federated
Data Warehouse Systems

13

Chapter 2

Case Study

This Chapter presents a small, but illustrative use case from the public health
care sector that highlights the problems and challenges of Data Warehouse in-
tegration in practice. Throughout the remaining Chapters, this thesis will refer
to the case study for illustrating both, the challenges of Data Mart integration,
and the proposed solutions. The following Chapter introduces basic notions of
the multi-dimensional model, and explains the possible classes of heterogeneity
among dimensions and facts. For better clarity and easier presentation, the case
study defines two Data Marts, illustrating heterogeneity at the schema and at
the instance level in isolation. Thus, the case study helps providing the basic
understanding of the challenges addressed in the remainder of this thesis.

15

16 CHAPTER 2. CASE STUDY

drug

manufacturer

pkg_size

country

patient

name

day

month

year

treatment

costs

method

day

week

year

day/hr

age_group

quantity
costs

medication

quantity
costs

medication patient

date_time

method

drug

patient

name

age_group

patient

method

drug

manufacturer

pkg_size

country

drug

day month year

date_time

date_time2
dwh1 dwh2 phys

physician cost_p
cost_m

treatment

cost_cat

cost_cat

method

hourly_costs
description

hourly_costs

descrpt

Figure 2.1: Health insurance – conceptual schemas of local Data Marts.

Data integration across autonomous organizations is a necessary prereq-
uisite for any kind of business integration. The integration of database sys-
tems is the traditional approach that has been researched for several decades.
Halevy et al. survey recent progress achieved by the data integration community
and list future challenges [Halevy et al., 2006]. Federated Database Systems
[Sheth and Larson, 1990] are the most prominent example of data integration
systems (see Chapter 3).

Lately, due to the advent of more processing power and broadband connec-
tivity over the Internet, the integration of data stemming from independent Data
Warehouses or Data Marts of various organizations is becoming both increas-
ingly interesting and important. The integration of autonomous DWs allows
cooperating organizations to mutually share their “corporate memories”. Suc-
cessful DW integration opens up a larger pool of information, broadening the
knowledge base for the decision makers in all participating organizations.

Without the appropriate methodology and tool support, DW integration is a
tedious and error-prone task, though. As an illustrative example of the practical
difficulties consider the conceptual DW schema of a fictitious health insurance
organization, consisting of independent sub-organizations within several Federal
States governed by a federal association. For simplicity, our scenario considers
only two sub-organizations, both of which autonomously operate a Data Mart,
as depicted in Figure 2.1. The schema is instantiated at two distinct nodes,
named dwh1 and dwh2. Let us assume the health insurance’s federal association
wants to access the data of both DMs dwh1 and dwh2 using the global schema
depicted in Figure 2.2.

The schemas in Figures 2.1 and 2.2 are specified in the “Dimensional Fact
Model” (DFM) notation proposed by [Golfarelli et al., 1998]. DFM is a graph-
ical notation for conceptual DW models. It allows to visualize the facts and
dimensions of data cubes as well as the dependencies within a data cube. Rig-

17

method

method drug

manufacturer

pkg_size

country

drug

patient

name

age_group

patient

day

month

year

quantity
costs

medication

date_time

cost_p
cost_m

treatment

hourly_costs
description

Figure 2.2: Global conceptual schema of health insurance DM federation.

orous definitions of the entities and concepts used in the multi-dimensional
canonical data model of Federated DWs follow in Chapter 4 of this thesis.

The example schema defines two cubes, treatment and medication, each
with three dimensions describing the facts. Notice that the DFM allows to
“reuse” or “share” dimensions among multiple facts—e.g., date time in Fig-
ure 2.1 [Golfarelli et al., 1998]. Both cubes exemplify numerous conflicts at the
schema and at the instance level, that we introduce and detail in Chapter 5.
We use two different cubes only for presenting different conflicts—in practice,
all conflict categories could easily occur in a single cube.

Figures 2.3 and 2.4 illustrate an example instantiation of the conceptual
DW schema at both sites dwh1 and dwh2. In the example, we use the postfix
‘ dim’ to name dimension tables in order to avoid confusion with identical level
attribute names. Notice that the two conceptual schemas are realized as so-
called relational star schema. This means, that the physical DW schema consists
of one table per cube (“fact table”) and one table for each dimension, containing
all the level and non-dimensional attributes (“dimension table”). In contrast,
relational snowflake schemas define a separate table for each aggregation level
of dimensions [Thomsen, 2002, Inmon, 2005].

Throughout the thesis we assume the conceptual schema be implemented
physically as star schema for pragmatic reasons. This assumption allowed for
an easier implementation of the FedDW prototype tool suite (see Chapter 9,
pp. 143), since it facilitates the automatic recognition of fact and dimension
tables when importing the meta-data of relational Data Marts. Moreover, as
has been generally recognized, the star schema leads to faster query response
times: compared to the snowflake schema, the star schema requires less join
operations, and is therefore regarded more efficient from the OLAP point of
view [Bauer and Günzel, 2006, Thomsen, 2002].

It is worth noting, though, that this simplifying assumption concerns only
the implementation layer of both, the Data Marts and the FedDW tool proto-
types (see Chapter 9, pp. 143). Conceptual schemas of Data Marts represent all
aggregation levels of dimensions, whereby the internal implementation model—
star or snowflake schema—is irrelevant [Golfarelli et al., 1998]. Thus, the ideas
proposed in this thesis apply straightforwardly to snowflake schemas as well (cf.
Chapter 4 Conceptual Data Model, pp. 51). The tools can be extended without
much effort to support both star and snowflake schemas.

18 CHAPTER 2. CASE STUDY

dwh1::medication (patient [l patient], drug [l drug],
date time [day]; qty, cost)
patient drug date time qty cost

p1 ’A’ 25-01-06 1 68.4
p2 ’A’ 03-02-06 5 342.0
p3 ’B’ 17-02-06 4 728.0

dwh1::drug dim (drug 7→ manufacturer)
[drug] pkg size [manufacturer] Country
’A’ 25 pcs. ’Roche’ CH
’B’ 40 pcs. ’Novartis’ CH
’C’ 250 ml. ’Merck’ US

dwh1::patient dim (patient 7→ age group)
[patient] name [age group]

p1 Doe, John 20-30
p2 Miller, Alice 40-50
p3 O’Neill, James 30-40

dwh1::date time (day 7→ month
7→ year)

[day] [month] [year]
25-01-06 01-2006 2006
03-02-06 02-2006 2006
17-02-06 02-2006 2006
23-02-06 02-2006 2006
25-02-06 02-2006 2006

dwh2::medication (patient [l patient], drug [l drug],
date time [day]; qty, cost)
patient drug date time qty cost

p5 ’AA’ 03-02-06 2 148.0
p6 ’B’ 14-02-06 3 624.3
p2 ’A’ 03-02-06 1 70.8

dwh2::patient dim (patient 7→ age group)
[patient] name [age group]

p1 Doe, John 20-30
p2 Miller, Alice 40-50
p3 O’Neill, James 30-40

dwh2::drug dim (drug 7→ manufacturer)
[drug] pkg size [manufacturer] Country
’A’ 30 pcs. ’Roche’ CH
’B’ 40 pcs. ’Bayer’ DE

dwh2::date time2 (day/hr 7→ day 7→ week 7→ year)
[day/hr] [day] [week] [year]

03-02-06 10:30 03-02-06 w05/06 2006
14-02-06 15:20 14-02-06 w07/06 2006
23-02-06 08:00 23-02-06 w08/06 2006
23-02-06 09:00 23-02-06 w08/06 2006
24-02-06 14:00 24-02-06 w08/06 2006

Figure 2.3: “Medication” fact tables and “drug” dimensions—[ALL] levels
omitted—of the local Data Marts dwh1, dwh2 (case study).

19

dwh1::treatment (method [l method], date [day], phys [l phys];
cost p, cost m)
method date phys cost p cost m
X-ray 23-02-06 ’Dr. A’ 356.0 425.0
CT 23-02-06 ’Dr. C’ 125.2 1742.0
CT 25-02-06 ’Dr. F’ 473.0 903.8

dwh1::date time (day 7→ month 7→ year)
[day] [month] [year]

25-01-06 01-2006 2006
03-02-06 02-2006 2006
17-02-06 02-2006 2006
23-02-06 02-2006 2006
25-02-06 02-2006 2006

dwh1::phys dim (phys)
[phys]
’Dr. A’
’Dr. C’
’Dr. F’

dwh1::method dim (method)
[method] description hourly costs

X-ray X-ray radiogram 2.360
CT tomography 5.200

dwh2::treatment (method [l method], date/hr [day/hr],
cost cat [l cost cat]; cost-$)
method date/hr cost cat cost-$
X-ray 23-02-06 08:00 personnel 480.0
X-ray 23-02-06 09:00 material 613.0
CT 24-02-06 14:00 material 624.5

dwh2::date time2 (day/hr 7→ day 7→ week 7→ year)
[day/hr] [day] [week] [year]

03-02-06 10:30 03-02-06 w05/06 2006
14-02-06 15:20 14-02-06 w07/06 2006
23-02-06 08:00 23-02-06 w08/06 2006
23-02-06 09:00 23-02-06 w08/06 2006
24-02-06 14:00 24-02-06 w08/06 2006

dwh1::cost cat dim
(cost cat)
[cost cat]
personnel
material

dwh1::method dim (method)
[method] descrpt hourly costs

X-ray X-ray radiogram 2.360
CT tomography 5.200

Figure 2.4: “Treatment” fact tables and “time” dimensions of the local Data
Marts dwh1, dwh2 (case study).

20 CHAPTER 2. CASE STUDY

In the multi-dimensional model, every dimension definition consists of (1)
an arbitrary number of aggregation levels, including the implicit [ALL]-level, (2)
a roll-up hierarchy between the levels, i.e. a lattice on the levels, such that
the dimension’s instances (called members) form a tree, and (3) optional non-
dimensional attributes to model the properties of dimension instances more pre-
cisely. For example, the patient dimension is composed of (1) the levels [l patient]
and [age group], (2) the roll-up hierarchy {l patient 7→ age group 7→ ALL} and
(3) the non-dimensional attribute name (of a patient). Formal definitions of the
conceptual constructs of multi-dimensional schemas follow in Chapter 4.

The example Data Mart instantiations (see Figures 2.3 and 2.4) demonstrate
a situation that is commonly found in practice. Obviously, both DMs represent
a similar part of the real world, but the medication and treatment fact tables
of dwh1 and dwh2 cannot be unified without previous transformations of their
schemas or their data. On the one hand, the schemas of the medication cubes
are identical and even match the global medication schema (see Figures 2.1
and 2.2), whereas their instances are heterogeneous (illustrated in Figure 2.3).
On the other hand, the treatment cubes mismatch already at the schema level.
Figure 2.1 reveals the heterogeneities among the two fact schemas and the two
date dimension schemas.

In particular, the following heterogeneities exist among dwh1 and dwh2.
Both medication cubes (see Figure 2.3) conform to the same schema, but contain
numerous conflicts among their instance sets:

(1) The primary keys of some subset of the facts—given in bold font—are
identical. Thus, the medication costs for patient ‘p2’ with drug ‘A’ on
Feb. 3, 2006 remain unclear among the two cubes (overlapping facts).

(2) Both drug dimensions contain an instance named ’A’, which is, however,
erroneously named ’AA’ at dwh2 (value conflict in dimension attribute).

(3) Finally, the roll-up hierarchies of the dimension instances (shown at the
bottom of Figure 2.3) contain conflicting mappings for drug ’B’: it rolls-
up to manufacturer ‘Novartis’ in dwh1, as opposed to ‘Bayer’ in dwh2
(different roll-up functions).

In contrast, the two treatment cubes (see Figure 2.4) are heterogeneous
among their logical schemata, affecting the dimensions and facts alike. Be-
sides these schema level conflicts, though, the data cubes dwh1::treatment and
dwh2::treatment are homogeneous at the instance level. The following list details
the conflicts among the treatment cubes:

(1) Fact table dwh1::treatment defines two measures to distinguish different
cost categories (‘cost p’ for personnel costs and ‘cost m’ for material costs)
whereas at dwh2 the instances of dimension cost cat identify the cost cat-
egory (schema–instance conflict).

(2) Ignoring the cost cat dimension (contained as implicit information in the
cost p and cost m attributes), the data cubes differ in their respective
number of dimensions: i.e., the phys (physician) dimension of dwh1 is not
modelled at dwh2 (dimensionality conflict).

(3) The domain of the cost-attributes is incompatible among the treatment
data cubes. While dwh1 records cost figures in Euros, dwh2 contains
treatment costs in US-$ (conflicting measure attribute domain).

21

(4) The aggregation hierarchy of the date time dimension contains four levels
at dwh2 (day/hr 7→ day 7→ week 7→ year), compared to only three at dwh1
(day 7→ month 7→ year). Moreover, the domains of the [month] and [week]
levels are different: months versus weeks of years (diverse hierarchy).

(5) Finally, the lowest aggregation level of the date time dimensions is more
fine-grained at dwh2: it records date plus time (day/hr), compared to only
date without time at dwh1 (heterogeneous base level domain).

Only after repairing all the aforementioned conflicts at the schema, at the
instance, and at the schema–instance level, the global schema as given in Fig-
ure 2.2 could be instantiated successfully. Figure 2.5 depicts the global med-
ication and treatment cubes as they would be computed from the given local
DMs dwh1 and dwh2. Notice that in a federated architecture the global cubes
(named g::medication and g::treatment) are available for analytical queries, but
need not necessarily be stored physically by the federated system. Instead, a
federated DW system would typically compute global cubes “on the fly”.

g::medication

patient drug date SUM
(qty)

SUM
(cost)

p1 ’A’ 25-01-06 1 68.4
p2 ’A’ 03-02-06 6 412.8
p3 ’B’ 17-02-06 4 728.0
p5 ’A’ 03-02-06 2 148.0
p6 ’B’ 14-02-06 3 624.3

g::treatment

method date SUM
(cost p)

SUM
(cost m)

X-ray 23-02-06 676.0 833.6
CT 23-02-06 125.2 1742.0
CT 24-02-06 416.3 0.0
CT 25-02-06 473.0 903.8

g::drug dim (drug 7→ manufacturer)
[drug] pkg size [manufacturer] Country

’A’ 25 pcs. ’Roche’ CH
’B’ 40 pcs. ’Bayer’ CH
’C’ 250 ml. ’Merck’ US

g::patient dim (patient 7→ age group)
[patient] name [age group]

p1 Doe, John 20-30
p2 Miller, Alice 40-50
p3 O’Neill, James 30-40

g::date (day 7→ month 7→ year)
[day] [month] [year]

25-01-06 01-2006 2006
03-02-06 02-2006 2006
14-02-06 null 2006
17-02-06 02-2006 2006
23-02-06 02-2006 2006
24-02-06 null 2006
25-02-06 02-2006 2006

g::method dim (method)
[method] description hourly costs

X-ray X-ray radiogram 2.360
CT tomography 5.200

Figure 2.5: Global fact tables and dimensions—[all] levels omitted—computed
from the local Data Marts dwh1, dwh2

22 CHAPTER 2. CASE STUDY

In the remainder of this thesis, we will use the case study to illustrate the fun-
damental problems in DM integration scenarios and discuss possible solutions.
We emphasize that the case study presented herein is a simple example com-
pared to real-world settings, that are usually more complex and complicated.
Nevertheless, the case study demonstrates all essential conflict classes that may
occur in practice, and the appropriate solutions. For an easier presentation, we
intentionally kept the example at the minimum possible size.

Concluding the introduction to challenges in Data Mart integration, the
following Table 2.1 gives an overview of possible classes of heterogeneities in the
multi-dimensional data model. In practice, several of these conflicts commonly
occur in combination, which motivates the need for a systematic methodology,
helping to recognize heterogeneity among multi-dimensional schemas and data
correctly. Each of the conflict classes given in Table 2.1 has been exemplified
above in the case study, and will be defined in detail in Chapter 5.

Table 2.1: Overview of heterogeneities among Data Warehouses.

Facts Dimensions

Schema
vs.

Instance

Fact context as
dimension members

Dimension members as
contextualized facts

Schema
level

• Naming conflicts (cube
name, dimension attributes,
measures)

• Dimensionality (diverse di-
mension attributes, number
of dimensions)

• Diverse measures

• Domain conflict (measures)

• Naming conflicts (dimen-
sion name, levels, non-
dimensional attributes)

• Diverse levels and/or hierar-
chies

• Diverse non-dimensional at-
tributes

• Domain conflicts (level
attributes, non-dimensional
attributes)

Instance
level

• Value conflicts (dimension
attributes, measures)

• Overlapping fact subsets

• Disjoint fact subsets

• Heterogeneous roll-up func-
tions

• Non-dimensional value con-
flicts

• Overlapping member sets

Chapter 3

State of the Art

Contents
3.1 Data Warehousing and OLAP 25

3.1.1 Data Warehouses . 25

3.1.2 Data Marts . 26

3.1.3 On-Line Analytical Processing (OLAP) 27

3.2 Federated and Multi-databases 28

3.3 Physical Integration 29

3.4 Logical Integration 30

3.4.1 Multi-system Query Languages 31

3.4.2 Global-As-View Approaches 35

3.4.3 Local-As-View Approaches 36

3.4.4 Both-As-View Data Integration 37

3.4.5 Data Integration Approaches for Multi-dimensional
Systems . 38

3.5 Multi-dimensional Schema Integration 39

3.6 Model Driven Architecture (MDA) 42

3.7 DW Modelling and Design with UML 43

3.8 Summary and Requirements 44

This Chapter gives basic definitions of the notions “Data Warehouse” and
“Federated system”, and summarizes previous effort made towards the devel-
opment of Federated Data Warehouse Systems. It considers the integration of
multi-dimensional database systems as the general problem and shows that, in
particular, Data Warehouse integration is viewed as special case of traditional
database integration. It summarizes the development chronologically, starting
with the basics of Data Warehouses and Federated Database Systems. The
Chapter surveys two major fields, data source integration and model-driven de-
velopment. Based on the shortcomings of current approaches, the final Section
formulates the requirements for improvements of existing work.

23

24 CHAPTER 3. STATE OF THE ART

The present chapter reviews the enabling technologies of Federated Data
Warehouses. The FedDW approach proposed in this thesis is primarily inspired
by federated database architectures. In order to handle the richer semantics
of the multi-dimensional model introduced by its additional dimension entity,
however, our approach requires several enhancements of well-known concepts
for the integration of autonomous and heterogeneous data sources.

This chapter is divided into several sections, that explain the fundamentals of
Data Warehousing and OLAP (3.1), and survey two major research areas related
to our approach towards Federated Data Warehousing: data integration, as well
as model-driven development with the Model Driven Architecture (MDA) and
Unified Modelling Language (UML) standards.

Data integration is a mature discipline with several decades of experience,
spanning the fundamentals of federated databases (3.2), which lead to two other
research areas with specifically rich experience: physical integration (3.3) and
logical integration (3.4). Roughly, all data integration approaches belong to
one of these two categories that utilize fundamentally different concepts (see
Figure 3.1). In recent years, the community has applied these techniques also
to the multi-dimensional model (3.5).

Data Integration

Physical Integration
• Schema reconciliation
• System re-engineering

Logical Integration
• Semantic integration
• Structural integration
• Data reconciliation

Figure 3.1: Tasks and vocabulary of data integration [Koch, 2001].

Terminology used in the data integration field is often inconsistent. In par-
ticular, many authors use the term “data integration” to denote logical inte-
gration, whereas “schema integration” refers to physical integration approaches
[Doan and Halevy, 2005, Schmitt and Saake, 2005, Koch, 2001]. To avoid con-
fusion, this thesis uses “physical integration” and “logical integration” to distin-
guish the concepts depicted in Figure 3.1. With “data integration”, in turn, we
subsume all these concepts.

In contrast, model-driven development of information systems is a young
research discipline. MDA is an official standard released by OMG, the Object
Management Group [(OMG), 2003b]. Model-driven development abstracts from
the internal code of systems, separating the platform-independent specification
of system functionality from its actual, platform-specific implementation. The
most important idea of MDA is the automatic transformation between platform-
independent and platform-specific models. Thus, the model-driven development
approach facilitates life-cycle management of information systems by improving
the reusability of formal system specifications. The UML is commonly used to
realize model-driven development of information systems. Section 3.7 summa-
rizes previous applications of the UML for the Data Warehousing domain.

3.1. DATA WAREHOUSING AND OLAP 25

Finally, in Section 3.8 we summarize the current state-of-the-art in all the
aforementioned fields. The chapter concludes by identifying the shortcomings
of previous approaches towards Federated Data Warehouses. Based on these
observations, we formulate the requirements for an ameliorated approach.

3.1 Data Warehousing and OLAP

This section defines the basic notions in the Data Warehousing field that are rele-
vant for this thesis. Basically our work regards a Data Warehouse (3.1.1) or Data
Mart (3.1.2) as black box, concentrating on how these systems—particularly, at
the level of Data Marts—can be integrated under a federated architecture. Nev-
ertheless, we summarize the methods and technology used for Data Warehouses
as starting point for the realization of Federated Data Warehouses. Further-
more, we briefly explain On-line Analytical Processing (OLAP; 3.1.3).

3.1.1 Data Warehouses

Corporate Data Warehouses (DWs) are analytical information systems, i.e.
databases that are optimized for analytical decision support rather than for
high transactional throughput. More specific, “a Data Warehouse is a subject
oriented, integrated, non-volatile and time variant collection of data in sup-
port of management’s decisions” [Inmon, 2005]. Thus, a DW represents an
integrated collection of historical business data, supporting the business ana-
lysts in the decision making process. In that sense, the DW represents the
“corporate memory” of all business data that is relevant for strategic decisions
[Kimball, 2002, Inmon, 2005].

In contrast, operational data sources focus on efficient support for the pro-
cessing of data workload in day-to-day business transactions. The operational
data sources are designed around the organizational functions of a company
(i.e., its business processes—e.g., sales management, marketing, customer ser-
vices, and so forth). Data models for relational databases such as the En-
tity/Relationship (ER) model or the relational model optimize these systems
for maximum throughput of relatively simple insert/update/delete transactions
[Navathe and Elmasri, 2004].

The first distinguishing feature of DWs is subject orientation. This means,
the modelling of DW schemas emphasizes the subjects (entities) that are of
primary interest to business analysts and decision makers. These subjects are
denoted the dimensions of the corporate DW. Typically, each dimension pro-
vides various levels of granularity. This focus on dimensional data has led to
the notion of multi-dimensional data model and the data cube analogy. In-
deed, the various dimensions in DWs span a n-dimensional space as container
for other, non-dimensional values—called the facts of the cube. Facts of DWs,
in turn, represent the interesting business “benchmarks”, i.e. mostly numeri-
cal, measurable attributes or simply measures of business processes. Thus, the
facts represent transactional data from the operational data sources within the
dimensional context of the DW [Golfarelli et al., 1998].

The second feature of DWs is integration or reconciliation of various opera-
tional data sources. More often than not, operational data sources have been de-

26 CHAPTER 3. STATE OF THE ART

veloped and implemented independently before the corporate DW is introduced.
Therefore, the universe of discourse is often represented differently among these
systems—with respect to terminology behind attribute names, value domains
of attributes, character encodings, etc. The conceptual schema of the DW
contains the common, homogeneous representation of the source conceptual
schemas [Golfarelli et al., 1998].

In this context, the DW resolves the existing heterogeneities between the var-
ious operational systems at the schema level and at the instance level, as classi-
fied by [Lee et al., 1995, Kim and Seo, 1991]. This DW design approach is called
data-driven or data-oriented [Mazón et al., 2007, Mazón and Trujillo, 2007].
Recently, some authors have criticized the data-driven DW design approach
for often overlooking the actual requirements of business users, and proposed
requirements-driven (or sometimes called goal-driven) methods for better meet-
ing user expectations [Prakash et al., 2004, Pardillo and Trujillo, 2008].

The third characteristic feature of DW systems is the non-volatility of data.
A DW loads massive amounts of business data from operational systems, provid-
ing read-only access for analytical purposes. Usually, DWs prohibit any updates
of their data [Kimball, 2002, Inmon, 2005]. In contrast, operational data sources
are transaction oriented, which means that these systems permanently allow to
insert, update or delete each tuple [Navathe and Elmasri, 2004].

Finally, the fourth distinguishing feature of DWs is time variance, i.e. empha-
sis on the time reference of factual data. By introducing the time dimension,
a DW is able to keep historical versions of data, and thus allows analytical
queries over different time periods [Golfarelli et al., 1998]. This is again clearly
contrary to operational sources, in which usually data is modified without pre-
serving older versions. Therefore, operational data sources store only the current
“snapshot” of every tuple in the universe of discourse.

3.1.2 Data Marts

Data Marts (DMs) are more specific, usually departmental data repositories
that are architecturally equivalent to the Data Warehouse concept, which we
have summarized in the previous subsection. Two alternative design methods
for DMs have been proposed: the top-down approach [Inmon, 2005] and the
bottom-up approach [Kimball, 2002]. The difference between these approaches
is which repository should be developed first: the corporate Data Warehouse or
the departmental Data Mart(s). Inmon prefers to develop the corporate DW as
the organization’s comprehensive data repository first, and derive the DMs from
the DW later on. Kimball, however, advocates exactly the opposite, arguing
that departmental DMs are easier to develop due to the reduced problem size,
and the DW can be derived later.

Although theoretically the top-down method [Inmon, 2005] is considered the
more elegant solution (e.g., see [Jukic, 2006, Bonifati et al., 2001]), the bottom-
up approach [Kimball, 2002] is easier to implement from the practical viewpoint
and therefore commonly used in enterprises [Watson et al., 2001]. The two ap-
proaches have been heavily discussed, but it seems that both have their merits
and weaknesses [Breslin, 2004]. For the purpose of this thesis, though, it is
irrelevant how the organizational Data Warehousing infrastructure was built.

3.1. DATA WAREHOUSING AND OLAP 27

3.1.3 On-Line Analytical Processing (OLAP)

On-Line Analytical Processing (OLAP) is a category of software technology that
provides executives, analysts and managers with aggregated business informa-
tion via a “slice, dice and rotate” method of end user data access, augment-
ing or replacing more complicated query languages (e.g., SQL for relational
systems). This slice and dice data access method gives the user consistently
fast, consistent, interactive access to a wide variety of data views, organized by
key selection criteria that match the dimensions of the corporate DW. “OLAP
performs multi-dimensional analysis of enterprise data including complex ag-
gregations, trend analysis and modelling. Derived from end-user requirements,
OLAP enables end-users to perform ad hoc analysis of data in multiple dimen-
sions, thereby giving them the insight and understanding they need for better
decision making.” [The OLAP Council, 2009]

The term “OLAP” was originally coined by E. F. Codd et al. who were
the first to realize that conventional, relational querying is ill-suited as data
model for analytical activities performed by business analysts. Instead, OLAP
software must provide the multi-dimensional view on data that is important
for decision support. Thus, Codd et al. proposed twelve rules to evaluate
the proper functionality of OLAP products [Codd et al., 1993]. Later on, in
1995, Codd added six more rules to account for additional analytical require-
ments [Bauer and Günzel, 2006, p. 101]. To facilitate the evaluation of OLAP
products, Pendse and Creeth—the founders of the “OLAP Report” project—
simplified the 18 rules of Codd et al. to five key criteria FASMI (Fast Analysis
of Shared Multidimensional Information) [Pendse and Creeth, 1995].

For inspecting and analyzing multi-dimensional data, OLAP tools provide
high-level operations that conform to the “slice, dice and rotate” metaphor
[The OLAP Council, 2009]. Since DWs allow only read access to data, but
prohibit any updates, the result of these operations is a new cube, which
conceptually is a view over the original cube data. The following high-level
operations are commonly distinguished [Han and Kamber, 2000, pp. 39–104],
[Bauer and Günzel, 2006, Chaudhuri and Dayal, 1997]:

• Roll-up and drill-down: the roll-up operation aggregates the fact values
of the cube by changing to a higher aggregation level in one of the cube’s
dimensions The drill-down operation is the reverse of roll-up.

• Slice and dice: the slice operation performs selection on the members (i.e.
the tuples) of one of the cube’s dimensions, retrieving only the members
satisfying the predicates given in the selection’s condition. The dice op-
eration is a slight variation of slice, extending the selection predicates on
more than one of the cube’s dimensions.

• Drill across: the drill across operation performs queries against more than
one cube simultaneously, combining the fact data of cubes on their com-
mon dimensions. Thus, drill across can only be applied on sets of cubes
that share at least one dimension. Sometimes the drill across operation is
also called cube join.

• Pivot : the pivot operation rotates the visual ordering of the cube axes,
providing an alternative presentation of the cube. However, pivot leaves
the fact data presented in the cube unchanged.

28 CHAPTER 3. STATE OF THE ART

3.2 Federated and Multidatabase Architectures

Historically, multi-database architectures have been the first approach to-
wards the integration of distributed (autonomous) data sources. In general,
multi-database systems are “light-weight” collections—without an integrated
schema—of distributed and possibly heterogeneous databases. According to the
classification of [Sheth and Larson, 1990], federated database systems slightly
refine multi-database systems, allowing the component database systems to re-
tain autonomous.

In non-federated multi-database systems, all heterogeneity between the data
sources is not transparent. Heterogeneity may occur at several levels, e.g. the
universe of discourse, its representation within data models, constraints on
schemas, and implementation of the model (including the functionality offered
by the database system, such as the query language and network interfaces).
This leaves the user responsible for the integration task at query time. In the
worst case, data has to be integrated using different query languages, and trans-
lated between several data models [Sheth and Larson, 1990].

Federated database systems are further categorized into tightly or loosely
coupled systems [Sheth and Larson, 1990]. On the one hand, tightly coupled
federated databases are administrated by some global authority as a single
entity—not meaning that the loss component systems loose their autonomy. On
the other hand, loosely coupled federated databases are managed locally. Typ-
ically, tight coupling of autonomous component databases might include the
definition of an integrated schema, such that the federation logically appears to
the users like a distributed database (see Figure 3.2).

External schema

Federated schema

Export schema Export schema

Component schema

Local schema

Component schema

Local schema

Databases

…

…

…

Figure 3.2: Five-tier schema architecture of federated databases
[Sheth and Larson, 1990].

3.3. PHYSICAL INTEGRATION 29

Autonomy in the sense of [Sheth and Larson, 1990] refers to several mean-
ings, i.e. design autonomy, communication autonomy, association autonomy,
and execution autonomy. In particular, design autonomy entitles the local
administrators of component systems to choose the universe of discourse, its
representation, as well as the data models and query languages. Communica-
tion autonomy and association autonomy permits local systems to decide about
their “isolation level”, i.e. the visibility of the database interface respectively the
services it offers within the federation. Finally, execution autonomy allows the
re-ordering of operators within queries sent to the component systems.

3.3 Physical Integration

Physical integration refers to the process of building a new information sys-
tem with an integrated schema from heterogeneous source systems. Thus, the
integrated schema is derived from the existing schemas of the original infor-
mation systems [Schmitt and Saake, 2005, Batini et al., 1986]. As depicted in
Figure 3.1, physical integration is one of two possible approaches for integrating
heterogeneous data sources.

Sometimes, physical integration is referred to as data migration
[Kimball, 2002]. The design of an integrated information system involves the
re-engineering of original, heterogeneous schemata in order to obtain one global
schema. In order to implement the integrated schema, all data has to be
migrated—i.e., copied and transformed—from the source systems to the newly
built, integrated information system.

Clearly, physical integration is the straightforward approach to data inte-
gration. While the physical integration process leads to the simplest possible
architectures of integrated systems, the design process itself is not necessar-
ily easier than for logical integration (cf. 3.4). The advantage of physically
integrated information systems is that all heterogeneity—e.g., concerning the
universe of discourse, the data model, and query languages—is repaired a pri-
ori. Thus, queries against the integrated schema are simple to process since
they can be sent directly to the global information system implementing the
integrated schema.

During the physical integration process, all heterogeneity among the ex-
isting data sources must be repaired. Usually this process is error-prone and
laborious, because numerous possible heterogeneities must be considered, as
sketched above. Lee et al. have given the detailed classification of partic-
ular conflicts in the relational model [Lee et al., 1995], refining the previous
work of [Kim and Seo, 1991]. In order to facilitate the integration tasks from
the user’s point of view, several visual tools have been proposed that use
machine learning techniques to infer the existing conflicts between relational
schemas from user interactions. The most notable of these systems are SPHINX
[Barbancon and Miranker, 2007] and Clio [Yan et al., 2001].

It has been recognized that the integration of heterogeneous schemas
among various, independent information systems is a tedious and error-
prone task [Seligman et al., 2002]. To address this issue, various automated
schema matching techniques have been proposed [Rahm and Bernstein, 2001,
Evermann, 2009]. Particularly challenging is the discovery of complex

30 CHAPTER 3. STATE OF THE ART

matches—i.e., 1:n or n:m mappings between relations. To this end, Xu and
Embley propose an integration framework based on data frames and snippets
of domain ontologies [Xu and Embley, 2006, Embley et al., 2004]. Their frame-
work combines element matching (i.e., it analyzes typical, expected data values
in attributes) with structure matching (i.e., it inspects the schema elements with
the help of WordNet [Miller, 1995]) to generate source-to-schema mappings. The
iMAP approach uses similar techniques for detecting match candidates—both
simple 1:1 and complex 1:n matches—in a semi-automatic framework. The main
contribution of iMAP is its explanation module, which generates dependency
graphs for the match candidates together with numeric rankings of estimated
similarity [Dhamankar et al., 2004]. This approach reduces the danger of false
matches since the user, presumably an expert of the underlying application do-
main, is ultimately responsible for choosing the appropriate match from the
candidates list of matches. Nevertheless, the automatic generation of match
candidates considerably facilitates the user’s workload.

To implement a global, physically integrated information system, full and
unrestricted access to the local, heterogeneous data sources is necessary. There-
fore, it is an appropriate approach for permanent integration of data sources.
For the Data Warehousing domain, however, physical integration is often not
feasible for privacy of confidential data (e.g., in the case of business cooperations
the partners certainly will only share non-critical business data). Moreover, the
sheer volume of data stored in DW systems often causes an unmanageably high
complexity of data migration projects, even among the divisions of a single
company [Kimball, 2002].

3.4 Logical Integration

Integration of heterogeneous data at the logical level—without migrating the
data physically to an integrated system, as explained in the previous section—
is the alternative approach to data integration (cf. Figure 3.1). Basically,
data integration systems provide access to several data sources by repair-
ing all heterogeneity at the level of logical entities [Doan and Halevy, 2005].
For that purpose, logical conversion functions—so-called mappings—specify
how to obtain a common representation of all data across the heterogeneous
sources [Lenzerini, 2002]. Logical data integration has been a major challenge
for the database community over the past decades (e.g., see the surveys of
[Halevy et al., 2006, Doan and Halevy, 2005]). In the following subsections we
briefly summarize the current state of this research area.

Historically, the first approaches towards the integration of autonomous data
sources developed extension for query languages, completely delegating the in-
tegration task to the users—like in multi-database systems (3.4.1). Later, these
approaches were refined to the specification of procedural or declarative map-
pings between heterogeneous source systems, leading to two major approaches:
global-as-view respectively local-as-view (see 3.4.2 and 3.4.3). Recently, an ap-
proach called both-as-view has been proposed in an attempt to combine the
advantages of the two previous techniques (3.4.4). Furthermore, the more so-
phisticated problem of applying previous solutions to Data Warehouse integra-
tion has drawn the attention of researchers (3.4.5).

3.4. LOGICAL INTEGRATION 31

3.4.1 Multi-system Query Languages

In order to improve the usability of multi-database systems, early approaches
towards logical integration have developed multi-database query languages for
manipulating data across database boundaries [Grant et al., 1993]. In multi-
database systems, the user is responsible for overcoming heterogeneity when
formulating the query (cf. 3.2). Multi-database query languages provide trans-
parency from the interfaces and query languages used internally by the data
sources. Thus, these languages add an abstraction layer to multi-databases.
From the user’s perspective, multi-database query languages provide at least
the advantage of a uniform language across the heterogeneous data sources.
Nevertheless, conflict detection and resolution remains the user’s responsibility.

Multi-database languages extend standard query languages with reso-
lution features for schema and data heterogeneity. The first of these
languages—named MDSL—was introduced by [Litwin and Abdellatif, 1986].
Later, the MSQL language refined MDSL functions for the SQL standard
[Litwin et al., 1989]. Other prominent examples of multi-database languages are
SchemaSQL [Lakshmanan et al., 2001], Federated Interoperable SQL (FISQL)
[Wyss and Robertson, 2005], and nD-SQL [Gingras and Lakshmanan, 1998]. In
what follows, we briefly summarize these languages, and also present higher-
order logics and reflection based query techniques.

MSQL.

MSQL (Multidatabase SQL) allows to query and manipulate sets of relations—
so-called multirelations [Litwin et al., 1989]—across multiple databases. MSQL
extends standard SQL [(ISO), 1992], defining multirelational operators that cor-
respond to SQL’s clauses with an added prefix ‘M’ (e.g., MSELECT, MPROJECT,
MJOIN). Internally, MSQL is translated to equivalent sequences of standard
SQL operators that produce the desired result. Thus, MSQL is compatible to
existing relational database systems that implement the SQL standard.

The multirelational algebra formalizes MSQL semantics [Grant et al., 1993].
The multirelational algebra represents a procedural implementation of the
MSQL operators. In turn, the multirelational algebra operators map to the re-
lational algebra [Codd, 1970]. This approach ensures that each multirelational
operation delivers the same result as the analogous relational operation.

SchemaSQL.

SchemaSQL is a second-order relational query language, extending the SQL
standard with variables over database meta-data and additional aggrega-
tion functions [Lakshmanan et al., 2001]. Standard SQL allows only vari-
ables containing tuples of relations, not the variables of relations themselves
[(ISO), 1992]. The meta-data variables of SchemaSQL allow for powerful data
transformation features. In order to generate integrated views over several data
sources, SchemaSQL provides the concept of output schemas (CREATE VIEW
clause). Moreover, SchemaSQL extends vertical aggregation functions known
from the SQL standard with horizontal aggregation. Thus, SchemaSQL is ide-
ally suited for querying across multiple, autonomous data sources.

32 CHAPTER 3. STATE OF THE ART

nD-SQL.

Similar to SchemaSQL, nD-SQL extends the SQL standard with meta-data
variables and additional aggregation features. The nD-SQL language in-
troduces powerful schema transformations—e.g., variables ranging over at-
tribute names and other meta-data—and even supports multi-dimensional data
[Gingras and Lakshmanan, 1998]. Aggregation hierarchies in dimensions cannot
be represented, though, which seems too restrictive in most practical scenarios.

The main difference distinguishing nD-SQL from its “predecessor”
SchemaSQL is the underlying data model. nD-SQL introduces so-called concepts
(“global relations”), with an associated list of criteria (“global attributes”).
These constructs are used for semantic integration of the logical entities across
heterogeneous data sources. For that purpose, the WHERE clause of nD-SQL
provides two additional keywords, ISA and HASA, for assigning concepts to lo-
cal relations and criteria to local attribute names, respectively. Analogously
to SchemaSQL, nD-SQL allows for the generation of integrated views. The
FOR keyword within the SELECT clause of nD-SQL declares a dynamic output
schema [Gingras and Lakshmanan, 1998].

Federated Interoperable SQL.

Federated Interoperable SQL (FISQL) adds second order language operators to
an extended model of relational data—the Federated Relational Model—together
with transformation functions between the data and meta-data levels. Com-
pared to SchemaSQL and other previous proposals, FISQL adds considerably
more functionality. In particular, FISQL supports nested queries instead of view
mechanisms, which allows to chain several FISQL queries to more complex ex-
pressions. Moreover, transformations of data into meta-data (or vice versa) are
generally available in FISQL, whereas SchemaSQL and other languages allow
only a single column of data to generate meta-data [Wyss and Robertson, 2005].
Thus, FISQL is the most powerful language for query processing across hetero-
geneous data sources proposed so far.

The algebraic query language Federated Interoperable Relational Algebra
(FIRA) is the functionally equivalent procedural implementation of FISQL. To
ensure its compatibility with SQL-based data sources, the FIRA is downwards
compatible with the relational algebra. However, the compositionality of FIRA
defines a more comprehensive closure than the relational algebra: a FIRA query
maps a set of databases to a single database [Wyss and Robertson, 2005]. In
contrast, relational algebra maps a (set of) relation(s) to a single output relation
[Codd, 1970].

The outstanding contribution of the FISQL/FIRA approach is a con-
siderable extension of data/meta-data transformation features, compared to
SchemaSQL and other languages. In addition to the normal relational opera-
tors [Codd, 1970], FIRA comprises operators for promoting data to meta-data,
demoting meta-data to data, and dereferencing columns of data. The derefer-
ence concept allows to access the values of some column directly, tuple by tuple,
as if the values were columns themselves. Thus, FISQL/FIRA treats both the
data and meta-data of relational data sources as completely equivalent first class
citizens of its underlying data model [Wyss and Robertson, 2005].

3.4. LOGICAL INTEGRATION 33

This involves two important enhancements of FISQL/FIRA semantics in
comparison to previous approaches. First, the internal model of the language
removes the distinction between data and meta-data, which enables all transfor-
mation operators to be used more than once per query. Second, the syntax used
for data/meta-data transformations is more easily readable and comprehensible.

An earlier proposal, MetaData SQL (MD-SQL), also extends SchemaSQL
with a two-tiered meta-algebra. Compared to standard SQL operators, MD-
SQL introduces two additional concepts: generalized join and generalized pro-
jection. The generalized join evaluates the relational join operator over the set
of relations specified by a meta-data variable of a MD-SQL sub-query. In simi-
lar fashion, the generalized projection adds to the SELECT clause of a MD-SQL
query the set of attributes specified by a meta-data variable [Rood et al., 1999].

Generally, MD-SQL shares most of the goals of FISQL. The main difference
between these two approaches is that the sub-query capabilities of MD-SQL
are more limited. Such as in SchemaSQL, the “nested variable declaration”
over database meta-data must be unpacked before the algebraic query plan can
be constructed. Moreover, the generalized join operator is more complex to
evaluate than the appropriate FISQL operator [Wyss and Robertson, 2005].

Higher Order Logics-based languages.

Deductive databases combine logic programming with relational database tech-
nology [Bravo and Bertossi, 2005]. A deductive database specifies relations
through a declarative language, i.e. as rules over predicates (“relations”) with
arguments (“attributes”). In order to compute instances of deductive databases,
an inference engine interprets the rules over a set of given facts, deducing tuples
of the target predicates [Navathe and Elmasri, 2004, pp. 784].

The notation of queries against deductive databases—i.e., of rule
declaration—is inspired by the Prolog logic programming language. Rules con-
sist of a conclusion (head) on the left-hand side, and premise(s) on the right-
hand side (the body). Typically, the rule conclusion contains only a single
predicate, representing the “target relation”. The rule body, in turn, consists
of one or more predicates, that are implicitly connected with the logical and
operator [Navathe and Elmasri, 2004, pp. 784]. Datalog is a typical example of
deductive query languages that use Prolog as their starting point.

The main advantage of deductive databases over SQL-based relational
databases is the possibility to specify recursive rules. Furthermore, the rule
based inference mechanism provides a framework for deducing new information
that is not necessarily stored physically, i.e. as predicate facts in one of the data
sources [Navathe and Elmasri, 2004, pp. 784]. Therefore, deductive databases
are ideally suited for handling very large sets of data, or for integrating several
data sources with rules [Bravo and Bertossi, 2005].

IDL (Interoperable Database Language) introduced higher order logical op-
erators, i.e. expressions ranging over the meta-data of data sources. The data
model underneath the IDL language defines the universe of discourse as tuple
of databases, each database as tuple of relations (predicates), and each relation
as tuple of attributes (arguments). Consequently, IDL expressions may contain
names of relations or attributes, instead of ranging only over data (facts or

34 CHAPTER 3. STATE OF THE ART

tuples), as is the case in the relational algebra. Thus, the higher order opera-
tors enable the transformation of heterogeneous schemas across multiple data
sources into an output schema [Krishnamurthy et al., 1991].

Additionally, IDL allows the definition of higher order views as target pred-
icate. This means that the number and names of output relations (predi-
cates) depends on some IDL expression, enumerating over the data or meta-
data of some data source. The values contained in the IDL expression deter-
mine the number and names of output relations [Krishnamurthy et al., 1991].
In contrast to Datalog, however, IDL does not allow recursion within rules
[Bravo and Bertossi, 2005].

HiLog extends traditional predicate logic with higher order logical opera-
tors [Chen et al., 1993]. In particular, HiLog’s syntax permits highly flexible
rules: it allows arbitrary terms to appear where the predicate calculus—the
formal foundation of Prolog—expects only predicates, functions and atomic for-
mulas. This feature is particularly powerful since it enables the transformation
of data (facts) into meta-data (predicates or their attributes), or vice versa.
HiLog’s semantic, however, is first order which facilitates its theoretical proof
and practical implementation. Similar to Datalog, HiLog allows recursive rules,
as has been explained above. Thus, HiLog’s functionality exceeds the expres-
sive power of SQL and the relational algebra—which corresponds to first order
logical functions [Codd, 1970]—while its implementation is possible in standard
Prolog compilers [Chen et al., 1993].

SchemaLog is another Prolog-based logical programming language, extend-
ing rule predicates with higher-order operators. Analogously to HiLog, the
higher-order logical expressions of SchemaLog allow to transform heteroge-
neous schemas of multiple data sources into homogeneous output predicates
[Gingras et al., 1997]. Moreover, SchemaLog introduces powerful aggregation
features. Besides vertical aggregation (i.e., column-wise over attributes) known
from SQL and relational algebra, SchemaLog supports horizontal aggregation
(i.e., tuple-wise over several attributes) and global aggregation (i.e., over tu-
ple blocks across several relations). These additional aggregation features
increase the user’s flexibility when designing the “global” output relations
[Lakshmanan et al., 1997].

Reflection-based languages.

Reflection is a functional extension to the object oriented programming
paradigm. Reflection-oriented programs may analyze their own state and be-
havior, and modify themselves at runtime. The reflection concept includes self-
examination, self-modification and self-replication of programs. In the context of
database query languages, reflection is used for dynamically generating database
sub-queries from an original database query [Van den Bussche et al., 1996].

Schema Independent SQL (SISQL) adopts the basic SQL syntax, but the
user may replace concrete attribute names or relation names with variables
[Masermann and Vossen, 2000]. At runtime, the SISQL query processor reifies
the query. This means, it dynamically analyzes a data dictionary of known data
sources for possible replacements of the variables with attributes or relations.
For every data source identified during reification, the SISQL processor gener-
ates a query formulated in the Reflective SQL language [Dalkilic et al., 1996].

3.4. LOGICAL INTEGRATION 35

A procedural implementation of Reflective SQL, in turn, is the Reflective Rela-
tional Algebra introduced in [Van den Bussche et al., 1996].

SISQL represents a user friendly approach for ad-hoc integration of hetero-
geneous data sources. The advantage of the SISQL language is its robustness—
schema changes of local data sources are completely transparent to the users.
Thus, the reflection concept allows for querying data sources without exact
knowledge about the schemas of the sources [Masermann and Vossen, 2000].

However, reflection-oriented query languages suffer from the high complexity
of query processing and their non-intuitive syntax. In particular, the reification
of reflective queries requires several iterations of reformulation on a query tree,
based on the current state of databases referenced in the query. This approach
is more expensive than traditional query evaluation.

3.4.2 Global-As-View Approaches

In the global-as-view (GAV) approach to data integration, heterogeneities among
schemata of data sources are repaired by the definition of mappings. GAV
mappings describe an integrated, homogeneous schema in terms of the data
sources—analogously to view definition (hence the name “global-as-view”). To
some degree, GAV mappings explicitly tell the data integration system how to
overcome heterogeneity among the sources. Therefore, GAV data integration is
often denoted procedural [Lenzerini, 2002].

GAV mappings are commonly used in mediator architectures to specify the
solution to a particular heterogeneity problem among distributed data sources.
Mediators provide a global schema—called the mediated schema—against which
the users send queries[Wiederhold, 1992]. Instead of repairing heterogeneity
among data sources “on-the-fly” at query time, the mappings are stored in a
repository and reused by the mediator for rewriting the original query. Thus,
mediator architectures are much more comfortable to use than multi-databases.

Prominent examples of mediator-based data integration systems TSIMMIS
(The Stanford-IBM Manager of Integrated Information Systems), Hermes and
Garlic. TSIMMIS uses a declarative mechanism—the Mediator Specification
Language MSL—for the specification of mediators [Garcia-Molina et al., 1997].
Based on the Object Exchange Model [Papakonstantinou et al., 1995], the
TSIMMIS framework compiles the MSL specification down to wrappers of indi-
vidual data sources, and generates the mediator among the wrappers. Hermes
(Heterogeneous Reasoning and Mediator System) provides a similar mediator
design toolkit with special focus on the integration of multimedia data sources.
Internally, Hermes uses parameterized procedure calls to access data sources
with restricted query functionality [Adali et al., 1996]. Garlic is a research pro-
totype with similar aims to the Hermes system. Originally, the Garlic system has
been developed to support the integration of both, relational and non-relational
data sources, also focusing on multimedia data sources [Josifovski et al., 2002].
The Garlic query processing approach has also been successfully integrated into
IBM’s DB2 database system [Carey et al., 1995].

Query processing in GAV data integration systems is usually quite simple,
because the mappings specify exactly which queries over data sources correspond
to which part of the global schema. Thus, due to the procedural flavor of

36 CHAPTER 3. STATE OF THE ART

mappings, the straightforward unfolding of user queries is sufficient to answer
the user query. Unfolding means the generation of a query plan—i.e., a sequence
of queries against the local data sources—from (1) the original query against
the global, integrated schema, plus (2) the mappings [Lenzerini, 2002].

The disadvantage of the GAV approach is its vulnerability to system changes.
In particular, this includes two different aspects. First, extending GAV data in-
tegration systems with a new data source becomes problematic, if the new data
source has an impact on several elements of the global schema (e.g., if a new
attribute sub-category must be introduced in the global relation books for classi-
fying book stock in a library management system). Second, the GAV paradigm
is only effective if the schemas of data sources are stable [Lenzerini, 2002].

GAV data integration systems allow the materialization of globally defined,
integrated views. Strictly speaking, Data Warehouses (see Section 3.1) are
themselves data integration systems that follow the GAV paradigm with view
materialization. While the materialized view approach considerably improves
query response time, it also introduces the danger of reading potentially out-
dated views. In order to avoid this problem, numerous view maintenance tech-
niques have been proposed. This work is clearly out of the scope of this the-
sis; we refer to [Lee et al., 2007, Zhou et al., 2007, Gupta and Mumick, 2006,
Quass et al., 1996] for an overview of various maintenance techniques for mate-
rialized views.

3.4.3 Local-As-View Approaches

Data integration systems conforming to the local-as-view (LAV) approach also
define mappings between heterogeneous data source schemas, but follow exactly
the opposite paradigm than GAV. LAV mappings describe the local data sources
as “global mediated” schema, with each data source specified in terms of global
schema elements, i.e. as view over the global schema. In contrast to the GAV
approach, LAV mappings specify what global schema elements the local data
sources contain (rather than how the data sources map to the global schema,
as is the case in the GAV approach). Therefore, LAV mappings are typically of
declarative nature [Lenzerini, 2002].

It is important to point out, though, that in both approaches only the
sources physically store the actual data, whereas the global schema consists
of virtual relations. This means, that the data integration system instantiates
the global relations only at query time in both, the GAV and LAV paradigm
[Lenzerini, 2002]. Otherwise, globally stored data in a networked architecture
with several other data sources is characteristic for distributed database systems
[Navathe and Elmasri, 2004].

Data integration with LAV mappings is particularly appropriate if the global
schema is based on an enterprise model or ontology. An enterprise model or on-
tology uses a formal mechanism for specifying a taxonomical descriptions of
all conceptual entities and their interrelationships in the universe of discourse
shared by all data sources. However, the LAV data integration paradigm is only
effective if the enterprise model or ontology underneath the global schema is sta-
ble. Every change of global schema elements invalidates the existing mappings,
which can entail considerable effort for redesign of mappings [Lenzerini, 2002].

3.4. LOGICAL INTEGRATION 37

Ontology-based data integration became a popular research field once the
community discovered the positive effects of a formalized global enterprise
model. The big advantage of the ontology-based data integration approach
is that—besides relational, well-structured data—semi-structured and even un-
structured data sources can be considered for integration to the global system.
The main problem of the ontology-based approach is that the proper design
of the ontology itself is of crucial importance to the outcome of the data inte-
gration process. Thus, many different formalisms and design tools for ontolo-
gies have been proposed. For comprehensive surveys of this field we refer to
[Buitelaar et al., 2008, Xu and Embley, 2006, Tzitzikas et al., 2005].

Unfortunately, query processing in LAV data integration systems is inher-
ently more complex than in GAV systems because the exact schema of the data
sources is unknown. Basically, query plans must be inferred from incomplete
information since the only knowledge about the data sources is represented in
the mappings, i.e. the view specifications [Lenzerini, 2002]. It is known, though,
that query processing in LAV data integration systems reduces to the problem
of answering queries using views, a well-understood problem in database theory
[Halevy, 2001].

The problem of answering queries using views is generally de-
fined as finding an equivalent (and possibly minimal), rewritten query
that accesses only database views, instead of executing the original
query against a (set of) database relation(s) [Pottinger and Halevy, 2001,
Abiteboul and Duschka, 1998, Srivastava et al., 1996, Yang and Larson, 1987].
It has been shown, however, that an equivalent rewriting for queries is often
impossible to compute in data integration systems. If the extensions of a given
set of views (i.e., LAV mappings to data sources) do not define a unique global
database instance, the best possible solution is to find a maximally contained
rewriting, which often involves several source queries with subsequent union
[Halevy, 2001, Duschka et al., 2000].

The big advantage of the LAV paradigm is the extensibility of the data inte-
gration system. Whenever a new data source should be integrated, it is possible
to add a mapping for the new source without invalidating the other mappings
[Lenzerini, 2002]. There are many real-world settings in which such flexibility
for incremental definition of mappings is advantageous (e.g., after mergers or
acquisitions). Prominent examples of LAV data integration systems are the
Information Manifold [Levy et al., 1996], InfoMaster [Genesereth et al., 1997]
and SIMS [Arens et al., 1993], all of which also introduce efficient algorithms
for finding maximally contained query rewritings.

3.4.4 Both-As-View Data Integration

The both-as-view (BAV) approach to data integration combines ideas from
the previously presented techniques GAV and LAV. The AutoMed integra-
tion framework [Boyd et al., 2004] defines a generic hypergraph-based data model
(HDM) [Poulovassilis and McBrien, 1998] for integrating the schemas of het-
erogeneous data sources. HDM provides low-level conversion constructs. This
approach offers the advantage of a unifying semantics for several higher level
modelling languages (e.g., relational, ER, UML, XML). In order to map hetero-
geneous schemas, the BAV approach defines transformation pathways between

38 CHAPTER 3. STATE OF THE ART

data sources and the global schema. Instead of specifying mappings as view
definitions such as the GAV and LAV paradigms, the transformation path-
ways comprise primitive transformations on the model representation in HDM
[McBrien and Poulovassilis, 2003].

Basically, BAV data integration combines the advantages of the pre-
viously proposed GAV and LAV approaches. It has been shown that
both, GAV and LAV mappings can be derived from BAV transformation
pathways [McBrien and Poulovassilis, 2003]. Thus, data integration systems
conforming to the BAV approach are more secure against schema evolu-
tion of both, the global schema—e.g., as the consequence of changes to
the enterprise model—and the local data sources, if these are autonomous
[McBrien and Poulovassilis, 2002].

Similar ideas are proposed in the so-called BGLaV (“both global and local as
view”) approach. In BGLaV, the user specifies a relational “target schema”—
i.e., the global schema—which is independent of any of the source schemas.
Subsequently, source-to-target mappings are defined for each data source in-
dividually [Xu and Embley, 2004]. This approach—in similar fashion to the
BAV approach [Boyd et al., 2004, McBrien and Poulovassilis, 2003]—combines
the advantages of GAV and LAV data integration. While processing of queries
against the global schema follows the simple unfolding of mapping rules such as
in GAV, the independent global schema ensures extensibility of the data inte-
gration system such as under the LAV paradigm [Xu and Embley, 2004]. This
means, adding a new data source never changes the global schema, which in
turn eliminates the negative side effects on existing mappings that are other-
wise observed in the GAV paradigm [Lenzerini, 2002].

3.4.5 Data Integration Approaches for Multi-dimensional
Systems

Data Warehouse integration exceeds relational data integration in terms of com-
plexity because the multi-dimensional model introduces the additional dimen-
sion entity [Golfarelli et al., 1998]. So-called “data cubes” of DW schemas store
facts in measure attributes, categorized by the several dimensions that repre-
sent business perspectives. Dimensions, in turn, may be organized in hierarchies
of aggregation levels (cf. Chapter 4, pp. 51).

Several authors have proposed loosely coupled integration of multi-
dimensional Data Marts without a global schema, based on XML
technologies [Niemi et al., 2002, Pedersen et al., 2002c, Pedersen et al., 2002b,
Jensen et al., 2001]. Since XML technology allows to include Web data into
the Data Warehouse infrastructure, XML has been highly popular for multi-
dimensional integration [Kimball and Merz, 2000]. Moreover, Golfarelli et al.
have proposed to exploit enterprise knowledge represented in XML documents
for the design of Data Warehouse conceptual schemas [Golfarelli et al., 2001].
This is motivated by the observation that almost any data model can be repre-
sented efficiently using XML [Christophides et al., 2000].

XML technology can represent the data stock of a Data Warehouse
to different degrees. An interesting intermediate approach is the log-
ical federation of OLAP sources with XML data sources proposed in

3.5. MULTI-DIMENSIONAL SCHEMA INTEGRATION 39

[Pedersen et al., 2002c, Jensen et al., 2001]. In contrast, the XCube approach
fully represents facts and meta-data of multi-dimensional cubes in XML docu-
ments [Hümmer et al., 2003].

The framework of Mangisengi et al. defines an XML-based query language
which allows the ad-hoc integration of Data Marts [Mangisengi et al., 2003].
The XML layer of their approach exchanges meta-data between autonomous
schemas and supports some simple transformation of the data. Thus, while
query processing exploits XML technology, the underlying data model of the
Data Marts is not restricted to a particular representation. In contrast,
[Abelló et al., 2002] define relationships based on structural similarity between
relational Data Marts that merely enable drill-across queries. Clearly, the dis-
advantage of all such systems is that the user is responsible for repairing het-
erogeneity among the elements of multi-dimensional schemas within the query.

In contrast, relational query languages such as SQL have been rarely used
for multi-dimensional data integration. Only few approaches have addressed
extensions of standard SQL for OLAP applications in distributed Data Ware-
house environments. For example, SQLM formally defines an OLAP data model
and introduces a set of transformation operators. The SQLM language supports
irregular hierarchies in dimensions of stand-alone Data Warehouses—e.g., mul-
tiple aggregation paths. Although the approach allows the user to include addi-
tional XML data extending the query scope, SQLM does not support matches
between multiple Data Mart schemas [Pedersen et al., 2002a]. Other languages
that belong to this category are nD-SQL [Gingras and Lakshmanan, 1998] and
FISQL [Wyss and Robertson, 2005]. These two approaches have been explained
earlier in this Subsection (pp. 32).

Algorithms for query processing in Distributed DWs have brought interesting
findings that are also relevant for Federated DWs. In particular, two approaches
named Skalla [Akinde et al., 2003] and DWS-AQA [Bernardino et al., 2002]
have independently introduced the idea of globally replicating consolidated di-
mensions. The experiments conducted in both these approaches indicate that
replicated dimensions improve the overall response time of queries against the
global schema. Query answering in such settings is reduced to the retrieval of
facts because all dimension data is globally available.

3.5 Multi-dimensional Schema Integration

This Section summarizes previous effort within the Data Warehousing com-
munity towards the integration of multi-dimensional data sources, overcoming
heterogeneity among the individual schemas. Multi-dimensional schema in-
tegration denotes the construction of an integrated multi-dimensional schema
from several, heterogeneous multi-dimensional schemas. While the previous
Subsection 3.4.5 surveyed approaches for loosely coupled integration of multi-
dimensional data, the following discussion aims at investigating how Data Ware-
houses and Data Marts can be integrated under a consolidated, global schema
(irrespective of physical vs. logical integration of the multi-dimensional data).

As pointed out before, the multi-dimensional data model is more complex
than the relational model, due to the distinction between the fact entity and the

40 CHAPTER 3. STATE OF THE ART

dimension entity [Golfarelli et al., 1998]. Moreover, facts logically depend on di-
mensions in the multi-dimensional model (cf. Chapter 4, pp. 51). Thus, analyz-
ing multi-dimensional schemas for heterogeneity with well-established methods
[Lee et al., 1995, Kim and Seo, 1991] is insufficient. Instead, multi-dimensional
schema mappings have to consider (1) the attributes in facts and dimensions,
(2) the dependencies between facts and dimensions, and (3) the aggregation
hierarchies.

In order to reduce complexity, multi-dimensional data sources should be in-
tegrated at the level of Data Marts, instead of complete Data Warehouses. As
argued by [Kimball, 2002], even when merging only company internal, indepen-
dently developed Data Marts across divisions, the necessary integration (“data
migration”) projects often cost several months or even years. The simplest is
the migration of existing, heterogeneous Data Marts into a new Data Warehouse
with an integrated global schema, translating all data to the integrated schema
(cf. “schema integration” in Section 3.3, pp. 29). It is common, however, that
privacy concerns restrict the necessary full access to the source Data Marts.
Moreover, in the case of business cooperations, preserving the autonomy source
Data Marts will likely be necessary. In such cases, the better solution is to
integrate Data Marts at the logical schema level—i.e., to build a federation in
the spirit of data integration (cf. the previous Section 3.4).

Integration of multi-dimensional data sources comprises two tasks. First,
the dimensions have to be consolidated across the sources (dimension integra-
tion). Second, the facts stored in cubes of the multi-dimensional data sources
are integrated and related to the integrated dimensions (fact integration). Thus,
both the tasks of multi-dimensional schema integration and their order corre-
sponds to the logical dependency of facts on dimensions that is inherent to the
multi-dimensional model [Golfarelli et al., 1998].

Surprisingly, to the best of our knowledge, there are only few approaches that
investigate multi-dimensional schema integration systematically. Dimension
integration—the first sub-problem of multi-dimensional schema integration—
has been addressed by some recent projects. In contrast, fact integration—
the second sub-problem—is often oversimplified. Most authors treat facts as
relational tables, for which the classification of possible conflicts is well de-
fined and understood (see [Lee et al., 1995, Kim and Seo, 1991]). Indeed, facts
in Data Warehousing can be integrated with techniques developed for rela-
tional databases—e.g., [Zhao and Ram, 2007]—and then connected to the con-
solidated dimensions. However, this simplifying assumption ignores the inter-
play of dimension integration and fact integration.

Due to the logical dependency between facts and dimensions in the multi-
dimensional model, conversions of dimensions and facts influence each other.
For example, changing the base level of a dimension implies a roll-up of all facts
connected with this dimension. Moreover, schema–instance conflicts between
multi-dimensional data sources (cf. pp. 62 in Chapter 5) are basically a variant
of concept mismatch (see e.g. [Garcia-Molina et al., 1997]), i.e. different concep-
tualizations of real-world concepts in dimension and fact entities across several
sources. These conflicts affect the dependency between a fact and dimension
entity, which again indicates the interplay between dimension integration and
fact integration.

3.5. MULTI-DIMENSIONAL SCHEMA INTEGRATION 41

Therefore, dimensions and facts must be integrated conjointly, using a sys-
tematic methodology that considers the interplay between the two sub-problems.
If, however, dimension integration and fact integration are tackled in an isolated
way, such conflicts cannot be repaired properly. Even worse, it is possible that
schema–instance and other conflicts remain undetected.

Only [Tseng and Chen, 2005] have approached dimension integration and
fact integration in a conjoint and systematic methodology—i.e., taking into ac-
count the logical dependency of facts to dimensions in the multi-dimensional
model. Most previous work addresses either dimension integration or fact in-
tegration as isolated problems. As our analysis of heterogeneity in the multi-
dimensional model points out, however, the isolated integration of dimensions
and facts is insufficient to overcome all heterogeneity among multi-dimensional
data sources comprehensively and systematically (cf. Chapter 5).

Tseng and Chen have proposed the use of XML technologies in a tightly
coupled integration architecture for multi-dimensional data sources. Their ba-
sic idea is to generate two XML files per cube—one for the cube meta-data,
and the other for fact data—and store these files in the native XML database
system Tamino [Schöning, 2003, Schöning, 2001]. Subsequently, using XQuery
statements [Chamberlin, 2002] they map the sources’ XML fact data to a global,
integrated multi-dimensional schema. Thus, the OLAP users simply query the
global schema. All heterogeneity among the multi-dimensional data sources
remains transparent from the OLAP applications [Tseng and Chen, 2005].

The outstanding contribution of Tseng and Chen’s XML-based approach is
the first definition of a systematic methodology for multi-dimensional schema in-
tegration. In particular, [Tseng and Chen, 2005] classify conflicts in the multi-
dimensional data model, based on the relational conflict taxonomy given by
[Lee et al., 1995]. The integration methodology addresses these conflicts sys-
tematically, taking into account the dependency between facts and dimensions
in the multi-dimensional model [Tseng and Chen, 2005].

Torlone et al. have presented a systematic methodology especially for
dimension integration, and provide the visual tool “DaWaII” that imple-
ments their methodology [Torlone, 2008]. The contributions of this approach
are twofold. First, Cabibbo and Torlone introduce an algebraic query lan-
guage that allows to transform the dimensions of multi-dimensional data
sources [Cabibbo and Torlone, 1998]. Second, they formally define desir-
able properties of dimension mappings, i.e. coherence, soundness and consis-
tency [Cabibbo and Torlone, 2005]. The DaWaII tool, in turn, allows the
user to test dimensions of various multi-dimensional sources for compatibil-
ity, and specify mappings between compatible dimensions. Subsequently,
the mappings can be checked whether they satisfy the desirable properties
[Cabibbo et al., 2006, Torlone and Panella, 2005].

The DaWaII approach studies two different options for integrating facts of
multi-dimensional data sources on the mapped dimensions, “loosely coupled”
and “tightly coupled”. The “loosely coupled” integration method refers to drill-
across queries among cubes with at least one mapped dimension in common.
Following the “tightly coupled” integration method, the DaWaII tool creates
a materialized view over the complete, integrated multi-dimensional sources

42 CHAPTER 3. STATE OF THE ART

[Torlone, 2008]. For both cases, however, the authors leave open the question
of how to repair possible conflicts among the facts.

In order to facilitate the multi-dimensional schema integration process,
Banek et al. apply schema matching techniques (see [Rahm and Bernstein, 2001]
and Section 3.3) on the aggregation levels of dimensions in data cubes
[Banek et al., 2007]. Their approach assumes a scenario with only restricted
access to the sources (e.g., medical databases, or business cooperations). Hence,
the matching algorithm exploits exclusively structural information (i.e., the
meta-data of multi-dimensional schemas). To calculate similarity values be-
tween aggregation levels, the algorithm compares attribute names among di-
mensions linguistically, based on WordNet [Miller, 1995]. In a second phase,
Banek’s matching algorithm produces mappings between aggregation levels
based on their similarity, while preserving the functional ordering of dimension
data [Banek et al., 2007].

3.6 Model Driven Architecture (MDA)

The Model Driven Architecture (MDA) is an official standard published by the
Object Management Group (OMG), encouraging formal software models at dif-
ferent levels of abstraction. In particular, MDA provides four model layers that
address the complete life cycle of software development (i.e., specification, de-
sign, implementation, deployment, version management, and so forth). MDA
supports both, forward engineering and reverse engineering of models with au-
tomated transformations between the abstraction layers [(OMG), 2003b].

MDA’s model layers are designed to separate the specification of system
functionality from its implementation. The functionality of software systems
is normally stable and valid across various platforms, whereas the implemen-
tation typically changes repeatedly over time (e.g., to correct bugs, or to
port the system into a new programming language or paradigm). Moreover,
system implementation is platform-specific—i.e., only plausible for one par-
ticular target platform or language. Following this consideration, the rel-
atively stable, functional specifications reside on different model layers of
MDA than the unsteady specification of implementation for a certain platform
[Gruhn et al., 2005, Kleppe et al., 2003].

Thus, the most abstract layer of MDA is the Computation Independent Model
(CIM), generically describing the system’s functionality as black box within its
environment. Next, the Platform Independent Model (PIM) specifies the precise
functional requirements for the system, but without any specific information on
the technology used to realize it. On the next layer, the Platform Specific Model
(PSM) translates the PIM into an implementation model for some particular
target platform, including the exact technological details on how to implement
the system’s functionality within the target platform. Finally, the implementa-
tion itself—i.e., the actual source code—is generated for each PSM in the chosen
platform or language [(OMG), 2003b, Kleppe et al., 2003].

The core idea behind MDA is the automated translation of models. Ulti-
mately, this means that even the source code of software systems can be gen-
erated automatically. Automated translation between the MDA model layers

3.7. DW MODELLING AND DESIGN WITH UML 43

is motivated by the possible better re-use of the platform independent soft-
ware specification [Kleppe et al., 2003]. OMG provides another standard, the
transformation language Query/View/Transformation (QVT), for that purpose
[Mazón et al., 2006, Mazón et al., 2005].

MDA has been applied successfully in the Data Warehousing do-
main, particularly for the conceptual design of Data Warehouses and
Data Marts [Mazón and Trujillo, 2008]. For example, Mazón and Trujillo
demonstrate the usefulness of MDA concepts for the conceptual design of
multi-dimensional schemas in two different scenarios, data-oriented develop-
ment [Mazón et al., 2006, Mazón et al., 2007] and goal-oriented development
[Mazón and Trujillo, 2007, Glorio and Trujillo, 2008]. While the data-oriented
approach reconciles several operational data sources [Mazón et al., 2006], the
goal-oriented approach allows the modernization of existing DWs through
reverse engineering and subsequent evolution of their conceptual schemas
[Mazón and Trujillo, 2007]. Another application of the goal-oriented approach,
model-driven design of Data Marts on top of the corporate DW, is studied
in [Pardillo and Trujillo, 2008]. Furthermore, [Pardillo et al., 2008] have gen-
erated cube meta-data for the use in OLAP applications from the conceptual
multi-dimensional model.

Generally, MDA does not restrict the modelling language to be used for
specifying PIMs and PSMs. However, it is advantageous to use MOF-compliant
languages such as the Unified Modelling Language (UML) [(OMG), 2009] for
that purpose—for two reasons. First, UML is a widely used, general purpose
and standardized modelling language with rich tool support. Second, UML is
extensible for arbitrary application domains. It provides several extension mech-
anism (e.g., profiles) that allow defining highly specialized languages. Therefore,
the UML is typically used to represent PIMs and PSMs in model-driven soft-
ware engineering [Glorio and Trujillo, 2008]. In the next Section, we will survey
the use of UML for the Data Warehousing field.

3.7 DW Modelling and Design with UML

UML 2.x has become the de facto standard for information systems mod-
elling [Larsen et al., 2009]. It is ideally suited for representing Data Ware-
house schemas because UML’s packaged structure corresponds with the na-
ture of DW models that are also organized hierarchically. Moreover, the UML
notation is easy to understand and well-known, while its extension mecha-
nisms allow to customize the UML semantics for arbitrary application do-
mains. Thus, several authors have extended the UML with profiles for var-
ious facets of DW modelling and design, for example conceptual schemas
[Luján-Mora et al., 2006, Prat et al., 2006, Zubcoff and Trujillo, 2007], physical
schemas [Luján-Mora and Trujillo, 2006, Luján-Mora and Trujillo, 2004], or se-
curity constraints on Data Marts [Fernández-Medina et al., 2007].

Utilizing the UML for standardization of multi-dimensional concepts has
been an important prerequisite for the implementation of powerful DW design
tools. The Common Warehouse Meta-model (CWM) is an official standard for
DW modelling with broad industry backup [(OMG), 2003a]. CWM is MOF-

44 CHAPTER 3. STATE OF THE ART

compliant so that it supports a model-driven approach for the development and
interchange of DW models, based on the UML and XMI standards [Poole, 2003].

Prat et al. [2006] propose a UML-based design method for multi-dimensional
DW schemas spanning the three abstraction levels—conceptual, logical and
physical—recommended by ANSI/SPARC [Navathe and Elmasri, 2004]. Their
Unified Multi-dimensional Meta-model integrates common concepts of the many
multi-dimensional data models proposed in literature [Prat et al., 2006]. The
Unified Multi-dimensional Meta-model is the most comprehensive attempt of
identifying the commonly accepted fundamental concepts behind conceptual
DW models. While the Meta-model of [Prat et al., 2006] provides a compre-
hensive palette of DW properties, it also has two shortcomings. First, it does
not consider the CWM standard [(OMG), 2003a]. Second, diagrams of multi-
dimensional schemas based on the Unified Meta-Model tend to be too complex
to provide for good readability.

In contrast, Luján-Mora et al. define conceptual DW schemas in package
diagrams with several abstraction layers [Luján-Mora et al., 2006]. Level 1
and 2 of their approach represent cubes within Data Warehouses, respec-
tively the facts and dimensions of each DW. Every dimension, in turn, is
also contained in its own package. Finally, level 3 specifies the details
for every dimension package. At each of the three modelling levels, OCL
constraints [Warmer and Kleppe, 1999] are used to ensure the correct use
of the stereotypes and tagged values defined by the proposed UML profile
[Luján-Mora et al., 2006].

Data mapping diagrams with UML for conceptual modelling of ETL pro-
cesses is an interesting approach closely related to our own work. Luján-Mora et
al. use stereotyped UML class and package diagrams to represent data flows from
heterogeneous, operational data sources to the DW at different levels of abstrac-
tion [Luján-Mora et al., 2004]. While their framework specifically repairs at-
tribute and table conflicts between relations [Kim and Seo, 1991], it does not ad-
dress multi-dimensional heterogeneity, identified in [Berger and Schrefl, 2006].

3.8 Summary and Requirements for the FedDW
Approach

In the previous sections of this chapter, we surveyed the enabling technologies
for Federated Data Warehouses, and analyzed previous work in related research
areas. Based on the current state of knowledge in the field of Federated DW
systems we now formulate the requirements on our approach named “FedDW”.
According to [Tseng and Chen, 2005], the problems that must be addressed by
multi-dimensional data integration are the following:

• Formal definitions for the “building blocks” of Data Warehouses and Data
Marts—i.e., a formal model for multi-dimensional data sources.

• Recognition and classification of semantic heterogeneity in the multi-
dimensional data model.

3.8. SUMMARY AND REQUIREMENTS 45

As indicated by the current state of the art, the integration of autonomous
Data Marts must also address the following challenges:

• Decide whether to physically migrate multi-dimensional data, or logically
integrate the Data Mart schemas.

• Provide an appropriate query language across the autonomous Data Marts
that supports multi-dimensional data.

• Choose the optimal paradigm for the integration of multi-dimensional
schemas and data (i.e., global-as-view versus local-as-view versus both-
as-view).

• Repair heterogeneity among multi-dimensional sources conjointly, address-
ing the interplay between dimension integration and fact integration.

From previous work in the Data Warehousing and related research fields, we
draw the following four, most significant conclusions for Data Mart integration:

Logical integration is clearly preferable for the huge data sets in Data Marts
and Data Warehouses. As indicated by [Kimball, 2002], the physical migration
of Data Mart data is too elaborate in most practical settings. Even if developed
in one and the same company, the migration of Data Marts into an integrated
Data Warehouse costs several months to years.

Current multi-database query languages are not sufficiently powerful for
multi-dimensional integration. Multi-system query languages have brought in-
teresting results concerning the transformation of data into meta-data, or vice
versa. However, all of the existing approaches are optimized for relational data.
Multi-dimensional data is only supported by nD-SQL (p. 32) and FISQL (p. 32),
although merely for relatively simple OLAP operations.1

FISQL introduces powerful data and schema transformations—e.g., vari-
ables ranging over attribute names and other meta-data—that are also needed
when integrating multiple heterogeneous Data Marts. The nD-SQL language
even supports multi-dimensional data [Gingras and Lakshmanan, 1998], but its
transformation features are less powerful than in several other of the approaches
summarized above. Moreover, aggregation hierarchies in dimensions cannot be
represented in nD-SQL’s underlying data model. Unfortunately, this behavior
seems too restrictive in most practical scenarios.

Both-as-view mappings combine the advantages of two previous techniques:
global-as-view and local-as-view. In particular, the BGLaV approach has in-
troduced so-called “source-to-target” mappings [Xu and Embley, 2004]. Such
mappings allow to combine the efficient generation of query plans for answering
user queries over the global Data Mart schema (GAV) with the extensibility of
the federated system (typical for LAV). It is worth noting, though, that this
approach still does not eliminate the need to propagate changes of the global
schema. That means, if the global schema evolves, all existing mappings must
be updated accordingly.

Finally, the integration of Data Marts into a Federated system clearly calls
for more powerful methodological frameworks than traditional data integration.
Most closely related to our work are the XML-based integration framework of
[Tseng and Chen, 2005], and the “DaWaII” approach of [Torlone, 2008]. Based

1For comprehensive reviews of the query languages analyzed in Subsection 3.4.1 we refer
to [Brunneder, 2008, pp. 66–95] and [Wyss and Robertson, 2005].

46 CHAPTER 3. STATE OF THE ART

on the review given in Section 3.5 (see pp. 39) we identify the following short-
comings of these approaches:

1. Incomplete classification of heterogeneity :

Tseng and Chen’s framework presents the most comprehensive and sys-
tematic methodology for conjoint integration of dimensions and facts
among autonomous cubes so far. However, the authors do not address
overlapping facts. Moreover, they leave aside the possibility of cube-to-
dimension conflicts (denoted schema–instance conflicts in our classifica-
tion; see Chapter 5, pp. 59).

Torlone’s DaWaII approach considers cube-to-dimension conflicts
within multi-dimensional schemas, supporting the conversion of
measure attributes to dimensional attributes, and vice versa
[Cabibbo and Torlone, 1998]. However, these operations are merely
schema–schema transformations. Thus, the schema–instance conflicts we
mentioned above are not addressed in the DaWaII approach either.

2. Isolated integration of multi-dimensional sources:

Torlone’s “DaWaII” approach addresses only dimension integration as iso-
lated problem while ignoring fact integration. However, the logical connec-
tion between dimensions and facts is fundamental to the multi-dimensional
model (see Section 3.5 and [Golfarelli et al., 1998]). Hence, heterogene-
ity among multi-dimensional data sources potentially affects both their
dimensions and facts. In turn, this observation calls for the conjoint in-
tegration of dimensions and facts among multi-dimensional data sources
with a methodology that considers their logical interdependency.

3. Materialization of factual data (large data sets):

Tseng and Chen’s framework is based on complete materialization of
multi-dimensional cubes in native XML databases. While such an ap-
proach is clearly effective for reasonably small amounts of data, it also
raises two problems, a fundamental one and an architectural one:

(a) View materialization in Data Warehousing always introduces
the view refreshment problem [Lee et al., 2007, Zhou et al., 2007,
Gupta and Mumick, 2006]. Therefore, the usefulness of Tseng and
Chen’s XML-based integration framework much depends on an effi-
cient view maintenance mechanism. The authors, however, leave this
question aside in [Tseng and Chen, 2005].

(b) In the case of very large Data Marts, the materialization of fact
data in an XML database is questionable for two reasons. First,
this approach wastes storage space—clearly more efficient would
be the materialization of aggregated facts. Second, current na-
tive XML query processors suffer from high memory consumption,
which prevents them from querying large XML documents efficiently
[Härder et al., 2007, Bonifati and Cuzzocrea, 2007]. Indeed, current
research indicates a trend towards combining relational with XML-
native techniques to improve performance of data querying and man-
agement in very large XML documents [Gou and Chirkova, 2007].

3.8. SUMMARY AND REQUIREMENTS 47

Analogously, Torlone et al. propose a “tightly coupled” variant of their in-
tegration approach, i.e. the complete materialization of multi-dimensional
sources—according to dimension mappings—in relational Data Marts
[Torlone, 2008, Cabibbo and Torlone, 2005]. Again, the same objections
as above hold against this approach: (i) view maintenance problem,
(ii) waste of storage space. The authors do not consider these points
at all, although the view maintenance mechanism would be particularly
important to evaluate the viability of the approach.

4. Inter-source 1:1-mapping paradigm:

DaWaII defines 1:1-mappings, i.e. it integrates dimensions across several
multi-dimensional data sources in pairwise manner, similarly to global-as-
view data integration (cf. 3.4.2). Using these inter-source mappings, the
DaWaII tool generates merged dimensions “that can be either attached to
an imported Data Mart or exported to an external system” [Torlone, 2008,
page 93]. As far as the tool is concerned, this approach enables a clear user
interface design. From the methodological viewpoint, however, it raises
the question of whether DaWaII is able to integrate more than two Data
Marts properly. The authors explain exclusively the rather simplistic case
of only two Data Marts being integrated [Torlone, 2008].

Generally, pairwise mappings defined directly between data sources—
i.e., in data integration architectures without a stable, integrated global
schema—are disadvantageous [Lenzerini, 2002]. In particular, integrat-
ing n Data Marts with DaWaII requires n(n−1)

2 mappings (since they are
unidirectional). This exponential number of necessary mappings applies
to the worst case, i.e. a strict pairwise mapping strategy between multi-
dimensional data sources.

From the information given by the authors, however, it seems reason-
able to assume that the DaWaII tool supports integration of three or
more multi-dimensional sources according to the “ladder strategy”—i.e.,
step-wise 1:1 integration of sources into an evolving, intermediate result
[Batini et al., 1986, page 343]. In this case, the number of mappings nec-
essary to integrate n Data Marts with DaWaII would reduce to only n−1.
This number corresponds to the necessary iterations, each producing an
intermediate result.

Nevertheless, the ladder strategy also has two disadvantages: ambiguity
and waste of storage space (albeit one excludes the other). On the one
hand, if following the “loosely coupled” integration approach, one must
suspect that the incremental definition of intermediate results possibly
produces ambiguity, i.e. contradictory mappings. The authors, however,
leave aside whether such contradictions between incrementally defined
mappings must be considered in their approach, and the possible con-
sequences. On the other hand, the “tightly coupled” integration method
of DaWaII generates fully materialized views of the facts and dimensions
according to the mapping result. Considering the intermediate results of
every mapping step, the full materialization approach wastes substantial
amounts of storage space since the intermediate materialized views are
worthless for the users. Deleting the intermediate views, however, would
mean losing the mappings.

48 CHAPTER 3. STATE OF THE ART

Under these considerations, extending a system of integrated multi-
dimensional sources defined with DaWaII seems also difficult. In the
worst case, the integration of an additional Data Mart renders all pre-
existing mappings obsolete. In the best case, existing mappings remain
valid, but the new mapping step produces another complete materialized
view of the integrated multi-dimensional data sources.

The above considerations give strong evidence that federated architectures
with source-to-target mappings, using a “virtual” instance of the global schema
with distributed query processing, are the ideal solution currently available for
the integration of multi-dimensional data sources. Furthermore, Dina Bitton
gives a strong statement in favor of federated architectures among autonomous
Data Warehouses: “Virtualize data across multiple Warehouse boundaries and
virtualize new Data Marts. [...] Another scenario where a virtual Data Mart is
a great solution is where a new external data source [...] needs to be integrated
with an existing Data Warehouse.” [Halevy et al., 2005, page 4].

Indeed, a federated architecture is especially well suited for Data Ware-
housing environments, for which huge data sets and high selectivity of analyt-
ical queries are characteristic. The huge amounts of data are the main reason
why materialization has not proven particularly effective for multi-dimensional
source integration, as we have discussed above. In turn, the high selectivity
of typical OLAP queries reduces the amount of data shipped between various
sources if virtual cubes with distributed query processing are realized. True
federations of multi-dimensional data sources cannot be established using the
approaches proposed to date, though.

Consequently, we define the following requirements for Federated Data Ware-
house systems to ameliorate previous approaches to multi-dimensional source
integration, addressing the open research challenges indicated above:

R 1. Extend the definition of multi-dimensional heterogeneity, based on a sys-
tem independent, conceptual model of multi-dimensional data.

R 2. Define an architecture that provides a stable, global schema over multi-
dimensional data sources, and enables the sources to remain autonomous.

R 3. Develop a methodology for conjoint integration of dimensions and facts
among autonomous, multi-dimensional data sources, systematically con-
sidering the interdependencies between dimensions and facts inherent to
the multi-dimensional model.

R 4. Define a declarative conversion language addressing all classes of hetero-
geneity in the multi-dimensional model, that suits as mapping mechanism
between sources and the global schema of the integration architecture.

R 5. Make these mechanisms easy to use by providing tools with graphical user
interfaces for the business analysts. Provide high-level operators upon the
data model, so that the actual source code of mappings can be generated
by the system (model-driven approach).

In the following parts of the thesis, we present how the FedDW approach to
Federated Data Warehouse systems addresses the above requirements.

Part II

Architecture and Concepts
of Federated Data

Warehouses

49

Chapter 4

Conceptual
Multi-Dimensional Data
Model

Contents
4.1 Data Marts . 53

4.2 Dimensions . 53

4.3 Functions and Properties of Dimensions 54

4.4 Cubes . 56

4.5 Names of Dimension and Cube Schemas 57

This chapter introduces a conceptual model for multi-dimensional data that
is rich enough to represent all properties of dimensions and facts commonly mod-
elled in the cube schemas of Data Marts. Although numerous multi-dimensional
data models have been proposed in previous literature, none of them is semanti-
cally rich enough to represent all properties and peculiarities of cubes that have
been identified in Prat et al.’s Unified Multi-dimensional Model. The definitions
in this chapter both give a formal foundation for the building blocks of multi-
dimensional data structures, and clarify essential terminology used throughout
the thesis.

The chapter starts with the basic elements of the multi-dimensional data
model. If defines Data Marts, Dimensions with members and Cubes with cells.
These concepts are complemented with functions and additional properties of
dimensions and their members. Thus, the conceptual data model is the prereq-
uisite for identifying possible sources of heterogeneity among the schemas and
instances of autonomous Data Marts.

51

52 CHAPTER 4. CONCEPTUAL DATA MODEL

This Chapter discusses the conceptual model of multi-dimensional data in
autonomous Data Marts. It represents the object oriented, Unified Multi-
dimensional Meta-model proposed in [Prat et al., 2006], which is a logical meta-
model, at the conceptual level. The Unified Multi-dimensional Meta-model is
the most comprehensive definition of typical and fundamental properties for
multi-dimensional data sources.

Among the many multi-dimensional models proposed in literature (see
[Vassiliadis and Sellis, 1999, Blaschka et al., 1998] for a summary), none sup-
ports all of the properties identified by [Prat et al., 2006]. Moreover, the
Common Warehouse Metamodel (CWM)—another candidate for represent-
ing multi-dimensional Data Marts—has been criticized for being too generic
to accommodate all peculiarities of conceptual multi-dimensional schemas
[Medina and Trujillo, 2002]. Hence, the FedDW approach employs the concep-
tual multi-dimensional model introduced in in [Berger and Schrefl, 2008].

In FedDW’s architecture (Chapter 6; depicted in Figure 6.1, page 83), the
conceptual multi-dimensional data model is used as the “canonical model”
of federated systems [Sheth and Larson, 1990] to represent the schemas of lo-
cal and autonomous Data Marts. The FedDW conceptual data model sup-
ports the essential concepts fact and dimension, refining a previous proposal
[Cabibbo and Torlone, 2005] with extended properties of dimensions. As any
model at the conceptual level, it allows the definition of multi-dimensional
schemas independent of any implementation aspects.

Intuitively, a Data Mart defines one or more measure variables within facts,
categorized by some dimensions that in turn are organized in hierarchies of
aggregation levels. The “cube” is the central data structure of the multi-
dimensional model. It acts as container that links facts to one or more dimen-
sions, thus comprising a multi-dimensional space for storing factual data. Facts
and dimensions consist of both their schema and the corresponding instances.
For dimension instances, we use the commonly accepted term dimension mem-
bers (or members for short) [Vassiliadis and Sellis, 1999] throughout the thesis.
In contrast, the term fact may refer either to the schema or the instances of
multi-dimensional facts. Whenever necessary, we will speak of the “fact schema”
respectively “fact instances” to distinguish the schema from the instance level.

Basically, the model concepts data mart, cube and dimension (Definitions 4.1
and 4.9) define a local Data Mart as the universe of discourse for the declara-
tion of dimensions, i.e. the constructs cube and dimension are first-class citizens
of the model. The FedDW conceptual multi-dimensional data model extends
the so-called MD model [Cabibbo and Torlone, 2005], introducing additional
properties of the dimension construct. These model extensions allow to rep-
resent all properties contained in the Unified Multi-dimensional Meta-model
[Prat et al., 2006], and to cope with all multi-dimensional heterogeneities iden-
tified and analyzed in [Berger and Schrefl, 2006] (see Chapter 5). In particular,
the additional features of FedDW’s data model are the following:

(1) The level schema of dimensions supports not only level attributes, but also
non-dimensional attributes (Definition 4.2).

(2) The functions level and members specify the relationship between the
schema and instances of dimensions, i.e. between the hierarchy and roll-
up functions of levels (Definitions 4.4 and 4.5).

4.1. DATA MARTS 53

For the definitions that follow in this Chapter, let {τ1, ..., τm} be a finite set
of data types (e.g., integers) with their domain defined by function dom(τ).

4.1 Data Marts

From an object oriented viewpoint, the Data Mart is the top-level container for
the other multi-dimensional constructs, i.e. dimensions and cubes. Intuitively, a
Data Mart provides a “view” on some well-defined subset of the dimensions and
cubes defined within the scope of the underlying Data Warehouse. We formalize
the model constructs dimension and cube in Sections 4.2 and 4.4, respectively.

The corporate Data Warehouse can itself be regarded conceptually as Data
Mart. As explained in Chapter 3 (see 3.1.2, p. 26), the definition of Data
Marts on top of the corporate DW allows to address the information needs of
some particular department, or to ensure the privacy of sensitive fact data (e.g.,
anonymous patient data in health care; or sales figures on weekly basis of retail
trade companies). For the integration of autonomous, multi-dimensional data,
though, the distinction between Data Mart or Data Warehouse as the source
of data is irrelevant. Therefore, the terminology and formal notation of the
FedDW approach always assume that Data Marts are to be integrated.

Definition 4.1 (Data Mart):
A Data Mart DM = {C1, ..., Cn; D1, ..., Dm} (n,m > 0) consists of a non-empty
set of Cubes C and a non-empty set of dimensions D. ¥

Example 4.1: As depicted in Figure 2.1 on page 16, the health care organiza-
tion of our case study defines two Data Marts: dwh1 and dwh2. In turn, each
of the two DMs contains two Cubes, named treatment and medication. More-
over, both dwh1 and dwh2 define several dimensions. Using the notation given
above, we obtain the following descriptions of the case study’s DMs: dwh1 =
{treatment, medication; physician, method, date time, drug, patient}, dwh2 =
{treatment, medication; cost cat, method, date time2, drug, patient, date time}.

Assume that dwh1 and dwh2 are defined on top of corporate Data Ware-
houses DW1 ⊇ dwh1 and DW2 ⊇ dwh2, hiding some details so to meet legal
obligations for the privacy of personal patient data. The complete schemas of
DW1 and DW2 remain unknown, but are irrelevant for the integration of the
dwh1 and dwh2 Data Marts. Thus, the Data Mart schemas of dwh1 and dwh2
represent the health insurances’ export schema, i.e. their interface that defines
which part of the corporate DW is accessible for business partners. ♦

4.2 Dimensions

In the FedDW conceptual data model, dimensions are first-class citizens. This
means that dimensions and their properties are defined in the context of the
underlying Data Mart, and that several Data Marts—or even several cubes
within one Data Mart—can share dimensions. In order to use dimension D in
some Data Mart DM , it is necessary to “import” D—i.e., referencing D in the
declaration of DM (cf. Definition 4.1). Every dimension consists of both its
schema (Definition 4.2) and its instance or members (Definition 4.3).

54 CHAPTER 4. CONCEPTUAL DATA MODEL

Definition 4.2 (Dimension Schema):
Every Dimension D ∈ {D1, ..., Dm} of DM has the dimension schema SD =
(LD, S(LD),HD) containing (I) the finite, non-empty set of Levels LD =
{l1, ..., lj , ..., lm, lall} with level schema S(LD) = {Sl1 , ..., Slm} and (II) the roll-
up hierarchy HD ⊆ LD × LD, where HD forms a lattice. If l, k ∈ HD, we write
l 7→ k and we say l “rolls-up to” k.

The level schema Sl ∈ S(LD) of some level l ∈ LD is an attribute schema
l(K, N1, ..., Nk) with name l, key K (the dimensional or “roll-up attribute”)
and optional non-dimensional attributes (or “N-attributes”) N1, ..., Nk, denoted
alternatively as l.K, l.N1, ..., l.Nk. Every attribute K, N ∈ Sl has an associ-
ated data type τ as domain, denoted dom(l.K) = dom(τl.K) and dom(l.N) =
dom(τl.N). ¥

In the remainder of the thesis, we will often use square brackets to denote
level names of dimension schemas wherever this allows for an easier presentation
(e.g., [month] instead of simply month). The same notation of level names in
square brackets is also used within cube schemas to connect facts with aggrega-
tion levels (Definition 4.9), but in that case the brackets are mandatory.

Example 4.2: The schema of dimension drug in Data Mart dwh1 is given
by (1) Ldrug = {[l drug], [l manufacturer]}, (2) S(Ldrug) = {l drug (drug,
pkg size), l manufacturer (manufacturer, country)}1 and (3) Hdrug = {l drug 7→
manufacturer}. Figure 2.1 depicts the dimensions of the example DMs and all
their attributes—dimensional and non-dimensional—but not the level names.
Thus, level name l drug and all other level names are not shown there. ♦

Definition 4.3 (Dimension Instance):
A dimension instance d(SD) over schema SD consists of (I) its name d, iden-
tifying the instance, (II) its set of members Vd with each v ∈ Vd being a tuple
over a level schema Sl ∈ S(LD), and (III) the family of “roll-up” functions ρd

between the member subsets according to HD (see Definition 4.5). ¥

Example 4.3: The instance of dimension drug in Data Mart dwh1 is named
dwh1::drug. Its member set Vdrug consists of the tuples {(‘A’, ...), (‘B’, ...),
(‘C’, ...)} shown in Figure 2.3 on page 18. This corresponds to the union of all
tuples over l drug (drug, pkg size) (i.e. the drug-members) with all tuples over
l manufacturer (manufacturer, country) (i.e. the manufacturer-members). ♦

4.3 Functions and Properties of Dimensions

Before defining the concept of a data cube, we need to specify additional func-
tions and properties of dimensions. In particular, we introduce dimension func-
tions and roll-up functions ρd in the following definitions. Later in this thesis,
we will use these functions to formally define heterogeneities among dimension
schemas and members. Moreover, we require the dimension functions to define
cubes precisely. To improve clarity within the forthcoming examples, we explic-
itly designate the Data Mart in all symbol subscripts, i.e. we use, for example,
“Hdwh1::drug” instead of “Hdrug”.

1Notice that Example 4.2 uses prefix ‘l ’, denoting level names, in order to avoid confusion
of identical dimension level names and level attribute names.

4.3. FUNCTIONS AND PROPERTIES OF DIMENSIONS 55

Definition 4.4 (dimension functions):
Let D be a dimension with schema SD, level schema S(LD) and instance d(SD).
We define the following functions over D:

• level : Vd → LD returns the level l corresponding to a given v ∈ Vd.
• members : LD → 2Vd returns the set T = {v ∈ Vd | level(v) = l}

containing all members v ∈ Vd that belong to some level l. ¥

Example 4.4: The function expression members(dwh1::l drug) returns all v ∈
Vdrug that belong to level l drug, i.e. all tuples over level schema l drug(drug,
pkg size). Evaluating this function over dimension dwh1::drug dim as shown in
Figure 2.3 (page 18), we obtain three members: {(‘A’, ‘25 pcs.’), (‘B’, ‘25 pcs.’),
(‘C’, ‘250 ml.’)}. The level function is the inverse of the members function.
Accordingly, function expression level((‘A’, ‘25 pcs.’)) results in level l drug. ♦

Aggregation levels are one of the fundamental concepts in the multi-
dimensional model [Bauer and Günzel, 2006, Golfarelli et al., 1998]. Hierar-
chies of aggregation levels in dimensions allow to view fact data with varying
precision. The following Definitions 4.5, 4.6 and 4.7 detail the properties of ag-
gregation hierarchies formally. Finally, Definition 4.8 establishes an “ordering”
relationship among aggregation levels in hierarchies.

Definition 4.5 (roll-up functions):
Let l, k ∈ LD be two levels, l 6= k, of a dimension D. The roll-up function ρl 7→k

D

is defined for each pair l, k ∈ HD. The family of roll-up functions ρd contains
all ρl 7→k

D defined in this way. ¥

Example 4.5: Dimension dwh1::drug defines only two levels, l drug and
l manufacturer (see Example 4.2), so that the hierarchy Hdrug is relatively sim-
ple ({drug 7→ manufacturer}). Thus, ρdwh1::drug contains only a single roll-up
function: ρdrug 7→manufacturer

dwh1::drug . ♦

Definition 4.6 (base level of hierarchy):
The base level of hierarchy HD, denoted lD0 , representing the finest grain of the
dimension’s members, is the bottom element of the lattice HD. The all-level,
denoted lDall or lall for short, is the top element of the lattice HD. ¥

Example 4.6: The base level of hierarchy Hdwh1::drug (see the previous Exam-
ple 4.2) is [l drug]. Accordingly, the base level of hierarchy Hdwh1::date time is
[l day] and so forth. Every hierarchy of the case study’s dimensions in dwh1 and
dwh2 contain the all-level lall, that is implicit to every dimension and therefore
not shown for any dimension in Figure 2.1. ♦

Definition 4.7 (roll-up consistency):
Let l, k ∈ LD be two levels, l 6= k, of a dimension D, and Tl = members(l),
Tk = members(k). Roll-up function ρl 7→k

D is consistent with the hierarchy HD

iff all members of level l roll-up to a member of level k, such that ∀v ∈ Tl :
ρl 7→k

D (v) = w ⇒ w ∈ Tk. ¥

56 CHAPTER 4. CONCEPTUAL DATA MODEL

Example 4.7: Roll-up function ρdrug 7→manufacturer
dwh1::drug of dimension dwh1::drug

is consistent because it maps every member of level [l drug] unambiguously
to one member of level [manufacturer]. Assumed that dimensions dwh1::drug
and dwh2::drug are merged, however, the roll-up function would be inconsis-
tent because it is defined ambiguously for member ‘B’ among dwh1 and dwh2:
ρdrug 7→manufacturer

dwh1::drug (‘B’) = ‘Novartis’ versus ρdrug 7→manufacturer
dwh2::drug (‘B’) = ‘Bayer’.♦

Definition 4.8 (Fineness and coarseness of levels):
Let l, l̂ ∈ HD be two levels in some dimension D and operator 7→+ denote the
transitive closure of operator 7→ (rolls-up to, see Definition 4.2). If l 7→+ l̂, we
say that l is “finer than” or “more fine-grained than” l̂, and that l̂ is “coarser
than” or “more coarse-grained than” l. ¥

Example 4.8: In dimension dwh1::date time (see Figure 2.1 on page 16), level
[day] is finer than [month] and [year]. Accordingly, level [year] is coarser than
[month] and [day], and so on. ♦

4.4 Cubes

Analogously to dimensions (Section 4.2), cubes are first-class citizens in the
FedDW conceptual data model. That is, cubes and their properties are defined
in the underlying Data Mart, and they can be used in several Data Marts.
Every cube consists of both its schema (Definition 4.9) and its instance or cells
(Definition 4.10).

Definition 4.9 (Cube Schema):
Every Cube C has the cube schema SC = {AC , MC} that is composed of (I) a
set of dimension attributes AC = {A1, ..., An}, (II) a set of measure attributes
MC = {M1, ..., Mk}. Each Ai ∈ AC (1 ≤ i ≤ n) is linked to a level l ∈ LD

of some dimension D ∈ {D1, ..., Dm} of the Data Mart, denoted Ai[l]. Each
Mj ∈ MC (1 ≤ j ≤ k) is linked to a data type τj .

The domain of each attribute Ai[l] ∈ {A1, ..., An},Mj ∈ {M1, ..., Mk} of SC

is defined as dom(Ai) = members(l) and dom(Mj) = dom(τj). The number
n of dimensional attributes in AC is referred to as the dimensionality of C,
whereby n ≤ m (value m denotes the number of dimensions defined in the Data
Mart). ¥

Example 4.9: Cube schema medication in Data Mart dwh1 is given as (1)
Amedication = {patient [l patient], drug [l drug], date time [day]} (dimension at-
tributes) and (2) Mmedication = {qty, cost} (measure attributes). Thus, the
dimensionality of dwh1.medication equals 3 (i.e. the cube is 3-dimensional).

The domains dom(A[l]) of the dimensional attributes A ∈ Amedication match
the domains dom(l.K) of their respective linked level l (e.g., dom(drug[l drug])
= dom(l drug.K) = dom(drug), and so on). In turn, the domains of the mea-
sure attributes Mmedication are integer and float for qty and cost, respectively.
As indicated by the resemblance of names, the dimension attributes associate
cube dwh1::medication to the levels given in square brackets of the dimensions
dwh1::patient, dwh1::drug and dwh1::date time, respectively. ♦

4.5. NAMES OF DIMENSION AND CUBE SCHEMAS 57

As stated in the above Definition 4.9, the level associated with some di-
mensional attribute must be given in square brackets (e.g., date time[day]). All
definitions of this thesis adhere to this notation. Within the examples in the
forthcoming Chapters, however, we often write simply A instead of A[l]—when
it is clear from the context that A[l] refers to level l—to improve legibility.

Definition 4.10 (Cube instance):
A Cube instance c(SC) over schema SC consists of (I) its name c, identifying the
instance, and (II) a set of tuples over {[dom(A1)× ...× dom(An)], [dom(M1)×
...× dom(Mk)]}. A tuple f ∈ c(SC) is called a “cell” or “fact”. Moreover, with
the “coordinate” of a cell we denote the values [f(A1), ..., f(An)] modelling the
multi-dimensional context for the measures [f(M1), ..., f(Mk)]. ¥

Example 4.10: The cube instance of cube medication in Data Mart dwh1 is
named dwh1::medication and consists of all the cells that are defined as tuples
over the fact schema, as depicted in Figure 2.3. ♦

4.5 Names of Dimension and Cube Schemas

To denote elements in dimension schemas (see Definition 4.2) and cube schemas
(see Definition 4.9), and to formalize naming conflicts the following definition
introduces the name function of dimension and cube schemas.
Definition 4.11 (Name function of dimension and cube schemas):
Function name : {D ∪ SD.l ∪ Sl.K ∪ Sl.N ∪ C ∪ SC .A ∪ SC .M} → string allo-
cates some name, which is a character string, to each dimension D or cube C,
or elements of the dimension schema SD respectively cube schema SC . In par-
ticular, the name function is applicable to level names SD.l, roll-up attributes
Sl.K, non-dimensional attributes Sl.N of dimension schemas SD, as well as to
dimensional attributes SC .A and measures SC .M of cube schemas SC . ¥

Thus, intuitively, dimension levels SD.l and attributes Sl.K, Sl.N of dimen-
sion schemas SD, as well as SC .A, SC .M of cube schemas SC denote ontological
concepts, whereas their respective names give “labels” to these concepts. In
the forthcoming examples of the thesis, however, we omit explicit calls to the
name function for better legibility whenever it is unambiguous. In most cases,
we refer to the names of schemas or schema elements by giving the Data Mart
name as prefix (e.g., dwh1::method refers to name(dwh1.method)).

Example 4.11 (Name functions): Let time denote the ontological concept
represented by dimensions “dwh1::date time” and “dwh2::date time2” to il-
lustrate the difference between the concept D and label name(D) of a di-
mension schema. The name-function allocates the following names to the
date dimensions of the treatment cubes (cf. Figure 2.1): name(dwh1.time) =
dwh1::date time, name(dwh2.time) = dwh2::date time2. ♦

58 CHAPTER 4. CONCEPTUAL DATA MODEL

Chapter 5

Taxonomy of Conflicts in
Multi-dimensional Data

Contents
5.1 Schema versus Instance Conflicts 62

5.2 Schema Level Conflicts 63

5.2.1 Naming Conflicts . 63

5.2.2 Conflicts among Dimension Schemas 65

5.2.3 Conflicts among Cube Schemas 68

5.3 Instance Level Conflicts 71

5.3.1 Conflicts among Dimension Instances 72

5.3.2 Conflicts among Cube Instances 74

5.4 Summary . 75

The following Chapter introduces a taxonomy of heterogeneities in multi-
dimensional Data Warehouses and Data Marts, extending the overview given
in Table 2.1 (page 22). Conflicts among independent and autonomous Data
Marts may occur either at the schema or at the instance level and concern both
dimensions and facts. Additionally, schema–instance conflicts may occur when
the universe of discourse is modelled differently, once using schema and once
instance constructs. The Chapter classifies the possible conflicts along the two
dimensions schema level—instance level and dimension—fact.

59

60 CHAPTER 5. TAXONOMY OF CONFLICTS

The following Sections detail the overview of conflicts given in Table 2.1
(page 22), introducing a taxonomy of heterogeneities in the multi-dimensional
data model. We will show that conflicts among independent and autonomous
Data Marts may occur either at the schema or at the instance level and con-
cern both dimensions and facts. Additionally, schema–instance conflicts happen
when the universe of discourse is modelled differently, once using schema and
once instance constructs at different sites.

A basic classification of possible conflicts at the schema and instance level of
relational data was introduced by Kim and Seo. Their work surveys structural
heterogeneity of database models, defining several conflict classes that affect
the main conceptual entity behind relational data—the relation. For example,
“table versus table” conflicts occur when different table definitions represent the
same relation(s) in different databases [Kim and Seo, 1991]. Later on, the basic
classification has been extended [Lee et al., 1995], as explained in Chapter 3.

In recent years, the data integration community has been focusing on seman-
tic heterogeneity of data. The semantic integration problem is far more complex
than structural integration since semantic heterogeneity refers to how users in-
terpret the meaning of given schema elements according to their understanding
of the real world. In order to repair semantic heterogeneity, most approaches use
ontologies [Kedad and Métais, 1999, Hakimpour and Geppert, 2001] or similar
knowledge representation techniques [Singh et al., 1997].

Generally, heterogeneities among Data Marts covering the same application
domain (e.g., sales figures of grocery stores) result from the use of either (1)
different modelling patterns and methodologies, or (2) ambiguous domain vo-
cabularies, or (3) a combination of both these factors. In other words, there are
neither “best practices” nor universal patterns for modelling a given application
domain as multi-dimensional schema; usually, every data designer conceptual-
izes the universe of discourse in slightly different ways. Moreover, a comprehen-
sive and generally accepted vocabulary for the Data Warehousing domain—e.g.,
an ontology—has not been proposed yet.

Remarkably, even if all Data Mart designers would use such standard mod-
elling patterns and consistent vocabularies of their application domains, the
resulting models and instances of Data Marts still are not guaranteed to be
free of conflicts. When representing the universe of discourse—e.g., business
processes—in conceptual schemas, every organization includes some peculiari-
ties to the model. Thus the final model depends on the organizational back-
ground, according to how its human members interpret the application domain
and the organization itself. According to Navathe and Elmasri, conceptual
schemas do not guarantee that consensus on the ontological definitions of the
application domain exists [Navathe and Elmasri, 2004].

Multi-dimensional data is semantically richer than relational data, since it
distinguishes two different conceptual entities, namely dimensions and facts.
Consequently, the possible conflict classes at the schema and instance level of
multi-dimensional data are not only more numerous, but may also be more
complex due to dependencies between dimensions and facts. In particular,
the semantics of aggregation hierarchies in dimensions gives birth to several
conflicts specific to the multi-dimensional data model. Thus, data cubes
have to be checked for heterogeneities separately among both the levels and

61

non-dimensional attributes in their dimensions as well as among the “multi-
dimensional space” (the set of dimension attributes) of the cube cells.

Accordingly, we will classify the possible heterogeneities in multi-dimensional
information systems along two dimensions: modelling scope (schema level—
instance level), and model entity (dimension—fact). Thus we obtain four basic
categories of heterogeneities, plus the afore-mentioned schema–instance con-
flicts, as Figure 5.1 illustrates:

• Schema versus Instance . (Section 5.1)
• Schemas of dimensions . (Section 5.2)
• Schemas of cubes .(Section 5.2)
• Instances of dimensions (“members”) . (Section 5.3)
• Instances of cubes (“cells”) . (Section 5.3)

Model Entity

Modelling
Scope

Dimension Cube

Schema

Instance

Dimension
Instance

(„Members“)
Conflicts

Cube
Instance
(„Cells“)
Conflicts

Dimension
Schema
Conflicts

Cube
Schema
Conflicts

Schema-
Instance
Conflicts

Figure 5.1: Overview of Categories for Multi-dimensional Heterogeneities

Based on the multi-dimensional data model specified in Chapter 4, which
formally defined schemas and instances of dimensions and cubes of Data Marts,
we classify multi-dimensional heterogeneity at the following levels: (i) schema–
instance conflicts (Section 5.1), (ii) schema conflicts for dimensions and cubes
(Section 5.2), and (iii) instance conflicts for dimensions and cubes (Section 5.3).
Detecting and eliminating all heterogeneities according to this classification is
the prerequisite for obtaining homogeneous dimensions and cubes, as explained
and formalized in the next Sections.

62 CHAPTER 5. TAXONOMY OF CONFLICTS

5.1 Schema versus Instance Conflicts

Schema–instance conflicts among Data Marts result from using different mod-
elling elements to represent the same application domain as multi-dimensional
data structures. Generally, a data cube allows the human business analyst to
interpret numerical benchmarks—modelled as measure variables—in the par-
ticular context or business perspective given by the cube’s dimensions. Thus,
the combination of dimension variable values specifies the context of the facts
in each cell, which is necessary for the analysts to correctly interpret the mea-
sures. Only with the help of context information the analyst is able to gain
previously unknown information about the enterprise from the data cube. Mea-
sures not connected with any dimension variable are merely numbers without
any semantics whatsoever.

Sometimes, part of the fact context is modelled using once elements at the
schema and once elements at the instance level across distinct autonomous
cubes. In particular, the multi-dimensional model provides measure attributes
(Definition 4.9) and dimension members (Definition 4.3) for representing context
information within the schema or instance of cubes, respectively. If dimension
members are used, the context information is directly and conveniently visible
from the cube—as an additional dimension variable in the cube schema. Oth-
erwise, special names for measures in the cells encode the context information
implicitly. In the latter case, the fact context is only obvious from the presence
of several measure variables, the semantics of which are closely related.

These conflicts are very difficult to detect. As argued in previous work,
even simpler occurrences of pure structural heterogeneity—i.e., schema–schema
conflicts among models—or data heterogeneity—i.e., instance–instance conflicts
among tuples—cannot be matched in fully automatic manner. The interac-
tion of the human designer is always needed, at least to check whether au-
tomatically generated matchings are valid and plausible [Schwarz et al., 1999,
Halevy et al., 2006]. Thus, the designer of the Federated DW schema has to in-
spect the real-world entities modelled by the autonomous Data Marts carefully
in order to reveal possible schema-instance conflicts.

In most cases it is adequate to represent context of facts exclusively within
the members of dimensions. The reason for this is twofold. First, the names
of measure variable subsets representing some part of the fact context can be
viewed as enumeration of the values of an implicit, invisible context dimension.
Second, the dimension schema provides additional properties—e.g., hierarchies,
non-dimensional attributes—that allow to model the members more precisely.
Thus, using dimension members for expressing the fact context leads to more
concise and more easily comprehensible cube schemas.

Example 5.1: The treatment data cubes of the case study (see Figure 2.1 on
page 16 and Figure 2.4 on page 19) both represent cost figures of medical treat-
ments, distinguishing personnel costs from material costs. In dwh1, the costs
categories are contained in the schema of the treatment cube as measure vari-
ables cost m and cost p, whereas in dwh2 the costs categories are modelled as
instances of the cost cat dimension. Notice that the cost cat dimension need
not necessarily contain material and personnel costs, but could also provide for
additional costs categories not modelled in the schema of dwh1::treatment. ♦

5.2. SCHEMA LEVEL CONFLICTS 63

5.2 Schema Level Conflicts

This Section systematically categorizes and explains the conflicts that may occur
among the schemas of autonomous data cubes. According to the overview de-
picted in Figure 5.1, the taxonomy we give further distinguishes heterogeneities
among the intensions of dimensions and facts, respectively. Before discussing
these schema conflicts in two separate Subsections, the next Subsection starts
with some remarks on naming conflicts.

5.2.1 Naming Conflicts among Dimension/Cube Schemas

Inconsistent naming for attributes and other elements of autonomously and
locally managed schemas is one of the basic and most obvious reasons for schema
heterogeneities. Traditionally, the problem of detecting naming conflicts has
been a major concern of the database and data integration research communities
[Doan and Halevy, 2005]. Most of the findings achieved in these fields can be
applied to Data Warehousing as well, because multi-dimensional schemas of
Data Marts can be translated easily to relational schemas (see for example
[Golfarelli et al., 1998]).

We denote as naming conflicts the occurrence of different words as labels of
semantically equivalent entities in multi-dimensional Data Marts across schema
boundaries. Due to the lack of standardized ontological vocabularies for the
Data Warehousing domain, every organization usually maintains its own “pri-
vate” vocabulary, that is well-known to the members of the organization but
not disclosed to the public. Thus, it is common that heterogeneous vocabularies
underlie the models of semantically “same” ontological concepts in the schema
of a Data Mart. The naming conflicts across dimensions or cubes become obvi-
ous as soon as independently developed multi-dimensional schemas have to be
integrated across the original organizational boundaries.

In general, naming conflicts in the context of multi-dimensional schemas
are usually either homonyms or synonyms to attribute names in dimension
schemas and/or cube schemas. Homonyms to attribute names occur if an iden-
tical attribute name maps to different ontological concepts among autonomous
schemas. For example, an attribute named “good” could designate articles, as
well as being a boolean or categorical attribute concerning customer feedback.
In contrast, synonyms occur if several attribute names map to the same onto-
logical concept. For instance, an attribute containing the price of sold products
can be denoted as “price”, or “unit price”, etc.

It is difficult to detect naming conflicts automatically [Embley et al., 2004,
Schwarz et al., 1999]. Many approaches in the field of data integration
have addressed naming conflicts—usually in combination with other, more
complex problems involved [Dhamankar et al., 2004, Calvanese et al., 2001,
Aslan and McLeod, 1999, Singh et al., 1997, Hammer and McLeod, 1993].
Lately, due to the popularity of information integration approaches in both
industry and the research community, the focus of classical data integration
has broadened to new domains, such as context oriented information retrieval,
event-based or stream-based information integration systems, and so forth
[Mohania and Bhide, 2008, Xu and Embley, 2006].

64 CHAPTER 5. TAXONOMY OF CONFLICTS

More recently, research in the Semantic Web community has focused on
how to use ontologies for the semantic integration of both, schemas and infor-
mation. The large body of work done in this area indicates the hardness of
the problems involved. For example, the work of [Buitelaar et al., 2008] sur-
veys recent literature and presents SOBA, an ontology-based approach for in-
formation extraction and integration. SOBA extends the earlier proposal of
[Biskup and Embley, 2003] with linguistic analysis during the generation phase
of an integrated ontology. In both these systems, the integrated data is ma-
terialized within views of a global database. In contrast, virtualization ap-
proaches such as InfoMosaic [Telang et al., 2008a, Telang et al., 2008b] define
global schemas together with mediators (cf. Subsection 3.4.5, pp. 38).

In the multi-dimensional model, heterogeneous attribute names affect di-
mension schemas and cube schemas alike. Naming conflicts among autonomous
dimensions may occur within: (1) the name of the dimension, (2) level names
within hierarchies, (3) level attribute names in level schemas, and (4) non-
dimensional attributes in level schemas (Definition 5.1). In turn, naming con-
flicts among autonomous cubes are possible within: (1) the name of the cube,
(2) dimension attribute names, (3) measure attribute names (Definition 5.2).

Definition 5.1 (Naming conflicts among dimension schemas):
Let D and D̄ denote two dimensions of autonomous cubes. Moreover, let
l ∈ LD, l̄ ∈ LD̄ be some level, l.K ∈ Sl, l̄.K̄ ∈ Sl̄ be the roll-up attributes
and l.N ∈ Sl, l̄.N̄ ∈ Sl̄ be some non-dimensional attributes of these levels in di-
mension schemas SD and SD̄, respectively. Naming conflicts among autonomous
dimensions D and D̄ affect the following elements of dimension schemas:

• Dimension: name(D) 6= name(D̄)
• Level names within hierarchies: name(l) 6= name(l̄)
• Roll-up attributes in level schemas: name(l.K) 6= name(l̄.K̄)
• Non-dimensional attributes in level schemas: name(l.N) 6= name(l̄.N̄) ¥

Example 5.2 (naming conflicts among dimension schemas): The di-
mensions of both treatment data cubes contain two naming conflicts among
Data Marts dwh1 and dwh2. First, the names of the time dimensions are dif-
ferent: dwh1::date time versus dwh2::date time2. Second, the non-dimensional
attributes of the method dimensions have heterogeneous names: description in
dwh1::method, versus descrpt in dwh2::method. ♦
Definition 5.2 (Naming conflicts among cube schemas):
Let C and C̄ denote two autonomous cubes. Moreover, let A ∈ AC , Ā ∈ AC̄ be
some dimensional attribute, and M ∈ MC , M̄ ∈ MC̄ be some measure in cube
schemas SC and SC̄ , respectively. Naming conflicts among autonomous cubes
C and C̄ affect the following elements of cube schemas:

• Cube: name(C) 6= name(C̄)
• Dimensional attributes: name(A) 6= name(Ā)
• Measures: name(M) 6= name(M̄) ¥

Example 5.3 (naming conflicts among cube schemas): The treatment
cubes illustrate a naming conflict among their dimensional attributes (see
Figure 2.4). While dwh1::treatment contains an attribute named date, cube
dwh2::treatment defines an attribute date/hr. ♦

5.2. SCHEMA LEVEL CONFLICTS 65

For the discussion in the following two Subsections we assume, respectively,
dimension and cube schemas in which all naming conflicts have already been
repaired. Thus, our taxonomy concentrates on heterogeneities that are specific
to the multi-dimensional model, irrespective of possible naming conflicts.

5.2.2 Conflicts among Dimension Schemas

The basic concept underlying the classification of heterogeneities among dimen-
sion schemas is the equivalence of aggregation levels across autonomous schemas.
Intuitively, equivalent level intensions represent some particular real-world en-
tity uniformly within their level schemas. Using the notion of level equivalence,
we will also define various degrees of correspondence among sets of levels.

Our model determines equivalence among aggregation levels of autonomous
dimension schemas only by the keys of level schemas, i.e. by their roll-up at-
tributes (Definition 5.4 below). First and foremost, the hierarchy among the
roll-up attributes of aggregation levels defines the semantics of dimensions—i.e.,
the classification of some business entity in varying detail. The non-dimensional
attributes l.N1, ..., l.Nk (“N-attributes”) complement the roll-up attribute l.K
of some level schema Sl, representing additional properties of the l-members (cf.
Definition 4.2), but they have no influence on the notion of correspondence.

For the following definitions, let D and D̄ denote two dimensions in au-
tonomous Data Marts.
Definition 5.3 (Conceptual correspondence of levels):
Two levels l ∈ SD and l̄ ∈ SD̄ are called conceptually corresponding, denoted
l ' l̄, iff l.K = l̄.K, i.e. the roll-up attributes of level schemas Sl and Sl̄ model
the same ontological concept. ¥
Definition 5.4 (Equivalence of levels):
Two levels l ∈ SD and l̄ ∈ SD̄ are called equivalent, denoted l ≡ l̄, iff l ' l̄
(see above Definition 5.3), and iff dom(l.K) = dom(l̄.K), i.e. their associated
domains are equal. If l ≡ l̄ we also say that l matches l̄ and vice versa. ¥
Example 5.4: The levels [l drug] of the two dimensions dwh1::drug and
dwh2::drug are equivalent because their roll-up attribute drug corresponds con-
ceptually between the two level schemas l drug—i.e., both represent drugs for
medications. Moreover, the domains of the drug attributes match (see Fig-
ure 2.3, page 18). Analogously, the levels [manufacturer] are also equivalent
among dwh1::drug and dwh2::drug due to roll-up attribute manufacturer.

Notice how the N-attributes dwh1::drug.pkg size and dwh2::drug.pkg size are
irrelevant for determining equivalence among level schemas dwh1::drug and
dwh2::drug. Assuming heterogeneous domains for the pkg size attributes—e.g.,
pieces versus grams—these domain conflicts would have to be repaired before
merging the two dimensions, as explained in Chapter 7. Importantly, however,
the aggregation hierarchies ({drug 7→ manufacturer}) remain unaffected by
such conflicts among N-attributes. ♦

Building upon the concept of level equivalence, heterogeneities among the
schemas of autonomous dimensions may affect all elements of the dimension
schema given in Definition 4.2 (page 54). Accordingly, the following subsections
classify conflicts among (1) the set of levels, (2) the hierarchy among the levels,
and (3) the attributes defined within level schemas.

66 CHAPTER 5. TAXONOMY OF CONFLICTS

Correspondence of Level Sets

The semantic similarity—correspondence—among sets of aggregation levels is
based upon level equivalence (Definition 5.4). Intuitively, the more levels match
across autonomous dimension schemas, the more homogeneously modelled are
these schemas. Perfectly homogeneous dimension schemas—among which all
levels match—are likely to represent the same real-world entities in uniform
manner. Conversely, if not even a single level matches, the according dimension
schemas are heterogeneous and probably represent different real-world entities.

Correspondence among the sets of aggregation levels is the formal concept
for measuring the similarity of dimension schemas, as defined below. Let D and
D̄ denote two dimensions in autonomous Data Marts. Correspondence among
LD and LD̄ refers to all levels of the schemas SD and SD̄, and whether the
levels of LD are equivalent with the levels of LD̄. Thus, correspondence among
dimension schemas quantifies “set-wise equivalence” of their aggregation levels:

Definition 5.5 (Corresponding level sets):
Two level sets LD ∈ SD and LD̄ ∈ SD̄ of the dimension schemas SD and SD̄ are
called corresponding, iff every level l ∈ LD is equivalent with some level l̄ ∈ LD̄

and vice versa, i.e. the subsets of non-equivalent levels among LD and LD̄ are
empty: ∀l ∈ LD∃l̄ ∈ LD̄ : l ≡ l̄ ∧ ∀l̄ ∈ LD̄∃l ∈ LD : l̄ ≡ l. We also say that LD

matches LD̄ and write LD ≡ LD̄. ¥

Autonomous dimension schemas SD and SD̄ are heterogeneous if one of
their levels violates the above Definition 5.5 (i.e., if their level sets are not
fully corresponding). For the successful integration of dimension schemas it is
necessary to exactly determine their semantic correspondence—i.e. the extent
to which the level schemas match. We distinguish the following degrees of
intensional heterogeneity among dimension schemas:

• Non-corresponding dimension schemas—disjoint sets of aggregation levels:
the dimension schemas SD and SD̄ are called non-corresponding if their
level sets LD and LD̄ do not have any equivalent level in common, i.e.
LD ∩ LD̄ = ∅.
Example 5.5 (non-correspondence): The dimension schemas
dwh1::drug and dwh2::date time2 are non-corresponding because
Ldwh1::drug ∩ Ldwh2::date time2 = ∅, i.e. there is no pair of equivalent
aggregation levels among the two level sets (see Figure 2.1, page 16). ♦

• Partial-corresponding dimension schemas—overlapping sets of aggregation
levels: the dimension schemas SD and SD̄ are called partial-corresponding
if their level sets LD and LD̄ have at least one, but not all equivalent
levels in common, i.e. LD ∩ LD̄ 6= ∅. We further classify according to the
equivalence of base levels in the hierarchies HD and HD̄:

a. If lD0 6≡ lD̄0 , i.e. the two base levels are different, the dimension
schemas SD and SD̄ are called inner-level corresponding.

b. If lD0 ≡ lD̄0 ∧ LD 6≡ LD̄, i.e. the two base levels match, the dimension
schemas SD and SD̄ are called base-level corresponding.

5.2. SCHEMA LEVEL CONFLICTS 67

Example 5.6 (inner-level correspondence): The dimension schemas
dwh1::date time and dwh2::date time2 are inner-level corresponding be-
cause the levels [day] and [year] match between the two level sets,
but the two base levels are different: ldwh1::date time

0 = [day] versus
ldwh2::date time2
0 = [day/hr] (see Figure 2.4, page 19). ♦

Example 5.7 (base-level correspondence): The dimension schemas
dwh1::date time and dwh2::date time2′ (= dwh2::date time2 \ [l day/hr];
i.e., Hdwh2::date time2′ = { [day] 7→ [week] 7→ [year]}) are base-level corre-
sponding. The two base levels are equivalent and level [year] also matches
between the two level sets: ldwh1::date time

0 = ldwh2::date time2′
0 = [day] (see

Figure 2.4). However, the levels [month] of dwh1::date time and [week] of
dwh2::date time2′ do not match. ♦

• Flat-corresponding dimension schemas—corresponding aggregation levels
with different hierarchies: the dimension schemas SD and SD̄ are called
flat-corresponding if level set LD matches level set LD̄, and the two base
levels are the same, but the two hierarchies differ, i.e. LD ≡ LD̄ ∧ lD0 ≡
lD̄0 ∧HD 6= HD̄.

Example 5.8 (flat correspondence): Let calendar be a dimension
schema with equivalent level sets to dwh1::date time. Assuming that
the calendar-hierarchy be defined as Hcalendar = {day 7→ year 7→
month}, the dimension schemas dwh1::date time and calendar are only flat-
corresponding although their level sets match exactly, because Hcalendar 6=
Hdwh1::date time (recall that Hdwh1::date time = {day 7→ month 7→ year}—
see Figure 2.4, page 19). ♦

Conflicts among Attribute Domains

Domain conflicts among dimension schemas occur if two attributes in level
schemas model the same concept, but assign different sets of allowed values. The
FedDW conceptual model associates the domains of both the roll-up attribute
l.K and the non-dimensional attributes l.N1, ..., l.Nk in some level schema Sl

with a data type τ (cf. Definitions 4.2 and 4.9). Thus, domain conflicts may
affect roll-up attributes and N-attributes of dimensions alike.

Domain conflicts can only be discovered reliably after identifying structural
(intensional) heterogeneity among dimensions, as explained above. This means,
even if conceptually corresponding levels (Definition 5.3) suggest homogeneous
level schemas across autonomous dimensions, the attributes of the level schemas
may nevertheless be subject to domain conflicts. In such cases, the affected
dimensions represent the same real-world entities, although either the precision
or the measuring unit of an attribute domain differs.

According to the elements of dimension schemas we distinguish the follow-
ing classes of domain conflicts. Let l ∈ LD and l̄ ∈ LD̄ be two levels of the
dimensions D respectively D̄ with l ' l̄ and l ∈ HD, l̄ ∈ HD̄.

• Roll-up domain conflicts (roll-up attributes in hierarchies): the domains
of the two levels l and l̄ (with l ' l̄) are heterogeneous, if dom(l.K) 6=
dom(l̄.K). We further classify inner level and base level domain conflicts,
according to the position of l and l̄ within the hierarchies HD and HD̄:

68 CHAPTER 5. TAXONOMY OF CONFLICTS

a. Inner level domain conflicts occur if neither l nor l̄ are the base levels
of the hierarchies HD and HD̄, respectively—i.e. ∃l′ ∈ HD : l′ 7→+

l ∧ ∃l̄′ ∈ HD̄ : l̄′ 7→+ l̄.

b. Base level domain conflicts occur if either l or l̄ is the base level of the
hierarchies HD and HD̄, respectively—i.e. @l′ ∈ HD : l′ 7→+ l ∨ @l̄′ ∈
HD̄ : l̄′ 7→+ l̄.

Notice that two conceptually corresponding levels l ' l̄ become equivalent
(l ≡ l̄) by repairing the heterogeneous domains (cf. Definitions 5.3, 5.4).

Example 5.9 (inner level domain conflict): Assuming that levels
[manufacturer] of the two dimensions dwh1::drug dim and dwh2::drug dim
represent only Swiss and German manufacturers, respectively, the domains
of the both inner levels [manufacturer] are different. In this case, the do-
main mismatch among dwh1::drug dim and dwh2::drug dim occurs since
the schemas logically constrain that manufacturer.country be set only to
the values ‘CH’ respectively ‘DE’. ♦

Example 5.10 (base level domain conflict): The date time dimen-
sion schemas associate the base levels with different domains in
both treatment cubes (see Figure 2.4, page 19). While base level
[day] in dwh1::date time models days of years, base level [day/hr] in
dwh2::date time2 additionally contains the time of day. ♦

• Non-dimensional domain conflicts (N-attributes): the domain of two non-
dimensional attributes, say l.N and l̄.N , is heterogeneous if dom(l.N) 6=
dom(l̄.N).

Example 5.11 (non-dimensional domain conflict): Assuming that
non-dimensional attribute hourly costs of the [method] level in the two
dimensions dwh1::method and dwh2::method records costs figures once in
US-$ and once in Euros, the hourly costs domains are in conflict. ♦

It is important to note that base-level domain conflicts require special atten-
tion. Cube schemas associate measure variables with base levels in dimension
schemas (see Definition 4.9, page 56). Therefore, base-level domain conflicts af-
fect all measure attributes in cube schemas that are linked to these dimensions.
In contrast, inner level domain conflicts or non-dimensional domain conflicts
only affect the dimension, not the associated cubes.

5.2.3 Conflicts among Cube Schemas

The basic concept underlying our classification of heterogeneities among cube
schemas is the pairwise equivalence of dimension attributes across autonomous
schemas. Intuitively, equivalent dimensional attributes represent context of
measures—i.e., some business perspective—uniformly across autonomous cube
schemas, associating the cube schemas with equivalent aggregation levels across
dimensions. Based on the notion of equivalent dimensional attributes, we will
identify various levels of correspondence among cube schemas, and classify the
possible heterogeneities.

For the following definitions, let C and C̄ denote two cubes in autonomous
Data Marts.

5.2. SCHEMA LEVEL CONFLICTS 69

Definition 5.6 (Conceptual correspondence of dimension attributes):
Two dimensional attributes A[l] ∈ AC and Ā[l̄] ∈ AC̄ of cube schemas SC

respectively SC̄ are called conceptually corresponding, denoted A ' Ā, iff the
two dimension attributes represent the same ontological concepts. ¥
Definition 5.7 (Equivalence of dimension attributes):
Two dimensional attributes A[l] ∈ AC and Ā[l̄] ∈ AC̄ of cube schemas SC

respectively SC̄ are called equivalent, denoted A ≡ Ā, if their concepts match
(see above Definition 5.6), and iff the levels associated with the dimensional
attributes are equivalent (Definition 5.4), i.e. if A ' Ā ∧ l ≡ l̄. ¥

Correspondence of Cube Schemas

In our model, we determine semantic similarity of cube schemas—denoted as
correspondence—by the extent to which their equivalent dimensional attributes
“overlap”, based on Definition 5.7. Intuitively, corresponding cube schemas
model the same context for the measure values in their cells by using the same
sets of dimension attributes. Perfectly corresponding cube schemas model ex-
actly the same multi-dimensional space, since all of their dimensional attributes
are pairwise equivalent.

In order to correctly recognize the conflicts among autonomous cube
schemas, it is important to assume the following two prerequisites. First, no
schema–instance conflicts may exist among the cubes (cf. Section 5.1). If neces-
sary, all schema–instance conflicts have to be repaired. Second, the dimensions
associated with the cube schemas must be free of schema heterogeneities (cf.
the previous Subsection 5.2.2). If necessary, the existing conflicts among all
dimension schemas must be overcome.

Again, let C and C̄ denote two cubes in autonomous Data Marts.
Definition 5.8 (Corresponding cube schemas):
Two cube schemas SC and SC̄ are called corresponding iff all of their
dimensional attributes AC = {A1[l1], ..., Ai[li], ..., An[ln]} and AC̄ =
{Ā1[l̄1], ..., Āi[l̄i], ..., Ān[l̄n]} are pairwise equivalent, i.e.: AC = AC̄ ∧ ∀Ai[li] ∈
AC , Āi[l̄i] ∈ AC̄ : li ≡ l̄i. We also say that SC and SC̄ match exactly and write
SC ≡ SC̄ , respectively AC ≡ AC̄ . ¥

Autonomous cube schemas SC and SC̄ are heterogeneous if one of their di-
mensional attributes violates the above Definition 5.8 (i.e., if their dimensional
attributes are not fully corresponding). Although cube correspondence is de-
fined upon the dimensional attributes alone, heterogeneities among autonomous
cube schemas may affect both parts of the schema (cf. Definition 4.9). Accord-
ingly, we will classify heterogeneity (1) among the sets of dimensional attributes,
and also (2) among the sets of measure attributes.

Based on the notion of cube equivalence, we distinguish the following het-
erogeneities among the dimensional attributes of cube schemas:

• Non-corresponding cube schemas—disjoint dimensional attributes: the
cube schemas SC and SC̄ are denoted non-corresponding if they do not
have any dimensional attribute in common, i.e. AC ∩AC̄ = ∅. Notice that
equivalence of dimensional attributes is impossible for non-corresponding
cube schemas since there is not even a single pair of same dimensional
attributes.

70 CHAPTER 5. TAXONOMY OF CONFLICTS

Example 5.12 (non-corresponding cube schemas): Let dwh3::sales
be a cube with dimension attributes Adwh3::sales = {store, product} and
arbitrary measure attributes Mdwh3::sales. The cube schemas dwh3::sales
and dwh1::treatment are non-corresponding because Adwh3::sales ∩
Adwh1::treatment = ∅, i.e. there is no common dimension attribute among
both cube schemas. ♦

• Partial-corresponding cube schemas—dimensionality conflicts: the cube
schemas SC and SC̄ are denoted partial-corresponding if they have at
least one equivalent, but not all dimension attributes in common, i.e.
AC∩AC̄ 6= ∅. Since the number of dimensional attributes in case of partial
correspondence differs, we also denote such heterogeneity as dimensional-
ity conflicts. We further classify according to the non-equivalent subsets
of dimensional attributes in SC and SC̄ :

a. Dimension intersecting cube schemas: the cube schemas SC and
SC̄ are dimension intersecting, denoted SC

∩
∼SC̄ , if each of the cube

schemas defines at least one dimensional attribute which cannot
be matched with an equivalent dimensional attribute of the other
schema, i.e. AC \AC̄ 6= ∅ ∧AC̄ \AC 6= ∅.

b. Cube schema containment: cube schema SC is contained in cube
schema SC̄ , denoted SC

⊂
∼SC̄ , if the dimensionality of cube schema

SC̄ exceeds the dimensionality of SC , but all of the dimensional at-
tributes in SC match with an equivalent attribute of the other cube
schema SC̄ , i.e. AC \AC̄ = ∅ ∧AC̄ \AC 6= ∅.

Example 5.13 (partial-corresponding cube schemas): The cube
schemas dwh1::treatment and dwh2::treatment are partial-corresponding
because Adwh1::treatment ∩ Adwh2::treatment = {method}, i.e. both cube
schemas commonly define a dimension attribute method. In particular,
both cube schemas are dimension-intersecting, because the dimension
attributes date, date/hr, phys and cost cat are only defined in one of these
cube schemas (see Figure 2.4, page 19). ♦

Notice that the measure attributes are irrelevant for determining correspon-
dence between autonomous cube schemas. Of course, domain conflicts that
occur among measures must be repaired before merging the extensions of the
autonomous cubes, as explained in Chapter 7. Importantly, however, if the di-
mensional attributes match exactly (Definition 5.8), an integrated cube can be
computed—even if the measures only match partially (albeit this would lead to
null values in the merged cube).

Conflicts among Attribute Domains

Domain conflicts among cube schemas occur if two attributes model the same
concept, but assign different sets of allowed values. The FedDW conceptual
model presented in Chapter 4 (pp. 51) associates the domain of each of the
dimensional attributes with the domain of some aggregation level of one of the
dimensions in the Data Mart. Each of the measure attributes is associated with
some data type τ (cf. Definition 4.9, page 56). Therefore, domain conflicts may
affect both the dimensional and the measure attributes of cubes.

5.3. INSTANCE LEVEL CONFLICTS 71

Accordingly, we classify heterogeneity among the domains of attributes in
cube schemas as follows. Let C and C̄ denote two cubes in autonomous Data
Marts, and A[l] ∈ AC , Ā[l̄] ∈ AC̄ denote a pair of conceptually corresponding
dimensional attributes among the two cube schemas, i.e. A[l] ' Ā[l̄].

• Domain conflicts among dimensional attributes: the dimensional at-
tributes A[l] ∈ AC and Ā[l̄] ∈ AC̄ cause a domain conflict if the levels
associated with the attributes are not intensionally equivalent, i.e. l 6≡ l̄.
If level l is finer than level l̄, though (i.e. l 7→+ l̄, see Definition 4.8), the
cube schemas are called roll-up compatible, denoted SC

7→
∼ SC̄ .

Example 5.14 (dimensional attributes domain conflict):
Between cube schema dwh1::medication (see Figure 2.3) and another cube
schema dwh3::med (patient [l patient], drug [l drug], date time [month];
amount) we can observe a domain conflict: cube schema dwh3::med
associates dimension attribute date time with level [month], compared to
level [day] in dwh1::medication. However, level [day] rolls-up to [month] in
dwh1::medication ([day] 7→ [month], thus [day] 7→+ [month]). Consequently,
the cube schemas dwh1::medication and dwh3::med are roll-up compatible
(Sdwh1::medication

7→
∼ Sdwh3::med), which means that the roll-up operation in

cube dwh1::medication is sufficient to repair the conflict. ♦

• Domain conflicts among measure attributes: two measure attributes, say
M ∈ SC and M̄ ∈ SC̄ with data types τ resp. τ̄ , cause a domain conflict
if dom(τ) 6= dom(τ̄).

Example 5.15 (measure attributes domain conflict): Figure 2.4
shows that dwh2::treatment records costs figures in US-$ (attribute
cost-$). Assuming that costs are given in Euros at dwh1 (attributes cost p
and cost m), the domains of the costs attributes in both Data Marts are
heterogeneous. ♦

Notice that two conceptually corresponding dimensional attributes A[l] '
Ā[l̄] become equivalent (i.e., A[l] ≡ Ā[l̄]) by repairing the heterogeneous domains
among the associated levels l and l̄ (cf. Definitions 5.6 and 5.7).

5.3 Instance Level Conflicts

This Section systematically categorizes and explains the conflicts that may oc-
cur among the instances—i.e., the “tuples” or “objects”—of autonomous data
cubes. According to the overview depicted in Figure 5.1, the taxonomy we give
further distinguishes heterogeneities among the extensions of dimensions and
facts, i.e., among their sets of members and cells, respectively (according to the
terminology discussed in Chapter 4, pp. 51).

Heterogeneous instances can only be recognized correctly between homoge-
neous schemas. Alternatively, if heterogeneities exist at the schema level, the
intensions of the autonomous schemas must be matched first before attempt-
ing to detect heterogeneity among their extensions [Doan and Halevy, 2005].
Therefore, for our discussion about instance level conflicts we have to assume
that all existing conflicts among the schemas of both dimensions and facts—see
the previous Section 5.2—have been repaired.

72 CHAPTER 5. TAXONOMY OF CONFLICTS

At the instance level, heterogeneity is caused by conflicting values assigned
to attributes when instantiating a dimension or cube schema. Analogously to
naming conflicts (see Subsection 5.2.1, pp. 63), the assignment of inconsistent
attribute values for “identical” real-world entities is one of the most obvious rea-
sons for heterogeneity among autonomously managed models of the real world.
Like at the schema level, value conflicts occur if heterogeneous vocabularies are
used to instantiate semantically identical ontological concepts.

The detection of value conflicts among instances of homogeneous schemas—
commonly denoted as merge/purge problem or entity matching—has always
been a crucial challenge in data integration. If not detected properly, value
conflicts cause duplicates of tuples in an integrated database. Thus, approaches
for finding value conflicts among tuples of autonomous databases have received
much attention in literature, especially the database, artificial intelligence (AI),
knowledge discovery in databases (KDD) and WWW research communities
[Doan and Halevy, 2005].

In the FedDW conceptual multi-dimensional model, value conflicts may af-
fect either dimension members or cube cells, as analyzed and discussed in the
following two Subsections.

5.3.1 Conflicts among Dimension Instances

Assuming that the schemas of dimensions are homogeneous, further heterogene-
ity may occur among the members (i.e., the dimension instances). Conflicts
among dimension members may be caused either by single values of member
attributes, or by the member extensions as a set (see Definition 4.3, page 54).
Therefore, in this Subsection we further categorize (1) heterogeneities across
single members in the dimension extensions, and (2) heterogeneities among the
extensions of dimensions, i.e. among the member sets as a whole.

The basic concept for determining and classifying heterogeneity among di-
mension instances is the equivalence of members. For the following definition,
let l ∈ LD and l̄ ∈ LD̄ denote two equivalent dimension levels (i.e., l ≡ l̄, see
Definition 5.4, page 65), with common parent level l̂ (i.e., l 7→ l̂ and l̄ 7→ l̂) in
two dimensions D and D̄ with homogeneous dimension schemas. Moreover, let
m ∈ members(l) and m̄ ∈ members(l̄) denote sample members of the two levels
l and l̄, respectively.

Definition 5.9 (Equivalent members):
The two members m, m̄ (of levels l respectively l̄, with l ≡ l̄) are called equiva-
lent, denoted m ≡ m̄, if their keys are the same, i.e. m(l.K) = m̄(l̄.K). ¥

The notion of equivalence among members allows to decide whether two
members of autonomous dimensions refer to the same real-world entity or not.
In case of equivalence, two members independently represent the same real-world
entity across autonomous dimensions, with potentially conflicting descriptions
or properties (i.e., values of roll-up or non-dimensional attributes). Equivalent
members must be merged to a single member in an integrated dimension to
avoid duplication. Conversely, two non-equivalent members represent different
entities. In the latter case, value conflicts are not possible because both members
have to be kept separately in an integrated dimension.

5.3. INSTANCE LEVEL CONFLICTS 73

Conflicts among Single Members

From the viewpoint of single instances, pairs of dimension members cause het-
erogeneity if either their roll-up functions differ or if values of non-dimensional
attributes are ambiguous, as defined below. On the one hand, conflicting roll-up
functions would corrupt the value hierarchies in dimensions, so that aggrega-
tions along the hierarchy performed by an analyst’s OLAP tool would deliver
false results. On the other hand, value conflicts are a problem because the
heterogeneous values give ambiguous descriptions of dimension members.

According to the elements of level schemas (cf. Definition 4.2, page 54), we
distinguish between heterogeneity among the roll-up attributes respectively the
non-dimensional attributes as follows:

• Heterogeneous roll-up functions: the equivalent members m ≡ m̄ are roll-
up heterogeneous if the roll-up functions ρl 7→l̂

D and ρl̄ 7→l̂
D̄

deliver ambiguous
parent members for the keys m(l.K) resp. m̄(l̄.K), i.e. ρl 7→l̂

D (m) 6= ρl̄ 7→l̂
D̄

(m̄).

Example 5.16 (heterogeneous roll-up functions): The drug dim di-
mensions in Figure 2.3 illustrate heterogeneous roll-up functions among
their members. In dwh1::drug dim, the member with drug-value = ‘B’
rolls-up to manufacturer ‘Novartis’ (ρdrug 7→manufacturer

dwh1::drug dim (B) = Novartis),
whereas member ‘B’ in dwh2::drug dim rolls-up to manufacturer ‘Bayer’
(ρdrug 7→manufacturer

dwh2::drug dim (B) = Bayer). ♦

• Non-dimensional value conflicts: the equivalent members m ≡ m̄ cause
a non-dimensional value conflict, if the N-attributes of Sl and Sl̄ overlap
(i.e. Nl∩l̄ = {l.N1, ..., l.Nk} ∩ {l̄.N̄1, ..., l̄.N̄k} 6= ∅) and the values of some
common N-attribute(s) N ′ differ among the two members, i.e. ∃N ′ ∈
Nl∩l̄ : m(N ′) 6= m̄(N ′).

Example 5.17 (Non-dimensional value conflict): Among the two
drug dim-dimensions, the values of N-attribute pkg size are inconsistent
for the members with drug-value ‘A’ (see Figure 2.3): ‘25 pieces’ in
dwh1::drug dim versus ‘30 pieces’ in dwh2::drug dim. ♦

Heterogeneous Member Extensions

From the set-oriented point of view, pairs of dimension extensions cause
problems if subsets of their members are equivalent, and, additionally, non-
dimensional attributes of overlapping equivalent members contain conflicting
values. In contrast, overlapping sets of members from autonomous dimension
can be merged easily if (1) the schemas of the autonomous dimension are ho-
mogeneous, and (2) the member extensions are free of heterogeneous roll-up
functions and non-dimensional value conflicts, as defined above. If both these
prerequisites hold, duplicate members are straightforward to detect and repair.
Moreover, disjoint member extensions can simply be unified.

• Overlapping member extensions: given a pair of levels l ≡ l̄, the mem-
ber sets members(l) and members(l̄) (see Definition 4.4) overlap if the
extensions of key attributes l.K and l̄.K are non-disjoint, i.e. ∃m ∈
members(l), m̄ ∈ members(l̄) : m ≡ m̄ ∧ ∃m′ ∈ members(l), m̄′ ∈
members(l̄) : m′ 6≡ m̄′.

74 CHAPTER 5. TAXONOMY OF CONFLICTS

Example 5.18 (overlapping member extensions): The extensions
of the [l manufacturer] levels among dimension instances dwh1::drug
and dwh2::drug overlap: as stated in Example 5.4 (page 65), the
[l manufacturer] schemas of dwh1 and dwh2 are equivalent, and the non-
dimensional attributes of the two level schemas are identical (see Fig-
ure 2.3, page 18). The l manufacturer-members (‘Roche’, ‘CH’) exist in
both extensions. ♦

Notice that the extensions of autonomous dimensions have to be unified in
order to compute an integrated extension for the global dimension. While the
set union of disjoint member extensions is easy to determine, overlapping subsets
of member extensions have to be checked carefully for value conflicts among the
roll-up attributes (see heterogeneous roll-up functions) and the non-dimensional
attributes (see non-dimensional value conflicts) in order to avoid duplicate mem-
bers. In literature, this problem is often referred to as the “merge/purge prob-
lem” [Doan and Halevy, 2005].

5.3.2 Conflicts among Cube Instances

Assuming that the schemas of autonomous cubes are homogeneous, further het-
erogeneities may occur among the cells (i.e., the cube instances). Importantly,
the assumption of homogeneous cube schemas guarantees a degree of integrity
among the cube cells. In particular, the dimensional attributes of fact schemas
(i.e., the “coordinates” of the cells, cf. Definition 4.9 on page 56) must be equiva-
lent, and the domains of the dimensional attributes match (see Subsection 5.2.3),
given that the cube schemas are homogeneous.

Therefore, the coordinates of cells merely determine whether two cells of
autonomous cubes “collide” (i.e., they refer to the same point in the multi-
dimensional space of an integrated cube, and thus have to be merged), or “co-
exist” (i.e., the two cells represent different facts, and thus, both of them must
be kept). We denote this concept as equivalence of cube cells, as defined below.

For the following definition, let c(SC) and c̄(SC̄) denote two cube instances
(i.e., sets of cells) in autonomous Data Marts, while f ∈ c and f̄ ∈ c̄ denote two
single cells of the cube instances c(SC) and c̄(SC̄), respectively.

Definition 5.10 (Equivalent cells):
The two cells f and f̄ (of c(SC) respectively c̄(SC̄), with SC ≡ SC̄ , AC = AC̄)
are called equivalent, denoted f ≡ f̄ , if the coordinates of both cells match
exactly, i.e. ∀Ai ∈ AC , Āi ∈ AC̄ : f(Ai) = f̄(Āi). ¥

Based upon the notion of equivalent cells, we define precisely the semantic
extensional correspondence between cell sets across autonomous cubes. Two
autonomous cube extensions overlap iff they contain at least one pair of equiva-
lent cells. Conversely, disjoint cube extensions contain only non-equivalent cells.
Accordingly, we distinguish overlapping and disjoint cube extensions as follows:

• Overlapping cube instances: the cell extensions c(SC) and c̄(SC̄) “po-
tentially overlap” if the cube schemas SC and SC̄ define overlapping or
identical measure attributes, i.e. MC ∩MC̄ 6= ∅ or MC = MC̄ . If addition-
ally at least one pair of cells is equivalent—i.e., collides—among the two
cell sets (i.e., ∃f ∈ c, f̄ ∈ c̄ : f ≡ f̄), c(SC) and c̄(SC̄) “overlap”.

5.4. SUMMARY 75

Example 5.19 (overlapping cube extensions): The cell sets of cubes
dwh1::medication and dwh2::medication potentially overlap because the two
cube schemas are homogeneous, and define identical measure attributes.
Therefore, it may happen that the coordinates of cells in the both cube
instances are the same, as applies to our case study (see the cells with
coordinates (‘p2’, ‘A’, 03-02-06) in Figure 2.3, page 18). ♦

• Disjoint cube instances: the cell sets c(SC) and c̄(SC̄) are disjoint if the
cube schemas SC and SC̄ define disjoint measure attributes, i.e. MC ∩
MC̄ = ∅. In this case, the cubes C, C̄ are called merge-compatible.

Example 5.20 (disjoint cube instances): Assumed that the measure
attributes of the medication cubes were named “qty1” and “cost1” in
dwh1 instead of qty and cost, the cube instances dwh1::medication and
dwh2::medication would be disjoint (see Figure 2.3, page 18). Although
there are two cells with coordinates (‘p2’, ‘A’, 03-02-06), in this case their
measure attribute values were distinct. The two cube instances could be
merged into a cube with measure attributes qty, cost, qty1 and cost1. ♦

Both overlapping cube instances and disjoint cube instances are defined on
homogeneous cube schemas, i.e. their dimension attributes are exactly the same
(cf. Subsection 5.2.3). Consequently, subsets of cells with identical coordinates
may occur in overlapping cube instances and disjoint cube instances alike. The
difference is, however, that conflicting values of measure attributes among these
cells can only occur if the measure attributes of the cube schemas overlap.
By definition, the measure attributes of disjoint cube instances do not overlap.
Therefore, conflicting measure values can never occur among the cells of disjoint
cube instances, so that these cells can easily be merged into a global cube with
measure attributes MC ∪MC̄ .

5.4 Summary

In the previous Sections we classified heterogeneity among multi-dimensional
models at the schema-instance level (5.1), the schema level (5.2) and the instance
level (5.3). The following tables summarize the conflict categories introduced
and refer to the definitions and examples discussed in this Chapter.

• Table 5.1 outlines schema versus instance conflicts studied in Section 5.1.

Table 5.1: Schema versus instance heterogeneity in multi-dimensional models

Conflict Description Example

Fact context
vs. members

Part of the fact context is modelled dif-
ferently; in one Data Mart as measure
variables (cube schema), whilst in an-
other DM as dimension members (cube
instance).

treatment cubes (Fig-
ure 2.4)—see Exam-
ple 5.1.

• Table 5.2 outlines conflicts among the schemas of dimensions, as studied
in the first Subsection of 5.2.

76 CHAPTER 5. TAXONOMY OF CONFLICTS

Table 5.2: Classes of heterogeneity among autonomous dimension schemas

Conflict Description Example

Naming con-
flicts

Different name labels for ontologi-
cally same schema elements:

– name(D) 6= name(D̄), or

– name(l) 6= name(l̄), or

– name(l.K) 6= name(l̄.K̄), or

– name(l.N) 6= name(l̄.N̄)

Dimensions of the treatment
cubes (Figure 2.4)—see Ex-
ample 5.2.

Non-
corresponding
dimension
schemas

Two dimension schemas SD and SD̄

do not have any common equivalent
aggregation level: LD ∩ LD̄ = ∅.

Dimension schemas
dwh1::drug and
dwh2::date time2 (Fig-
ure 2.1)—see Example 5.5.

Partially cor-
responding
dimension
schemas
(overlapping
aggregation
levels)

The level sets of two dimension
schemas SD and SD̄ have at least
one, but not all equivalent level(s)
in common: LD ∩ LD̄ 6= ∅.

a. Inner-level corresponding:
lD0 6≡ lD̄0 .

b. Base-level corresponding:
lD0 ≡ lD̄0 .

Time dimensions of the med-
ication and treatment cubes
(Figure 2.1):

a. Inner-level corresp.:
dimension schemas
dwh1::date time and
dwh2::date time2 (see
Example 5.6);

b. Base-level corresp.:
dimension schemas
dwh1::date time and
dwh2::date time2′—
new base level [day]
instead of [l day/hr]
(see Example 5.7).

Flat cor-
responding
dimension
schemas
(same lev-
els, different
hierarchies)

Two dimension schemas SD and SD̄

have equivalent sets of aggregation
levels with identical base levels, but
the hierarchies do not match: LD ≡
LD̄ ∧ lD0 ≡ lD̄0 ∧HD 6= HD̄.

Dimension schema
dwh1::date time (Figure 2.4)
and dimension schema
calendar with Hcalendar =
{day 7→ year 7→ month}—
see Example 5.8.

5.4. SUMMARY 77

Table 5.2: Classes of heterogeneity among autonomous dimension schemas

Conflict Description Example
Domain con-
flicts

Two attributes in level schemas of
autonomous dimensions assign dif-
ferent sets of allowed values (i.e.,
different domains). These do-
main conflicts affect either roll-
up attributes of conceptually corre-
sponding levels (Definition 5.3), or
non-dimensional attributes of con-
ceptually corresponding or equiva-
lent levels (Definitions 5.3, 5.4) in
dimension schemas.

Roll-up attributes:

a. Inner level domains:
[manufacturer] levels
of dwh1::drug dim
and dwh2::drug dim in
the medication cubes
(Figure 2.3), assumed
restriction to Swiss
resp. German man-
ufacturers only—see
Example 5.9.

b. Base level do-
mains: base levels of
dwh1::date time and
dwh2::date time2 in
the treatment cubes
(Figure 2.4)—see
Example 5.10.

Non-dimensional attributes:
[method] levels of dimension
schemas dwh1::method and
dwh2::method in the treat-
ment cubes (Figure 2.4)—
see Example 5.17.

• Table 5.3 outlines conflicts among the schemas of cubes, as studied in the
second Subsection of 5.2.

Table 5.3: Classes of heterogeneity among autonomous fact schemas

Conflict Description Example

Naming con-
flicts

Different name labels for ontologi-
cally same attributes:

– name(C) 6= name(C̄), or

– name(A) 6= name(Ā), or

– name(M) 6= name(M̄)

Measures of the treatment
cubes (Figure 2.4)—see Ex-
ample 5.3.

Non-
corresponding
cube schemas
(disjoint di-
mensional
attributes)

Two cube schemas SC and SC̄

do not have any equivalent dimen-
sional attribute in common: AC ∩
AC̄ = ∅.

Cube schema
dwh1::treatment (Fig. 2.4)
and fictitious cube
schema dwh3::sales with
Adwh3::sales ={store, prod-
uct}—see Example 5.12.

78 CHAPTER 5. TAXONOMY OF CONFLICTS

Table 5.3: Classes of heterogeneity among autonomous fact schemas

Conflict Description Example
Partially cor-
responding
cube schemas
(dimensional-
ity conflicts)

Two cube schemas SC and SC̄ have
at least one, but not all equivalent
dimensional attribute(s) in com-
mon: AC ∩AC̄ 6= ∅.

a. Dimension intersecting
(SC

∩
∼SC̄): subsets of non-

equivalent dimensional
attributes in both SC and SC̄ .

b. Cube schema containment
(SC

⊂
∼SC̄): dimensionality of

SC̄ is higher than of SC .

The cube schemas
dwh1::treatment and
dwh2::treatment (Figure 2.4)
are dimension intersecting—
see Example 5.13.

Domain con-
flicts

Two attributes in autonomous cube
schemas assign different sets of
allowed values (i.e., different do-
mains). These domain conflicts af-
fect either conceptually correspond-
ing dimensional attributes (Defini-
tion 5.6), or measure attributes of
cube schemas.

Conceptually corre-
sponding dimensional
attributes: cube schema
dwh1::medication (Fig. 2.3)
and fictitious cube schema
dwh3::med (patient
[l patient], drug [l drug],
date time [month]; amount);
the domains of dimensional
attributes date time are [day]
(dwh1::medication) versus
[month] (dwh3::med)—see
Example 5.14.
Measure attributes: costs
attributes of cube schemas
dwh1::treatment and
dwh2::treatment (Fig. 2.4)—
see Example 5.15.

• Table 5.4 outlines conflicts among the instances of dimensions (members),
as studied in the first Subsection of 5.3.

• Finally, Table 5.5 outlines conflicts among the instances of cubes (cells),
as studied in the second Subsection of 5.3.

5.4. SUMMARY 79

Table 5.4: Classes of heterogeneity among members of autonomous dimensions

Conflict Description Example

Heterogeneous
roll-up func-
tions

The roll-up functions of two equivalent
members m ≡ m̄ define ambiguous par-

ent members: ρl7→l̂
D (m) 6= ρl̄7→l̂

D̄ (m̄).

Members with drug-
value = ’B’ of the
drug dim dimensions
in the medication
cubes (Figure 2.3)—
see Example 5.16.

Non-
dimensional
value conflict

Some N-attribute contains ambiguous
values among two equivalent members
m ≡ m̄ that belong to levels with equiv-
alent schemas: ∃N ′ ∈ {l.N1, ..., l.Nk} ∩
{l̄.N̄1, ..., l̄.N̄k} : m(N ′) 6= m̄(N ′).

N-attribute pkg size
among members with
drug-value = ’A’ of
the drug dim dimen-
sions in the med-
ication cubes (Fig-
ure 2.3)—see Exam-
ple 5.17.

Overlapping
member
extensions

The sets of members among two equiv-
alent levels l ≡ l̄ contain at least
one pair of equivalent members: de-
fine ambiguous parent members: ∃m ∈
members(l), m̄ ∈ members(l̄) : m ≡ m̄ ∧
∃m′ ∈ members(l), m̄′ ∈ members(l̄) :
m′ 6≡ m̄′.

Member extensions
of the l drug-levels
among dimension
instances dwh1::drug
and dwh2::drug in
the medication cubes
(Figure 2.3)—see
Example 5.18.

Table 5.5: Classes of heterogeneity among cells of autonomous cubes

Conflict Description Example

Overlapping
cube exten-
sions (cells)

Two cubes (i.e., sets of cells) c(SC)
and c̄(SC̄) define identical dimensional
attributes and overlapping measure at-
tributes: (MC ∩MC̄ 6= ∅ ∨MC = MC̄) ∧
∃f ∈ c, f̄ ∈ c̄ : f ≡ f̄ . Therefore, all cells
with identical coordinates among c and c̄
“collide”.

Cell sets of the med-
ication cubes (Fig-
ure 2.3)—see Exam-
ple 5.19.

Disjoint cube
extensions
(cells)

Two cubes (i.e., sets of cells) c(SC) and
c̄(SC̄) define identical dimensional at-
tributes and disjoint measure attributes:
MC ∩ MC̄ = ∅. Therefore, all cells
with identical coordinates among c and
c̄ “co-exist”; c(SC) and c̄(SC̄) are merge-
compatible.

Cell sets of cubes
dwh2::medication
(see Figure 2.3) and
dwh1::medication′

with renamed mea-
sure attributes
(Mdwh1::medication′ =
{qty1, cost1})—see
Example 5.20.

80 CHAPTER 5. TAXONOMY OF CONFLICTS

Chapter 6

Architecture of Federated
Data Warehouses

This chapter presents the architectural foundation of the FedDW approach to
the integration of autonomous multi-dimensional Data Marts. The proposed ref-
erence architecture describes the schema layers and components that are needed
to realize the basic paradigm of source-to-target mappings from the autonomous
Data Marts to the stable, global schema. Using the schema layers and the
auxiliary components Dimension Repository and Data Dictionary of the refer-
ence architecture, the DM integration process consists of the following phases:
(1) global schema modelling, (2) dimension integration, and (3) fact integration.

81

82 CHAPTER 6. FEDERATED DW ARCHITECTURE

The reference architecture described in this Chapter—depicted in Fig-
ure 6.1—gives an outline of the concepts and components needed for Feder-
ated DW systems. The architecture is conceptual, i.e. it does not restrict the
technology for implementing the Federated DW system. Part IV of this thesis
will discuss prototypes of both, a visual schema integration tool and a query-
ing tool, that conform to the introduced reference architecture and implement
its concepts (see pp. 143). Along with the reference architecture we propose a
comprehensive methodological framework for dimension and fact integration, as
explained below.

The global, mediated multi-dimensional schema of the Federated DW ref-
erence architecture hides the heterogeneities among autonomous Data Marts
from users and the application layer. Semantic mappings specify the necessary
transformations from each of the autonomous DMs to the global schema. This
approach allows the users to query the global schema, while the mediator of
the federation layer reformulates the user query to an equivalent set of queries
against the autonomous Data Marts.

Thus, the reference architecture describes a Federated DW system as tightly
coupled with the autonomous and possibly distributed component DMs. It
is important to point out that “tightly coupled”—in the sense used in this
Chapter—is the commonly accepted term for data integration systems that
provide a stable, global schema (e.g., see [Sheth and Larson, 1990]). In con-
trast, the “tightly coupled” approach to Data Mart integration of DaWaII
[Cabibbo and Torlone, 2005] refers to a fundamentally different concept—i.e.,
the complete materialization of autonomous cubes, according to the consoli-
dated multi-dimensional schema (cf. Section 3.5 in Chapter 3, pp. 39).

Based on the general five-level architecture of federated databases
[Sheth and Larson, 1990], the Federated DW reference architecture defines
source-to-target mappings for the integration of autonomous DMs against the
stable, global multi-dimensional schema. This mapping paradigm follows the
idea proposed in similar form by the so-called BGLaV (“both global and lo-
cal as view”) approach [Xu and Embley, 2004]. It combines the advantages of
global-as-view (GAV) and local-as-view (LAV) data integration (as discussed
in Subsection 3.4.4 of Chapter 3, pp. 37). On the one hand, the direction of
mappings from sources to the global schema (as in the GAV strategy) facili-
tates query processing since the query plan can be computed from the mapping
in straightforward manner. On the other hand, the stable global schema (as
in the LAV strategy) secures the federation layer against local schema changes
[Lenzerini, 2002, Halevy, 2001].

The Federated DW reference architecture defines an additional component,
the so-called Dimension Repository, extending “classical” and well-established
Federated Database systems. The dimension repository stores the consolidated
dimension schemas and mirrors their data, such that copies of all dimension
members are present at the federated layer (see Figure 6.1). When answering
queries, the dimensional data and meta-data (members, hierarchies, etc.) are
available directly from the dimension repository.

This approach reduces the complexity of distributed query processing in
the Federated DW system, and improves overall response time. By read-
ing dimensions from the repository, the mediator component can eliminate

83

Application
schema 1

Application
schema n …

DM 1 DM 2 DM n …

F
ou

nd
at

io
n

W
ra

pp
er

F

ed
er

at
io

n
A

pp
lic

at
io

n

Data
dictionary

Dimension
repository

(1)

Import schemas

Global DW schema

Component schemas

Export schemas (3) (2)

Figure 6.1: Federated Data Warehouse conceptual architecture.

the sub-queries necessary to retrieve the dimensions from local Data Marts.
The dimension repository is motivated by the basic idea behind the “Skalla”
[Akinde et al., 2003] and “DWS-AQA” approaches [Bernardino et al., 2002].
Experiments conducted in these two approaches indicate that local dimen-
sion replicates improve query performance. Moreover, dimensions—similar
to domain ontologies—typically evolve slowly, and are relatively small in size
[Kimball, 2002, Akinde et al., 2003].

Based on the concepts (1) mediated, multi-dimensional global schema,
(2) both-as-view data integration, and (3) replication of dimension members
and meta-data into the dimension repository, the Federated DW reference
architecture allows for systematic integration of Data Marts. We propose
the following methodological framework for Data Mart integration, address-
ing the interrelated sub-problems dimension integration and fact integration
among the logical schemas of autonomous Data Marts in a systematic way
[Berger and Schrefl, 2008]:

84 CHAPTER 6. FEDERATED DW ARCHITECTURE

• Global schema modelling (label (1) in Figure 6.1) and user requirements
engineering : in the first place, the Federated DW administrator designs
the cubes and dimensions of the global multi-dimensional schema. The
cube definitions of the global schema should correspond to the information
needs of the applications and users that work on top of the federated layer.
Object oriented modelling techniques, e.g. the Unified Modelling Language
UML [(OMG), 2009], are commonly used by software engineers to model
the user requirements [Luján-Mora et al., 2006]. In our architecture, for
example, UML use case diagrams can be used to express the “desired”
cubes of the global schema. In general, requirements engineering is well
researched, but it lies out of the scope of this thesis. The interested reader
can refer, for example, to the survey [Nuseibeh and Easterbrook, 2000] for
an overview of the requirements engineering field.

• Dimension integration (label (2) in Figure 6.1): the federation layer of the
Federated DW system needs to correctly interpret the common dimen-
sional context of the fact data in the component Data Marts. Therefore,
it is necessary to represent the export schemas of local, heterogeneous
dimensions in the canonical model—i.e., to define the import schemas.
Moreover, the Federated DW administrator must design semantic map-
pings from the local to the global dimensions.
Each mapping associates a series of transformation operators with the
import schema of one local dimension, specifying how to repair the het-
erogeneities at the schema and at the instance level in order to repre-
sent the members of the local dimension in the global multi-dimensional
schema. The result of the dimension integration process is a consoli-
dated, global dimension schema, which constitutes the “common multi-
dimensional space” of the federated system. The dimension repository
is the “cache” of consolidated dimension schemas, hosting the integrated
dimension schemas, the mappings and copies of the dimension members.

• Fact integration (label (3) in Figure 6.1): in order to unify the fact data of
autonomous Data Marts, the multi-dimensional entities modelled in the
facts of component Data Marts must be mapped to the global schema. For
that purpose, the fact integration process aims at representing the export
schemas of autonomous facts within the canonical model—i.e., creating
the import schemas. Moreover, the Federated DW administrator must
design semantic mappings from the local DMs to the global schema.
Each mapping associates a sequence of transformation operators with the
import schema of one local fact, specifying how to overcome the hetero-
geneities at the schema and at the instance level in order to represent
the instances of the local fact in the global multi-dimensional schema. As
the result of the fact integration process, the fact data of local cubes gets
connected to the global multi-dimensional space, that is defined by the
consolidated dimensions. Both the meta-data of the global schema and
the mappings are stored in the data dictionary. When processing a user
query over the global schema, the federated system uses the mappings both
to generate a query plan—decomposing the query to a set of queries to
the local systems—and to transform all result data to the global schema.

85

The main benefits of the Federated DW approach presented herein are the
following: (1) it allows the integration of local, autonomous Data Marts to a
global schema, whilst the DMs retain schema and data autonomy; (2) at the
same time, the global schema is stable, so that the federated layer is secure
against schema changes in the local DMs; (3) the tightly coupled federation
of DMs allows the users and applications to operate on the global schema,
providing a level of abstraction from the heterogeneities among the DMs; and
(4) the proposed architecture supports various physical models (e.g., relational
or multi-dimensional implementation platforms).

86 CHAPTER 6. FEDERATED DW ARCHITECTURE

Part III

Enabling the Federated
Data Warehouse—the

FedDW Approach

87

Chapter 7

Integration Methodology
for Autonomous Data
Marts

Contents
7.1 Dimension/Fact Algebra Expressions 90

7.1.1 Dimension Algebra 91

7.1.2 Fact Algebra . 94

7.2 Defining Semantic Mappings 98

7.2.1 Resolve Schema-Instance Conflicts 103

7.2.2 Integrate Dimension and Fact Schemata 104

7.2.3 Consolidate Dimension and Fact Instances 111

7.3 Summary . 115

This chapter discusses a general methodology for the integration of au-
tonomous Data Marts. It introduces the notion of homogeneity as the desir-
able property of autonomous facts and dimensions based on the conceptual
multi-dimensional data model discussed in Chapter 4. First, Section 7.1 intro-
duces the Dimension Algebra and Fact Algebra. The algebras provide a rich
set of operators that formalize the transformation of multi-dimensional models.
Sequences of the Dimension/Fact Algebra operators express the semantic map-
pings from autonomous Data Marts to the global multi-dimensional schema.
Thus, the conversion operators are used as the “building blocks” of the FedDW
integration methodology. Second, Section 7.2 details the general methodology
to follow for Data Mart integration, when using the Dimension/Fact Algebra
to formulate the semantic mappings. The methodology precisely describes the
steps necessary to obtain homogeneous facts and dimension among autonomous
Data Marts. Starting with the design of a global multi-dimensional schema
and the import schemas of the autonomous Data Marts, the outcome of the
integration methodology is the semantic mappings—i.e, for each Data Mart the
sequence of conversions at the conceptual schema level.

89

90 CHAPTER 7. INTEGRATION METHODOLOGY

7.1 Import Schema Transformation with Di-
mension/Fact Algebra Expressions

Federated DW systems conforming to the reference architecture proposed in
the previous Chapter 6 provide an integrated view over heterogeneous Data
Marts without physically building a global Data Mart. Instead, semantic map-
pings specify the exact sequence of operations that are necessary to convert the
heterogeneous data into the global multi-dimensional schema. The reference
architecture of Federated DW systems requires a mechanism to define source-
to-target mappings in order to integrate autonomous Data Marts with a global
multi-dimensional schema.

This Section addresses the need for a source-to-target mapping definition
formalism by introducing the Dimension Algebra (DA) and Fact Algebra (FA).
These algebras formally define a rich set of conversion operators for dimensions
respectively facts defined in the FedDW conceptual multi-dimensional model
(see Chapter 4). The conversion operators address all classes of heterogeneity
in the multi-dimensional model that have been analyzed in Chapter 5. In turn,
using the DA and FA operators as “building blocks”, the next Section 7.2 will
demonstrate how to employ such conversion operators in a systematic method-
ology that addresses the conjoint integration of dimensions and facts of au-
tonomous Data Marts.

In order to illustrate the operators of both, the Dimension Algebra and
Fact Algebra, we slightly simplify the treatment cube and date time dimension
of Data Mart dwh1 in the case study (see Chapter 2, Figure 2.4 on page 19).
Figure 7.1 shows the two fact tables treatmt and treats, as well as dimension
table date of Data Mart “foo”. Compared to dimension dwh1::date time, dimen-
sion foo::date introduces the additional non-dimensional attribute name to the
[month] level. Moreover, assume another fact table foo2::treatmt, which we will
use to demonstrate the effect of the n-ary operator µ (merge dimensions).

foo::treatmt (date [day]; cost p, cost m)
date cost p cost m

23-02-06 356.0 425.0
24-02-06 125.2 1742.0
25-02-06 473.0 903.8

foo::treats (date[day], ccat[ccat]; costs)
date ccat costs

23-02-06 cost p 480.0
24-02-06 cost m 613.0
25-02-06 cost m 624.5

foo::date (day 7→ month 7→ year)
[day] [month] name [year]

23-02-06 02-06 ‘Feb. 06’ 2006
24-02-06 02-06 ‘Feb. 06’ 2006
25-02-06 02-06 ‘Feb. 06’ 2006

foo2::treatmt
date cost p cost m

23-02-06 298.0 607.0
24-02-06 1872.4 941.0

Figure 7.1: Data Mart “foo” with facts treatmt, treats, and dimension date.
The [all]-level of dimension foo::date has been omitted. Moreover,
fact treatmt of Data Mart “foo2” is specified.

7.1. DIMENSION/FACT ALGEBRA EXPRESSIONS 91

7.1.1 Dimension Algebra

To support schema transformation with a platform independent language of
conversion operators in the Federated DW reference architecture (Chapter 6,
see pp. 81), our approach employs the so-called Dimension Algebra (DA), intro-
duced in [Berger and Schrefl, 2008]. The DA allows to transform the dimension
import schemas of autonomous Data Marts during the dimension integration
process (cf. 7.2.2 and 7.2.3). Its operators manipulate dimension schema ele-
ments or instances, thus expressing the semantic mappings from autonomous
dimensions to the global dimension (see Definition 7.1).

The Dimension Algebra comprises the three operators σ, π and ψ (select,
project, aggregate; see Examples 7.1, 7.2, 7.3, respectively) of an earlier pro-
posal [Cabibbo and Torlone, 2005], plus the five additional operators defined
in [Berger and Schrefl, 2008]. The DA operators are applied to an input di-
mension D, defined in the conceptual data model introduced in Chapter 4 (see
pp. 51). Each DA operator results in an output dimension D′, of which either
the original schema SD or its instance d(SD) is modified compared to D. This
closed semantics—inspired by the approach followed in the relational algebra
[Codd, 1970]—allows to use the output of DA operators as input for another
DA operator. Thus, several operators can be combined easily to form more
complex expressions:
Definition 7.1 (DA expression):
A Dimension Algebra expression is a sequence of the DA operators σ (select), π
(project), ψ (aggregate)—cf. Examples 7.1, 7.2 and 7.3—as well as ζ (rename),
δ (change), γ (convert), Ω (override roll-up)—see Definitions 7.2 – 7.5—that is
applied to some input dimension D, deriving the output dimension D′. Alterna-
tively, the n-ary operator µ (merge dimensions—see Definition 7.6) is applicable
on a set D = {D1, D2, ..., Dn} of input dimensions with identical names, pro-
ducing an output dimension DG. ¥

The following Examples 7.1, 7.2 and 7.3 illustrate the basic DA
operators select, project and aggregate, respectively, as defined in
[Cabibbo and Torlone, 2005]. For the following examples, let date denote the
dimension ‘foo::date’ with instance date(Sfoo.date), as shown in Figure 7.1.

Example 7.1 (σ – select): Applying σ{day≥24−02−06}(date), we obtain the
following dimension date′:

foo::date’
[day] 7→ [month] name 7→ [year] 7→ [all]
24-02-06 02-06 ‘Feb. 06’ 2006 all
25-02-06 02-06 ‘Feb. 06’ 2006 all

♦

Example 7.2 (π – project): Operator π{day}(date) obtains dimension date′

with Ldate′ = {day}, S(Ldate′) = {l date(day)} and Hdate′ = {day 7→ all}:

foo::date’
[day] 7→ [all]
23-02-06 all
24-02-06 all
25-02-06 all

♦

92 CHAPTER 7. INTEGRATION METHODOLOGY

Notice from the above Example 7.2 that the [all]-level can never be eliminated
with the π-operator.

Example 7.3 (ψ – aggregate): Operator ψmonth(date) obtains dimension
date′ with Ldate′ = {month, year, all}, S(Ldate′) = {l month (month, name),
l year (year)}, and Hdate′ = {month 7→ year 7→ all}:

foo::date’
[month] name 7→ [year] 7→ [all]
02-06 ‘Feb. 06’ 2006 all ♦

In what follows, we define the DA operators rename (ζ), change (δ), con-
vert (γ) and override rollup (Ω) formally. For Definitions 7.2–7.5, let D be a
dimension with schema SD = {LD, S(LD),HD} (Definition 4.2) and instance
d(SD) = {Vd, ρd} (Definition 4.3). With D′ we denote the output dimension
with schema S′D and instance d′(S′D) obtained by applying a DA expression on
D.
Definition 7.2 (ζ – rename):
Operator ζ changes the name of some attribute in SD. In particular, ζ can be
applied to the following objects:

• Rename the dimension to ‘newD’: ζnewD←D(D).
• Rename the dimension instance to ‘new-d’: ζnew−d←d(d(SD)).
• Rename a dimension level l ∈ LD to ‘l′’: ζl′←l(D).
• Rename the level attribute l.K of level schema Sl ∈ S(LD) to ‘l.K ′’:

ζK′←K(Sl).
• Rename some non-dimensional attribute l.N of level schema Sl ∈ S(LD)

to ‘l.N ′’: ζN ′←N (Sl). ¥

Example 7.4: Applying ζ[time]←[day](date), we obtain the following dimension
date′:

foo::date’
[time] 7→ [month] name 7→ [year] 7→ [all]
23-02-06 02-06 ‘Feb. 06’ 2006 all
24-02-06 02-06 ‘Feb. 06’ 2006 all
25-02-06 02-06 ‘Feb. 06’ 2006 all

♦

Definition 7.3 (δ – change):
Let Tl = members(l) be a subset of Vd with l ∈ LD. Further, let N̄ ∈ Sl =
{l.K, l.N1, ..., l.Nk} be some non-dimensional attribute of level l, and v, w ∈
dom(l.N̄) be values for N-attribute l.N̄ , with v 6= w. Operator δw←v(d.l.N̄)
computes a new member-subset T ′l in d′ such that T ′l = {t′(Sl) | ∃t ∈ Tl :
t′(Sl \ N̄) = t(Sl \ N̄), t(N̄) = v, t′(N̄) = w}. ¥

Example 7.5: Operator δ‘Febr.%′←‘Feb.%′(date.month.name) obtains dimen-
sion date′ with the following instance d′(Sdate′):

foo::date’
[day] 7→ [month] name 7→ [year] 7→ [all]
23-02-06 02-06 ‘Febr. 06’ 2006 all
24-02-06 02-06 ‘Febr. 06’ 2006 all
25-02-06 02-06 ‘Febr. 06’ 2006 all

♦

7.1. DIMENSION/FACT ALGEBRA EXPRESSIONS 93

Definition 7.4 (γ – convert):
Let l.N̄ ∈ Sl be some non-dimensional attribute, Tl = members(l) and θ be an
operator over dom(N̄). The result of γθN̄ (d) is d′ with member set T ′l = {t(Sl) |
∃t′ ∈ Tl : t(Sl \ N̄) = t′(Sl \ N̄), t(N̄) = θt′(N̄)}. ¥

Example 7.6: Assume that trunc(n)(str) is an operator over
dom(month.name), truncating a character string str after the first n
characters. Operator γtrunc(2)(month.name)(date) results in the dimension date′

with the following instance d′(Sdate′):

foo::date’
[day] 7→ [month] name 7→ [year] 7→ [all]
23-02-06 02-06 ‘Fe’ 2006 all
24-02-06 02-06 ‘Fe’ 2006 all
25-02-06 02-06 ‘Fe’ 2006 all

♦

Definition 7.5 (Ω – override roll-up):
Let m, v ∈ Vd be members of some dimension with l = level(m), k = level(v),
such that l 7→ k ∈ HD and v 6= ρl 7→k(m). The result of Ωm 7→v(d.l) is d′ in which
the result of ρl 7→k(m) is changed to v. ¥

Example 7.7: Assume that Vdate in Figure 7.1 contains an additional year-
value of ‘06. Then, operator Ω02−06→‘06(date.month) obtains dimension date′

with the following instance d′(Sdate′):

foo::date’
[day] 7→ [month] name 7→ [year] 7→ [all]
23-02-06 02-06 ‘Feb. 06’ ‘06 all
24-02-06 02-06 ‘Feb. 06’ ‘06 all
25-02-06 02-06 ‘Feb. 06’ ‘06 all

♦

In order to merge several import dimension schemas, defined by DA expres-
sions, the operator µ (merge) is applied. From an input set of n dimensions
D1, D2, ..., Dn having identical names, with each Di stored in a different Data
Mart, the µ operator returns a merged output dimension DG, determining its
set of levels DG.LD, its hierarchy DG.HD, and member set DG.VD from the
given dimensions. Finally, the family of roll-up functions DG.ρd is computed.
The result of the algorithm—i.e., the output dimension DG—is consistent if
Definition 7.7 holds.
Definition 7.6 (µ – merge dimensions):
Let D = {D1, D2, ..., Dn} be a set of dimensions with identical names. Op-
erator µ(D) merges the dimensions D1, D2, ..., Dn according to Algorithm 7.1,
computing an output dimension DG, the “global” dimension.

To obtain a meaningful result, all heterogeneities among the dimensions in
D should be repaired with the appropriate other DA operators, as explained in
the previous Section 7.2. ¥

Definition 7.7 (Merge consistency):
The dimension DG computed by Algorithm 7.1 is consistent, iff (1) DG.HD

forms a lattice, and (2) ρl 7→k is consistent in the sense of Definition 4.5 for all
pairs l, k ∈ DG.HD. ¥

94 CHAPTER 7. INTEGRATION METHODOLOGY

Algorithm 7.1 mergeDim
Input: Dimensions {D1, ..., Dn}
Output: Merged dimension DG

Require: D1 = D2 = ... = Dn . Name equality
1: DG.LD =

⋃
i=1...n{Di.LD};

2: DG.HD =
⋃

i=1...n{Di.HD};
3: DG.Vd =

⋃
i=1...n{∀l ∈ DG.LD | members(Di.l)};

4: DG.ρd =
⋃

l,k ρl 7→k: l, k ∈ DG.HD;

7.1.2 Fact Algebra

Fact integration in relation with dimension integration has not been addressed
as a problem in the literature. It can be argued that well-known, relational data
integration techniques [Zhao and Ram, 2007, Lenzerini, 2002] suffice—but only
for very simple fact sets (e.g., with degenerate dimensions). These techniques,
however, cannot handle adequately the semantics of dimensions and hierarchies
specific to the multi-dimensional data model. Instead, several heterogeneities
among autonomous Data Marts must be resolved in an interrelated way, as
discussed in Chapter 5, pp. 59 [Berger and Schrefl, 2006].

To tackle the fact integration problem in the Federated DW reference ar-
chitecture (Chapter 6, see pp. 81), our approach employs a platform indepen-
dent fact transformation language called Fact Algebra (FA). The FA allows to
transform the cube import schemas of autonomous Data Marts during the fact
integration process (cf. 7.2.1, 7.2.2, and 7.2.3). Its operators manipulate fact
schema elements or instances, thus expressing the semantic mappings from the
facts of autonomous cubes to the global cube (see Definition 7.8).

The FA defines an overall set of ten operators that address the heterogeneities
among facts analyzed in Chapter 5. Applying the FA operators to some input
cube C—defined in the conceptual data model introduced in Chapter 4—results
in an output cube C ′, of which either the schema S′C or its instance c′(S′C)
is modified compared to C. Analogously to the DA, this closed semantics—
inspired by the approach followed in the relational algebra [Codd, 1970]—allows
to “chain” several FA operators, using the output of FA operators as the input
for another FA operator. Thus, several operators can be combined easily to
form more complex FA expressions:
Definition 7.8 (FA expression):
A Fact Algebra expression is a sequence of the unary FA operators σ (select), π
(project), λ (delete measure), ζ (rename), γ (convert), ε (enrich dimensions), %
(roll-up), χ (merge measures) and ξ (split measure)—see Definitions 7.9 – 7.14—
that is applied to some input cube C, deriving an output cube C ′. Alternatively,
n-ary operator µ (merge facts—Definition 7.15) is applicable on two overlapping
input cubes C1 and C2, producing an output cube CG. ¥

Now we will formally define the FA operators select (σ), project (π), delete
measure (λ), rename (ζ), convert (γ), enrich dimensions (ε), roll-up (%), merge
measures (χ) and split measure (ξ) that are applied in the local context of fact
integration. Let C be a cube with schema SC = {AC ,MC}, instance c(SC), and
C ′ be the result of the FA expression with schema S′C and instance c′(S′C).

7.1. DIMENSION/FACT ALGEBRA EXPRESSIONS 95

Definition 7.9 (σ–select, π–project, λ–delete measure, ζ–rename):
The four basic operators σ, π, λ and ζ are defined like in the relational algebra
[Codd, 1970] and are to be used as follows:

• Select: σ[P](c) computes the cube instance c′(SC) containing all tuples
t ∈ c(SC) satisfying the predicate(s) P .

• Project: π(L⊂AC)(C) reduces the dimensionality of C ′ by projecting on
one or more dimensional attributes L.

• Delete measure(s): λ(N⊂MC)(C) computes a fact set C ′ reducing the mea-
sure attributes to the projection N .

• Rename: ζA′←A(C) and ζM ′←M (C) rename dimensional attribute A ∈ AC

to A′ and measure attribute M ∈ MC to M ′ in C ′, respectively. ¥

Definition 7.10 (γ – convert):
Let M̄ ∈ MC be a measure attribute of C, and θ be an operator defined over
dom(M̄), and v ∈ dom(M̄) be some legal M̄ -value. The result of operator
γM̄θv(c) is C ′ with schema S′C = SC and c′(S′C) = {t′ | ∃t ∈ c : t(SC \ M̄) =
t′(SC \ M̄), t′(M̄) = t(M̄)θv}. ¥

For the examples in the remainder of this subsection, let treatmt denote the
fact table foo::treatmt depicted in Figure 7.1 with schema Streatmt and instance
treatmt(Streatmt).

Example 7.8: Applying γcost m+25(treatmt), we obtain cube treatmt′ with
the following instance (or cells):

foo::treatmt’
date cost p cost m

23-02-06 356.0 450.0
24-02-06 125.2 1767.0
25-02-06 473.0 928.8

♦

Definition 7.11 (ε – enrich dimensions):
Let Â[l] /∈ AC be the name of some dimension attribute, and C be some cube
of Data Mart DM . Moreover, l ∈ LD denotes an aggregation level of some
dimension D ∈ DM . Operator εÂ[l]=v(c) results in cube C ′ with schema S′C =

{[AC ∪ Â],MC} and instance c′(S′C) = {t′ | ∃t ∈ c : t′(S′C) = t(SC), t′(Â) = v}.
Thus, εÂ[l]=v(c) allows to increase the dimensionality of C ′.

Alternatively, if level l̂ is not available in the dimensions {D1, ..., Dm} ∈ DM ,
operator εÂ[l̂]=v(c) creates the new, degenerate dimension D̂ in Data Mart DM ,

whereby LD̂ = {l̂}, Sl̂ = (l̂), and HD̂ = {l̂ 7→ lall}. ¥

Example 7.9: Operator εsource[src]=‘dm1′(treatmt) obtains cube treatmt′ with
the following cells:

foo::treatmt’
date source cost p cost m

23-02-06 ‘dm1’ 356.0 450.0
24-02-06 ‘dm1’ 125.2 1767.0
25-02-06 ‘dm1’ 473.0 928.8

96 CHAPTER 7. INTEGRATION METHODOLOGY

Notice that εsource[src]=‘dm1′(treatmt) creates the degenerate context dimen-
sion source with Lsource = {src}, Ssrc = (src), and Hsource = {src 7→ all}. ♦

Definition 7.12 (% – roll-up):
Let A[l] ∈ AC denote some dimensional attribute of SC , and l̂ be an aggregation
level coarser than l in the hierarchy of the same dimension D, i.e. l, l̂ ∈ SD ∧
l 7→+ l̂ ∈ HD. Operator %A[l⇒l̂](c) is the convenience notation for the following
sequence of other FA operators:

1. c1 = ζA′←A(c) – rename A to temporary name A′.

2. c2 = ε
A[l̂]=ρl 7→+ l̂

D (A′)(c1) – enrich the dimensional attributes of SC with
attribute A. The new A-value f(A) for every fact f ∈ c2(S′C) is the
(possibly transitive) parent of the l-member f ′(A′) in l̂, with f ′ ∈ c1(S′C).
This means, ∀f ∈ c2(S′C), f ′ ∈ c1(S′C) : f(A) = ρl 7→+ l̂

D (f ′(A′)).

3. c′ = πAC\A′(c2) – finally, reduce the dimensionality of c(SC) to the original
number of dimensional attributes by projection. ¥

Thus, the roll-up operator %A[l⇒l̂](c) decreases the detail level of cube in-
stance c(SC) by rolling-up the dimensional attribute A[l] to coarser aggregation
level l̂. The operator results in a bag of facts for every member m ∈ members(l̂).
An aggregation function such as sum would again group the bag of facts within
a cell into a single fact per cell. Thus, intuitively, the roll-up operator % merges
several original cube cells into a single cell.

Example 7.10: %date[day⇒month](treatmt) obtains the following cube treatmt′:

foo::treatmt’
date cost p cost m
02-06 356.0 450.0
02-06 125.2 1767.0
02-06 473.0 928.8

Notice how the date column contains a bag of [month]-values ‘02-06’. The
original treatmt-cube identified each fact uniquely per day, which is no longer
possible in the coarser treatmt’ cube (except with an aggregation function). ♦

Finally, the pivot operators χ (merge measures) and ξ (split measure) can be
used to repair schema–instance heterogeneity among cubes (cf. Section 5.1 of the
conflict taxonomy, pp. 62, and 7.2.1). Two different pivot-options are available:
merge measure attributes (χ) or split measure attribute (ξ)—see the following
Definitions 7.13 and 7.14. Intuitively, χ merges several measures into a single
one, preserving their original context by extracting an additional dimension
attribute. In contrast, ξ transforms part of the fact context (i.e., one of the
dimension attributes) into one or several new measure attributes.

Definition 7.13 (χ – merge measures):
Let L = {M1, ..., Mk} (i.e, L ⊆ MC = {M1, ...,Mm}, k ≤ m) denote the set of
measure attributes to be merged, M̄ /∈ MC and Ā /∈ AC be new attribute names.
Operator χL⇒M̄,Ā(c) creates cube C ′ with schema S′C = {[AC ∪ Ā], [(MC \L)∪
M̄]} and instance c′(S′C) =

⋃
i=1...k{t | ∃r ∈ c : t(Ā) = Mi, t(M̄) = r(Mi),

t(AC) = r(AC), t(MC \ L) = r(MC \ L)}. ¥

7.1. DIMENSION/FACT ALGEBRA EXPRESSIONS 97

Example 7.11: Operator χ{cost p,cost m}⇒costs,ccat(treatmt) results in cube
treatmt′ with the following cells:

foo::treatmt’
date ccat costs

23-02-06 cost p 356.0
23-02-06 cost m 425.0
24-02-06 cost p 125.2
24-02-06 cost m 1742.0
25-02-06 cost p 473.0
25-02-06 cost m 903.8

♦

For the following Definition 7.14, let Ā ∈ AC be some dimension attribute
and M̄ ∈ MC be some measure of cube C.
Definition 7.14 (ξ – split measure):
Let V = {t(A′) | t ∈ c(SC)} denote the set of all A′-values in c such that
V = {V1, ..., Vm}, and B = AC \ A′ be the “remaining” dimension attributes.
Operator ξM̄⇒A′(c) creates cube C ′ with schema S′C = {[AC \A′], [(MC \ M̄)∪
V]} and instance c′(S′C) = {t(S′C) | ∃t1, ..., tm ∈ c : ∀i, j = 1...m : ti(B) =
tj(B)∧ t(B) = t1(B)∧ t(V1) = t1(A′)∧ t(V2) = t2(A′)∧ ...∧ t(Vm) = tm(A′)}.¥
Example 7.12: Applying ξcosts⇒ccat(treatmt′) to the treatmt′ cube of previ-
ous Example 7.11 results in cube treatmt′′ with the following cells. Notice that
treatmt′′ is equivalent to the original cube treatmt given in Figure 7.1:

foo::treatmt”
date cost p cost m

23-02-06 356.0 425.0
24-02-06 125.2 1742.0
25-02-06 473.0 903.8

♦

As explained in 7.2.3, a higher number of measures results in higher ex-
pressivity of the fact schema, thus fewer cells, and vice versa. Therefore, split
measure reduces the number of cells, whereas merge measures leads to an in-
creased number of cells.

During the last step of the fact integration process the import fact schemas,
defined by FA expressions, are mapped to the global DW. If one or more subsets
of the facts have overlapping coordinates, the semantic relationship between the
fact extensions has to be specified by the merge facts (µ) operator (see below).

Definition 7.15 (µ – merge facts):
Let C = {C1, ..., Cn} be a set of cubes, whereby G =

⋂
i=1...n{MCi}, and Op

= { prefer, sum, avg, min, max } be a predefined set of operators. Furthermore,
let N = {M̂1, ..., M̂m} ⊆ G be the subset of measures in all cubes for which an
operator θ ∈ Op should be applied. Operator µ(C[N, θ]) computes the result
cube CG with schema SĈ =

⋂
i=1...n{ACi},

⋃
i=1...n{MCi} and instance ĉ(SĈ) =

{t(SĈ) | ∃t1 ∈ c1, ..., ti ∈ ci, ..., tn ∈ cn : t(SC1\N) = t1(SC1\N), ..., t(SCi\N) =
ti(SCi \N), ..., t(SCn \N) = tn(SCn \N), t(N) = θ(t1(N), ..., ti(N), ..., tn(N))}.

Example 7.13: Applying operator µ to merge the foo::treatmt and
foo2::treatmt into a global cube named F ′—i.e., F ′ = µ({foo::treatmt,
foo2::treatmt} [{cost p, cost m}, avg])—we obtain as result:

98 CHAPTER 7. INTEGRATION METHODOLOGY

F’ (µ(foo::treatmt [{cost p, cost m}, avg] foo2::treatmt))
date cost p cost m

23-02-06 418.0 212.5
24-02-06 62.6 1177.5
25-02-06 236.5 764.15

♦

The FA operator merge facts (µ) computes semantically meaningful mea-
sures for fact subsets with overlapping coordinates (cf. 7.2.1). The prefer -
operator is appropriate for facts on identical identities (with “stock” seman-
tics [Lenz and Shoshani, 1997]), whereas the other set operators can be used
for “context-related” entities [Berger and Schrefl, 2006] (with “flow” semantics
[Lenz and Shoshani, 1997]). In most cases the sum-operator is the best choice.
Only a human expert is able to choose an appropriate set operator θ according
to the semantic relationship between the fact sets.

7.2 Defining Semantic Mappings

The integration of autonomous Data Marts pursues the definition of adequate
semantic mappings from the import schemas of dimensions and facts to the
global multi-dimensional schema. This Section defines the systematic process
that is necessary for addressing the heterogeneities among multi-dimensional
schemas and instances, classified in Chapter 5, in conjoint manner. During
the integration process, the Federated DW administrator must (1) recognize
existing conflicts and define the adequate conversions to obtain homogeneous
import schemas of both dimensions and facts, and (2) specify how to handle
overlapping extensions (sets of instances) among both dimensions and facts.

In order to recognize and resolve the heterogeneities among autonomous
Data Marts correctly, it is important to identify the real-world entities in the
universe of discourse that the dimensions and facts represent. As mentioned
in Chapter 5 (see pp. 59), heterogeneities among Data Marts that cover the
same application domain result from either different modelling approaches or
ambiguous domain vocabularies, or even a combination of both these factors.
Thus, for successful integration of autonomous Data Marts, the administrators
of Federated DW systems must be aware of possibly ambiguous entities and
vocabularies underneath the models of autonomous Data Marts.

Usually, ambiguity among Data Mart schemas results in naming conflicts
(i.e., homonyms and synonyms among attribute names), but more subtle conse-
quences of ambiguity are possible. In particular, homonymous dimension names
can mask other conflicts at the schema level, e.g. a dimensionality conflict. For
example, an attribute named “good” can either refer to article names, or mean
a boolean attribute measuring whether customer were satisfied with the qual-
ity of services or not. In similar fashion, synonymous attribute names in ei-
ther dimensions or facts often hide other classes of heterogeneity—e.g., domain
conflicts—that are only revealed after renaming the synonyms.

In this Section we propose a systematic integration methodology for het-
erogeneous and autonomous Data Marts, based on the taxonomy of conflicts
introduced in Chapter 5 (see pp. 59). The general paradigm behind this method-
ology views the federated layer as the “privileged” hub on top of all local Data

7.2. DEFINING SEMANTIC MAPPINGS 99

Global
Schema

DM 1

DM 2 DM n

DM 3

DM 1

DM 2

DM 3

DM n

Figure 7.2: Paradigms for semantic mappings definition between Data
Marts—“hub” (left) vs. “point-to-point” (right).

Marts. In this hub architecture, the Federated DW system administrates the
global schema and collects mappings for each local and autonomous DM that
participates in the federation. These mappings define how to convert local di-
mension and fact data to the global schema. The global “hub” is the only system
component knowing the import schemas of all local DMs.

The hub integration paradigm allows for easier maintenance of the federated
system than point-to-point Data Mart integration. As illustrated in Figure 7.2,
the hub paradigm requires semantic mappings for each local Data Mart to the
global schema, resulting in n necessary mappings for n Data Marts. In contrast,
the point-to-point paradigm demands pairwise mappings among all Data Marts
that participate in the federation. Thus, in an architecture with n Data Marts,
point-to-point integration needs n(n−1)

2 mappings.
Moreover, hub federations of Data Marts are better extensible than point-

to-point federations. If an additional Data Mart enters the federation, the
necessary new mapping is easy to integrate with the existing hub of mappings.
However, in point-to-point federations the additional mapping would at least
require that the other mappings be checked for side-effects. In the worst case,
all point-to-point mappings would have to be redesigned [Lenzerini, 2002].

In the FedDW approach, the design of autonomous Data Mart federations
follows the Federated DW reference architecture (see the previous Chapter 6,
pp. 81) and the hub mapping paradigm. In order to design the Federated DW
system, it is necessary to define the global schema first. As mentioned in the
previous Chapter, the business analysts’ information requirements determine
the global schema design. Subsequently, the Federated DW administrator ap-
plies the proposed integration methodology individually on each of the local
DMs, resulting in semantic mappings from the DMs to the global schema. This
source-to-target mapping approach both ensures that the local Data Marts re-
tain their schema and data management autonomy, and secures the federated

100 CHAPTER 7. INTEGRATION METHODOLOGY

system against local schema changes. If the component schema of a Data Mart
changes, only the mapping must be updated accordingly while the global schema
remains valid. Moreover, each existing mapping is isolated from changes hap-
pening in the other mappings, assuring the extensibility of the federation.

Designing the global multi-dimensional schema is an iterative process, driven
by both, the information requirements of business analysts and the existing
multi-dimensional Data Mart schemas. Of course, establishing a Federated DW
system is only useful if the given, autonomous Data Marts sufficiently overlap
(i.e. with respect to their universe of discourse). In practice, the most sensi-
ble option is to evolve the global schema from one of the preexisting schemas.
For example, the global schema of the health insurance organization in the case
study (see Figure 2.2 on page 17) has been designed from the preexisting schema
of Data Mart dwh1 (Figure 2.1), but with the date time dimension slightly modi-
fied (level [quarter] in g::date time has replaced level [month] in dwh1::date time).

The FedDW integration methodology for autonomous Data Marts consists
of three consecutive phases. These phases systematically follow the taxonomy of
heterogeneities among both dimensions and facts presented in Chapter 5, and
repair all conflicts. Starting with the removal of schema-instance conflicts in
the first phase (Subsection 7.2.1), the DM import schemas are harmonized step
by step. During the second phase, the analyst overcomes heterogeneity at the
schema level in order to achieve homogeneous dimension and fact schemas (Sub-
section 7.2.2). The third and final phase considers all remaining conflicts at the
instance level (Subsection 7.2.3). In general, heterogeneities among dimensions
are repaired before conflicts among facts, because cube schemas logically depend
on the dimension schemas in the multi-dimensional data model (see Chapter 4,
pp. 51).

For the following subsections, let DM = {C1, ..., Cn;D1, ..., Dm} denote
some local, autonomous Data Mart that is to be mapped to global Data Mart

ˆDM = {Ĉ1, ..., Ĉn̂; D̂1, ..., D̂m̂}. Notice that both, the numbers n, n̂ of cubes
and the numbers m, m̂ of dimensions are not necessarily the same across DM
and ˆDM . In practice, at least the number of dimensions probably mismatches
among Data Marts, as illustrated in the case study (see Chapter 2).

As formalized in Definitions 7.16 and 7.17, the integration methodology
defines mappings MDÃD̂ for all dimensions {D ∈ {D1, ..., Dm} | ∃D̂ ∈
{D̂1, ..., D̂m̂} : S′D ≡ SD̂ ∧ d′(S′D) ≡ d(SD̂)}—i.e., all dimensions D in the
local Data Mart of which the transformed dimension schema S′D and instance
d′(S′D) are equivalent to one of the dimensions given in the global schema. More-
over, the integration methodology defines mappings MCÃĈ for all cubes {C ∈
{C1, ..., Cn} | ∃Ĉ ∈ {Ĉ1, ..., Ĉn̂} : S′C ≡ SĈ}, whereby S′C = MCÃĈ(SC)—i.e.,
all cubes C in the local Data Mart of which the transformed cube schema S′C
is equivalent to one of the cubes in the global schema. Finally, the method-
ology merges the extensions of each global dimension D̂ and each global cube
Ĉ from the instances of transformed, local dimensions and cubes with set-wise
mappings ID̂ respectively IĈ . The set-wise instance mappings consider every
dimension and cube of the local Data Marts that map to the respective global
dimension D̂ and cube Ĉ. We denote with DDM some dimension D of DM
that is mapped to the global schema this way. Analogously, CDM denotes one
of the cubes C of DM mapped to the global schema.

7.2. DEFINING SEMANTIC MAPPINGS 101

The following Definition 7.16 formalizes the semantic mappings MDÃD̂ and
MCÃĈ for dimension and cube schemas, respectively:

Definition 7.16 (Semantic mappings – dimension and cube schemas):
Given dimension D and cube C of some autonomous Data Mart DM , the
FedDW integration methodology creates two schema mappings: MDÃD̂ for
dimension schema SD, respectively MCÃĈ for cube schema SC . Both these
mappings are defined from DM to the global multi-dimensional schema ˆDM .
The semantics of these schema mappings is given by the following functions:

• MDÃD̂ : SD → S′D computes the dimension import schema S′D from
the given dimension export schema SD. Each mapping MDÃD̂ comprises
a Dimension Algebra expression (cf. Definition 7.1) that is restricted to
operators ζ (rename), ψ (aggregate), π (project), and γ (convert).

• MCÃĈ computes the cube import schema S′C from the given cube export
schema SC . Each mapping MCÃĈ : SC → S′C comprises a Fact Algebra
expression (cf. Definition 7.8) that is restricted to operators ζ (rename),
% (roll-up), π (project), and γ (convert). ¥

The following Definition 7.17 formalizes the semantic mappings ID̂ and IĈ

for dimension and cube extensions, respectively:

Definition 7.17 (Semantic mappings – dimension and cube extensions):
Given dimension D̂ and cube Ĉ of the global Data Mart ˆDM , the FedDW
integration methodology creates one instance mapping ID̂ for all dimensions of
local Data Marts DM1, ..., DMk that map to dimension D̂, respectively IĈ for
all cubes of local Data Marts DM1, ..., DMk that map to cube Ĉ. The semantics
of these instance mappings is given by the following functions:

• ID̂ : {DM1.d(S′D) × ... × DMk.d(S′D)} → d̂(SD̂) merges dimension in-
stances DM1.d, ..., DMk.d to compute the member extension d̂(SD̂) of
global dimension D̂. Each mapping ID̂ comprises a Dimension Algebra
expression (cf. Definition 7.1) that is restricted to operators Ω (override
roll-up), δ (change), and µ (merge dimensions).

• IĈ : {DM1.c(S′C) × ... × DMk.c(S′C)} → ĉ(SĈ) merges cube instances
DM1.c, ...,DMk.c to compute the cells extension ĉ(SĈ) of global cube Ĉ.
Each mapping IĈ comprises a Fact Algebra expression (cf. Definition 7.8)
that is restricted to operators χ (pivot merge measures), ξ (pivot split
measure), and µ (merge facts). ¥

The following Algorithms 7.2 and 7.3 detail the steps that are necessary
to create the semantic mappings for the schemas respectively instances of di-
mensions and cubes according to the FedDW integration methodology. In Algo-
rithm 7.2, let the ≡-operator denote the equivalence of ontological concepts rep-
resenting dimensional context once in dimension members, and once in measure
attributes of cube schemas. Thus, the ≡-operator is used to indicate schema–
instance conflicts (cf. Section 5.1, pp. 62).

102 CHAPTER 7. INTEGRATION METHODOLOGY

Algorithm 7.2 Overview of the Data Mart schema integration process
Input: Local Data Mart DM = {CDM

1 , ..., CDM
n ; DDM

1 , ..., DDM
m }; global Data

Mart ˆDM = {Ĉ1, ..., Ĉn̂; D̂1, ..., D̂m̂}
Output: Dimension mappings

⋃
j=1...m{MDjÃD̂}, and cube mappings⋃

i=1...n{MCiÃĈ}.

1: for all C ∈ {CDM
1 , ..., CDM

n } do
. schema–instance conflicts: merge measures to context dimension

2: if ∃L ⊆ MC , Â[l̂] : L ≡ members(l̂) then
3: Add χL⇒M̄,Ā(C) to MCÃĈ

. schema–instance conflicts: split measure to contextualized facts
4: else if ∃A′[l′] ∈ AC , B̄ ⊆ AĈ : members(l′) ≡ B̄ then
5: Add ξM̄⇒A′(C) to MCÃĈ

6: end if
7: end for . Schema–instance conflicts repaired
8: for all D ∈ {DDM

1 , ..., DDM
m } do

9: Compute MDÃD̂ . See Algorithm 7.4
10: end for . Dimension schema heterogeneities repaired
11: for all C ∈ {CDM

1 , ..., CDM
n } do

12: Compute MCÃĈ . See Algorithm 7.5
13: end for . Cube schema heterogeneities repaired

As soon as all dimension and cube schemas have been integrated according
to the above Algorithm 7.2, the extensions of the global dimensions and cubes
are computed from the local Data Marts as specified below in Algorithm 7.3:

Algorithm 7.3 Overview of the Data Mart instance integration process

Input: Local Data Marts DM1, ..., DMk; global Data Mart ˆDM =
{Ĉ1, ..., Ĉn̂; D̂1, ..., D̂m̂}
Output: Dimension mappings

⋃
j=1...m̂{ID̂j}, cube mappings

⋃
i=1...n̂{IĈi}.

1: for all D̂j ∈ {D̂1, ..., D̂m} do
2: Compute ID̂j . Dimension instance integration; see Subsection 7.2.3
3: end for
4: for all Ĉi ∈ {Ĉ1, ..., Ĉn} do
5: Compute IĈi . Cube instance integration; see Subsection 7.2.3
6: end for . Instance integration finished

7.2. DEFINING SEMANTIC MAPPINGS 103

7.2.1 Resolve Schema-Instance Conflicts

The goal of the first phase of Data Mart integration is to recognize how the di-
mensional entities of the global multi-dimensional schema—building the context
of facts in the Federated DW—are represented in the cubes of each autonomous
DM. If different import schemas of Data Marts represent the dimensional entities
once with schema elements and once with instances, schema–instance conflicts
occur (cf. Section 5.1, page 62). It is necessary to repair these conflicts to
model the dimensional context uniformly across all Data Marts. Otherwise,
heterogeneity at the subsequent schema integration and instance integration
phases possibly remains undetected (e.g., the schema–instance conflict could
hide a dimensionality conflict).

Dimensional entities should be modelled as dimension members—i.e., at the
instance level (cf. Definition 4.2 in Chapter 4, page 54). In practice, however,
Data Mart schemas represent dimensional context indirectly within measure
variables—i.e., at the schema level of facts. For example, the measures cost p
and cost m in cube dwh1::treatment contain costs figures for the dimensional
entities “personnel” and “material”. Certainly more appropriate would be an
additional dimension schema for the entity costs category with members person-
nel and material, such as in Data Mart dwh2 (cf. Chapter 2, Figure 2.1).

Schema–instance conflicts can be repaired with pivoting operations in two
directions, depending on the desired schema of the global data cube. Pivot-
ing either increases dimensionality or arity—i.e., respectively, the number of
dimension and measure attributes—of cube import schemas. On the one hand,
transforming the dimensional entities hidden in measure variables leads to the
definition of a new context dimension. Thus, the import schema becomes more
concise by merging several measures into a single one, while increasing its di-
mensionality. On the other hand, converting the members of an existing dimen-
sion into new measure variables is exactly the opposite operation, enriching the
import schema’s arity while reducing its dimensionality.

In particular, we specify the two pivoting operations as follows:

• Merge measure variables, generate context dimension: the introduction of
a context dimension converts implicit fact context into members of the
new dimension. Consequently, the previously hidden context of measure
variables at the schema level is partially transformed into context infor-
mation at the instance level (i.e., to the members of the newly generated
context dimension). This operation increases the dimensionality of the
import schema, but reduces the number of measure variables. In turn,
the expressivity of the multi-dimensional schema decreases, leading to an
“inflation” of cube cells. Thus, the number of cells in the import schema
grows in order to express the same information as in the original schema.

• Split measure variables, generate contextualized facts: the conversion of
existing dimension members into new, specialized measure variables gen-
erates contextualized facts. Consequently, the context information at the
instance level (i.e., the dimension members) is being partially transformed
into context information at the schema level (i.e., the measure variables).
This operation decreases the dimensionality of the import schema, but in-
creases the number of measure variables. In turn, the expressivity of the

104 CHAPTER 7. INTEGRATION METHODOLOGY

multi-dimensional schema increases, leading to a “deflation” of cube cells.
As a result, the number of cells in the import schema is reduced without
any loss of information.

If a schema–instance conflict is detected among CDM and Ĉ, identify and
apply the adequate pivoting operation. If the dimensionality of Ĉ is higher,
merge measures and generate a context dimension for import schema CDM

(line 3 of Algorithm 7.2, see Definition 7.13). Alternatively, if the expressivity of
Ĉ is higher, split measures and generate contextualized facts for import schema
CDM (line 5 of Algorithm 7.2, see Definition 7.14).

Example 7.14 (Data Mart integration – schema–instance conflicts):
The global schema of the health insurance organization defines cube treat-
ment with two measures cost p and cost m (cf. Figure 2.2). In contrast,
local cube dwh2::treatment contains the only measure costs, plus dimension
cost cat. Thus, according to line 5 of Algorithm 7.2, we add the following
operator to mapping Mdwh2::treatmentÃg::treatment to repair the conflict:
ξcosts⇒cost cat(dwh2::treatment). Besides the costs figures of the treatment
cubes, no other schema–instance conflicts need to be repaired. As specified
in Algorithm 7.2, the integration process among the autonomous Data Marts
proceeds to the next phase (multi-dimensional schema integration). ♦

7.2.2 Integrate Dimension and Fact Schemata

In the second phase of the integration methodology the Federated DW admin-
istrator defines the appropriate mappings at the schema level in order to obtain
homogeneous import schemas for both, the dimensions and facts of the au-
tonomous Data Marts. Within this phase, the integration of dimension schemas
has priority over the integration of fact schemas because cubes logically depend
on dimensions in the multi-dimensional data model (see Chapter 4). There-
fore, the dimension schemas should reach a “fixed” homogeneous state before
examining the cube schemas for heterogeneities.

In general, the FedDW methodology for Data Mart integration follows the
minimum use strategy, i.e. the reduction of import schemas to the parts in com-
mon with the global schema. In contrast, a maximum use strategy attempts to
fully import the local schemas, keeping even elements that do not match the
global schema. Minimum match is an intermediate strategy, amending mini-
mum use import schemas with all information that can be safely reconstructed
from the local data (e.g. calendar hierarchies, see Figure 7.3).

Minimum use integration ideally copes with the typical, general aims of
OLAP analysis—precision and quality of data is more important than its quan-
tity. For the OLAP analyst, fewer variables that are comparable over the entire
data set of the federated DMs are more valuable than the maximum available
data over all DMs. In order to utilize as much of the source data as possible,
several slices of one and the same local cube can be defined as import schemas.

For each dimension D of some local Data Mart DM , the dimension schema
integration process consists of the steps given in the following Algorithm 7.4.
The result of dimension schema integration is the mapping MDÃD̂, which con-
tains the sequence of conversion operators specified during the integration pro-
cess. If applied to the original import schema SD, the mapping produces the

7.2. DEFINING SEMANTIC MAPPINGS 105

day

week

year

day/hr

date_time2

day

week

month

day/hr

date_time2 ''
year

day

month

date_time2'

year

„maximum use“

„minimum match“

day

year

date_time2 ''' „minimum use“

day

month

year

g::date_time

Figure 7.3: Mapping strategies—maximum use vs. minimum match vs. mini-
mum use—demonstrated for dimension dwh2::date time2. Notice
that the month level must be generated – “reconstructed” – in the
case of maximum use and minimum match strategies.

transformed dimension schema S′D that is homogeneous with global dimension
schema SD̂—i.e., MDÃD̂(SD) = S′D (cf. Definition 7.16). Let operator ∩≡ de-
note the intersection of equivalent levels between the level sets of two dimension
schemas SD and SD̂, such that LD

∩
≡LD̂ = {l ∈ LD | ∃l̂ ∈ LD̂ : l ≡ l̂}.

In order to map the multi-dimensional space of local Data Mart DM to the
global schema, the Federated DW administrator repeats the schema integration
process for all pairs of dimensions D ∈ DM and D̂ ∈ ˆDM that model the
same dimensional entity. For each such dimension D of the local, autonomous
Data Mart, Algorithm 7.4 creates a semantic mapping MDÃD̂. All remaining
dimensions D′ ∈ DM that cannot be mapped to the global schema—{D′ ∈
{D1, ..., Dm} | @D̂ ∈ {D̂1, ..., D̂m̂} : S′D ≡ SD̂ ∧ d′(S′D) ≡ d(SD̂)}—are deleted
from the import schema of Data Mart DM . Since the dimensions D′ cannot be
matched with the dimensional entities context of the global schema, mappings
for these dimensions would be useless.

106 CHAPTER 7. INTEGRATION METHODOLOGY

Algorithm 7.4 Determine mapping for local dimension schema SD.
Input: Dimension schemas SD (of local dimension D ∈ DM) and SD̂ (of
dimension D̂ ∈ ˆDM in global schema)
Output: Mapping MDÃD̂

Description: Integrates SD with SD̂ in three phases: (1) naming conflicts,
(2) hierarchies of aggregation levels, (3) domain conflicts. The algorithm deter-
mines the appropriate Dimension Algebra operators to compose the mapping.

1: if name(D) 6= name(D̂) then
2: Add ζname(D̂)←name(D)(D) to D Ã D̂ . Rename dimension
3: end if
4: for all l ∈ LD | ∃l̂ ∈ LD̂ : l ' l̂ do
5: if name(l) 6= name(l̂) then
6: Add ζname(l̂)←name(l)(l) to MDÃD̂ . Rename levels where necessary
7: end if
8: if name(l.K) 6= name(l̂.K) then
9: Add ζname(l̂.K)←name(l.K)(Sl) to MDÃD̂ . Rename roll-up attribute

10: end if
11: for all l.Ni ∈ Sl | ∃l̂.N̂i ∈ Sl̂ : Ni = N̂i ∧ name(Ni) 6= name(N̂i) do
12: Add ζname(N̂i)←name(Ni)

(Sl) to MDÃD̂ . Rename N-attributes of l
13: end for
14: end for . All naming conflicts repaired
15: if ¬(LD ≡ LD̂ ∧HD = HD̂) then
16: for all l ∈ HD, l̂ ∈ HD̂ | l ' l̂ ∧ dom(l.K) 6= dom(l̂.K) do
17: Add γθ(l.K)(D) to MDÃD̂ . Convert roll-up attribute domains
18: end for
19: if LD

∩
≡LD̂ = ∅ then

20: goto end; . non-corresponding; abort
21: else if LD

∩
≡LD̂ 6= ∅ then

22: if lD0 6≡ lD̂0 then . inner-level corresponding
23: Identify k ∈ HD, k̂ ∈ HD̂ | k ≡ k̂ ∧ @(k′ ∈ HD, k̂′ ∈ HD̂) :

k′ ≡ k̂′ ∧ k 7→+ k′ . New base level
24: Add ψk(SD) to MDÃD̂ . Roll-up to new base level
25: end if . lD0 ≡ lD̂0 – base-level corresponding
26: Add π(LD

∩≡LD̂)(SD) to MDÃD̂ . Minimum-use of levels
27: end if
28: end if . Hierarchies repaired – homogeneous level schemas
29: for all l ∈ HD, l̂ ∈ HD̂ | l ' l̂ do . Check all pairs of conceptually

corresponding levels l ' l̂ for heterogeneous N-attribute domains
30: for all l.Ni ∈ Sl, l̂.N̂i ∈ Sl̂ | Ni = N̂i ∧ dom(Ni) 6= dom(N̂i) do
31: Add γθ(l.Ni)(D) to MDÃD̂ . Convert domains of N-attributes
32: end for
33: end for . Domain conflicts repaired
34: return MDÃD̂

Informally, the schema mapping process (Algorithm 7.4) performs the fol-
lowing steps to compute the mapping MDÃD̂:

7.2. DEFINING SEMANTIC MAPPINGS 107

1. Check the dimension schemas for naming conflicts. Whenever necessary,
change conflicting names in the following elements of SD: (1) dimension
name of D [line 2], (2) levels LD in hierarchies [line 6], (3) level attributes
∀l ∈ LD : l.K in level schemas [line 9], and (4) non-dimensional attributes
∀l ∈ LD : l.N1, ..., l.Ni, ..., l.Nk in level schemas [line 12].

2. For the conceptually corresponding levels ∀l ∈ HD, l̂ ∈ HD̂ | l ' l̂ check
the domains of roll-up attributes l.K and l̂.K. If it mismatches, i.e.
dom(l.K) 6= dom(l̂.K), specify the necessary conversion function θ for
level attribute l.K, converting its domain to dom(l̂.K)—[line 17].

3. Check the correspondence among the sets of levels LD. If the level sets
LD and LD̂ are intensionally corresponding (LD ≡ LD̂—Definition 5.5,
page 66) and have identical hierarchies (i.e., LD ≡ LD̂ ∧ HD = HD̂—
see [line 15]), proceed directly with step 4. Otherwise, eliminate hetero-
geneities among the two level sets as follows:

(a) If LD and LD̂ are non-corresponding (LD
∩
≡LD̂ = ∅), stop the in-

tegration process for dimension D [line 20]. In this case, the local
dimension DDM and global dimension D̂ do not have any common
content (see Example 5.5).

(b) If LD and LD̂ are inner-level corresponding (LD
∩
≡LD̂ 6= ∅∧lD0 6≡ lD̂0 —

see Example 5.6), (1) identify the most fine-grained, common level
k ∈ HD, k̂ ∈ HD̂ : k ≡ k̂ [line 23], and (2) identify all common, inten-
sionally equivalent levels LD

∩
≡LD̂ while deleting the other, remaining

levels of LD [lines 21–26].

(c) If LD and LD̂ are base-level corresponding (LD
∩
≡LD̂ 6= ∅ ∧ lD0 ≡

lD̂0 ∧LD 6≡ LD̂—see Example 5.7), identify all common, intensionally
equivalent levels LD

∩
≡LD̂ while deleting the other, remaining levels

of LD [lines 21–26].

(d) If LD and LD̂ are flat corresponding (LD ≡ LD̂ ∧ lD0 ≡ lD̂0 ∧HD 6=
HD̂—see Example 5.8), keep only the base level lD0 and delete all
other levels of LD [lines 21–26].

4. By now, the levels among LD and LD̂ are homogeneous, i.e. corresponding
(cf. Definition 5.5) and with identical hierarchies. Finally, check the do-
mains of non-dimensional attributes among the level schemas S(LD) and
S(LD̂). For all overlapping non-dimensional attributes Ni (1 ≤ i ≤ k)
of every level l ∈ LD, i.e. ∀l.Ni ∈ Sl, l̂.N̂i ∈ Sl̂ | Ni = N̂i, check if
the attribute domains are the same. If not, i.e. dom(l.Ni) 6= dom(l̂.N̂i),
specify the necessary conversion function θ(l.Ni) for the N-attribute l.Ni,
converting its domain to dom(l̂.N̂i)—[line 31].

Notice that domain conflicts of roll-up attributes must be repaired before
checking the correspondence of level sets (LD

∩
≡LD̂, see step 2). Otherwise,

the algorithm would ignore conceptually corresponding levels that become
equivalent after repairing domain conflicts between their level schemas (cf.
Definitions 5.3 and 5.4, page 65).

108 CHAPTER 7. INTEGRATION METHODOLOGY

Now, the dimension schema integration process among SD and SD̂ is com-
plete. Its result is the mapping D Ã D̂, which contains the sequence of all
DA operators specified in the process explained above. Having mapped all di-
mensions of local, autonomous Data Mart DM to the global multi-dimensional
schema, the Data Mart integration algorithm proceeds to the next phase, map-
ping the cubes of DM to ˆDM (cf. line 12 in Algorithm 7.2, page 102).

Example 7.15 (Dimension schema integration process): Algorithm 7.4
creates the following semantic mappings for the dimensions of local Data Mart
dwh1 (cf. Figure 2.1):

• All mappings Mdwh1::date timeÃg::date time, Mdwh1::methodÃg::method,
Mdwh1::patientÃg::patient and Mdwh1::drugÃg::drug remain empty (no con-
flicts to repair).

• Dimension dhw1::phys is deleted from the import schema.

Moreover, Algorithm 7.4 creates the following semantic mappings for the
dimensions of local Data Mart dwh2:

• Mdwh2::date time2Ãg::date time: rename dimension
ζdate time←date time2(dwh2::date time2) – line 2; roll-up to new
base level ψ[day](dwh2::date time2) – lines 23–24; project levels
π{[day],[year]}(dwh2::date time2) – line 26.

• Mdwh2::methodÃg::method: rename non-dimensional attribute
ζdescription←descrpt(dwh2::method.l method) – line 12.

• Mappings Mdwh2::patientÃg::patient and Mdwh2::drugÃg::drug remain empty
(no conflicts to repair).

• Finally, dimension dwh2::cost cat is not considered, because it has been
converted to measure attributes in the previous Example 7.14. ♦

For each cube C ∈ DM , the cube integration process consists of the steps
given in the following Algorithm 7.5. The result of cube schema integration is the
mapping MCÃĈ , which contains the sequence of conversion operators specified
during the cube integration process. If applied to the original import schema
SC , the mapping produces the transformed cube schema S′C that is homogeneous
to some global cube schema SĈ—i.e., MCÃĈ(SC) = S′C . Let operator ∩≡ denote
the intersection of equivalent dimensional attributes between two cube schemas
SC and SĈ , such that AC

∩
≡AĈ = {A ∈ SC | ∃Â ∈ SĈ : A ≡ Â}.

To finish the schema integration phase for autonomous Data Mart DM , the
cube schema integration process is repeated for all pairs of cubes C ∈ DM and
Ĉ ∈ ˆDM whose schemas contain at least one identical dimensional entity. (Intu-
itively, this means that the integration methodology considers all cubes that are
drill-across compatible with one of the cubes defined in the global schema.) For
each such cube C of the local, autonomous Data Mart, Algorithm 7.5 creates
a semantic mapping. All other cubes C ′ ∈ DM that cannot be mapped to the
global, multi-dimensional schema—i.e., {C ′ ∈ {C1, ..., Cn} | @Ĉ ∈ {Ĉ1, ..., Ĉn̂} :
S′C ≡ SĈ ∧ c′(S′C) ≡ c(SĈ)}—are deleted from the import schema of Data Mart
DM . Since the dimensional contexts of all cubes C ′ are distinct from the global
multi-dimensional schema, mappings for these cubes would be useless.

7.2. DEFINING SEMANTIC MAPPINGS 109

Algorithm 7.5 Determine mapping for local cube schema SC .

Input: Cube schemas SC (of local cube C ∈ DM and SĈ (of cube Ĉ ∈ ˆDM in
global schema)
Output: Mapping MCÃĈ

Description: Integrates SC with SĈ in three phases: (1) naming conflicts,
(2) dimensionality, (3) domain conflicts. The algorithm determines the appro-
priate Cube Algebra conversion operators to compose the mapping.

1: if name(C) 6= name(Ĉ) then
2: Add ζname(Ĉ)←name(C)(C) to MCÃĈ . Rename cube
3: end if
4: for all A[l] ∈ SC | ∃Â[l̂] ∈ SĈ : A ' Â ∧ name(A) 6= name(Â) do
5: Add ζname(Â)←name(A)(C) to MCÃĈ . Rename dimensional attributes
6: end for
7: for all M ∈ SC | ∃M̂ ∈ SĈ : M = M̂ ∧ name(M) 6= name(M̂) do
8: Add ζname(M̂)←name(M)(C) to MCÃĈ . Rename measures of SC

9: end for . All naming conflicts repaired
10: if ¬(AC ≡ AĈ) then
11: if AC

∩
≡AĈ = ∅ then

12: goto end; . non-corresponding; abort
13: else if AC

∩
≡AĈ 6= ∅ then

14: for all A[l] ∈ AC
∩
≡AĈ , Â[l̂] ∈ AĈ | A ' Â ∧ l 7→+ l̂ do

15: Add %A[l⇒l̂](C) to MCÃĈ . Roll-up all A to equivalent

aggregation levels with Â
16: end for
17: Add π(AC

∩≡AĈ)(C) to MCÃĈ . Roll-up all A′ 6∈ AC
∩
≡AĈ to [all]

18: end if
19: end if . Dimensionality repaired – homogeneous cube schemas
20: for all M ∈ SC , M̂ ∈ SĈ | M = M̂ do . Check all pairs of measures M, M̂

for heterogeneous attribute domains
21: if dom(M) 6= dom(M̂) then
22: Add γMθ(v)(C) to MCÃĈ . Convert domains of measures with

appropriate function θ and fixed value v (cf. Definition 7.10)
23: end if
24: end for . Domain conflicts repaired
25: return MCÃĈ

Informally, the cube mapping process (Algorithm 7.5) performs the following
steps to compute the mapping MCÃĈ :

1. Check the cube schemas for naming conflicts. Whenever necessary, change
conflicting names in the following elements of schema SC : (1) cube name
of C [line 2], (2) dimensional attributes AC [line 5], (3) measure attributes
MC [line 8].

2. Check the correspondence among of the cube schemas SC and SĈ , based
on the two sets of dimension attributes. If the dimension attribute sets AC

and AĈ are corresponding (AC ≡ AĈ—Definition 5.8, page 69), proceed

110 CHAPTER 7. INTEGRATION METHODOLOGY

directly with step 3 [line 10]. Otherwise, eliminate heterogeneities among
the dimension attribute sets as follows:

(a) If SC and SĈ are non-corresponding (AC
∩
≡AĈ = ∅), stop integration

for cube C [line 12]. In this case, local cube CDM and global cube Ĉ ∈
ˆDM do not have any comparable content since they represent facts

in ontologically different dimensional context (see Example 5.12).
(b) If SC and SĈ are partially corresponding (AC

∩
≡AĈ 6= ∅—see Ex-

ample 5.13), (1) identify the common dimension attributes AC
∩
≡AĈ

[line 13], and (2) specify the appropriate aggregation functions to
roll-up the other, remaining dimension attributes A′ 6∈ AC

∩
≡AĈ to

the [all]-level [line 17].

(c) For all pairs of A[l] ∈ AC ∩ AĈ and Â[l̂] ∈ AĈ with A ' Â, check
whether l ≡ l̂ is true. If l 7→+ l̂, roll-up dimension attribute A to
level l̂, such that A becomes equivalent to Â, i.e. A ≡ Â [line 15].

3. By now, the dimensional attributes among cube schemas SC and SĈ are
homogeneous, i.e. fully corresponding (Definition 5.8). Next, inspect the
domains of all measure attributes among the cube schemas: for all overlap-
ping measures M ∈ MC , M̂ ∈ MĈ | M = M̂ check if dom(M) = dom(M̂).
If domain conflicts among the measure attributes are detected, specify the
appropriate conversion functions for the measure attributes M , converting
their domains to the respective domains of M̂ [line 22].

Notice that the non-overlapping measure attributes M ′ ∈ MC \ MĈ =
{M ∈ MC | @M̂ ∈ MĈ : M = M̂} remain in the cube import schema SC ,
i.e. they are not deleted. Importantly, every measure of facts probably
contains information that is potentially valuable to the business analysts,
even if this measure exists only at a subset of Data Marts in the federation.
Merging cube import schemas among which the measures do not overlap
exactly, creates facts with null values, but the resulting facts nonetheless
contain more information.

Now, the cube schema integration process among SC and SĈ is complete.
Its result is the mapping MCÃĈ , which contains the sequence of FA operators
specified in the process explained above. As soon as the schemas of all pairs of
cubes C ∈ DM, Ĉ ∈ ˆDM have been processed, the schema integration phase of
the FedDW methodology is completed.

Example 7.16 (Cube schema integration process): Algorithm 7.5 deter-
mines the following semantic mappings for the cubes of local Data Mart dwh1 (cf.
Figure 2.1): Mdwh1::treatmentÃg::treatment and Mdwh1::medicationÃg::medication,
both of which remain empty (no conflicts to repair).

Moreover, Algorithm 7.5 determines the following semantic mappings for the
cubes of local Data Mart dwh2:

• Mdwh2::treatmentÃg::treatment: convert measure domain
γusd2eur(costs)(dwh2::treatment) with function usd2eur(), which must
be pre-defined within the ROLAP platform of the global Data Mart;
rename dimensional attribute ζdate←date/hr(dwh2::treatment).

• Mdwh2::medicationÃg::medication remains empty (no conflicts to repair). ♦

7.2. DEFINING SEMANTIC MAPPINGS 111

7.2.3 Consolidate Dimension and Fact Instances

The goal of the third and final phase of Data Mart integration is converting
the instances of the transformed dimensions and facts defined previously (see
Subsections 7.2.1 and 7.2.2), such that they conform to the global schema. At
the beginning of this phase, both the transformed dimension schemas S′D and the
transformed cube schemas S′C of every autonomous Data Mart DM1, ..., DMk

are homogeneous with the global Data Mart ˆDM = {Ĉ1, ..., Ĉn̂, D̂1, ..., D̂m̂}.
All heterogeneities at the instance level that still exist among the dimension
members and cells between each DM ∈ {DM1, ..., DMk} and ˆDM are now
resolved. Again, the removal of the conflicts among dimension members has
priority over the conflicts among cube cells.

Recall that dimension integration and cube integration repairs any exist-
ing heterogeneity between one of the autonomous Data Marts and the global
multi-dimensional schema (cf. Algorithms 7.4 and 7.5). In turn, the unified sets
of transformed dimension members and cube cells generated by the mappings⋃

i=1...k{DDMi Ã D̂} and
⋃

i=1...k{CDMi Ã Ĉ} constitute the extensions of
the global dimensions D̂ and global cubes Ĉ. In order to correctly integrate all
members and cells, any heterogeneous instances must be resolved (e.g., overlap-
ping subsets of facts, or heterogeneous roll-up functions for members).

In contrast to schema integration (Subsection 7.2.2), the integration of
dimension and fact instances defines set-oriented mappings ID̂j (with j =
1...m̂) and IĈi (with i = 1...n̂)—for the dimensions {D̂1, ..., D̂j , ..., D̂m̂} and
cubes {Ĉ1, ..., Ĉi, ..., Ĉn̂} of ˆDM , respectively—between the local Data Marts
{DM1, ..., DMk} and the global schema ˆDM . The integration of dimension
and cube instances aims at defining the correct extension of the global multi-
dimensional schema by unifying the extensions of all autonomous Data Marts.
Only the set-oriented view on all Data Marts participating in the federation—
i.e., the simultaneous integration of all local Data Mart extensions—is appro-
priate for this purpose.

For each dimension D̂ ∈ ˆDM , the member integration process unifies the
dimension instances DM1.d(S′D), ..., DMk.d(S′D) across the autonomous Data
Marts DM1, ..., DMk in the Federated DW system, thus specifying the global
dimension instance d̂(SD̂). Recall that dimension schema integration defines
a transformed schema S′D = MDÃD̂(SD) that is homogeneous for dimension
D across all autonomous Data Marts DM1, ..., DMk. The following steps are
repeated for every level l̂ ∈ HD̂:

1. For all sets of levels {l1 ≡ l̂ ∈ DM1.HD, ..., lk ≡ l̂ ∈ DMk.HD} check the
correspondence among their member sets:

(a) If the level extensions overlap (members(l1) ∈ DM1.d ∪ ... ∪
members(lk) ∈ DMk.d 6= ∅, cf. Example 5.18), decide which set op-
eration to apply on the overlapping subsets of members (e.g., UNION,
MINUS, INTERSECT, etc.). Disjoint member subsets are merged us-
ing the UNION operator by default.

(b) If the level extensions are disjoint (members(l1) ∈ DM1.d ∪ ... ∪
members(lk) ∈ DMk.d = ∅), always apply the UNION operation to
merge their member sets. Skip the following step 2.

112 CHAPTER 7. INTEGRATION METHODOLOGY

2. Repair value conflicts that occur among single members of overlapping
level extensions: for i = 1...k let li = {l ∈ DMi.HD | l ≡ l̂}, and let
ext(l̂) =

⋃
i=1...k{members(li)}. For all members m̂ ∈ ext(l̂), let tm̂ =

{m̂ ∈ ext(l̂) | ∃m1 ∈ members(l1)× ...×∃mk ∈ members(lk) : m̂ ≡ m1 ≡
... ≡ mk} be the tuple of equivalent members across the local Data Marts
DM1, ..., DMk.

(a) Check if the l̂-members consistently roll-up to the same parent mem-
ber. Overwrite the wrong roll-up function(s) accordingly: ∀m′ ∈ tm̂ :
ρD(m′) 6≡ ρD(m̂), add operator Ωm′→ρD(m̂)(level(m′)) to mapping
ID̂ (cf. Definition 7.5, Example 5.16).

(b) Check if the non-dimensional attribute values of the l̂-members are
consistent. For each N-attribute N̂ ∈ Sl̂, repair all contradictory
values accordingly: ∀m′ ∈ tm̂ : m′(N̂) 6= m̂(N̂) add operator
δm̂(N̂)←m′(N̂)(level(m′).N̂) to mapping ID̂ (cf. Definition 7.3, Ex-
ample 5.17).

Now the member integration process for the dimension instances d(S′D)
of dimension D among the autonomous Data Marts DM1, ..., DMk is com-
plete. The result of member set integration is the mapping ID̂, which con-
tains the sequence of the set-oriented and value-oriented conversion opera-
tors defined in the process above. If applied to the dimension instances
DM1.d(S′D), ..., DMk.d(S′D), mapping ID̂ generates the global dimension in-
stance d̂(SD̂)—i.e., ID̂(DM1.d, ..., DMk.d) = d̂(SD̂).

Repeat the member integration process for all further dimensions D̂ shared
by the local, autonomous Data Marts DM1, ..., DMk. Thus, the number of
iterations of the member integration process corresponds to the number m̂ of
dimensions that are defined in every local Data Mart. As soon as the members
of all dimensions are integrated, the instances of all dimensions in the global
multi-dimensional schema can be computed.

Example 7.17 (Member integration process): The member integration
process described above creates the following semantic mappings for the di-
mensions of global Data Mart g (cf. Figure 2.2):

• Ig::date time: merge dimensions µ ({dwh1::date time, dwh2::date time2});
no other conflicts to repair.

• Ig::method: µ ({dwh1::method, dwh2::method}); no other conflicts to repair.
• Ig::patient: µ ({dwh1::patient, dwh2::patient}); no other conflicts to repair.
• Ig::drug: overwrite roll-up function Ω‘Novartis′ 7→‘Bayer′(dwh1::drug.l drug);

correct N-attribute value δ‘30pcs.′←‘25pcs.′(dwh2::drug.l drug.pkg size); µ
({dwh1::drug, dwh2::drug}). ♦

7.2. DEFINING SEMANTIC MAPPINGS 113

Finally, for each cube Ĉ ∈ ˆDM the subsequent cells integration process
unifies the cube instances DM1.c(S′C), ..., DMk.c(S′C) across the autonomous
Data Marts DM1, ..., DMk, thus specifying how to fill the global cube cells
ĉ(SĈ). Cells integration consists of the following steps:

1. In case that the cube instances DM1.c(S′C), ..., DMk.c(S′C) overlap (i.e.,
{DM1.MC ∩ ...∩DMk.MC} 6= ∅—see Example 5.19) and the cells should
be merged using the UNION set operation, determine the correspondence
among the entities of the universe of discourse modelled by the cubes. Sim-
ilarly to the so-called “stock” and “flow” semantics of measure variables
[Lenz and Shoshani, 1997], overlapping facts express either an identical-
related or context-related semantics:

• Identical-related : overlapping, identical-related facts describe con-
flicting measures on the same real-world entity in the same context
(e.g., weather statistics for the same time and some particular loca-
tion, or stock-market prices for a particular day and company share).
In most cases, measure values of identical-related facts cannot be
meaningfully summarized. Thus, identical-relationship is similar to
measures with stock semantics [Lenz and Shoshani, 1997].
In case of overlapping cube instances with identical-related cells
either (a) prefer the measure values of one given cube instance
{DM1.c, ...,DMk.c}, or alternatively (b) extend the cells with a new
dimension, called the context dimension:

(a) If preferring measure values of some cube c̄, add operator
µ(C[N, θ]) to mapping IĈ , whereby C = {DM1.C, ..., DMk.C},
N =

⋂
i=1...k(DMi.MC), and θ = prefer(c̄) with c̄ ∈

{DM1.c, ..., DMk.c} (cf. Definition 7.15).
(b) Conversely, if extending the cube instances, add operator

εÂ[l̂]=name(c′)(c
′) to mapping IĈ , enriching each cube instance

c′ ∈ {DM1.c, ...,DMk.c} with some degenerate context dimen-
sion named Â, having only level l̂ (cf. Definition 7.11).

• Context-related : overlapping, context-related facts describe either
(1) the same real-world entity in different contexts (e.g., weather
statistics for different times and some particular location, or stock-
market prices for a particular company share on different stock ex-
changes), or (2) different real-world entities in similar contexts (e.g.,
sales figures of several subsidiaries). The challenging problem with
these overlapping cells is to correctly recognize what they describe,
and if aggregating their measures across autonomous cubes produces
meaningful results. Sometimes the measures of such overlapping cells
are summarizable, sometimes not, depending on the entities the cells
represent. Only an expert of the underlying application domain—
e.g., the Federated DW administrator—can reliably decide on the
summarizability problem. Thus, context-relationship is similar to
measures with flow semantics [Lenz and Shoshani, 1997].
In case of overlapping cube instances with context-related cells either
(a) specify the appropriate aggregation operation for merging the

114 CHAPTER 7. INTEGRATION METHODOLOGY

measure values of the given cube instances {DM1.c, ..., DMk.c}, if
the aggregated value is the interesting piece of information for the
analyst; or alternatively (b) extend the cells with a new dimension,
the so-called context dimension, if the original source and context of
the cells is important for the analyst:

(a) If aggregating measure values, add operator µ(C[N, θ]) to
mapping IĈ , whereby C = {DM1.C, ..., DMk.C}, N =⋂

i=1...k(DMi.MC), and θ ∈ {sum, avg,min, max} with (cf. Def-
inition 7.15).

(b) Conversely, if extending the cube instances, add operator
εÂ[l̂]=name(c′)(c

′) to mapping IĈ , enriching each cube instance
c′ ∈ {DM1.c, ..., DMk.c} with some degenerate context dimen-
sion named Â, having only level l̂ (cf. Definition 7.11).

2. If the cube instances DM1.c(S′C), ..., DMk.c(S′C) are disjoint (i.e.,
DM1.MC∩...∩DMk.MC = ∅—see Example 5.20), simply merge their cells.
Add operator µ(C[∅, θ]) to mapping IĈ , whereby C = {C ∈ DM1, ..., C ∈
DMk}. Notice that operator θ is arbitrary because it has no effect (over-
lapping cells cannot occur). As explained in Example 5.20, the µ operator
applied to disjoint cube instances computes a global cube instance ĉ(SĈ)
with cube schema AĈ , MĈ = DM1.MC ∪ ... ∪ DMk.MC , which accom-
modates all measure values. Thus, measure values from different cube
instances can never collide since every cube instance fills only a subset of
measures MĈ . However, the cells will contain null values.

Now the cells integration process for the cube instances c(S′C) among the
autonomous Data Marts DM1, ..., DMk is complete. Its result is map-
ping IĈ , containing the sequence of set-oriented conversion operators speci-
fied in the process explained above. If applied to the local cube instances
DM1.c(S′C), ..., DMk.c(S′C), mapping IĈ generates the global cube extension
ĉ(SĈ)—i.e., IĈ(DM1.c, ...,DMk.c) = ĉ(SG

Ĉ
). Repeat the cells integration pro-

cess for all further cubes Ĉ shared by the local, autonomous Data Marts
DM1..., DMk.

Example 7.18 (Cells integration process): The cells integration process
described above creates the following semantic mappings for the cubes of global
Data Mart g (cf. Figure 2.2):

• Ig::treatment: merge cubes µ({dwh1::treatment, dwh2::treatment}
[{method, date, cost cat}, sum]).

• Ig::medication: merge cubes µ({dwh1::medication, dwh2::medication}
[{patient, drug, date time}, sum])

The Data Mart integration is now finished for the treatment and medication
cubes of the health insurance case study. Notice that an operator ξ (pivot
split measures) has been added to mapping Ig::treatment in the previous Exam-
ple 7.14. Thus, the final phase of the Data Mart integration methodology only
adds the µ (merge cubes) operators. ♦

7.3. SUMMARY 115

7.3 Summary

In order to integrate autonomous Data Mart schemas, numerous hetero-
geneities must be considered, as analyzed in [Berger and Schrefl, 2006] and
discussed in the Section 7.2. The Dimension and Fact Algebra introduced in
[Berger and Schrefl, 2008] predefine a rich set of conversion operators that ad-
dress all heterogeneities discussed in Chapter 5. The following Table 7.1 lists
the conversion operators available in the FedDW approach with the conflicts
addressed. The table first specifies all unary operators of Fact respectively Di-
mension Algebra, then gives all n-ary operators.

Table 7.1: Predefined conversion operators of Dimension Algebra / Fact Al-
gebra for facts respectively dimensions

Dimensions: conflicts Relevant operator of Dimension Algebra

Heterogeneous hierarchies Project levels πP⊂LD (d), or aggregate hierarchy
ψl∈LD (d) (cf. Examples 7.2 and 7.3, respectively)

Domain conflicts (levels,
non-dimensional attributes)

Convert attribute domains: γθN̄ (d) (Definition 7.4)

Naming conflicts (levels) Rename attributes: ζl′←l(D) (Definition 7.2)

Naming conflicts (non-
dimensional attributes)

Rename non-dimensional attributes:
ζN′←N (Sl) (Definition 7.2)

Overlapping members (di-
mension extensions)

Merge sets of members: µ(D) (Definition 7.6)

Heterogeneous roll-up func-
tions in hierarchies

Overwrite roll-up hierarchies:
Ωm7→v(d.l) (Definition 7.5)

Conflicting values of non-
dimensional attributes

Correct attribute values:
δw←v(d.l.N̄) (Definition 7.3)

Facts: conflicts Relevant operator of Fact Algebra

Schema-instance conflicts Merge measures: χL⇒M̄,Ā(c) (Definition 7.13)

Schema-instance conflicts Split measures: ξM̄⇒A′(c) (Definition 7.14)

Dimensionality Project: π(L⊂AC)(C) (Definition 7.9)

Different measures Delete measure(s): λ(N⊂MC)(C) (Definition 7.9)

Domain conflicts (measures) Convert domains: γM̄θv(c) (Definition 7.10)

Naming conflicts (measures,
dimension attributes)

Rename: ζA′←A(C) and ζM′←M (C) (Defini-
tion 7.9)

Heterogeneous base levels Roll-up dimension attributes:
%A[l⇒l̂](c) (Definition 7.12)

Overlapping cube cells
(fact extensions)

Merge facts: µ(C[N, θ]) (Definition 7.15)

Enrich facts with context dimension (Def. 7.11):
εÂ[l]=v(c) – refer to existing level l

εÂ[l̂]=v(c) – new dimension Â with HÂ = {l̂ 7→ lall}

116 CHAPTER 7. INTEGRATION METHODOLOGY

The definition of semantic mappings between some local, autonomous Data
Mart DM ∈ {DM1, ..., DMk}, with DM = {C1, ..., Cn, D1, ..., Dm}, and global
Data Mart ˆDM = {Ĉ1, ..., Ĉn̂, D̂1, ..., D̂m̂}—whereby n and n̂, as well as m and
m̂ are not necessarily equal—comprises of the following parts:

• For each dimension {D ∈ {D1, ..., Dm} | ∃D̂ ∈ {D̂1, ..., D̂m} : S′D ≡ SD̂ ∧
d′(S′D) ≡ d(SD̂)} of DM , the dimension schema integration process defines
mapping MDÃD̂. The converted schema of D with mapping MDÃD̂ is
intentionally equivalent to SD̂: MDÃD̂(SD) = S′D ≡ SD̂.
→ See Algorithm 7.4 (page 106) in Subsection 7.2.2.

• The members of all dimensions D corresponding to global dimension D̂
among the local, autonomous Data Marts DM1, ..., DMk are unified with
the mapping ID̂, specifying how to repair heterogeneities among mem-
ber subsets and single instances. Mapping ID̂ is defined by the member
integration process.
→ See Subsection 7.2.3, pp. 111.

• For each cube {C ∈ {C1, ..., Cn} | ∃Ĉ ∈ {Ĉ1, ..., Ĉn} : S′C ≡ SĈ} of
DM , the cube schema integration process defines mapping MCÃĈ . The
converted schema of C with mapping MCÃĈ is intentionally equivalent
to SĈ : MCÃĈ(SC) = S′C ≡ SĈ .
→ See Algorithm 7.5 (page 109) in Subsection 7.2.2.

• The cells of all cubes C corresponding to global cube Ĉ among the local,
autonomous Data Marts DM1, ..., DMk are merged with the mapping IĈ ,
specifying how to handle overlapping subsets of cube cells among all Data
Marts. Mapping IĈ is defined during the cells integration process.
→ See Subsection 7.2.3, pp. 111.

Chapter 8

SQL-MDi—the Distributed
OLAP Language

Contents
8.1 Repairing Schema-Instance Heterogeneities . . . 121

8.2 Repairing Schema Level Heterogeneities 124

8.2.1 Naming Conflicts . 124

8.2.2 Diverse Aggregation Hierarchies 125

8.2.3 Dimensionality Conflicts 127

8.2.4 Domain Conflicts . 127

8.3 Repairing Instance Level Heterogeneities 131

8.3.1 Heterogeneous Roll-up Functions 131

8.3.2 Value Conflicts among Non-dimensional Attributes . 132

8.3.3 Overlapping Sets of Dimension Members 133

8.3.4 Disjoint Sets of Dimension Members 135

8.3.5 Overlapping Cells 135

8.3.6 Disjoint Cells . 138

8.4 Summary of SQL-MDi 138

This chapter introduces SQL-MDi (SQL for Multi-Dimensional Integration),
a query language that provides for both, the integration of autonomous Data
Marts, and OLAP querying of the integrated multi-dimensional data, based on
the SQL standard. SQL-MDi supports the general integration methodology for
autonomous Data Marts introduced in the previous Chapter 7. It extends a
standard OLAP query—formulated in SQL—with a prologue that computes a
virtual global cube from several local cubes of autonomous Data Marts. The
query clauses of the proposed SQL-MDi language provide numerous conversion
operators, for which the Dimension Algebra and Fact Algebra are one possible,
procedural implementation (introduced in Section 7.1). The current chapter
specifies the syntax of SQL-MDi, explains how its operators address the hetero-
geneities analyzed in Chapter 5 and correspond to the Dimension/Fact Algebra.
Numerous example statements illustrate the use of the SQL-MDi prologue.

117

118 CHAPTER 8. SQL-MDI LANGUAGE

The query language SQL-MDi (SQL for Multi-Dimensional Integration) was
introduced in [Berger and Schrefl, 2006] to support the integration of several
autonomous Data Marts. As its name suggests, SQL-MDi is based on the
well-known SQL standard [(ISO), 1992]. The SQL-MDi language supports dis-
tributed OLAP queries, i.e. OLAP queries evaluated across several data cubes of
autonomous Data Marts. As such, SQL-MDi can be employed as the query lan-
guage in a Federated DW environment conforming to the reference architecture
introduced in Chapter 6 (see pp. 81).

An SQL-MDi statement acts as the prologue of a standard SQL query with
grouping and aggregation operations, as commonly used for OLAP. Thus, the
SQL-MDi prologue complements the OLAP query by specifying the data struc-
ture over which to evaluate the query result. The syntax of SQL-MDi is inspired
by the SQL standard [(ISO), 1992] to facilitate the analyst’s work by providing
a familiar notation.

Using the clauses provided by the SQL-MDi language, the OLAP analyst
specifies how to generate a “virtual” global cube from two or more local cubes
across autonomous Data Marts. In order to overcome possible heterogeneities
among the local cubes, a rich set of conversion operators is available within the
clauses of the SQL-MDi statement. The Dimension Algebra and Fact Algebra
operators proposed in the previous Chapter 7 correspond exactly to the SQL-
MDi conversions. Thus, the DA/FA represent a procedural implementation of
these conversion clauses.

The basic structure of an SQL-MDi statement consists of the following three
main clauses in the given, fixed order:

1 DEFINE {[GLOBAL] CUBE <cube -declarations >}

2 {MERGE DIMENSIONS <merge -dim -subclauses >}

3 MERGE CUBES <merge -cube -subclauses >

Succeeding the SQL-MDi statement, the OLAP analyst formulates the ana-
lytic business question with a standard SQL query. The SQL query refers to the
global cube schema, conforming to the following syntactic pattern [(ISO), 1992]:

1 SELECT <dimension attributes >, <aggregated measures >

2 FROM <fact tables >, <dimension tables >

3 WHERE <selection criteria >

4 GROUP BY <dimension attributes >

5 [HAVING <group selection criteria >]

Each SQL-MDi query computes one result cube (or “output cube”—
GLOBAL CUBE clause) from two or more corresponding source cubes (or “input
cubes”—CUBE clauses). Notably, the output cube schema is not specified ex-
plicitly, but rather composed from the elements of the input cube schemas.
The GLOBAL CUBE clause only declares the name of the output cube, refer-
enced from the subsequent SQL query. Therefore, we denote the output cube
as “virtual”—it is not necessarily materialized physically.

In general, SQL-MDi maps corresponding schema elements of both dimen-
sions and cubes through name equality across all source cubes of the current
statement. Consequently, the analyst’s responsibility is to carefully unify the
name strings of all corresponding schema elements to be merged, applying the
appropriate operators within the DEFINE ... clauses and its various sub-clauses.

119

This approach avoids awkward pairwise mappings from input cubes to the out-
put cube, facilitating the simultaneous integration of more than two input cubes.
Notice that the standard database query language SQL [(ISO), 1992] employs
exactly the opposite paradigm. In an SQL query, the user explicitly specifies the
attributes of the output schema in the SELECT clause. Moreover, tables have
to be “mapped” pairwise with “join” conditions in the WHERE clause of the
query. Although this approach has its own merits, the specification of pairwise
joins is appropriate for “flat” tables, but far too complex for the “hierarchical”
dimension and cube structures.

Firstly, the DEFINE ... clauses specify both, the local source cubes and the
name of the global, target cube. Every cube is assigned a mandatory alias
name, used in the other clauses for referencing its properties (e.g., measure
attributes). Each CUBE clause describes the import schema of a local cube by
explicitly listing all dimension and fact attributes required in the global cube.
SQL-MDi provides the import operators MEASURE and DIM as sub-clauses of
CUBE for this purpose. All elements of local schemas not referenced with the
import operators are ignored. The optional WHERE sub-clause allows to restrict
the facts imported from the local cube to the specified selection predicates (i.e.,
slice and dice). Moreover, in order to repair domain and naming heterogeneities
among local cubes, the conversion operators CONVERT MEASURES, ROLLUP
and PIVOT as well as the renaming operators MAP LEVELS, ‘–>’ (for attribute
names) and ‘>>’ (for attribute values) are available as sub-clauses of CUBE.

The GLOBAL CUBE clause declares only the name of the global, target cube,
but none of its schema elements. Instead, the MERGE CUBES and MERGE DI-
MENSIONS clauses refer, respectively, to the fact and dimension attributes of
the input cubes, and specify in detail their conversion to the facts and dimen-
sions of the global cube. Thus, it is essential to carefully reconcile the number
and names of all local dimension and measure attributes.

Example 8.1 (Basic concepts—DEFINE CUBE clause): The following
SQL-MDi fragment imports all measure attributes and the two dimension at-
tributes patient and drug of the medication cubes in the two Data Marts dwh1
and dwh2. Moreover, the statement specifies g::medication as the target cube:

1 DEFINE CUBE dwh1:: medication AS c1

2 (MEASURE c1.qty , MEASURE c1.cost ,

3 DIM c1.patient , DIM c1.drug)

4 CUBE dwh2:: medication AS c2

5 (MEASURE c2.qty , c2.cost ,

6 DIM c2.patient , DIM c2.drug)

7 GLOBAL CUBE g:: medication AS c0

8 ...

Secondly, one MERGE DIMENSIONS clause is required for each dimension
referenced by the input schemas. The MERGE DIMENSIONS clause specifies the
renaming and conversion operators necessary to obtain homogeneous schemas
and instances of the local dimensions. Moreover, the clause merges the local
dimensions into one dimension of the global cube. All dimensions created this
way are added to the schema of the global cube and referenced in the MERGE
CUBES clause (explained in the next paragraph). In order to repair hetero-
geneities among the local dimensions at the schema or at the instance level, the

120 CHAPTER 8. SQL-MDI LANGUAGE

conversion operators CONVERT ATTRIBUTES and RELATE <levels>, as well
as the renaming operators RENAME (with ‘–>’ for attribute names) and ‘>>’
(for attribute values) are available as sub-clauses.

Example 8.2 (Basic concepts—MERGE DIMENSIONS clause):
Assuming that the dimensions of the medication cubes were free of conflicts, the
following SQL-MDi fragment would merge the patient and drug dimensions of
the local cubes, computing two dimensions patient and drug of the target cube:

8 ...

9 MERGE DIMENSIONS UNION c1.patient AS p1 , c2.patient AS p2

INTO c0.patient AS p0

10 MERGE DIMENSIONS UNION c1.drug AS d1 , c2.drug AS d2 INTO

c0.drug AS d0

11 ...

Thirdly and finally, the MERGE CUBES clause completes the definition of
the global, target cube. It specifies the global cube cells as “superset” of all
cells of the local cubes defined in the current SQL-MDi statement. Impor-
tantly, the measure attributes of the local import schemas—specified by the
DEFINE CUBE clauses—must match exactly, regarding both their number and
their names. If necessary, the conversion operators PREFER, AGGREGATE MEA-
SURE and TRACKING SOURCE AS DIMENSION are available as sub-clauses
of MERGE CUBES to repair heterogeneity among local cube cells. Moreover,
the ON sub-clause explicitly connects the global dimensions—generated by the
MERGE DIMENSIONS clauses—with the global cube.

Example 8.3 (Basic concepts—MERGE CUBES clause): Assuming
that the medication cube cells were free of conflicts, the following SQL-MDi
fragment would merge the cells of the local cubes, computing the target cube
cells and linking the cells to the dimensions patient and drug:

11 ...

12 MERGE CUBES UNION c1 , c2 INTO c0 ON patient , drug

Renaming operators of SQL-MDi

In order to map corresponding schema elements within SQL-MDi statements,
the OLAP analyst must specify identical names in the import schemas of lo-
cal data cubes. All naming conflicts are resolved by changing the conflicting
name(s) of attributes, such that equivalent attributes receive identical names
across the cube import schemas. Thus, renaming operations are frequently
needed in SQL-MDi statements.

For that purpose, SQL-MDi provides two different rename operators, which
emphasize the separation between properties at the schema and at the instance
level syntactically. On the one hand, the rename operator “–>” changes names
of attributes. It is generally used in the context of other keywords. In particular,
the “–>” operator is available in conjunction with the MEASURE, DIM and MAP
LEVELS keywords of the DEFINE CUBE clause as well as with the ATTRIBUTE
keyword of the MERGE DIMENSIONS clause (cf. Example 8.4). On the other
hand, rename operator ‘>>’ is occasionally needed to change conflicting values

8.1. REPAIRING SCHEMA-INSTANCE HETEROGENEITIES 121

of attributes. It is used together with the RENAME keyword of the MERGE
DIMENSIONS clause, as Section 8.3 will explain (cf. Example 8.14).

The following Example 8.4 illustrates various usages of attribute renaming
with operator “–>”. Notice that Section 8.2 will detail, above others, the at-
tribute rename operator and demonstrate several other occurrences. In contrast,
the value rename operator ‘>>’ will be explained later in Section 8.3, since it
occurs less often.

Example 8.4 (Basic concepts continued—rename operators): The fol-
lowing SQL-MDi code snippet illustrates how to use the rename operator “–>”
to change the names of measures (line 2), dimension attributes (line 3), level
names (line 4), and non-dimensional attributes (line 9):

1 DEFINE CUBE dwh1:: treatment AS c1

2 (MEASURE c1.cost_p -> costs , ...

3 DIM c1.date_time -> calendar_date ...

4 (MAP LEVELS date_time ([day -> day/time], [year]))

5)

6 CUBE dwh2:: treatment AS c2

7 ...

8 MERGE DIMENSIONS c1.calendar_date AS d1 , c2.calendar_date

AS d2 INTO c0.calendar_date AS d0

9 (ATTRIBUTE d2.descrpt -> description)

In the following Sections we illustrate how to repair the conflicts described
in Chapter 5 using SQL-MDi. The Sections 8.1, 8.2 and 8.3 will explain the
subclauses and conversion operators available in SQL-MDi and how to over-
come schema-instance conflicts, heterogeneities at the schema level, and at the
instance level, respectively, using these constructs.

8.1 Repairing Schema-Instance Heterogeneities

The following Section illustrates how to overcome schema-instance conflicts
among facts and dimensions of autonomous data cubes. Schema-instance con-
flicts are the most complex heterogeneities, affecting both the schema level and
instance level. As explained in Section 5.1 of the multi-dimensional conflict
taxonomy (see pp. 62), these conflicts are caused by the use of different mod-
elling elements to represent the same part of the real world. We explain the
adequate use of the PIVOT sub-clause below DEFINE CUBE with example SQL-
MDi query prologues, referring again to the treatment fact tables of the case
study (see Figure 2.1, page 16 and Figure 2.4, page 19).

Typically, schema-instance conflicts affect the representation of fact context
information in multi-dimensional models. Recall that the context of facts can be
modelled either explicitly (as dimensions) or implicitly (within the facts them-
selves, e.g. as additional, specialized measures). The different representation of
real-world data either within schema or instance modelling elements consider-
ably impede the interpretation of multi-dimensional data by human analysts,
so that they should always be repaired.

In order to remove schema-instance conflicts, two different approaches are
available: either convert dimension members into specialized, “contextualized”

122 CHAPTER 8. SQL-MDI LANGUAGE

measures or convert (part of) the fact context into members of a new dimension,
called the “context dimension”. SQL-MDi provides the PIVOT sub-clause below
the DEFINE CUBE directive to perform these conversions. In order to support
both approaches, two variants of PIVOT exist, that are distinguished by different
keywords.

• Dimension members into contextualized facts.
The first approach is characterized by a transformation of part of the
“explicit” context (i.e., one of the dimensions), splitting up one measure
variable into several new “contextualized” measure variables. This way,
the dimension members become part of the fact schema. As a consequence
of converting dimension members into the “domain” of new measure vari-
ables, the dimensionality of the cube decreases and the number of mea-
sures (the “expressivity”) increases. Therefore, the higher expressivity of
the fact schema allows to merge several cells of the old cube into a single
cell of the new cube without any loss of information.
The PIVOT sub-clause of DEFINE CUBE together with the SPLIT MEA-
SURE keyword is used to specify this conversion. It conforms to the fol-
lowing syntax: PIVOT SPLIT MEASURE <cube-alias>“.”<measure-attr-
name> BASED ON <cube-alias>“.”<dim-attr-name>. The operator splits
up <measure-attr-name> to several new measures, converting the mem-
ber identifiers of <dim-attr-name> into the names of the new measure
variables, according to the name pattern “<measure-attr-name> <dim-
attr-value>”. Finally, the <dim-attr-name> succeeding the BASED ON
keyword is removed from the cube import schema.

Example 8.5 (converting dimension members to measure variables):
The following fragment of SQL-MDi code converts the costs measure of
cube dwh2::treatment into two new costs measure variables, based on the
members found in dimension dwh2::cost cat:

1 DEFINE CUBE dwh1:: treatment AS c1

2 (MEASURE c1.cost_p -> costs_personnel , MEASURE c1.

cost_m -> costs_material ,

3 DIM c1.method , DIM c1.date_time)

4 CUBE dwh2:: treatment AS c2

5 (MEASURE c2.costs ,

6 DIM c2.method , DIM c2.date_time , DIM c2.cost_cat ,

7 PIVOT SPLIT MEASURE c2.costs BASED ON c2.cost_cat)

As shown in Figure 2.4 on page 19, the cost cat dimension in dwh2 con-
tains two members, “personnel” and “material”. Therefore, the PIVOT
operator generates two new measure variables in the import schema of
dwh2::treatment, named “costs personnel” and “costs material”. Conse-
quently, the measure attributes of cube c1 need to be renamed to match
the new schema of cube c2 (line 2). Moreover, whenever the method and
date time values of two original cube cells match, these two cells will be
merged into a single cell of the new cube. The cost value of an original
cell linked to the “material” cost cat-member will be written in the new
cost m measure; accordingly, the cost value of a cell associated with the
“personnel” cost cat-member is written in the new cost p measure of the
new cube. ♦

8.1. REPAIRING SCHEMA-INSTANCE HETEROGENEITIES 123

• Fact context into dimension members.
In the second approach, several measure variables of the fact schema are
converted into a single new measure. This way, parts of the fact schema—
the names of the measure variables being transformed—become the mem-
bers of a new dimension. The previously implicit context—hidden in the
measure variables—is preserved and “externalized” within the new mem-
bers. As a consequence of converting fact context into dimension members,
the dimensionality of the cube increases and the number of measure vari-
ables (the “expressivity”) decreases. Therefore, the lower expressivity of
the fact schema requires the cells of the old cube to be split into several
cells not to lose any information.
The PIVOT sub-clause of DEFINE CUBE together with the MERGE MEA-
SURES keyword is used to specify this conversion. It conforms to
the following syntax: PIVOT MERGE MEASURES <measure-attr-list>
INTO <new-measure-attr-name> USING <new-dim-attr-name>. The to-
ken <measure-attr-list> specifies the names of the measures to be con-
verted in a comma-separated list, each name conforming to the pattern
<cube-alias>“.”<measure-attr-name>. The PIVOT operator generates the
context dimension <new-dim-attr-name> and populates it automatically,
generating the member values from the measure attribute names given in
<measure-attr-list>.

Example 8.6 (converting measure variables to dimension members):
The following snippet of SQL-MDi code converts the cost m and cost p
measures of cube dwh1.treatment into a single, new measure variable
named costs:

1 DEFINE CUBE dwh1:: treatment AS c1

2 (MEASURE c1.cost_p , MEASURE c1.cost_m ,

3 DIM c1.method , DIM c1.date_time ,

4 PIVOT MERGE MEASURES c1.cost_p , c1.cost_m INTO c1.

costs USING c1.category

5 CUBE dwh2:: treatment AS c2

6 (MEASURE c2.costs ,

7 DIM c2.method , DIM c2.date_time , DIM c2.cost_cat ->

category)

As the result of the above SQL-MDi code, the cost m and cost p measure
attributes in the import schema of cube dwh1::treatment are replaced by
the single, new measure variable costs. The PIVOT operator generates two
members of the new dimension c1.category, named “cost m” and “cost p”.
Moreover, for every cell of the original cube two new cube cells are gen-
erated; all cost m measures are written in a cell connected to the cost m
instance of the new context dimension c1.category. Analogously, all cost p
measures are written in cells connected to the cost p instance of the new
context dimension. ♦

124 CHAPTER 8. SQL-MDI LANGUAGE

8.2 Repairing Schema Level Heterogeneities

The following Section illustrates how to overcome heterogeneities at the schema
level among facts and dimensions of autonomous data cubes. We illustrate the
adequate use of the SQL-MDi sub-clauses below DEFINE CUBE and MERGE
DIMENSIONS with example SQL-MDi statements, referring to the treatment
fact tables of the case study (see Figure 2.1, page 16 and Figure 2.4, page 19).

8.2.1 Naming Conflicts

The following naming conflicts among the schemas of source cubes can be re-
paired using the rename operators of SQL-MDi in several sub-clauses of DEFINE
CUBE and MERGE DIMENSIONS:

• Naming conflicts in measure attributes.
The renaming of measures conforms to the following syntax: DEFINE
CUBE “(” MEASURE <cube-alias> “.” <measure-attr-name> [“–>”
<new-measure-attr-name>] “)”.

• Naming conflicts in dimension attributes.
The renaming of dimension attributes conforms to the following syntax:
DEFINE CUBE “(” DIM <cube-alias> “.” <dim-attr-name> [“–>” <new-
dim-attr-name>] “)”.

• Naming conflicts of levels within hierarchies.
The renaming of levels conforms to the following syntax: DEFINE CUBE
... “(” MAP LEVELS <dim-name> [<level-name> “–>” <new-level-
name>] “)”.

• Naming conflicts in non-dimensional attributes.
The renaming of non-dimensional attributes conforms to the syntax:
MERGE DIMENSIONS “(” ATTRIBUTE <dim-alias>“.”<non-dim-attr-
name> “–>” <new-non-dim-attr-name> “)”.
In contrast to the MEASURE and DIM keywords of the DEFINE
CUBE clause, the ATTRIBUTE keyword is only specified for those non-
dimensional attributes that should be renamed. The MERGE DIMEN-
SIONS clause implicitly adds all other non-dimensional attributes of the
source dimensions to the global dimension schemas. Eliminating non-
dimensional attributes from cube import schemas is not supported be-
cause they often contain useful information on the dimension members.
If a non-dimensional attribute is regarded unnecessary, recall that it can
always be eliminated within the standard SQL query succeeding the SQL-
MDi prologue.

The following example illustrates how to use the rename operator in the
various clauses in order to remove the naming conflicts among the treatment
data cubes of the case study.

Example 8.7 (Rename operators): Several elements of the treatment cube
schemas are heterogeneous (see Figure 2.4, page 19): (1) the measure attributes,
(2) the time dimensions (although the dimension attributes in the cube schemas
have the same name), and (3) the non-dimensional attributes of the method di-

8.2. REPAIRING SCHEMA LEVEL HETEROGENEITIES 125

mension. The following SQL-MDi code fragment uses all of the aforementioned
variants of the rename operator to repair these conflicts:

1 DEFINE CUBE dwh1:: treatment AS c1

2 (MEASURE c1.cost_p -> costs ,

3 DIM c1.method , DIM c1.date_time -> calendar_date

4 (MAP LEVELS date_time ([day -> day/time], [year]))

5)

6 CUBE dwh2:: treatment AS c2

7 (MEASURE c2.costs , DIM c2.method , DIM c2.date_time ->

calendar_date

8 WHERE c2.cost_cat = ’personnel ’

9 (MAP LEVELS date_time ([day/hr -> day/time], [year]))

10)

11 MERGE DIMENSIONS c1.calendar_date AS d1 , c2.calendar_date

AS d2 INTO c0.calendar_date AS d0

12 (ATTRIBUTE d2.descrpt -> description)

In the above SQL-MDi statement, we made the following assumptions:
(1) the analyst wants to investigate only the personnel costs of all treatments.
Therefore, he renames the cost p attribute of dwh1. In order to accordingly re-
strict local cube dwh2 to cells with measures on personnel costs, a slice operation
on the cost cat dimension of dwh2 is necessary, using the WHERE sub-clause of
DEFINE CUBE (line 8). (2) The level [day] of dwh1::date time records a calen-
dar date together with the time of day, so that the levels dwh1::date time [day]
and dwh2::date time2 [day/hr] are mapped by using the rename operator in the
MAP LEVELS clause. Consequently, the MERGE DIMENSIONS clause (sketched
in line 11) would interpret the levels dwh1::date time [day] and dwh2::date time2
[day/hr] as semantically equivalent (as opposed to Example 8.8 on page 126, in
which both [day] levels will be mapped as equivalent).

Moreover, the dimension attributes date time were renamed to calendar date
in lines 3 and 7. Finally, the non-dimensional attribute descrpt in dimension
dwh2::method is renamed to match the name of the description attribute in
dimension dwh1::method. ♦

8.2.2 Diverse Aggregation Hierarchies

When importing local cubes, their dimension hierarchies have to correspond
across all import schemas specified with the DEFINE CUBE clauses. Hetero-
geneities in aggregation hierarchies of partially corresponding dimensions are
resolved by a “projection” on the common levels among all hierarchies (see the
π operator of Dimension Algebra, Example 7.2 on page 91). This often means
restricting the hierarchies among inner-level corresponding dimension schemas
to only a few levels (cf. Examples 5.6 and 5.7, page 66). Base-level correspond-
ing dimension schemas must even be reduced to a “degenerate” dimension—i.e.,
only the base level remains in the level schema.

For that purpose, the DEFINE CUBE clause provides the MAP LEVELS sub-
clause, restricting the import schema of local dimensions to the subset of levels
selected explicitly. It conforms to the following syntax: MAP LEVELS <dim-
name> “(” <mapped-levels-list> “)”. The token <dim-name> refers to dimen-
sion <node>::<dim-name> in the import schema of local cube <cube-alias>.

126 CHAPTER 8. SQL-MDI LANGUAGE

Since the <node> name is inherited automatically from the DEFINE CUBE
clause, it is omitted in the MAP LEVELS sub-clause. In <mapped-levels-list>,
the analyst gives a comma-separated list of level names (enclosed in square
brackets), being a subset of all of <dim-name>’s levels. This way, the <mapped-
levels-list> specifies which levels to include in the import schema of dimension
<dim-name>.

Deleting levels from a dimension’s import schema implicity changes its hi-
erarchy. In order to maintain valid aggregation hierarchies, the MAP LEVELS
operator transitively adjusts both the hierarchies and the roll-up functions in
the import schema of <dim-name> as follows. Let D denote <dim-name>,
l, l′ ∈ LD be two levels of D in <mapped-levels-list> and lr ∈ LD be some level
of D not in <mapped-levels-list>. (1) The new hierarchy H ′

D is computed from
the old hierarchy HD as follows: (l 7→ lr) ∈ HD ∧ (lr 7→ l′) ∈ HD ⇒ (l 7→ l′) ∈
H ′

D. (2) The new family of roll-up functions ρ′D is adjusted accordingly, i.e.
∀m ∈ members(l) : ρl 7→l′

D (m) := ρlr 7→l′
D (ρl 7→lr

D (m)). In other words, the ROLLUP
operator maintains all “finer than” respectively “coarser than” relationships
l 7→+ l′ among the levels in <mapped-levels-list> of the original hierarchy HD

(see Definition 4.8, page 56).

The MAP LEVELS operator is an optional sub-clause of DEFINE CUBE. If a
dimension d is imported using the DIM keyword (see Example 8.9), but no MAP
LEVELS operator specified for d, the DEFINE CUBE clause implicitly includes
all levels of d in the import schema.

Example 8.8 (Deleting unneeded levels in dimension hierarchies):
The date dimensions of the treatment data cubes are heterogeneous, since
both their number of levels and hierarchies are different. The following code
fragment illustrates how to apply the MAP LEVELS sub-clause on the date
dimensions of the case study:

1 DEFINE CUBE dwh1:: treatment AS c1

2 (MEASURE c1.cost_p , MEASURE c1.cost_m ,

3 DIM c1.method , DIM c1.date_time

4 (MAP LEVELS date_time ([day], [year]))

5)

6 CUBE dwh2:: treatment AS c2

7 (MEASURE c2.costs , DIM c2.method , DIM c2.date_time

8 (MAP LEVELS date_time2 ([day], [year]))

9)

The above query code imports the levels [day] and [year] of the date dimen-
sions using the MAP LEVELS sub-clause (lines 4 and 8). Consequently, the levels
[month] of dwh1::date time as well as [day/hr], [week] of dwh2::date time2 are
eliminated from the import schemas.

Notice that “c2.date time” in line 7 above refers to dimension attribute
date time of the local cube dwh2::treatment, whereas “date time2” in line 8 de-
notes the dimension dwh2::date time2. Moreover, this example ignores the addi-
tional domain conflict among both date dimension base levels. In order to over-
come this problem, the analyst has to perform a roll-up of the dwh2::date time2
dimension to level [day], as illustrated in Example 8.10 on page 128. ♦

8.2. REPAIRING SCHEMA LEVEL HETEROGENEITIES 127

8.2.3 Dimensionality Conflicts

Heterogeneous dimensionality among autonomous data cubes with partially cor-
responding cube schemas is resolved by restricting the global cube schema to the
common, local dimensions. It is important to consider, though, that a reduction
of the dimensionality entails the merging of cube cells, analogously to the dice
OLAP operation. Therefore, any change in the dimensionality has far-reaching
consequences on the fact instance, i.e. the cells of the cube. Note that the re-
duction of the dimensionality always leads to loss of information and may cause
new overlapping cells conflicts among the autonomous DMs (see Section 5.3).

For the purpose of reducing the dimensionality of a cube, the DEFINE CUBE
clause provides the DIM sub-clause for the import of dimensions from local data
cubes. One DIM sub-clause is specified for every dimension of a local cube that
should be available in the global cube. The DEFINE CUBE clause eliminates all
measures and dimensions that are not explicitly mentioned in a MEASURE or
DIM sub-clause. As such, the DEFINE CUBE operator performs a “projection”
on the common schema elements.

Example 8.9 (Repairing dimensionality conflicts): The schemas of the
treatment data cubes provide different sets of dimensions, as shown in Figure 2.1
(page 16). In order to use only the two common “overlapping” dimensions
method and date time in an OLAP query, the analyst would use the DIM sub-
clause, as illustrated in the following code fragment:

1 DEFINE CUBE dwh1:: treatment AS c1

2 (MEASURE c1.cost_p , MEASURE c1.cost_m ,

3 DIM c1.method , DIM c1.date_time)

4 CUBE dwh2:: treatment AS c2

5 (MEASURE c2.costs ,

6 DIM c2.method , DIM c2.date_time)

The above SQL-MDi code eliminates the dimensions dwh1::phys and
dwh2::cost cat from the import schemas of the treatment cubes, because they are
not imported by a DIM sub-clause. Consequently, the dimensionality of both
data cubes’ import schemas is reduced from three to two.

Notice that this example ignores the schema-instance conflict that persists
among the costs measures of both treatment cubes. Since here the costs cat-
egories seem to be irrelevant for the OLAP query (dimension dwh2.cost cat
is eliminated), the analyst could simply calculate the sum of c1.cost p and
c1.cost m in the MERGE CUBES clause to obtain a valid global cube. ♦

8.2.4 Domain Conflicts

All domain conflicts are resolved by applying a conversion function, such that
equivalent attributes have identical domains in the import schemas. For that
purpose, SQL-MDi provides the ROLLUP operator as sub-clause of MERGE
DIMENSIONS as well as the operators CONVERT ATTRIBUTES and CONVERT
MEASURES as sub-clauses of DEFINE CUBE. The following examples explain
how to use these conversion operators.

128 CHAPTER 8. SQL-MDI LANGUAGE

Domain conflicts among base levels of hierarchies.

Heterogeneous domains of base levels among the hierarchies of inner-level corre-
sponding dimension schemas are resolved by performing a roll-up to the lowest
common level. For that purpose, SQL-MDi provides the ROLLUP sub-clause
below DEFINE CUBE. It conforms to the following syntax: ROLLUP <cube-
alias>“.”<dim-attr-name> TO LEVEL <dim-name> “[”<level-name>“]” WITH
<aggr-function> FOR <cube-alias>.<measure-attr-name>. The token <cube-
alias>.<dim-attr-name> refers to one of the dimensional attributes specified in
the import schema of the local cube <cube-alias>, using the DIM keyword. The
ROLLUP operator changes the domain of <dim-attr-name> to the target level
<level-name> in dimension <dim-name>. The cube schema <cube-alias> has
to be linked to <dim-name> with the attribute <dim-attr-name>. Additionally,
<level-name> must be a part of <dim-name>’s hierarchy and specified in the
MAP LEVELS operator of the cube import schema. Finally, the WITH keyword
precedes the specification of an aggregation function <aggr-function> for each
<measure-attr-name> of the local cube.

The semantics of ROLLUP is similar to the MAP LEVELS operator in that
it performs a projection on dimension levels in the import schema of the local
cube given in the same DEFINE CUBE clause. In particular, ROLLUP changes
both the dimension hierarchy and the cells as follows: (1) All levels in the
hierarchy from the base level up to the given “target level”—succeeding the TO
LEVEL keyword in the ROLLUP clause—are deleted from the import schema of
the dimension <dim-name>. Thus, the target level becomes the new base level
in the dimension’s import schema. (2) The domain of the dimension attribute
<dim-attr-name> is changed from the original base level to the new base level
<level-name> in dimension <dim-name>. (3) At the instance level, the cells
of the data cube are recomputed, such that they link the measure values with
the members of the new base level <level-name> instead of the members of the
original base level. Consequently, several original cube cells will be merged into a
single one, according to the roll-up hierarchy of the members in dimension <dim-
name>. The measure values in the merged cells are computed using the specified
aggregation functions. Thus, the SQL-MDi ROLLUP sub-clause reduces the
detail level of the cube cells in the import schema—analogously to the OLAP
roll-up operation.

Example 8.10 (Roll-up of a dimensional attribute): The base levels of
both time dimensions in the treatment cubes are heterogeneous, as already ex-
plained in Example 8.8 on page 126. However, level [day]—the parent level of
[day/hr]—in dimension dwh2::date time2 is compatible to level [day] in dimension
dwh1::date time because their members are of the same granularity. Therefore,
the simplest solution to solve the domain conflict among the base levels of the
time dimensions is a roll-up of dimension dwh2::date time2 from level [day/hr] to
level [day]. The following code snippet illustrates how to perform this conversion
using the ROLLUP sub-clause of SQL-MDi:

1 DEFINE CUBE dwh1:: treatment AS c1

2 (MEASURE c1.cost_p , MEASURE c1.cost_m ,

3 DIM c1.method , DIM c1.date_time)

4 CUBE dwh2:: treatment AS c2

5 (MEASURE c2.costs ,

8.2. REPAIRING SCHEMA LEVEL HETEROGENEITIES 129

6 DIM c2.method , DIM c2.date_time)

7 (ROLLUP c2.date_time TO LEVEL date_time2[day] WITH SUM()

FOR c2.costs)

The ROLLUP clause in the above query code deletes the level [day/hr]
from the import schema of dimension dwh2::date time2. Moreover, the roll-
up operation is computed on the cells of cube c2, changing its detail level.
The name of the dimensional attribute c2.date time in the import schema
remains the same, but its domain is changed from dwh2::date time2[day/hr]
to dwh2::date time2[day]. Note that “c2.date time” in line 7—succeeding the
ROLLUP keyword—refers to the dimensional attribute in the fact schema of
c2, whereas “date time2” in the same line—next to the TO LEVEL keyword—
denotes the dimension schema dwh2::date time2. ♦

Domain conflicts among inner levels of hierarchies.

If domain conflicts occur among inner levels of the hierarchies of base-level cor-
responding dimensions, these conflicts cannot be resolved in SQL-MDi, only ig-
nored using the MAP LEVELS sub-clause of the DEFINE CUBE clause. With the
MAP LEVELS operator, the hierarchies are constrained to the levels with corre-
sponding domains, deleting all other levels with incompatible domains from the
import schema (minimum use integration strategy, see Figure 7.3 on page 105).
To see an application of the MAP LEVELS sub-clause, albeit in the context of
diverse hierarchies, refer to Example 8.8 on page 126.

SQL-MDi does not support domain conversion of inner level attributes since
the roll-up functions to the parent level(s) could become invalid by the conver-
sion of the lower level. Moreover, it is often impossible to find and implement a
generalized conversion function for repairing these domain conflicts, the reason
being that dimension members usually model very specialized knowledge or nar-
row concepts of the real-world. For example, consider members of a “product”
dimension on the “product group” level. Hierarchies of products and product
groups are very specific to one particular organization and the domains of inde-
pendent product groups can hardly be harmonized among diverse domains.

Domain conflicts among non-dimensional attributes.

Domain conflicts may also occur among dimension schemas with overlapping or
identical non-dimensional attributes. Analogously to measure attributes, het-
erogeneous domains among non-dimensional attributes are resolved by applying
a conversion function on the cube import schema. SQL-MDi provides the CON-
VERT ATTRIBUTES sub-clause of the MERGE DIMENSIONS directive for that
purpose. It conforms to the following syntax: CONVERT ATTRIBUTES APPLY
<function-name> FOR <dim-alias>“.”<dim-attr-name> (DEFAULT | WHERE
<conditions>). The operator applies function <function-name> on the values
of non-dimensional attribute <dim-attr-name> in dimension <dim-alias>. The
WHERE keyword optionally restricts the application of the conversion function
to the <dim-attr-name>-values in the subset of members matching the selection
criteria given in <conditions>. Alternatively, the DEFAULT keyword performs
the conversion function for the <dim-attr-name>-values of all members.

130 CHAPTER 8. SQL-MDI LANGUAGE

Example 8.11 (Converting the domain of non-dimensional attributes):
Assume that the treatment data cubes use different currencies for recording
the costs figures. Say, dwh1::treatment records costs in Euros, whereas
dwh2::treatment contains costs in US-$. In this case, the analyst would have
to reconcile the domains of the non-dimensional attribute hourly costs of the
[method] level in the method dimensions. For this scenario, the CONVERT
ATTRIBUTES sub-clause provided by SQL-MDi is illustrated in the following
code snippet:

1 DEFINE CUBE dwh1:: treatment AS c1

2 (MEASURE c1.cost_p , MEASURE c1.cost_m ,

3 DIM c1.method , DIM c1.date_time)

4 CUBE dwh2:: treatment AS c2

5 (MEASURE c2.costs ,

6 DIM c2.method , DIM c2.date_time)

7 GLOBAL CUBE g:: treatment AS c0

8 MERGE DIMENSIONS c1.method AS d1 , c2.method AS d2 INTO c0

.method AS d0

9 (CONVERT ATTRIBUTES APPLY usd2Eur () FOR d1.hourly_costs

DEFAULT)

Notice that function usd2Eur() used in the above SQL-MDi statement is in-
dependently defined, and must be available within the global ROLAP system.♦

Domain conflicts among measure attributes

Among the cells of autonomous cubes, domain conflicts may occur if the measure
attributes in the cube schemas overlap or are identical. Heterogeneous domains
among measure attributes are resolved by applying a conversion function on
the cube import schema. SQL-MDi provides the CONVERT MEASURES sub-
clause below the DEFINE CUBE directive for that purpose. It conforms to
the following syntax: CONVERT MEASURES APPLY <function-name> FOR
<cube-alias> “.” <measure-name> (DEFAULT | WHERE <conditions>). The
operator applies function <function-name> on the values of attribute <measure-
name> in local cube <cube-alias>. The WHERE keyword allows to restrict the
application of the conversion function to the subset of members matching the
selection criteria specified in <conditions>. In contrast, the DEFAULT keyword
performs the conversion function for all members.

Example 8.12 (Converting the domain of measure attributes):
Again, let us assume that the treatment data cubes use different currencies for
recording the costs figures. For example, dwh1::treatment may record costs
in Euros, whereas dwh2::treatment contains costs in US-$. In that case, the
analyst would have to reconcile not only the domains of the non-dimensional
attribute hourly costs of dimension level [method], but also the domains of the
costs attributes in order to obtain a semantically meaningful global data cube.
The use of the CONVERT MEASURES sub-clause for this purpose is illustrated
in the following code snippet:

1 DEFINE CUBE dwh1:: treatment AS c1

2 (MEASURE c1.cost_p , MEASURE c1.cost_m ,

3 DIM c1.method , DIM c1.date_time)

8.3. REPAIRING INSTANCE LEVEL HETEROGENEITIES 131

4 (CONVERT MEASURES APPLY usd2Eur () FOR c1.cost_p DEFAULT ,

usd2Eur () FOR c1.cost_m DEFAULT)

5 CUBE dwh2:: treatment AS c2

6 (MEASURE c2.costs ,

7 DIM c2.method , DIM c2.date_time)

Notice that function usd2Eur() used in the above SQL-MDi statement is
defined independently for the domain of numerical attributes. Furthermore,
this example ignores the schema-instance conflict that persists among the costs
measures of both treatment cubes. In order to overcome this conflict, the analyst
could simply calculate the sum of c1.cost p and c1.cost m in the MERGE CUBES
clause if the costs categories are not relevant. ♦

8.3 Repairing Instance Level Heterogeneities

Using the medication fact table of the case study (see Figure 2.1 on page 16
and Figure 2.3 on page 18), the following Section illustrates how to overcome
heterogeneities at the instance level among facts and dimensions of autonomous
data cubes. Various example query prologues will illustrate the adequate use
of the SQL-MDi operators in the sub-clauses below MERGE DIMENSIONS and
MERGE CUBES.

8.3.1 Heterogeneous Roll-up Functions

Overlapping dimension members may cause a conflict if their roll-up functions
deliver different parent members. In order to repair heterogeneous roll-up func-
tions, SQL-MDi provides the RELATE operator as sub-clause of the MERGE
DIMENSIONS directive. It conforms to the following syntax: RELATE <levels-
list> <join-conditions> USING HIERARCHY OF <dim-alias>. The levels given in
<levels-list> must be corresponding, that means it is necessary to specify a MAP
LEVELS operator for these levels (see Section 8.2, Example 8.8 on page 126).
The RELATE operator overwrites the roll-up functions of the corresponding
levels <levels-list> to their parent level with the roll-up function used in di-
mension <dim-alias>, considered to be the most trustworthy source dimension.
The expressions in <join-condition> restrict the RELATE operator to only those
members matching the specified selection criteria. Thus, the RELATE operator
allows a fine-grained removal of heterogeneous roll-up functions.

Example 8.13 (Repairing heterogeneous roll-up functions):
Dimension drug dim in DMs dwh1 and dwh2 illustrates a typical example
of conflicting roll-up functions. Whereas member ‘B’ rolls-up to member
‘Novartis’ on level manufacturer in dimension dhw1::drug, the same member ‘B’
rolls-up to member ‘Bayer’ in dimension dhw2::drug. Obviously, only one of
these roll-up mappings can be true in the real world. In order to repair the con-
flict, the analyst could estimate that dwh1 is the more trustworthy source DM
and, thus, to use the roll-up functions specified in dwh1::drug. Consequently, all
other conflicting roll-up functions in the semantically equivalent drug levels of
the source dimensions would be overwritten. The use of the SQL-MDi operator
RELATE is illustrated in the following code snippet:

132 CHAPTER 8. SQL-MDI LANGUAGE

1 DEFINE CUBE dwh1:: medication AS c1 ...

2 CUBE dwh2:: medication AS c2 ...

3 GLOBAL CUBE gdw:: medication AS c0

4 MERGE DIMENSIONS c1.drug AS d1 , c2.drug AS d2 INTO c0.

drug AS d0

5 (RELATE d1.manufacturer , d2.manufacturer WHERE d1.drug =

d2.drug USING HIERARCHY OF d1)

6 MERGE CUBES c1,c2 INTO c0 ON patient ,drug ,date_time

7 ...

When applied to the dimension tables in Figure 2.3 (page 18), the above
SQL-MDi code overwrites roll-up mapping ‘B’ 7→ ‘Bayer’ (from dwh2::drug) with
‘B’ 7→ ‘Novartis’ (from dwh1::drug). ♦

8.3.2 Value Conflicts among Non-dimensional Attributes

Overlapping members may cause non-dimensional value conflicts. Conflicting
values in non-dimensional attributes are repaired in order to give concise descrip-
tions of dimension members. The contradictory values are harmonized using the
SQL-MDi conversion operator RENAME, a sub-clause of the MERGE DIMEN-
SIONS directive. It conforms to the following syntax: RENAME <dim.alias> “.”
<dim-attr-name> (<old-value> “>>” <new-value> | USING MAPPINGTABLE
<table-name>). The RENAME operator replaces all occurrences of <old-value>
in attribute <dim-attr-name> with <new-value> within the members of <dim-
alias>. Alternatively, a mapping table can be used containing all necessary
<old-value>/<new-value> pairs. The schema of such a mapping table has to
define exactly two attributes, named old val and new val.

Example 8.14 (Renaming heterogeneous N-attribute values): As
shown in Figure 2.3 on page 18, the non-dimensional attribute pkg size is
inconsistent among the members of the drug dimension in both medication data
cubes. Assuming that a data entry error happened in dwh2, the analyst could
repair the false values of the non-dimensional attribute pkg size for all members
of dimension dwh2.drug using the following SQL-MDi code:

1 DEFINE CUBE dwh1:: medication AS c1 ...

2 CUBE dwh2:: medication AS c2 ...

3 GLOBAL CUBE gdw:: medication AS c0

4 MERGE DIMENSIONS c1.drug AS d1 , c2.drug AS d2 INTO c0.

drug AS d0

5 (RENAME d2.pkg_size >> ’25 pcs.’ WHERE d2.drug = ’A’)

6 MERGE CUBES c1,c2 INTO c0 ON patient ,drug ,date_time

7 ...

In practice, value conflicts are common, and typically happen often among
autonomous data sources [Doan and Halevy, 2005]. When occurring more than
occasionally, value conflicts are too awkward to repair with the manual ‘>>’
rename operator. In such cases, the RENAME clause of SQL-MDi provides the
alternative, more user-friendly mapping table method, as the following example
illustrates.

8.3. REPAIRING INSTANCE LEVEL HETEROGENEITIES 133

Example 8.15 (Mapping table for heterogeneous N-attribute values):
Analogously to the above Example 8.14, assume that non-dimensional attribute
pkg size of the drug dimension contains data entry errors in dwh2. Using the
mapping table option of the RENAME clause, the analyst could repair the false
pkg size-values for all members of dimension dwh2.drug more elegantly than in
the previous example with the following SQL-MDi statement:

1 DEFINE CUBE dwh1:: medication AS c1 ...

2 CUBE dwh2:: medication AS c2 ...

3 GLOBAL CUBE gdw:: medication AS c0

4 MERGE DIMENSIONS c1.drug AS d1 , c2.drug AS d2 INTO c0.

drug AS d0

5 (RENAME d2.pkg_size USING MAPPINGTABLE gdw:: map_pkgsize)

6 MERGE CUBES c1 ,c2 INTO c0 ON patient ,drug ,date_time

7 ...

Whenever the current value of d2.pkg size occurs in the old val column of
mapping table gdw::map pkgsize, it is replaced by the appropriate new val-value
as specified in the mapping table. ♦

8.3.3 Overlapping Sets of Dimension Members

If member sets overlap, the analyst has to decide both how to handle the con-
flicting members and how to merge the non-overlapping members. It is crucial
to recognize what real-word object (e.g., a product) or concept (e.g., a date of
year) is modelled by the members. In most cases, overlapping member subsets
are identical-related, since a dimension represents non-summarizable objects or
concepts of the real world (e.g., geographical locations, products, etc.—refer
also to the discussion in Section 5.3, pp. 71).

Therefore, since the members describe the same entities of the real world,
only one of the existing and heterogeneous instances can be true. The analyst
has to elect one of the data sources as the most trustworthy. In order to resolve
the overlapping members, the conflicting instances will be overwritten with the
values stored in the trusted source.

Regarding the disjoint subsets of overlapping member sets, it is important
to decide which of the local members to include in the dimensions of the global
data cube. In most cases, a simple union of all dimension members will be the
adequate solution. Therefore, the semantics of the MERGE DIMENSIONS clause
is the union set operation by default. Moreover, the standard set operations
UNION, MINUS, [(LEFT | RIGHT | FULL) OUTER] JOIN are available like in
the SQL standard [(ISO), 1992]. The set operation desired by the analyst is
specified as optional keyword in the MERGE DIMENSIONS clause.

In order to overwrite overlapping members with the instances stored in the
trusted source, SQL-MDi provides the PREFERRING sub-clause of the MERGE
DIMENSIONS directive. It conforms to the following syntax: MERGE DIMEN-
SIONS ... “(” PREFERRING <cube-alias> (DEFAULT | WHERE <conditions>)
“)”. For the subset of members that overlap, the PREFERRING operator will
set the value of the dimension attribute given in the MERGE DIMENSIONS
clause to the value of this dimension attribute in <cube-alias>. The expressions
in <join-condition> restrict the PREFERRING operator to only those members

134 CHAPTER 8. SQL-MDI LANGUAGE

matching the specified selection criteria. The semantics of the PREFERRING
operator combines the RELATE and RENAME operators (see the previous ex-
amples), applied on all overlapping members. Thus, the PREFERRING operator
allows the set-oriented resolution of both heterogeneous roll-up functions and
non-dimensional values conflicts among overlapping members.

Example 8.16 (Handling overlapping members): The members in all di-
mensions of the global data cube g::medication should simply be computed as
the union of the local dimension members in dwh1 and dwh2. For the subset
of overlapping members, c1 is regarded as more trustworthy source and should
be preferred. The UNION set operation and the PREFERRING operator within
the MERGE DIMENSIONS directive of SQL-MDi are illustrated in the following
code fragment:

1 DEFINE CUBE dwh1:: medication AS c1

2 (MEASURE c1.qty , MEASURE c1.cost ,

3 DIM c1.patient , DIM c1.drug , DIM c1.date_time)

4 CUBE dwh2:: medication AS c2

5 (MEASURE c2.qty , c2.cost ,

6 DIM c2.patient , DIM c2.drug , DIM c2.date_time)

7 GLOBAL CUBE gdw:: medication AS c0

8 MERGE DIMENSIONS UNION c1.drug AS d1 , c2.drug AS d2 INTO

c0.drug AS d0

9 (PREFERRING c1 DEFAULT)

10 ...

11 MERGE CUBES c1,c2 INTO c0 ON patient ,drug ,date_time

12 ...

Example 8.17 (Applying the MINUS operation on overlapping members):
In some cases, however, the semantics of cross-DM queries require to apply a
different set operation among the member sets. For example, a global cube
retrieving the costs caused by drugs that are used in Vienna (dwh1), but not
in Salzburg (dwh2), would be specified using a MINUS set operation. The
necessary SQL-MDi code is illustrated below:

1 DEFINE CUBE dwh1:: medication AS c1 ...

2 CUBE dwh2:: medication AS c2 ...

3 GLOBAL CUBE gdw:: medication AS c0

4 MERGE DIMENSIONS MINUS c1.drug AS d1 , c2.drug AS d2 INTO

c0.drug AS d0

5 ...

6 MERGE CUBES c1,c2 INTO c0 ON patient ,drug ,date_time

7 ...

The above code creates a dimension c0.drug with only a single member (‘C’,
‘Merck’, ‘ALL’). Note that drug ‘C’ is the only dimension member of dwh1.drug
that is not a member of dwh2.drug (see Figure 2.3, page 18). The import
schemas of c1 and c2 (i.e. the DEFINE CUBE clauses) and the MERGE CUBES
clause match those of the previous Example 8.16. ♦

8.3. REPAIRING INSTANCE LEVEL HETEROGENEITIES 135

8.3.4 Disjoint Sets of Dimension Members

If member sets are disjoint, the only sensible option is computing the union of
all the local dimension members. Any set operation other than UNION would
compute an empty member set in the global dimension. Thus, a standard
MERGE DIMENSIONS clause without any sub-clause is sufficient for integrating
disjoint member sets.

8.3.5 Overlapping Cells

Overlapping subsets of cube cells express either an identical-related or context-
related semantics (see Section 5.3, pp. 71). When identical-related overlapping
cells occur, the measures of these cells model conflicting information on one
and the same real-word entity. Consequently, either one of the facts’ measure
values has to be preferred, overwriting the values of the overlapping cells, or
the origin of the fact data is an essential part of its context information. In
the latter case, the origin is regarded as an additional, implicit dimension—
such that the measures become source-identified by means of a newly generated
context dimension.

The challenge with context-related overlapping cells is to correctly recognize
what entity or entities they describe. Depending on the semantic context among
the overlapping cells, the measures might be summarizable or not. On the one
hand, if the overlapping cell subsets represent measures of different entities or
concepts of the real world, aggregating the measure values and merging the cells
might give witless results (the measures are “non-summarizable”). In this case,
the analyst will extend the cells with a context dimension preserving the previ-
ous semantics of the isolated DMs—analogously to extending identical-related
overlapping cells with the context dimension. On the other hand, if the cells
refer to the same real-world entity or concept, summarizing the measure values
using an aggregation function like SUM or AVG (thus merging the overlapping
cells) is the appropriate solution.

In the following, we will describe all three approaches: (1) preferring sources,
(2) generating the context dimension, and (3) aggregating overlapping cells.

• Preferring sources: in the case of identical-related overlapping cube in-
stances, describing same real-world entities in the same context, the data
designer usually will elect one of the data cubes in the federation as the
most trustworthy source and prefer the measure values stored in this
source. SQL-MDi provides the PREFER sub-clause below the MERGE
CUBES directive for that purpose. It conforms to the following syn-
tax: PREFER <cube-alias> “.” <measure-name> (DEFAULT | WHERE
<conditions>). If a subset of local cube cells overlap, the PREFER opera-
tor will set the value of <measure-name> in the global cube to the value of
<measure-name> in the local cube <cube-alias> for all cells in the overlap-
ping subset. The WHERE keyword allows to specify selection predicates
on measure and/or dimension attributes of <cube-alias>, restricting the
application of the PREFER operator on a subset of the <measure-name>-
values. If the DEFAULT keyword is given, the PREFER operator will be
evaluated on all overlapping cell subsets.

136 CHAPTER 8. SQL-MDI LANGUAGE

Example 8.18 (Preferring particular sources of overlapping facts):
Assuming that the overlapping facts depicted in Figure 2.3 on page 18
give conflicting descriptions of one and the same medical remedy (iden-
tical -relationship), the analyst would have to decide which of both DMs
dwh1 and dwh2 is the more trustworthy source of data. When preferring
the measures of, say, dwh1, the analyst would use the PREFER sub-clause
of MERGE CUBES as illustrated in the following code snippet:

1 DEFINE CUBE dwh1:: medication AS c1

2 (MEASURE c1.qty , MEASURE c1.cost ,

3 DIM c1.patient , DIM c1.drug , DIM c1.date_time)

4 CUBE dwh2:: medication AS c2

5 (MEASURE c2.qty , c2.cost ,

6 DIM c2.patient , DIM c2.drug , DIM c2.date_time)

7 GLOBAL CUBE g:: medication AS c0

8 MERGE DIMENSIONS ...

9 MERGE CUBES c1,c2 INTO c0 ON patient ,drug ,date_time

10 (PREFER c1.qty DEFAULT ,

11 PREFER c1.cost DEFAULT)

Whenever some cells of the local cubes c1 and c2 overlap, the values of
measures c0.qty and c0.cost in the global cube will be equal to the values of
c1.qty and c1.cost—the more trusted source c1 “overwrites” the measure
values of cube c2. ♦

• Extending overlapping facts with the context dimension: For both, non-
summarizable context-related cells and identical-related cells of overlap-
ping cube instances, SQL-MDi provides the TRACKING operator as sub-
clause below the MERGE CUBES directive. It conforms to the following
syntax: TRACKING SOURCE AS DIMENSION <dim-name> “(”<schema-
spec>“)” (IS <value> WHERE <source-condition> | DEFAULT). The
token <dim-name> specifies a new dimension attribute—the “context
dimension”—that will be added to the global cube schema. The con-
text dimension is always degenerated, i.e. it consists of only a single level,
also named <dim-name>. Level <dim-name> is composed of only one di-
mensional attribute, the data type of which is specified in <schema-spec>.
Finally, the member set is the union of all <value>s chosen by the human
analyst. Each member is associated with the cell subset satisfying the
selection predicates given in the WHERE keyword. In contrast, the DE-
FAULT member is linked to all cells that do not match any of the selection
predicates given in the WHERE clauses.

Example 8.19 (Context dimension extending overlapping facts):
Assuming that both sources dwh1 and dwh2 contain data of the health
insurance’s sub-organizations in different federal states, the analyst could
want to compare the costs across the states. In this case, the original
source of local cells is an important piece of context information that has
to be preserved. In order to generate the context dimension, the analyst
would use the following SQL-MDi code with the TRACKING operator:

1 DEFINE CUBE dwh1:: medication AS c1

2 (MEASURE c1.qty , MEASURE c1.cost ,

3 DIM c1.patient , DIM c1.drug , DIM c1.date_time)

8.3. REPAIRING INSTANCE LEVEL HETEROGENEITIES 137

4 CUBE dwh2:: medication AS c2

5 (MEASURE c2.qty , c2.cost ,

6 DIM c2.patient , DIM c2.drug , DIM c2.date_time)

7 GLOBAL CUBE g:: medication AS c0

8 MERGE DIMENSIONS ...

9 MERGE CUBES c1 ,c2 INTO c0 ON patient ,drug ,date_time

10 (TRACKING SOURCE AS DIMENSION source(VARCHAR (16))

11 IS ’salzburg ’ WHERE SOURCE ()=’c2’, IS ’vienna ’

DEFAULT)

In the above code we assume that dwh1 and dwh2 be located in cities Vi-
enna and Salzburg, respectively. Note that when sending a query individu-
ally to one of the autonomous cubes dwh1::medication or dwh2::medication,
it is clear for the analyst that the quantity and costs figures refer to the
cities Vienna resp. Salzburg. Using the TRACKING operator, this seman-
tics is preserved in the context dimension of the global data cube. ♦

• Aggregating overlapping facts: if context-related overlapping cells de-
scribe “different” entities in similar contexts, the measure values of these
cell subsets can be aggregated. In that case, the aggregated measure
values in the global cube are the important piece of information. In
SQL-MDi, the AGGREGATE MEASURE sub-clause of MERGE CUBES
allows the analyst to specify the desired aggregation function. It con-
forms to the following syntax: AGGREGATE MEASURE <measure-attr-
name> IS <aggregation-function> OF <local-measure-attr-name> [WHERE
<conditions>]. In order to compute <measure-attr-name> of the global
cube, function <aggregation-function> is applied on the values of all local
cubes’ <local-measure-attr-name>. The OF clause is needed to compute
derived measures.

Example 8.20 (Aggregating overlapping facts): If the business an-
alyst wants to know the overall costs across the sub-organizations, the
original source of data as part of the context information is not important.
In contrast, the overlapping cells can simply be aggregated to compute the
global cube cells. Using the AGGREGATE MEASURE sub-clause, the over-
lapping cell subsets can be merged using SQL-MDi as in the following
statement:

1 DEFINE CUBE dwh1:: medication AS c1

2 (MEASURE c1.qty , MEASURE c1.cost ,

3 DIM c1.patient , DIM c1.drug , DIM c1.date_time)

4 CUBE dwh2:: medication AS c2

5 (MEASURE c2.qty , c2.cost ,

6 DIM c2.patient , DIM c2.drug , DIM c2.date_time)

7 GLOBAL CUBE g:: medication AS c0

8 MERGE DIMENSIONS ...

9 MERGE CUBES c1 ,c2 INTO c0 ON patient ,drug ,date_time

10 (AGGREGATE MEASURE qty IS SUM OF qty ,

11 AGGREGATE MEASURE cost IS SUM OF cost)

Instead of SUM, other standard aggregation functions—such as AVG, MIN,
MAX, etc.—can be applied to compute the measure values in the global
cube from the overlapping cells. ♦

138 CHAPTER 8. SQL-MDI LANGUAGE

8.3.6 Disjoint Cells

If the cells of cube instances are disjoint, the only sensible option is computing
the union of all the local cube cells. Any set operation other than union would
compute an empty global cube. Thus, a standard MERGE CUBES clause without
any operators in the sub-clauses is sufficient for integrating the disjoint cell sets.

Example 8.21 (Merging disjoint facts): The following SQL-MDi
statement uses disjoint measures of the dimension-homogeneous cubes
dwh1::medication and dwh2::medication to compare the quantity of given
medications in dwh1 with the medication costs recorded in dwh2 for all
patients:

1 DEFINE CUBE dwh1:: medication AS c1

2 (MEASURE c1.qty , DIM c1.patient)

3 CUBE dwh2:: medication AS c2

4 (MEASURE c2.cost , DIM c2.patient)

5 GLOBAL CUBE g:: medication AS c0

6 MERGE DIMENSIONS ...

7 MERGE CUBES c1,c2 INTO c0 ON patient

The result of the above statement will be the global cube g::medication with
two measures, qty and cost. Notably, the measures c0.qty and c0.cost will contain
null values for every cell of either source cube that does not overlap with a
corresponding cell of the other source cube.

8.4 Summary of SQL-MDi

The SQL-MDi language uses three main clauses for defining the global schema
and semantic matches: (1) Define [Global] Cube, (2) Merge Dimensions,
and (3) Merge Cubes. The Cube clauses specify the attribute structure of
both the virtual global cube and the import schemas of the autonomous Data
Marts. For each dimension of the global schema the Merge Dimensions clause
defines its members and hierarchy from the imported dimensions. Analogously,
the Merge Cubes clause determines how to compute the cells of the global
cube from the imported facts.

Within each of its main clauses SQL-MDi defines a number of operators
to repair heterogeneous schemas and instances of facts and dimensions (cf. Ta-
bles 9.3 and 9.4). While the CUBE clause allows to repair heterogeneities among
the Data Mart import schemas, the MERGE clauses mainly provide operators
for the definition of tuple matchings and translations in dimensions and facts.

Semantic mappings between elements of autonomous Data Marts are gener-
ally expressed by equal naming. Thus, renaming operations often occur in SQL-
MDi, as illustrated by the example statements of this chapter. It is important
to check the import schemas carefully for name equality between corresponding
schema elements in order to produce the desired results.

To conclude this chapter, the following Example 8.22 summarizes all previous
SQL-MDi statement fragments for the treatment cubes presented earlier:

8.4. SUMMARY OF SQL-MDI 139

Example 8.22 (Complete SQL-MDi statement): The following SQL-
MDi statement contains the “superset” of all conversions used for the two
treatment cubes during the previous examples of this chapter. It computes
global cube g::treatment (as given in Figure 2.5, page 21) from the local
treatment cubes of Data Marts dwh1 and dwh2.

1 DEFINE CUBE dwh1:: treatment AS c1

2 (MEASURE c1.cost_p -> costs_personnel ,

3 MEASURE c1.cost_m -> costs_material ,

4 DIM c1.method , DIM c1.date -> calendar_date

5 (MAP LEVELS dwh1:: date_time ([day], [year]))

6)

7 CUBE dwh2:: treatment AS c2

8 (MEASURE c2.cost -$,

9 DIM c2.method , DIM c2.date_time -> calendar_date

10 (MAP LEVELS dwh2:: date_time2 ([day], [year])),

11 DIM c2.cost_cat ,

12 PIVOT SPLIT MEASURE c2.cost -$ BASED ON c2.cost_cat)

13 (ROLLUP c2.calendar_date TO LEVEL [day] WITH SUM() FOR

c2.costs)

14 (CONVERT MEASURES APPLY usd2eur () FOR c2.cost -$ DEFAULT

)

15 GLOBAL CUBE g:: treatment AS c0

17 MERGE DIMENSIONS c1.method AS md1 , c2.method as md2 INTO

c0.method AS md0

19 MERGE DIMENSIONS c1.calendar_date AS cd1 , c2.calendar

date AS cd2 INTO c0.calendar_date AS cd0

20 (ATTRIBUTE cd2.descrpt -> description)

22 MERGE CUBES c1 , c2 INTO c0 ON method , calendar_date

23 AGGREGATE MEASURE costs_personnel IS SUM OF

costs_personnel ,

24 AGGREGATE MEASURE costs_material IS SUM OF

costs_material

140 CHAPTER 8. SQL-MDI LANGUAGE

Part IV

Realizing the Federated
Data Warehouse

141

Chapter 9

Prototype Implementation
of FedDW Tools

Contents
9.1 Implementation Architecture of FedDW 147

9.2 Modelling Primitives 150

9.2.1 Representing Multi-dimensional Schemas 150

9.2.2 Representing Semantic Mappings 153

9.3 Global Schema Architect Prototype 155

9.3.1 Design Rationale of GSA Schema Editor 155

9.3.2 Design Rationale of the GSA Mapping Editors . . . 158

9.3.3 Import and Export Functionality of FedDW GSA . . 159

9.4 Query Tool Prototype 160

9.4.1 FedDW Query Tool Usage Example 161

9.4.2 FedDW Query Tool Implementation 163

9.5 Experimental Results 166

To demonstrate the practical viability of the FedDW approach, the FedDW
tool suite was developed, comprising prototypes of two tools that implement
the concepts introduced by this thesis. This chapter presents the implementa-
tion architecture and concepts behind the FedDW tool suite. On the one hand,
FedDW Global Schema Architect (GSA) is a visual, model-driven design envi-
ronment for the integration of autonomous Data Marts. GSA conforms to the
Federated DW reference architecture introduced in Chapter 6, and implements
the integration methodology proposed in Chapter 7. On the other hand, FedDW
Query Tool allows to execute queries over global, federated Data Marts designed
with GSA. Query Tool combines SQL-MDi statements with SQL OLAP queries.

143

144 CHAPTER 9. PROTOTYPE IMPLEMENTATION

Despite clear benefits from the business perspective, the integration of au-
tonomous Data Marts is difficult and laborious for both, technical and organi-
zational reasons. Technically, numerous heterogeneities among the schemas and
data need to be resolved, as Chapter 7 of this thesis discussed in depth. From
the organizational viewpoint, DW access is often restricted to ensure the privacy
of confidential data. Thus, the complete physical combination of autonomous
DWs—which would be the easiest solution—is often impractical, especially for
large-scaled systems. Such problems commonly occur in practice, sometimes
even among the divisions of a single company [Kimball, 2002].

customer

p_name

date month year

product

prod_name

regular_fee

duration
tn_tel
tn_misc

connections
category

dur_min
turnover

connections

month quarter year

customer products

customers

dates

red blue

date

date/hr

contract_type

base_fee

date

customer

cust_name

contract_type

base_fee

age_grp
product

prod_name

products

promo

promotion

promo_type

Figure 9.1: Conceptual Data Mart schemas of companies Red and Blue in
Dimensional Fact Model notation [Golfarelli et al., 1998].

For example, assume that two competing mobile network providers—we call
them “Red” and “Blue”—agree upon sharing their DW data for strategic de-
cision making. This cooperation is advantageous for both partners since the
knowledge base for their strategic business decisions broadens beyond the origi-
nal organizational boundaries. Questions such as “Which service plans are most
popular among 21–30 year old customers?” become easier to analyze for the
two providers if more data is available for the OLAP applications.

Numerous heterogeneities exist among the Data Marts of Red and Blue,
although representing the same domain (see Figure 9.1). For instance, cube
schema “connections” of Red has modelled two measures, tn tel and tn misc
for turnovers generated with telephony and other services, respectively, whereas
Blue has chosen a single measure turnover plus the category dimension (schema–
instance conflict). Besides, Blue’s Data Mart records the promotion dimension
with turnovers, which cannot be matched in Red’s schema (dimensionality con-
flict). Moreover, the hierarchies and levels in the date dimensions, as well as
the non-dimensional attributes within the customer and products dimensions
are heterogeneous. Obviously the two cubes can only be unified after previous
conversion of their schemas and their data (illustrated in Figures 9.2 and 9.3).

Notice that the conflicts contained in the “Red and Blue” example are very
similar to the health care running example (Chapter 2), but in more condensed
form. To present the prototype implementation of the FedDW tool suite, we
combined almost all conflicts analyzed in Chapter 5 into only one pair of exam-
ple cubes. Test results are easier to verify manually this way. In contrast, the
medication and treatment cubes of the case study illustrated classes of hetero-
geneity at the schema and at the instance level separately, which allowed for an
easier presentation of the conflicts and solutions throughout the thesis.

145

red::connections (date hr: date [date hr], cust sscode: customer
[cust sscode], product: products [product]; duration, tn tel, tn misc)

date hr cust sscode product duration tn tel tn misc

01.01.08 08:00 1234010180 MobCom 58 11.60 1.00
01.01.08 08:00 1234010180 HandyTel 20 5.50 2.22
03.01.08 08:00 4567040871 FiveCom 250 24.10 4.50
30.06.08 08:00 9876543210 HandyTel 130 14.20 4.00
30.06.08 10:30 9876543210 FiveCom 28 7.10 0.80

red::date (date hr 7→ date 7→ month 7→ year)
date hr date month year

01.01.08 08:00 01.01.08 01/08 2008
03.01.08 08:00 03.01.08 01/08 2008
30.06.08 08:00 30.06.08 06/08 2008
30.06.08 10:30 30.06.08 06/08 2008

red::products (product)
product prod name regular fee

MobCom Mobile Comm., Ltd. 0.10
HandyTel Handy Telephony Co. 0.08
FiveCom Five Communications, Inc. 0.12

red::customer (cust sscode 7→ contract type)
cust sscode name contract type base fee

1234010180 Doe, John SparCom 15.0
4567040871 Stone, Jack SparCom 15.0
9876543210 Miller, Alice FlatRate 45.0

Figure 9.2: Fact and dimension tables of company “Red”.

Schema integration among autonomous Data Marts addresses two major
aspects: dimension integration and fact integration (cf. Section 3.5, pp. 39).
The dimension integration problem is more complex than traditional, relational
schema integration because dimension attributes are structured in hierarchies of
aggregation levels. In contrast, fact integration corresponds to the traditional
challenges of schema matching and data matching among relational entities
[Doan and Halevy, 2005]. However, the interdependencies among dimensions
and facts complicate the fact integration problem as well, as Chapter 3 has
explained in depth. In particular, fact schemas reference dimension attributes
as foreign keys to identify “coordinates” of cells in cubes.

Current design tools and integration frameworks for Federated DWs handle
dimension integration and fact integration as isolated aspects, as discussed in
Chapter 3. Hence, integration of autonomous Data Marts with the available
DW approaches falls short. Instead, federated database technology—e.g., multi-
database languages such as FISQL [Wyss and Robertson, 2005] or Schema-SQL
[Lakshmanan et al., 2001]—is often used as compromise to physically integrate
the multi-dimensional data. The Red and Blue example, however, illustrates
that conflicts among multi-dimensional Data Marts are too complex for current
technology, such as reported by [Kimball, 2002]. In particular, the hierarchies
in dimensions are problematic, as studied in [Berger and Schrefl, 2006].

146 CHAPTER 9. PROTOTYPE IMPLEMENTATION

blue::connections (date: dates [date], customer: customers [customer id], product:
products [product], promotion: promotions [promo], category; dur min, turnover)

date customer product promotion category dur min turnover

01.01.08 1234010180 MobCom noPromo tn tel 17 2.55
01.01.08 1234010180 MobCom Fall 2008 tn tel 23 8.50
01.01.08 1234010180 MobCom Winter 2007 tn tel 9 4.50
30.06.08 9876090875 HandyTelCo noPromo tn tel 15 1.20
25.08.08 6785041070 HandyTelCo Christmas 2008 tn tel 50 4.77
25.08.08 6785041070 HandyTelCo Christmas 2008 tn misc 0 2.70

blue::products (product)
product prod name

MobCom Mobile Comm.
HandyTelCo Handy Telephony
MobileCall Mobile Calling
WirelessCom WirelessCom

blue::promotions (promo 7→ promo type)
promotion promo type

noPromo No promotion
Winter 2007 Radio spot
Fall 2008 Advertisement
Christmas 2008 TV spot

blue::customers (customer 7→ contract type)
customer id cust name age grp contract type base fee

1234010180 Doe, John 21–30 FullCom 15.0
6785041070 Tanner, Frank 31–40 2for0 20.0
9876090875 Miller, Alice 31–40 FullComLite 10.0

blue::dates (date 7→ month 7→ quarter 7→ year)
date month quarter year

01.01.08 01/08 Q1/08 2008
02.01.08 01/08 Q1/08 2008
30.06.08 06/08 Q2/08 2008
25.08.08 08/08 Q3/08 2008

blue::category (category)
category

tn tel
tn misc

Figure 9.3: Fact and dimension tables of company “Blue”.

9.1. IMPLEMENTATION ARCHITECTURE OF FEDDW 147

To improve tool support for the administrators of Federated DW systems, we
developed the FedDW tool suite, comprising prototypes of two tools that imple-
ment the concepts introduced by this thesis. On the one hand, FedDW Global
Schema Architect (GSA) is a visual, model-driven design environment for Fed-
erated DW systems conforming to the reference architecture proposed in Chap-
ter 6. GSA supports the integration of autonomous Data Mart schemas with
UML-based diagrams, including visual design of the global multi-dimensional
schema, and allows to design the semantic mappings from local, autonomous
Data Marts to the global schema. On the other hand, FedDW Query Tool eval-
uates analytic queries—formulated in SQL—over the global, federated schema
designed with GSA. Thus, Query Tool encapsulates the core functionality of
Federated DW systems from the business analyst’s point of view.

In contrast to previous approaches, FedDW Global Schema Architect com-
bines logical schema design—of both, the import schemas and the global
schema—with semantic mapping design in one and the same tool. GSA provides
a visual user interface for the design of integrated dimension and fact schemas
over autonomous ROLAP Data Marts. By employing a customized notation of
UML class and package diagrams, the schema diagrams of cubes in Data Marts
are easily comprehensible for the Federated DW administrator. Moreover, GSA
follows the model-driven approach for the design of mappings. Each conver-
sion operator specified by the user is represented in an internal model, that can
be translated to fragments of the SQL-MDi language. Thus, GSA allows to
generate and export the semantic mappings as complete SQL-MDi statements
that are executable with the Query Tool. The comprehensive design approach
followed in GSA addresses the dependencies between dimensions and facts, and
facilitates FDW administration.

9.1 Implementation Architecture of FedDW

The “FedDW” tool suite is the prototype implementation of the Federated Data
Warehouse reference architecture proposed in Chapter 6. The implementation
architecture comprises two front-end tools—Global Schema Architect and Query
Tool—as well as the two auxiliary modules Meta-data Dictionary and Dimen-
sion Repository, as depicted in Figure 9.4. In this architecture, the GSA repre-
sents the management interface of the Federated DW system. GSA allows to
design both, the global multi-dimensional schema and the semantic mappings,
following the model-driven approach. In turn, the FedDW Query Tool provides
a basic OLAP query interface for the business users and OLAP applications.

FedDW tool suite provides tightly coupled integration of autonomous Data
Marts with a global, mediated schema (cf. the Federated DW reference archi-
tecture in Figure 6.1, page 83). Its users—typically the business analysts—
simply access the global schema with OLAP query tools. The Query Tool
prototype provides a basic OLAP query interface for SQL queries. Its interme-
diate federation layer stores semantic mappings between the import schemas
of the Data Marts and the global schema, using a canonical data model. So-
called wrappers manage the communication between the federation layer and the
Data Marts since they send the reformulated queries and ship back the answers
[Berger and Schrefl, 2008]. Figure 9.4 depicts the architecture of FedDW tool

148 CHAPTER 9. PROTOTYPE IMPLEMENTATION

OLAP
Application

DM n … Dimension
repository

Federated DW
System

?
User Query

(SQL)

DM 2 DM 1

Query Tool

Import Schemas

Global
schema

Mappings (SQL-MDi)

Global Schema
Architect

Meta-data
dictionary

SQL-MDi
Parser

SQL-MDi
Processor

Figure 9.4: Implementation architecture of FedDW tool suite.

suite, comprising mainly of Global Schema Architect (GSA) and the FedDW
query tool [Berger and Schrefl, 2009]. The federated approach isolates the
global schema from changes in the Data Marts. If the autonomous schemas
evolve, only the outdated mappings must be adapted accordingly.

Semantic mappings in the FedDW approach are expressed with the SQL-
MDi language, introduced in Chapter 8. Recall that the SQL-MDi language
uses three main clauses for defining the global schema and semantic matches:
(1) Define [Global] Cube, (2) Merge Dimensions, and (3) Merge Cubes.
The Cube clauses specify the attribute structure of both, the virtual global cube
and the import schemas of the autonomous Data Marts. For each dimension of
the global schema the Merge Dimensions clause defines its members and hi-
erarchy from the imported dimensions. Analogously, the Merge Cubes clause
determines how to compute the cells of the global cube from the imported facts
[Berger and Schrefl, 2006].

From the analysts’ point of view, FedDW Query Tool encapsulates the
core functionality of the Federated Data Warehouse system. It acts as me-
diator, parsing the SQL-MDi mappings and rewriting each user query that
is formulated over the global schema into a set of queries against the lo-
cal Data Marts [Berger and Schrefl, 2009]. Internally, the FedDW tool ex-
presses the semantic mappings as sequences of Dimension Algebra and Fact
Algebra operators [Berger and Schrefl, 2008]. Moreover, the tool translates
distributed data from the autonomous Data Marts into the global multi-
dimensional schema. Using the data it receives from the autonomous Data
Marts, Query Tool computes and instantiates the virtual global cube—as
specified by the mapping operators—from which it answers the user queries
[Berger and Schrefl, 2009, Rossgatterer, 2008, Brunneder, 2008].

9.1. IMPLEMENTATION ARCHITECTURE OF FEDDW 149

Currently, the FedDW Query Tool prototype offers the following functions:

• FedDW’s user interface accepts an SQL-MDi statement and an OLAP
query—formulated in SQL—as input. The SQL-MDi statement resolves
conflicts among the autonomous Data Marts by specifying the global
schema and matching it against the Data Mart schemas. In turn, the
SQL OLAP query formulates the user’s business question over the virtual
global cube, that adheres to the global schema (see Figure 9.12).

• On execution of the query, the prototype computes the virtual global
cube as instance of the global schema. It then translates all local data
as specified by the semantic matches in the SQL-MDi statement, and
executes the SQL query. The user interface displays the current progress
of query processing (see Figure 9.12 left).

• Finally, the query result pops up in an additional window that allows to
drill into the details – facts and dimensions – of the virtual global cube (see
Figure 9.12 right). In OLAP terminology, such operations are denoted as
drill through.

Global Schema Architect (GSA) is an important administrative utility in the
FedDW tool suite, as depicted in Figure 9.4. It stores the mappings between the
import schemas of autonomous Data Marts and the global schema—modelled by
the user—in the Meta-data Dictionary. Thus, GSA complements the FedDW
query tool [Berger and Schrefl, 2009] that retrieves the SQL-MDi code of the
mappings automatically without any user interaction. Permanently preserving
the outcome of the laborious integration process in the Meta-data Dictionary is
crucial for user acceptance of the approach overall.

The functionality of FedDW GSA comprises both, a UML editor and a
mapping editor. On the one hand, UML editor allows to model and validate
multi-dimensional schemas as UML class and package diagrams with the exten-
sions defined in the GSA profile (see Section 9.2). On the other hand, mapping
editor displays the elements of a Data Mart import schema together with but-
tons and drop-down lists that contain predefined conversion operators. This
approach—denoted as Master Detail pattern—allowed us to provide a powerful
yet clear user interface, displaying each mapping on a single editor pane. To
facilitate the user’s task, GSA mapping editor adapts the available operators
according to the selected model element in context-sensitive manner.

Currently, the GSA prototype—implemented as Eclipse plug-in—provides
the following functionality:

• Import the multi-dimensional schemas of local, autonomous Data Marts
as UML diagrams.

• Design the global multi-dimensional schema as UML diagram. Optionally,
the Federated DW administrator can generate the global schema from one
of the import schemas of local Data Marts.

• Configure mappings between each local schema and the global schema,
using a visual editor with predefined based on UML class diagrams. The
mappings are specified as operators of the SQL-MDi language.

• Export the SQL-MDi code of mappings and the meta-data of (1) the
global schema, (2) each of the local schemas, and (3) each mapping to the
Meta-data Dictionary.

150 CHAPTER 9. PROTOTYPE IMPLEMENTATION

Two auxiliary components, Meta-data Dictionary and Dimension Reposi-
tory, complement FedDW’s tool suite. The former improves the usability of
the system because it not only keeps track of the import schemas for each
autonomous Data Mart, but it also persists the semantic mappings. The lat-
ter increases performance of user query answering by providing local copies of
the dimensions in the Data Marts, as proven by the experiments conducted
in two approaches named “DWS-AQA” [Bernardino et al., 2002] and “Skalla”
[Akinde et al., 2003].

9.2 Modelling Primitives for Visual Integration
of autonomous Data Marts

The main tasks of Data Mart integration for Federated Data Warehouses are
twofold, as discussed in Chapter 7. On the one hand, the Federated DW ad-
ministrator needs to import the logical, multi-dimensional schemas of the au-
tonomous Data Marts, and model the global cube schema(s). On the other
hand, the DW administrator needs a mechanism for defining semantic map-
pings between schemas, covering all conflicts that occur in practice.

Both these tasks are challenging for the tension between clarity of nota-
tion and modelling expressivity. In particular, schema diagrams of Data Marts
should cover all multi-dimensional properties concisely, but be easy to compre-
hend. Previous approaches have shown that the UML is well suited for meeting
these requirements [Luján-Mora et al., 2006, Prat et al., 2006].

Semantic mappings among Data Marts should also be modelled at the
schema level, so to match the abstraction level of the schema diagrams. How-
ever, a sufficiently clear and powerful notation for mappings is challenging to
define. Formal approaches—surveyed in [Lenzerini, 2002]—are powerful but dif-
ficult to comprehend for FDW administrators, while graphical notations—e.g.,
data mapping diagrams [Luján-Mora et al., 2004]—tend to be either confusingly
complex or too less expressive for multi-dimensional data.

The following Section explains how the FedDW approach addresses these
issues. (1) To represent Data Mart schemas, FedDW employs a canonical
and generic, multi-dimensional data model. (2) For mappings among au-
tonomous schemas, FedDW defines a rich set of conversion operators in the
multi-dimensional data model.

9.2.1 Representing Multi-dimensional Schemas

Section 4 of this thesis defined a canonical data model for the FedDW approach
to represent properties of multi-dimensional Data Mart schemas and their exten-
sions [Berger and Schrefl, 2008]. The model formally introduced the concepts
cube, fact, measure, dimension, aggregation level, hierarchy, roll-up function as
well as the dimension functions members and level. Moreover, the dimension
schema and fact schema hierarchically structure these constructs. Finally, the
canonical model specifies instances of facts and dimensions, i.e. members re-
spectively cube cells.

9.2. MODELLING PRIMITIVES 151

Figure 9.5: GSA schema editor—package diagram of global schema (left) with
multi-dimensional schema UML palette; class diagram of customer
dimension expanded (right)

For example, Data Mart “Red” consists of fact connections with measures
{duration, tn tel, tn misc} and dimensions {date, products, customer}. Dimension
customer, in turn, has levels [customer] and [contract type] with non-dimensional
attributes name and base fee, respectively, and contains the hierarchy {customer
7→ contract type}.

In the Federated DW reference architecture, the global schema is also rep-
resented in the canonical data model. Figure 9.5 shows the global schema over
Data Marts Red and Blue, designed with GSA schema editor which is introduced
later. While the symbols in Figure 9.5 differ from the notation in Figure 9.1,
notice that the underlying concepts are the same as explained above.

Our development of an editor for schema diagrams in the canonical model
[Berger and Schrefl, 2008] was guided by the following goals: (1) Facilitate im-
port and exchange of Data Mart meta-data from common commercial ROLAP
platforms. (2) Reflect the hierarchical structure of multi-dimensional concepts.
(3) Ease the implementation of the visual schema editor as much as possible. If
possible, extend an existing tool or modelling environment.

In order to meet these goals, we developed a generic, object-oriented
meta-model. The GSA meta-model (GMM) defines meta-classes for the
multi-dimensional constructs introduced in the FedDW canonical data model
[Berger and Schrefl, 2008]. As depicted in Figure 9.6, Fact and Dimension are
containers for their respective properties, while Cubes connect facts with dimen-
sions. Schema, in turn, represents Data Marts, containing one or more Cube(s).
The generic meta-model allows maximum flexibility for object-oriented design
and implementation of a visual schema editor.

First, GSA meta-model complies to the CWM standard [Poole, 2003] in
order to ease the import and exchange of Data Mart meta-data. Technically, we
adapt the Unified Multi-dimensional Meta-model [Prat et al., 2006] and embed
the GSA meta-classes to the CWM standard. While most GSA meta-classes
correspond with the concepts of [Prat et al., 2006], GMM enhances many details
of the previous proposal, as specified below. Most importantly, the Unified
Meta-model of [Prat et al., 2006] is comprehensive and powerful, but it lacks
support of CWM.

152 CHAPTER 9. PROTOTYPE IMPLEMENTATION

Schema

Cube

Fact Measure

1

Dimension

Hierachy

AssociationRelationship DimensionLevel

IdentifyingAttribute NonIdentifyingAttribute

DimensionLevelAttribute

*

1

Package

Class

Class

Structural-

Feature

Structural-

Feature

Datatype
*

1

Dimensions

CWM – Core Package

+child +source

Package

Package

+target +parent

CubesSchemasTop Level

Figure 9.6: Representing Data Mart Schemas—Global Schema Architect
meta-model (GMM) [Maislinger, 2009]

Second, GMM defines Schema, Cube and Dimension as extensions of the
Package meta-class (cf. Figure 9.6) to represent the hierarchical structure of
multi-dimensional concepts. This approach enables to “divide and conquer”
multi-dimensional schema modelling since the user can concentrate on one of
the detail levels shown in Figure 9.6. Thus, a clear and concise user interface of
a visual schema editor is easier to design.

Third, GSA meta-model complies also to the UML standard to facilitate the
implementation of a visual schema editor. UML compliance of GMM is easy
to ensure by inheriting from the core package (see Fig. 9.6) that CWM and
UML share [Poole, 2003]. GMM meta-classes can be embedded to the UML
meta-model with stereotypes extending UML meta-classes, and bundled into a
profile. Thus, instead of developing from scratch, the schema editor is realized
as extension of any off-the-shelf UML design environment.

In detail, GMM augments the Unified Multi-dimensional Meta-model
[Prat et al., 2006] as follows:

(1) The relationships between GSA meta-classes are mainly compositions, in-
stead of generalizations in [Prat et al., 2006]. Composition-relationships
represent multi-dimensional semantics more appropriately (e.g., di-
mensions “nesting” hierarchies, not “generalizing” hierarchies as in
[Prat et al., 2006]). Besides, the approach followed in GMM is similar
to the OLAP package of CWM [Poole, 2003].

(2) GMM associates Facts with Dimensions in GMM, while [Prat et al., 2006]
connect Facts with DimensionLevels. Again, our meta-model applies a
structure similar to the OLAP package of CWM [Poole, 2003]. Moreover,
the direct association from Fact to Dimension is easier to implement within
a modelling tool (e.g., as package import or dependency in UML).

(3) DimensionLevels in GMM are structured into an aggregation Hierarchy with
associations. In contrast, the Unified Meta-Model builds hierarchies with
classification relationships [Prat et al., 2006]. As above, the Association-
Relationship seems more appropriate, given that hierarchies are basically
associations of cardinality 1:n [Golfarelli et al., 1998].

9.2. MODELLING PRIMITIVES 153

(4) In GMM, DimensionLevels directly connect to the Hierarchy meta-class,
while the Unified Multi-dimensional Meta-Model regards DimensionLevel
as first class model construct—like Dimension and Fact [Prat et al., 2006].
Since aggregation levels cannot be shared among dimensions in the
FedDW conceptual model [Berger and Schrefl, 2008], the former possibil-
ity is preferable.

(5) Finally, GMM omits the applicable aggregation functions for Measures in
the scope of a Hierarchy. Clearly, these restrictions belong to the concep-
tual model of multi-dimensional Data Marts [Golfarelli et al., 1998].

9.2.2 Representing Semantic Mappings

In order to integrate autonomous Data Mart schemas, numerous hetero-
geneities must be considered, as discussed in Chapter 7 and analyzed in
[Berger and Schrefl, 2006]. FedDW predefines a rich set of conversion opera-
tors at the schema level that apply the Dimension and Fact Algebra introduced
in [Berger and Schrefl, 2008]. Table 9.1 lists the conversion operators available
in FedDW with the conflicts addressed. The table first specifies all unary op-
erators of GSA together with the meta-model entity on which they apply, then
gives all n-ary operators. Table 7.1 in Chapter 7 (see page 115) explain how
these operators map to the Fact respectively Dimension Algebra.

When modelling mappings with the FedDW methodology it is important to
distinguish the unary from the n-ary operators of Fact Algebra and Dimension
Algebra. Unary operators transform facts and dimensions of one autonomous
Data Mart schema. In turn, n-ary operators specify how to merge sets of trans-
formed facts and dimensions, so that the result conforms to the global schema
[Berger and Schrefl, 2008]. The difference between unary and n-ary conversions
in the FedDW methodology has been explained in depth in Chapter 7 (see Al-
gorithms 7.4 on page 106 and 7.5 on page 109, and Subsection 7.2.3, pp. 111).

Each FedDW mapping simply arranges a sequence of these operators. For in-
stance, assume that company Red adopts Blue’s schema—except the promotion
dimension—as global schema of the federation (Fig. 9.5). We show a possible
mapping of Red’s connections cube to the global schema in Figures 9.7 (p. 155)
and 9.8 (p. 156), and give some examples on how to repair the heterogeneities in
the Red and Blue example. Both Figures depict the GSA mapping editor which
is introduced in Section 9.3. The SQL-MDi code of the mappings is visible in
the upper right corner of the figures.

As explained in the introduction (cf. Figure 9.1), Red and Blue record com-
parable turnovers, but use different schemas. To conform to the global schema,
the connections data of Red must be transformed with a PIVOT MEASURES
operator (cf. Table 9.1) to address the schema–instance conflict among Red and
Blue: it allows to merge the original measures tn tel and tn misc into one mea-
sure turnover, and to generate the category dimension. The PIVOT MEASURES
operator applied in line 3 of the SQL-MDi preview in Figure 9.7 generates a new
cube schema with measures {duration, turnover} and dimensions {date, products,
customer, category}. It defines values “tn tel” and “tn misc” as members of the
context dimension category with one level [category] [Berger and Schrefl, 2008].

154 CHAPTER 9. PROTOTYPE IMPLEMENTATION

Table 9.1: FedDW conflict resolution—predefined operators in GSA.

Facts: conflicts addressed Relevant operator of FedDW approach (imple-
mented in GSA)

Schema-instance conflicts Merge measures: PIVOT MEASURES (Fact)
(Converts fact context into members of a new dimen-
sion)

Schema-instance conflicts Split measures: PIVOT SPLIT MEASURES (Fact)
(Generates “contextualized facts” from members)

Dimensionality Choose attributes: add DIM reference (Cube)
(Number of references determines cube dimensionality)

Different measures Choose measures: add MEASURE reference (Cube)
Domain conflicts (measures) Convert domains: CONVERT MEASURES APPLY ...

(Measure)
Naming conflicts (measures
and dimension attributes)

Rename attributes: operator “–> ...” (with new name
string—Measure, Dimension)

Heterogeneous base levels Roll-up dimension attributes: ROLLUP TO LEVEL ...
(Dimension)
(Corrects domain conflicts among dimension attributes)

Overlapping cube cells
(fact extensions)

Join cubes: MERGE CUBES (n-ary)
Derive measure values: AGGREGATE MEASURE (n-ary)

Dimensions: conflicts Relevant operator of FedDW approach (imple-
mented in GSA)

Heterogeneous hierarchies Map corresponding levels: add level reference [...]
(Dimension)
(Import levels of dimensions referenced by cube import)

Domain conflicts (level
and non-dimensional
attributes)

Convert attribute domains: CONVERT ATTRIBUTES
APPLY ... (Dimension)

Naming conflicts (levels) Rename attributes: operator “–> ...” (with new name
string; Level)

Naming conflicts (non-
dimensional attributes)

Map non-dimensional attributes: MATCH AT-
TRIBUTES (within Merge Dimensions clause—n-ary)

Overlapping members
(dimension extensions)

Merge sets of members: MERGE DIMENSIONS (n-ary)

Heterogeneous roll-up
functions in hierarchies

Overwrite roll-up hierarchies: RELATE Expression
(within Merge Dimensions clause—n-ary)

Conflicting values of non-
dimensional attributes

Correct attribute values: add RENAME function (within
Merge Dimensions clause—n-ary)

The mapping in Figure 9.7 defines several other unary conversion operators
for Red’s Data Mart. For instance, the base levels of the date dimensions differ
(cf. Fig. 9.1). Operator ROLLUP redCube.date hr TO LEVEL [date] in line 4
ensures that the base level of Red’s date dimension matches the granularity of
the global schema (cf. Fig. 9.5). This operator treats dimension Red::date as if
[date], [month] and [year] were its only levels.

In turn, the global mapping contains the n-ary conversion operators ap-
plied to the Red and Blue example. For instance, operator “Merge Dimen-
sions 2” (shown in the SQL-MDi preview of Fig. 9.8) repairs heterogeneity
among the customer dimensions of Red and Blue. In particular, it “joins” the
members of the [customer] level (RELATE operator, line 2), and specifies that
non-dimensional attribute p name of Red maps to cust name of Blue (MATCH
ATTRIBUTES operator, line 3). Finally, line 4 converts the domain of attribute
base fee in Blue’s customer dimension, employing function usd2Eur() with the
CONVERT ATTRIBUTES operator.

9.3. GLOBAL SCHEMA ARCHITECT PROTOTYPE 155

Figure 9.7: GSA Import Mapping Editor (cube element “dw1” selected left)

9.3 Global Schema Architect Prototype

FedDW Global Schema Architect is a design environment for Data Mart in-
tegration, providing the schema editor and mapping editor visual tools. Its
architecture is depicted in Figure 9.9. The following section explains our de-
sign rationale and sketches GSA’s functionality from the user’s perspective
[Maislinger, 2009]. (1) To represent Data Mart schemas, GSA adapts the UML
standard for the DW domain, adding the concepts of the FedDW canonical
data model [Berger and Schrefl, 2008]. (2) For defining the mappings among
autonomous Data Mart schemas, GSA provides a Master Detail Editor with
click-able buttons for the conversion operators listed in Table 9.1. (3) To em-
bed GSA into a Federated DW infrastructure, the schema import and SQL-
MDi/meta-data export modules provide external interfaces.

9.3.1 Design Rationale of GSA Schema Editor

In order to represent the GSA meta-model in the UML, we developed a profile
called GSA (Global Schema Architect). Profiles are lightweight extensions to
UML, customizing its standard meta-model for particular modelling domains
[(OMG), 2009]. The UML allows the extension mechanisms stereotype, tagged
value and icon for defining the features of a profile, whereas new meta-classes
must not be introduced [Hitz et al., 2005].

The GSA profile inherits all properties of the UML 2.1 meta-model and ex-
tends the Class, Package and Property meta-classes with the stereotypes listed
in Table 9.2 and depicted in Figure 9.10. Notice that the stereotypes introduced
in the profile correspond to the concrete GSA meta-classes of the schema, cube
and dimension layers introduced in Subsection 9.2.1 (cf. Figure 9.6), except
for the Schema concept which is represented in the model itself. Thus, the
GSA profile is the concretion of the generic GSA meta-model for the UML
language. Compared to GMM, we preferred the Property meta-class to its su-
perclass StructuralFeature because Property is more commonly used in the UML

156 CHAPTER 9. PROTOTYPE IMPLEMENTATION

Figure 9.8: GSA Global Mapping Editor (Merge Dimensions element selected

left)

SQL-MDi File

Global Schema Architect

Import Schema Module

Import Model

DM 1

DM 2

Import Mapping

Editor

Global Schema Module

Global Model
Meta-model

Meta-data Export

Wizard

Meta-data

Dictionary

SchemaEditor

SQL-MDi Export

Module Global Mapping

Editor

EMF GEFUML2

Eclipse Platform (Runtime, Workbench, ...)

Figure 9.9: Modules of the FedDW GSA Eclipse plug-in [Maislinger, 2009]

9.3. GLOBAL SCHEMA ARCHITECT PROTOTYPE 157

specification [(OMG), 2009]. Moreover, the GSA profile introduces constraints
on the stereotypes—defined below—but does not include any new data types or
tagged values.

To ensure the extensions be used correctly, the GSA profile formulates con-
straints in the Object Constraint Language (OCL). OCL constraints are declar-
ative rules for the well-formedness of models that apply the extensions defined
in a profile [Warmer and Kleppe, 1999]. The GSA profile specifies the following
OCL invariants as constraints on its extensions:

Cube – check has adequate subelements: each Cube package contains only di-
mensions, facts and UML dependencies, and is not nested into another package.

self.nestingPackage ->size = 0

self.nestedPackage ->forAll (oclIsTypeOf(Dimension))

self.contents ->forAll (oclIsTypeOf(Fact) or

oclIsKindOf(Dependency))

Dimension – check has levels: allows only Level classes within Dimension
packages.

self.contents ->forAll (oclIsTypeOf(Level))

Dimension – check no dependencies: disallows any UML dependencies in Di-
mension packages.

self.clientDependency ->size = 0

Fact – check has measures: allows only ≥ 1 Measure properties in Fact
classes.

self.ownedAttribute ->size >= 1

self.ownedAttribute ->forAll (oclIsTypeOf(Measure))

Fact – check dependencies: all UML dependencies leaving from Fact classes
must point to Dimension packages. At least one such dependency is mandatory.

self.clientDependency ->size >= 1

self.clientDependency ->forAll(supplier ->forAll(

oclIsTypeOf(Dimension)))

Level – check hierarchy: forbids circles between the UML dependencies that
form the hierarchy of Level classes in a Dimension.

not self.allSuppliers ->includes(self)

Level – check dependencies: all UML dependencies leaving from Level class
must point to another Level.

self.clientDependency ->forAll(supplier ->forAll(

oclIsTypeOf(Level)))

Level – check one identifying attribute: allows only one attribute owned by
the Level class to be an IdentifyingAttribute.

self.ownedAttribute ->select(oclIsTypeOf(

IdentifyingAttribute))->size=1

Schema editor provides a modelling environment for UML class and package
diagrams for both, the Import Schema and Global Schema. Before defining any
mappings, the user has to specify the global schema of the GSA project, which
collects the meta-data of all schemas and mappings. To facilitate this task, the
user can optionally generate the global schema from an import schema, and
then adapt it.

158 CHAPTER 9. PROTOTYPE IMPLEMENTATION

Table 9.2: GSA profile—stereotypes, constraints and icons [Maislinger, 2009]

Stereotype Constraints UML meta-class Icon
Cube check has adequate subelements Package

Dimension check has levels
check no dependencies

Package

Level check hierarchy
check dependencies
check one identifying attribute

Class

Fact check has measure
check dependencies

Class

IdentifyingAttribute — Property —
NonIndentifyingAttribute — Property —
Measure — Property —

Figure 9.10: Profile Definition Diagram—extensions of the GSA profile

For high usability, GSA schema editor predefines a palette of multi-
dimensional modelling elements (cf. Figure 9.5). The available elements corre-
spond to the concepts of the GSA meta-model, and are defined by the extensions
of the GSA profile (Table 9.2). Mouse clicks add new schema elements from the
palette. Moreover, the user may “zoom in” to the class diagram of dimensions,
that are visualized as packages in the main editor view (as shown in Figure 9.5).
To ensure that the schema meets all constraints defined in the profile, the user
should invoke the “validate model” function from the editor pane.

9.3.2 Design Rationale of the GSA Mapping Editors

The Import Mapping Editor and Global Mapping Editor of GSA predefine all
conversion operators of the Dimension and Fact Algebra listed in Table 9.1 as
click-able buttons. This approach offers two advantages. First, the interplay
between fact and dimension integration is easy to consider by visualizing all
dependencies among the facts and dimensions. Second, the predefined buttons
allow for a powerful yet clear user interface design. In contrast to mapping di-
agrams structured in packages [Luján-Mora et al., 2004], mappings in the GSA
approach easily fit onto one single editor screen.

While the Import mapping editor (Fig. 9.7) applies unary conversion op-
erators to the import schema of one Data Mart, the Global mapping editor
(Fig. 9.8) employs n-ary operators on the set of import schemas in the GSA
project. Internally, the mapping editors relate the Fact Algebra and Dimen-

9.3. GLOBAL SCHEMA ARCHITECT PROTOTYPE 159

sion Algebra operators [Berger and Schrefl, 2008] to corresponding SQL-MDi
fragments. GSA uses the generated SQL-MDi fragments to compose the code
preview shown in the upper right corner of the mapping editors. Moreover, the
SQL-MDi code can be exported to the file system (see export functionality in
Subsection 9.3.3).

The user interface of both GSA mapping editors conforms to the Master
Detail design pattern, splitting the user interface into master page and detail
page [Beier et al., 2003]. While the master page on the left-hand side of the
editor pane lists all model elements (e.g., dimensions, levels), the detail page
on the right-hand side shows all properties of one selected element. GSA map-
ping editor embeds the predefined buttons and drop-down fields for the FedDW
conversion operators in the detail page. The available operations adapt to the
selection made on the master page in context sensitive manner. For example,
notice that the master page in Figure 9.7 lists all elements of Red’s schema,
while the detail page contains the properties and available conversions for the
selected element, cube “dw1”. Analogously, the detail page of the global map-
ping editor in Figure 9.8 shows all n-ary operators of Dimension Algebra (cf.
Table 9.1) for the customer dimensions selected in the master page (element
“Merge Dimensions 2”).

9.3.3 Import and Export Functionality of FedDW GSA

As depicted in Figure 9.9, Global Schema Architect contains an Import Schema
module and model export modules (SQL-MDi generator and Meta-data Wizard).
The import function enables the GSA to comfortably load Data Mart schemas.
The export functionality defines the interface to FedDW query tool, introduced
in [Berger and Schrefl, 2009].

The Import Schema module connects to autonomous ROLAP Data Marts
to retrieve local meta-data. To infer the logical schema, it analyzes the public
keys and primary keys. The import heuristics suggest adequate stereotypes for
the schema elements (cube, measure, dimension, level, etc.) which the user can
change manually. Each import schema is created as UML diagram applying the
GSA profile (cf. Figure 9.5).

The SQL-MDi Generator assembles the SQL-MDi fragments from the con-
versions modelled in the mapping editors, and writes the SQL-MDi code file.
The generator automatically recognizes the global mapping and all import map-
pings in the GSA project. If the export throws syntax warnings, the mappings
have to be completed and/or fixed. Otherwise, the generated mapping file can
be tested immediately with FedDW query tool [Berger and Schrefl, 2009] which
is useful for verifying whether the mappings meet the user’s intentions.

Meta-data wizard exports the meta-data modelled in the current GSA
project to the Meta-data Dictionary upon user request (cf. Figure 9.9). Export-
ing meta-data is important for OLAP querying: FedDW query tool retrieves
both, the connection meta-data and the SQL-MDi code of the mappings from
the Dictionary [Berger and Schrefl, 2009].

160 CHAPTER 9. PROTOTYPE IMPLEMENTATION

Table 9.3: Conflict resolution strategies of FedDW for facts, and corresponding
language support.

Conflict addressed
Resolution
technique

Relevant SQL-MDi clause of FedDW

– Import fact table
(“cube”)

CUBE operator; Example: see lines 1, 5,
and 13 in Figure 9.11

Dimensionality conflicts Import dimension
attributes

DIM keyword; Example: see lines 2, 7, 9,
and 11 in Figure 9.11

Overlapping / disjoint
measures

Import measure at-
tributes

MEASURE keyword; Example: see lines 2,
6, and 7 in Figure 9.11

Naming conflicts (measures
and dimension attributes)

Rename attributes Operator “–>”; Examples in Fig. 9.11:
line 6 (measure attribute)
line 9 (dimension attribute)

Heterogeneous base levels Roll-up dimension
attributes

ROLLUP clause of CUBE
Example: see line 4 in Figure 9.11

Domain conflicts
(measures)

Convert measure
domains

CONVERT MEASURES APPLY ... clause
of CUBE

Example: see line 12 in Figure 9.11
Overlapping cube cells
(fact table extensions)

Join fact tables
(“cubes”)

MERGE CUBES ... [set-operation]
Example: see line 23 in Figure 9.11

Overlapping cube cells Aggregate measure
values

AGGREGATE MEASURE clause of
MERGE CUBES operator

Example: see line 24 in Figure 9.11
Schema–instance conflicts Merge measures PIVOT MEASURES... INTO clause

(Fact context ⇒ members of a new dimension) Example: see line 3 in Figure 9.11
Schema–instance conflicts Split measures PIVOT MEASURE... BASED ON clause

(Dimension members ⇒ “contextualized facts”) (Not used in sample query.)

9.4 Query Tool Prototype

FedDW Query Tool is the prototype of an interpreter for SQL-MDi statements,
combined with an SQL parser, for analytic queries across autonomous Data
Marts in Federated DW systems. The prototype implementation of FedDW
Query Tool integrates an OLAP application with the internal query processing
component, as depicted in Figure 9.4. Thus, the Query Tool acts as both, the
mediator of the global, federated schema, and the interface to the OLAP analyst.
On the one hand, the tool parses SQL-MDi mappings and generates query plans
for each user query. A query plan is a sequence of queries against the local
Data Marts that is equivalent to the original query, formulated over the global
schema. On the other hand, the tool translates data from the autonomous Data
Marts to compute the virtual global cube, interprets the query, and presents the
query answers back to the user [Berger and Schrefl, 2009, Rossgatterer, 2008,
Brunneder, 2008].

The FedDW approach supports numerous strategies for resolving hetero-
geneities among the facts and dimensions of autonomous Data Marts, as ex-
plained in Chapter 7 of this thesis. The operators of the Dimension and Fact
Algebra introduced in Chapter 7 are available in the FedDW Query Tool through
the SQL-MDi language, proposed in Chapter 8. Tables 9.3 and 9.4 list the con-
flicts discussed in Chapter 5, and describe the corresponding resolution tech-
niques employed in FedDW. The two tables also map the resolution techniques
to the relevant SQL-MDi operators.

9.4. QUERY TOOL PROTOTYPE 161

Table 9.4: Conflict resolution strategies of FedDW for dimensions, and corre-
sponding language support.

Conflict addressed
Resolution
technique

Relevant SQL-MDi clause

Heterogeneous hierarchies Match correspond-
ing levels

MAP LEVELS clause of DIM keyword
Example: see lines 8 and 10 in

Fig. 9.11

Naming conflicts (level
attributes and non-
dimensional attributes)

Rename attributes

Operator “–>” (level attributes)
Example: see line 10 in Fig. 9.11

MATCH ATTRIBUTES clause of
MERGE DIMENSIONS operator
(non-dimensional attributes)

Example: see line 18 in Fig. 9.11
Overlapping members
(dimension extensions)

Merge dimension
members

MERGE DIMENSIONS ... [set-
operation]

Example: see lines 15, 16, 20, and
22 in Fig. 9.11

Heterogeneous roll-up
functions (i.e. hierarchies
between members)

Overwrite roll-up
hierarchies

RELATE ... USING HIERARCHY OF ...
clause of MERGE DIMENSIONS oper-
ator

Example: see line 17 in Fig. 9.11
Domain conflicts (level
attributes and non-
dimensional attributes)

Convert attribute
domains

CONVERT ATTRIBUTES APPLY ...
clause of MERGE DIMENSIONS oper-
ator

Example: see line 19 in Fig. 9.11
Conflicting values of non-
dimensional attributes

Correct attribute
values

RENAME clause of MERGE DIMEN-
SIONS

Example: see line 21 in Fig. 9.11

9.4.1 FedDW Query Tool Usage Example

Let us now assume that the management of mobile network provider Red decides
to integrate its sales Data Mart with Blue’s under a federation. The fact and
dimension tables of Red and Blue are shown in Figs. 9.2 and 9.3, respectively.
In particular, the two Data Mart schemas are briefly characterized as follows:

• Provider “Red” stores the data of turnover within the measures duration,
tn tel and tn misc, categorized by the dimensions date, customer and prod-
ucts (see Figure 9.2). The aggregation levels of the dimensions are given
in brackets. As monetary unit for the measures Red’s schema uses Euros.

• “Blue” stores its turnover data within the measures duration and turnover,
structured by the dimensions date, customer, product, promotion and cat-
egory (see Figure 9.3). Again, the aggregation levels of these dimensions
are given in brackets. Blue’s schema uses US-Dollars as monetary unit.

Using FedDW, the Data Marts of Red and Blue may be integrated with the
SQL-MDi code listed in Figure 9.11. This statement matches the local facts
and dimensions with the global schema, which is very similar to Red’s schema.
Figure 9.13 depicts the fact table of the virtual global cube, as specified by the
sample SQL-MDi statement. For brevity, the figure omits the global dimension
tables (except customer).

In what follows, we demonstrate how “Red” applies SQL-MDi to resolve the
heterogeneities among the Red and Blue sales Data Marts, using the sample
statement of Figure 9.11. For a systematic overview of the available options

162 CHAPTER 9. PROTOTYPE IMPLEMENTATION

please refer to Tables 9.3 and 9.4. In detail, the sample SQL-MDi statement
applies the following conflict resolution techniques:

[Lines 1–12]: In the first part of the query the user specifies the Data Marts’
import schemas. Notice that the Define keyword is needed only once. The
two Cube clauses (lines 1 and 5) import the example Data Marts, referencing
their measure and dimension attributes with the adequate keywords (Measure,
Dim). It is mandatory to specify an alias for each cube (As keyword) to facilitate
access to its properties later on.

[Lines 1–4]: The Cube clause imports Red’s Data Mart and performs two
transformations. First, line 3 repairs the schema-instance conflict among the
two fact tables by merging the existing measures tn tel and tn misc into a single
turnover measure. This operation generates the context dimension “category”.
Second, line 4 rolls-up the dimension attribute date hr to level date, so to match
Blue’s date granularity.

[Lines 5–12]: The other Cube clause imports Blue’s Data Mart and specifies
four transformations. First, the Map Levels clause in line 8 restricts the
levels of the date dimension. Only those levels referenced in square brackets
are kept in the import schema. Notice that the Dim keyword automatically
imports all levels if Map Levels is omitted (as for the dimensions of Red’s Data
Mart). Second, line 9 renames the dur min measure attribute. Third, lines 6
and 10 rename dimension attribute customer and level customer id, respectively.
Fourth, line 12 calls the stored procedure usd2Eur() to convert the domain of
Blue’s turnover measure from US-$ to Euro.

[Lines 2 and 9–11]: Dimensionality of the import schema is determined by
the number of explicit references to dimensions of the underlying Data Mart,
using the DIM keyword. Recall that schema Blue defines the additional promo-
tions dimension, which is impossible to match with any of Red’s dimensions.
Thus, dimension promotions is excluded from the import schema of Blue’s Data
Mart (see line 11, cf. with line 2) by omitting the DIM promotions import spec-
ification. This way, the dimensionality conflict among the two Data Marts is
repaired; considering the category dimension generated in line 3, both import
schemas contain four-dimensional cubes.

[Line 13]: The global schema is not defined immediately. Instead, the
Global Cube clause is a forward declaration, simply reserving its name and
alias for later use (cf. line 23).

[Lines 15–22]: Next, the Merge Dimensions clauses specify how to pop-
ulate the global dimensions with tuples (“members”). In our example, the cus-
tomer dimensions need several directives for conflict resolution: (a) the mem-
ber hierarchy of Red’s customers should override Blue’s hierarchy (line 17);
(b) the non-dimensional attributes name and cust name are matched (line 18);
and (c) the domain of base fee is converted from US-$ to Euro (line 19). More-
over, line 21 changes value ‘HandyTel’ in Red’s product dimension to the correct
‘HandyTelCo’.

[Lines 23–25]: Finally, the global fact table is determined by the Merge
Cubes clause (line 23), which completes the forward declaration given in line 13.
In order to compute the correct values for all measures, line 24 specifies the
adequate aggregation function to apply for overlapping cube cells.

9.4. QUERY TOOL PROTOTYPE 163

1 DEFINE CUBE red:: connections AS c1

2 (MEASURE c1.duration , MEASURE c1.tn_tel , MEASURE c1.tn_misc , DIM

c1.date_hr , DIM c1.cust_sscode , DIM c1.product ,

3 PIVOT MEASURES c1.tn_tel , c1.tn_misc INTO c1.turnover USING c1.

category)

4 (ROLLUP c1.date_hr TO LEVEL c1.date[date])

5 CUBE blue:: connections AS c2

6 (MEASURE c2.dur_min -> duration ,

7 MEASURE c2.turnover , DIM c2.date

8 (MAP LEVELS c2.date([date], [month], [year])),

9 DIM c2.customer -> cust_sscode

10 (MAP LEVELS c2.customer ([customer_id -> cust_sscode] , [

contract_type]),

11 DIM c2.product , DIM c2.category)

12 (CONVERT MEASURES APPLY usd2Eur () FOR c2.turnover DEFAULT))

13 GLOBAL CUBE dw0::sales AS c0

15 MERGE DIMENSIONS c1.date_hr AS d1, c2.date AS d2 INTO c0.date AS d0

16 MERGE DIMENSIONS c1.cust_sscode AS d3, c2.cust_sscode AS d4 INTO c0

.customer AS d5

17 (RELATE d3.cust_sscode , d4.customer_id WHERE d3.cust_sscode=d4.

customer_id USING HIERARCHY OF d3)

18 (MATCH ATTRIBUTES d3.name IS d4.cust_name)

19 (CONVERT ATTRIBUTES APPLY usd2Eur () FOR d4.base_fee DEFAULT)

20 MERGE DIMENSIONS c1.product AS d6, c2.product AS d7 INTO c0.product

AS d8

21 (RENAME d6.product >> ’HandyTelCo ’ WHERE c1.product=’HandyTel ’)

22 MERGE DIMENSIONS c1.category AS d9, c2.category AS d10 INTO c0.

category AS d11

23 MERGE CUBES c1 , c2 INTO c0 ON date , customer , product , category

24 AGGREGATE MEASURE duration IS SUM OF duration , AGGREGATE MEASURE

turnover IS SUM OF turnover

25 (MEASURE duration , MEASURE turnover , DIM date , DIM customer , DIM

product , DIM category)

Figure 9.11: Example SQL-MDi statement, integrating Red’s and Blue’s Data
Marts.

To examine the global cube defined by the SQL-MDi statement, the user
enters an SQL OLAP query as well. In our example, the user has been interested
in “How much was our company’s turnover over the last year, grouped by month
and product?”, as depicted in Figure 9.12 (left). Upon successful execution of
the sample SQL-MDi statement, FedDW returns the virtual global cube. Then
it evaluates the SQL OLAP query and displays its result (Figure 9.12, right).

9.4.2 FedDW Query Tool Implementation

Having demonstrated the capabilities of the FedDW tool in our sample use
case, the following section will briefly summarize its implementation. It was
guided by the following aims: (1) Minimize the design effort through the reuse
of well-known software design patterns. (2) Use standards whenever available
for FedDW’s internal data model in order to maximize the interoperability of
FedDW. (3) Support multiple platforms (i.e. databases and operating systems).

The SQL-MDi parser component of FedDW checks the syntactic and seman-
tic correctness of the SQL-MDi matching expressions, i.e. whether all clauses

164 CHAPTER 9. PROTOTYPE IMPLEMENTATION

Figure 9.12: FedDW Query Tool: graphical user interface.

Figure 9.13: Fact table “sales” of virtual global cube “dw0”.

9.4. QUERY TOOL PROTOTYPE 165

conform to the EBNF grammar specification of the SQL-MDi language, and
whether all referenced schema elements exist in the autonomous Data Marts.
The parser communicates with the Meta-data Dictionary (cf. Section 9.1) to
verify the query syntax and semantics. If the parser detects errors it returns a
description and gives hints on possible reasons.

From the input SQL-MDi statement the parser component generates a data
structure called the operator tree. It contains the sequence of Fact and Dimen-
sion Algebra specified by the SQL-MDi matching expression. The leaf nodes
of the operator tree contain the unary algebraic transformations of facts and
dimensions, whereas the internal nodes – called “structure nodes” – represent
the binary operators, specifying how to merge the intermediate results to the
virtual global cube. Upon completion of parsing, the ordering of operators in
the tree is optimized algebraically such that the size of intermediate results is
reduced as early as possible [Brunneder, 2008].

FedDW’s query processor component receives the operator tree from the
SQL-MDi parser and computes the query result over the virtual global cube.
All unary transformations in the leaf nodes are traversed “from left to right”.
Then these intermediate results are combined step by step, according to the
structure node operators. The ordering of nodes given in the operator tree
remains unchanged [Rossgatterer, 2008].

The critical phase of the query processing algorithm is the generation of an
optimal query plan. This means that the processor reformulates the original
user query into a sequence of queries over the autonomous Data Marts. If the
operator tree refers to dimensions that exist in the Dimension Repository (cf.
Section 9.1), the processor eliminates the according sub-queries from the query
plan and instead reads the intermediate results from the repository. Thus, the
amount of data shipped between the autonomous DW systems is reduced, as
shown by [Bernardino et al., 2002, Akinde et al., 2003].

In the current version of FedDW Query Tool prototype, the query processing
algorithm combines algebraic optimization of the query plan with data shipping
for query answering. That is, apart from checking the Dimension Repository,
the query processor leaves the operator tree it receives from the query parser
unchanged. Query answering, in turn, strictly conforms to the data shipping
paradigm, since the Query Tool receives local answers of the Data Marts, trans-
lates everything to the global schema, and instantiates the virtual global cube.
Only then the OLAP query result is evaluated.

The implementation of a language parser is known to be rather mechanical
and thus easy to automatize. Several software tools – called compiler genera-
tors – have been developed that enable the automatized generation of parsers.
FedDW’s parser component has been generated with the JavaCC framework,
based upon the formal description – the grammar – of the underlying SQL-MDi
language, augmented with so-called production rules [Brunneder, 2008].

In order to optimize the runtime performance and extensibility of the parser
and processor components, we applied several well-known software design pat-
terns. As far as the parser is concerned, the generation of the operator tree
from the SQL-MDi statement conforms to the Visitor design pattern. It con-
sists of (1) a hierarchy of classes representing the nodes of some data structure
to be traversed, and (2) the visitor class. Each node class provides an Accept()

166 CHAPTER 9. PROTOTYPE IMPLEMENTATION

method with the visitor class as input parameter. Moreover, the visitor class
contains a corresponding visitElement() method for each Accept() method
of the node classes [Gamma et al., 1995]. The JavaCC framework automatically
applies the Visitor pattern in the source code it generates [Brunneder, 2008].

The operator tree itself is implemented as Abstract Syntax Tree (AST)
data structure. An AST represents the syntax of some language string within
the nodes of a tree, whereby each node denotes a construct of the language
[Reilles, 2007]. By combining the Visitor pattern with the AST structure we
cleanly separate the implementation of the parser from the definition of the
underlying query language. Thus, neither syntax changes nor the introduction
of new operators affect the existing implementation. Consequently, the effort
necessary to support language extensions is kept minimal [Brunneder, 2008].

Finally, the processor component employs the Iterator model for the imple-
mentation of the Fact and Dimension Algebra transformation operators. Ac-
cording to the Iterator model, every operator class processes a single tuple in-
stead of a data block per call. Moreover, every operator class works in isolation;
this means that it must not communicate with other operator classes nor the
overall query plan to compute its result [Graefe and McKenna, 1993]. The Iter-
ator pattern offers two advantages. First, it allows to parallelize the traversal of
the operators in the tree nodes. Second, the set of operators available in the un-
derlying query language and algebra can easily be extended [Rossgatterer, 2008].

In order to maximize FedDW’s compatibility with common databases, its
internal data model complies to CWM, the Common Warehouse Metamodel
[(OMG), 2003a, Medina and Trujillo, 2002]. Our FedDW prototype supports
the Oracle and Microsoft SQL Server 2005 database systems. Both the parser
and processor components are implemented in Java. Therefore, FedDW runs
on multiple platforms.

9.5 Experimental Results

From the practical viewpoint, the viability of the FedDW tool suite proposed
in the previous Sections of this Chapter mainly depends on the seamless in-
teroperability of the Global Schema Architect and Query Tool. Therefore, the
prototypes of the FedDW tool suite were tested using the “Red and Blue” ex-
ample. As explained in Section 9.1, the interface between GSA and the Query
Tool is the Meta-data Dictionary. The Global Schema Architect is responsi-
ble for generating the meta-data in the dictionary, following the model-driven
approach. Besides the basic connection data, the Meta-data Dictionary also
contains the complete schema catalogue of all autonomous Data Marts partici-
pating in the Federated DW system, which is accessed by the Query Tool when
processing SQL-MDi statements together with SQL OLAP queries.

The prototypical implementation of the FedDW tool suite emphasized
the proof of concepts proposed in the thesis. Additionally, several non-
functional requirements—e.g. best possible usability, use of open standards,
clear and extensible interfaces, and so forth—have been pursued (as explained in
[Maislinger, 2009, Rossgatterer, 2008, Brunneder, 2008]). Thus, the tests per-
formed with the “Red and Blue” example schemas and data have aimed at
verifying the seamless integration between GSA and Query Tool. In contrast,

9.5. EXPERIMENTAL RESULTS 167

the detailed examination of query performance using the GSA Query Tool has
been left to future work.

The tests performed with FedDW Global Schema Architect followed the
evolutionary prototyping approach. That is, during the integration test phase
we implemented several revisions of GSA to improve its usability, based on
the test experience. Our tests focused on proving the viability of the model-
driven approach for the mapping editor, whereas UML is already known to
provide an illustrative notation of multi-dimensional data models (e.g., see
[Luján-Mora et al., 2006, Prat et al., 2006]). The tests conducted with GSA
have shown good usability of the model-driven approach for modelling semantic
mappings among autonomous Data Marts. The schema editor and mapping
editors of GSA hide most details of the internal representation—see the GSA
Meta-Model in Section 9.2—which otherwise the users would be responsible
for. In particular, populating the Meta-data Dictionary with the correct meta-
data—corresponding exactly to the semantic mappings—would be too tedious
when done manually. A detailed test report of FedDW GSA is presented in
[Maislinger, 2009] (note: report and test data available in German only).

As far as FedDW Query Tool is concerned, it is well known that the im-
plementation of parsers is quite easy to automatize [Brunneder, 2008]. For
that reason, the underlying query processing algorithm is considerably more
interesting from both, the theoretical and practical viewpoints. After parsing
the SQL-MDi statement, the query processor of FedDW Query Tool reads the
Meta-data Dictionary to load the local fact data and instantiate the virtual
global cube. Afterwards it executes the OLAP query against the extension of
the virtual global cube, and presents the query results. The parser component
generates an operator tree from the SQL-MDi statement, optimizing the order
of operators in the tree, such to reduce the intermediate results size as early as
possible [Brunneder, 2008]. In turn, the SQL-MDi query processor component
of Query Tool uses the operator tree directly as query plan. Since the proto-
type implementation of the FedDW tool suite concentrated on the general proof
of concepts, the generation of more sophisticated query plans, as well as the
further optimization of query processing, is the subject of future work.

Thus, the evaluation of the FedDW Query Tool concentrated on its interop-
erability with the Global Schema Architect. The Red and Blue example Data
Marts have been integrated successfully with GSA, and subsequently queried
with FedDW Query Tool using the automatically generated SQL-MDi state-
ment [Maislinger, 2009]. Moreover, the tests conducted with Query Tool have
shown that the concept of a high level, implementation independent conversion
language such as SQL-MDi is powerful. Detailed results of stand alone tests with
Query Tool, using the Red and Blue example are reported in [Rossgatterer, 2008]
(note: report and test data available in German only).

The latest builds of the FedDW tool suite prototypes (GSA, query tool)
together with the Red and Blue example scenario and installation instructions
are available for download on http://www.dke.jku.at/staff/sberger.html. Notice
that both, the schema and data of the Red and Blue example Data Marts are
available only in German. The prototypes of Global Schema Architect and
Query Tool require version 1.6 or higher of the Java Runtime Environment.
Additionally, GSA only runs as plug-in within the Eclipse rich-client platform,
whereas Query Tool is a stand-alone Java application.

http://www.dke.jku.at/staff/sberger.html

168 CHAPTER 9. PROTOTYPE IMPLEMENTATION

Chapter 10

Conclusions

Contents
10.1 Summary of the FedDW Approach 170

10.1.1 Multi-dimensional Conflict Taxonomy 170

10.1.2 Federated DW Reference Architecture 171

10.1.3 FedDW Integration Methodology 171

10.1.4 Conversion Language SQL-MDi 172

10.1.5 Prototypes of FedDW Tool Suite 172

10.2 Future Work . 173

This Chapter summarizes the concepts of the FedDW approach and the
contributions presented in this thesis. Moreover, the most challenging questions
to be investigated by future research are highlighted.

169

170 CHAPTER 10. CONCLUSIONS

10.1 Summary of the FedDW Approach

In this thesis, we have described a comprehensive approach—named
“FedDW”—for the integration of autonomous, multi-dimensional data sources
into a Federated Data Warehouse system. The approach is motivated by the
clear trend towards business integration in the modern economy. In turn, busi-
ness integration often entails the integration of preexisting Data Warehouses
and Data Marts (among other operational data sources). As far as possible, the
FedDW approach uses well established technology from previous approaches in
the field of databases and Data Warehousing. The analysis of related work,
however, revealed a clear mismatch between current design tools and integra-
tion frameworks for Federated DWs, and the requirements for Federated DW
systems.

Based on the current State of the Art, we formulated the following require-
ments for Federated Data Warehouse systems that allow to integrate several,
autonomous multi-dimensional Data Marts (see Chapter 3):

R 1. Extended definition of multi-dimensional heterogeneity.
R 2. Tightly coupled architecture with a stable, global schema.
R 3. Methodology for conjoint integration of dimensions and facts.
R 4. High-level conversion language as mapping mechanism.
R 5. Visual tools for the business analysts with graphical user interfaces and

model-driven code generation of semantic mappings.

In the following sections, we summarize the main contributions of the FedDW
approach, and explain how it addresses these requirements.

10.1.1 Multi-dimensional Conflict Taxonomy

The FedDW conceptual multi-dimensional data model (Chapter 4, pp. 51) lays
the formal foundation for the systematic classification of heterogeneity in multi-
dimensional systems. The data model defines the typical concepts data mart,
cube, measure, dimension, hierarchy, level, roll-up attribute, non-dimensional
attribute, as well as the dimension functions members and level at the concep-
tual level, i.e. independent of any implementation issues. Thus, the FedDW
conceptual model provides a generic formalism for representing the properties
of multi-dimensional data sources. Although the previously proposed Uni-
fied Multi-dimensional Meta-model [Prat et al., 2006] is similarly expressive,
it does not consider the Common Warehouse Metamodel (CWM) standard
[Poole, 2003, Poole and Mellor, 2001, (OMG), 2003a]. In contrast, the GSA
Meta Model (GMM) of the FedDW approach embeds the conceptual multi-
dimensional data model to the CWM and UML standards, as explained in
Chapter 9.

To meet requirement R1, we introduced a novel classification of hetero-
geneities in the multi-dimensional model. Chapter 5 of this thesis analyzed
in depth a taxonomy of heterogeneities in five categories, defined along the two
dimensions modelling scope (schema – instance) and model entity (dimension –
fact), plus the “cross-categorial” schema versus instance category:

• Schema–instance conflicts: representation of dimensional context

10.1. SUMMARY OF THE FEDDW APPROACH 171

• Dimension schemas: attribute names, diverse hierarchies and/or levels,
attribute names, etc.

• Cube schemas: attribute names, dimensionality, measure domains, etc.
• Instances of dimensions (members): roll-up functions, non-dimensional

values, etc.
• Instances of cubes (cells): overlapping cube extensions

10.1.2 Federated DW Reference Architecture

To address requirement R2, Chapter 6 introduced the reference architecture for
Federated DW systems, which is based on the “classical”, general five-level ar-
chitecture for federated databases [Sheth and Larson, 1990]. This reference ar-
chitecture provides four-tiered multi-dimensional schemas (component schema,
export schema, import schema, application schema). The separation of schemas
to several layers supports the integration of several Data Marts, while these re-
tain full autonomy for local schema and data management.

Moreover, the reference architecture also defines a component architecture.
Compared to previous approaches in the field of multi-dimensional source in-
tegration, we proposed to add (i) a stable, global schema, (ii) the Meta-data
Dictionary, and (iii) the Dimension Repository to Federated DW systems. The
stable global schema in combination with source-to-target mappings allows to
combine the advantage of the well-known global-as-view and local-as-view ap-
proaches to data integration [Lenzerini, 2002]. The Meta-data Dictionary stores
the catalogue of global schema and local Data Marts meta-data. Finally, the
dimension repository stores consolidated dimension schemas and mirrors their
members, which improves the performance of query processing among the au-
tonomous Data Marts.

10.1.3 FedDW Integration Methodology

In Chapter 7, this thesis proposed a general methodology for the conjoint inte-
gration of dimensions and facts among multi-dimensional data sources (require-
ment R3). The integration methodology systematically addresses the categories
of heterogeneity classified in Chapter 5. Its general idea is to produce source-to-
target semantic mappings (i.e., from the autonomous Data Marts to a stable,
global schema), such as demanded in the reference architecture.

We introduced the notion of homogeneous facts and dimensions as the desir-
able property of import schemas, produced by a set of semantic mappings among
autonomous Data Marts. Homogeneity is achieved in the proposed integration
methodology by a quite restrictive, minimum use strategy between autonomous,
multi-dimensional schemas and extensions. Internally, the conversion operators
of the Dimension Algebra and Fact Algebra provide the “building blocks” of
these semantic mappings. Both the Dimension Algebra and Fact Algebra de-
fine transformations on the properties of multi-dimensional schemas and data,
allowing to resolve the various classes of heterogeneity.

172 CHAPTER 10. CONCLUSIONS

10.1.4 Conversion Language SQL-MDi

To address requirement R4, we introduced the novel language SQL-MDi in
Chapter 8 of this thesis. SQL-MDi allows the integration of logical, relational
Data Mart schemas (i.e., of ROLAP Data Marts), providing high-level con-
version clauses for the heterogeneities we analyzed in Chapter 5. An SQL-
MDi statement uses three main clauses for defining the global schema and se-
mantic matches: (1) Define [Global] Cube, (2) Merge Dimensions, and
(3) Merge Cubes. Thus, SQL-MDi is suited for both, the ad-hoc integration
of multi-dimensional Data Marts, and the permanent definition of semantic
mappings in the Federated DW reference architecture.

The conversion clauses available in SQL-MDi correspond exactly to the op-
erators of the Dimension/Fact Algebra. Thus, the Dimension Algebra and Fact
Algebra represent one possible implementation of the SQL-MDi clauses, that is
more procedural than declarative in nature. We defined the syntax of SQL-MDi
precisely, and illustrated its use with many examples in Chapter 8, showing so-
lutions for every class of heterogeneity identified in the taxonomy of Chapter 5.

10.1.5 Prototypes of FedDW Tool Suite

Our approach meets the final requirement R5 by presenting the prototype imple-
mentation of the FedDW tool suite—comprising the Global Schema Architect
and Query Tool—in Chapter 9 of this thesis. The motivation behind these two
tools is to facilitate the business analysts’ tasks. Ideally, the users want to in-
tegrate and query autonomous Data Marts without having to write SQL-MDi
code of the semantic mappings by hand.

Therefore, FedDW Global Schema Architect demonstrates that the model-
driven architecture is well suited for the Data Warehousing domain. GSA com-
prises two main tasks of Data Mart integration: global schema design, and
mapping design. To support the design of a global multi-dimensional schema,
and to represent the import schemas of autonomous Data Marts, GSA uses an
easy-to-comprehend, UML-based notation. The GSA mapping editors, in turn,
provide context-sensitive access to predefined conversion operators for dimen-
sion and facts. Since the predefined operators available in the mapping editors
correspond to the Dimension/Fact Algebra operators, GSA ultimately allows to
generate SQL-MDi statements from the modelled mappings. Thus, according
to Model-Driven Architecture terminology, the mappings modelled with GSA
correspond to a platform-specific model, which allows for automatic code gen-
eration from the model. Moreover, GSA populates the Meta-data Dictionary of
the Federated DW reference architecture with the exact information on schema
elements modelled with UML schema diagrams using GSA.

FedDW Query Tool, in turn, acts as the mediator of the Federated DW
reference architecture. It takes an SQL-MDi statement and SQL OLAP query as
input, from which it both instantiates the virtual global cube—conforming to the
global, multi-dimensional schema—and evaluates the query result. The current
Query Tool prototype focussed on demonstrating that it seamlessly integrates
with GSA. We proved that Query Tool can process queries across autonomous
Data Marts successfully, using the SQL-MDi statements with the Meta-data
Dictionary designed and created with the Global Schema Architect. Thus, the

10.2. FUTURE WORK 173

FedDW prototypes showed how the concepts proposed in the thesis can be
implemented using open standards and off-the-shelf technology, such as the
Eclipse rich-client platform, and popular commercial database systems.

10.2 Future Work

While this thesis shows how to realize model-driven integration of autonomous
Data Marts, it opens further interesting research questions. The most challeng-
ing research questions to be investigated by future work are the following:

• Optimized query plans:
The current query processing algorithm implemented in the FedDW Query
Tool prototype simply combines algebraic optimization of Dimension/Fact
Algebra operators with data shipping (see Chapter 9). Basically, the op-
erator tree generated by the query parser remains unchanged, except that
the Dimension Repository is checked for local copies of the dimensions
used in the query. This approach has been reasonable for proving the
concepts proposed in this thesis, but it is also only elementary. More effi-
cient query plans can be generated when taking into account the selections
performed in the WHERE clauses of the SQL OLAP query.

• Query Rewriting:
Even better query performance over federations of autonomous Data
Marts can be expected by implementing query rewriting algorithms within
the Query Tool. This would mean extending the mediator functionality
of the Query Tool. Instead of transferring detail data—which is quite
ineffective—this approach would allow for shipping of aggregated fact
data. Such an approach requires an investigation of possible inference
mechanisms over the SQL-MDi statement and the SQL query, capable of
disseminating the original OLAP query and replacing it with appropriate
partial queries against the sources.

• Caching mechanisms for fact data:
Another interesting question to investigate is how fact data of autonomous
Data Marts can be efficiently cached at the federation layer. The motiva-
tion for such an approach is similar to the motivation for the Dimension
Repository, but the potential performance gains are clearly more appeal-
ing than for dimension data. Local copies of fact data would tremen-
dously improve the performance of queries against federated autonomous
Data Marts. The challenges to be solved roughly correspond to the view
refreshment problem, including questions such as the appropriate detail
level for cached fact data, or incremental maintenance algorithm for the
“fact repository” of the Federated DW system.

• Performance studies:
This thesis has emphasized the proof of concepts, based on open stan-
dards and off-the-shelf technology. Future work should also thoroughly
investigate the performance of the FedDW prototype implementations. In
particular, the exact overhead caused by different query processing strate-
gies, as well as the performance of query processing with large amounts of
fact data among the autonomous Data Marts would be interesting.

174 CHAPTER 10. CONCLUSIONS

Bibliography

[Abelló et al., 2002] Abelló, A., Samos, J., and Saltor, F. (2002). On rela-
tionships offering new drill-across possibilities. In [Theodoratos, 2002], pages
7–13.

[Abiteboul and Duschka, 1998] Abiteboul, S. and Duschka, O. M. (1998). Com-
plexity of answering queries using materialized views. In PODS, pages 254–
263. ACM Press.

[Adali et al., 1996] Adali, S., Candan, K. S., Papakonstantinou, Y., and Sub-
rahmanian, V. S. (1996). Query caching and optimization in distributed
mediator systems. In Jagadish, H. V. and Mumick, I. S., editors, SIGMOD
Conference, pages 137–148. ACM Press.

[Akinde et al., 2003] Akinde, M. O., Böhlen, M. H., Johnson, T., Lakshmanan,
L. V. S., and Srivastava, D. (2003). Efficient OLAP query processing in
distributed data warehouses. Inf. Syst., 28(1-2):111–135.

[Akoka et al., 1999] Akoka, J., Bouzeghoub, M., Comyn-Wattiau, I., and
Métais, E., editors (1999). Conceptual Modeling - ER ’99, 18th International
Conference on Conceptual Modeling, Paris, France, November, 15-18, 1999,
Proceedings, volume 1728 of Lecture Notes in Computer Science. Springer.

[Arens et al., 1993] Arens, Y., Chee, C. Y., Hsu, C.-N., and Knoblock, C. A.
(1993). Retrieving and integrating data from multiple information sources.
Int. J. Cooperative Inf. Syst., 2(2):127–158.

[Aslan and McLeod, 1999] Aslan, G. and McLeod, D. (1999). Semantic het-
erogeneity resolution in federated databases by metadata implantation and
stepwise evolution. VLDB J., 8(2):120–132.

[Atzeni et al., 2004] Atzeni, P., Chu, W. W., Lu, H., Zhou, S., and Ling, T. W.,
editors (2004). Conceptual Modeling - ER 2004, 23rd International Confer-
ence on Conceptual Modeling, Shanghai, China, November 2004, Proceedings,
volume 3288 of Lecture Notes in Computer Science. Springer.

[Banek et al., 2007] Banek, M., Vrdoljak, B., Tjoa, A. M., and Skocir, Z. (2007).
Automating the schema matching process for heterogeneous data warehouses.
In Song, I. Y., Eder, J., and Nguyen, T. M., editors, DaWaK, volume 4654
of Lecture Notes in Computer Science, pages 45–54. Springer.

[Barbancon and Miranker, 2007] Barbancon, F. and Miranker, D. P. (2007).
Sphinx: Schema integration by example. J. Intell. Inf. Syst., 29(2):145–184.

175

176 BIBLIOGRAPHY

[Batini et al., 1986] Batini, C., Lenzerini, M., and Navathe, S. B. (1986). A
comparative analysis of methodologies for database schema integration. ACM
Comput. Surv., 18(4):323–364.

[Bauer and Günzel, 2006] Bauer, A. and Günzel, H. (2006). Data Warehouse
Systeme. dpunkt Verlag, Heidelberg, Germany, 2nd edition.

[Beier et al., 2003] Beier, B., Serface, L., and Wong, R. (2003).
UI Models–Master Detail Templates. Oracle Corporation,
http://oracle.com/technology/tech/blaf/specs/masterDetail template.html.

[Berger and Schrefl, 2006] Berger, S. and Schrefl, M. (2006). Analysing multi-
dimensional data across autonomous data warehouses. In Tjoa, A. M. and
Tho, N., editors, DaWaK, pages 120–133.

[Berger and Schrefl, 2008] Berger, S. and Schrefl, M. (2008). From federated
databases to a federated data warehouse system. HICSS, 0:394.

[Berger and Schrefl, 2009] Berger, S. and Schrefl, M. (2009). FedDW: A tool
for querying federations of data warehouses. In ICEIS (1).

[Bernardino et al., 2002] Bernardino, J., Furtado, P., and Madeira, H. (2002).
DWS-AQA: A cost effective approach for very large data warehouses. In
Nascimento, M. A., Özsu, M. T., and Zäıane, O. R., editors, IDEAS, pages
233–242. IEEE Computer Society.

[Biskup and Embley, 2003] Biskup, J. and Embley, D. W. (2003). Extracting
information from heterogeneous information sources using ontologically spec-
ified target views. Inf. Syst., 28(3):169–212.

[Blaschka et al., 1998] Blaschka, M., Sapia, C., Höfling, G., and Dinter, B.
(1998). Finding your way through multidimensional data models. In DEXA
Workshop, pages 198–203.

[Bonifati et al., 2001] Bonifati, A., Cattaneo, F., Ceri, S., Fuggetta, A., and
Paraboschi, S. (2001). Designing data marts for data warehouses. ACM
Trans. Softw. Eng. Methodol., 10(4):452–483.

[Bonifati and Cuzzocrea, 2007] Bonifati, A. and Cuzzocrea, A. (2007). Efficient
fragmentation of large xml documents. In Wagner, R., Revell, N., and Pernul,
G., editors, DEXA, volume 4653 of Lecture Notes in Computer Science, pages
539–550. Springer.

[Boyd et al., 2004] Boyd, M., Kittivoravitkul, S., Lazanitis, C., McBrien, P.,
and Rizopoulos, N. (2004). Automed: A BAV data integration system for
heterogeneous data sources. In Persson, A. and Stirna, J., editors, CAiSE,
volume 3084 of Lecture Notes in Computer Science, pages 82–97. Springer.

[Bravo and Bertossi, 2005] Bravo, L. and Bertossi, L. E. (2005). Deductive
databases for computing certain and consistent answers from mediated data
integration systems. J. Applied Logic, 3(1):329–367.

[Breslin, 2004] Breslin, M. (2004). Data warehousing battle of the giants: Com-
paring the basics of the kimball and inmon models. Business Intelligence
Journal, 9(1):6–20.

http://oracle.com/technology/tech/blaf/specs/masterDetail_template.html

BIBLIOGRAPHY 177

[Brunneder, 2008] Brunneder, W. (2008). Development of an SQL-MDi query
parser (in german). Master’s thesis, University of Linz.

[Buitelaar et al., 2008] Buitelaar, P., Cimiano, P., Frank, A., Hartung, M., and
Racioppa, S. (2008). Ontology-based information extraction and integration
from heterogeneous data sources. Int. J. Hum.-Comput. Stud., 66(11):759–
788.

[Cabibbo et al., 2006] Cabibbo, L., Panella, I., and Torlone, R. (2006). DaWaII:
a tool for the integration of autonomous data marts. In Liu, L., Reuter, A.,
Whang, K.-Y., and Zhang, J., editors, ICDE, page 158. IEEE Computer
Society.

[Cabibbo and Torlone, 1998] Cabibbo, L. and Torlone, R. (1998). From a pro-
cedural to a visual query language for OLAP. In Rafanelli, M. and Jarke, M.,
editors, SSDBM, pages 74–83. IEEE Computer Society.

[Cabibbo and Torlone, 2005] Cabibbo, L. and Torlone, R. (2005). Integrating
heterogeneous multidimensional databases. In Frew, J., editor, SSDBM, pages
205–214.

[Calvanese et al., 2001] Calvanese, D., Giacomo, G. D., Lenzerini, M., Nardi,
D., and Rosati, R. (2001). Data integration in data warehousing. Int. J.
Cooperative Inf. Syst., 10(3):237–271.

[Carey et al., 1995] Carey, M. J., Haas, L. M., Schwarz, P. M., Arya, M., Cody,
W. F., Fagin, R., Flickner, M., Luniewski, A., Niblack, W., Petkovic, D., II,
J. T., Williams, J. H., and Wimmers, E. L. (1995). Towards heterogeneous
multimedia information systems: The garlic approach. In RIDE-DOM, pages
124–131.

[Chamberlin, 2002] Chamberlin, D. D. (2002). XQuery: An XML query lan-
guage. IBM Systems Journal, 41(4):597–615.

[Chaudhuri and Dayal, 1997] Chaudhuri, S. and Dayal, U. (1997). An overview
of data warehousing and OLAP technology. SIGMOD Record, 26(1):65–74.

[Chen et al., 1993] Chen, W., Kifer, M., and Warren, D. S. (1993). HiLog: A
foundation for higher-order logic programming. J. Log. Program., 15(3):187–
230.

[Christophides et al., 2000] Christophides, V., Cluet, S., and Siméon, J. (2000).
On wrapping query languages and efficient XML integration. In Chen, W.,
Naughton, J. F., and Bernstein, P. A., editors, SIGMOD Conference, pages
141–152. ACM.

[Codd, 1970] Codd, E. F. (1970). A relational model of data for large shared
data banks. Commun. ACM, 13(6):377–387.

[Codd et al., 1993] Codd, E. F., Codd, S. B., and Salley, C. T. (1993). Providing
OLAP (on-line analytical processing) to user analysts: An IT mandate. White
Paper, Arbor Software Cooperation.

178 BIBLIOGRAPHY

[Dalkilic et al., 1996] Dalkilic, M. M., Jain, M., Gucht, D. V., and Mendhekar,
A. (1996). Design and implementation of reflective SQL. Technical Report
TR451, Indiana University Computer Science.

[Das et al., 2008] Das, G., Sarda, N. L., and Reddy, P. K., editors (2008). Pro-
ceedings of the 14th International Conference on Management of Data, De-
cember 17-19, 2008, IIT Bombay, Mumbai, India. Computer Society of India
/ Allied Publishers.

[Dhamankar et al., 2004] Dhamankar, R., Lee, Y., Doan, A., Halevy, A. Y., and
Domingos, P. (2004). imap: Discovering complex mappings between database
schemas. In Weikum, G., König, A. C., and Deßloch, S., editors, SIGMOD
Conference, pages 383–394. ACM.

[Doan and Halevy, 2005] Doan, A. and Halevy, A. Y. (2005). Semantic inte-
gration research in the database community: A brief survey. AI Magazine,
26(1):83–94.

[Duschka et al., 2000] Duschka, O. M., Genesereth, M. R., and Levy, A. Y.
(2000). Recursive query plans for data integration. J. Log. Program.,
43(1):49–73.

[Embley et al., 2004] Embley, D. W., Xu, L., and Ding, Y. (2004). Automatic
direct and indirect schema mapping: Experiences and lessons learned. SIG-
MOD Record, 33(4):14–19.

[Evermann, 2009] Evermann, J. (2009). Theories of meaning in schema match-
ing: An exploratory study. Inf. Syst., 34(1):28–44.

[Fernández-Medina et al., 2007] Fernández-Medina, E., Trujillo, J., Villarroel,
R., and Piattini, M. (2007). Developing secure data warehouses with a UML
extension. Inf. Syst., 32(6):826–856.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design patterns: elements of reusable object-oriented software.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[Garcia-Molina et al., 1997] Garcia-Molina, H., Papakonstantinou, Y., Quass,
D., Rajaraman, A., Sagiv, Y., Ullman, J. D., Vassalos, V., and Widom, J.
(1997). The TSIMMIS approach to mediation: Data models and languages.
J. Intell. Inf. Syst., 8(2):117–132.

[Genesereth et al., 1997] Genesereth, M. R., Keller, A. M., and Duschka, O. M.
(1997). Infomaster: An information integration system. In [Peckham, 1997],
pages 539–542.

[Gingras and Lakshmanan, 1998] Gingras, F. and Lakshmanan, L. V. S. (1998).
nD-SQL: A multi-dimensional language for interoperability and OLAP. In
Gupta, A., Shmueli, O., and Widom, J., editors, VLDB, pages 134–145. Mor-
gan Kaufmann.

[Gingras et al., 1997] Gingras, F., Lakshmanan, L. V. S., Subramanian, I. N.,
Papoulis, D., and Shiri, N. (1997). Languages for multi-database interoper-
ability. In [Peckham, 1997], pages 536–538.

BIBLIOGRAPHY 179

[Glorio and Trujillo, 2008] Glorio, O. and Trujillo, J. (2008). An MDA approach
for the development of spatial data warehouses. In [Song et al., 2008], pages
23–32.

[Golfarelli et al., 1998] Golfarelli, M., Maio, D., and Rizzi, S. (1998). The di-
mensional fact model: A conceptual model for data warehouses. Int. J. Co-
operative Inf. Syst., 7(2-3):215–247.

[Golfarelli et al., 2001] Golfarelli, M., Rizzi, S., and Vrdoljak, B. (2001). Data
warehouse design from XML sources. In DOLAP.

[Gou and Chirkova, 2007] Gou, G. and Chirkova, R. (2007). Efficiently query-
ing large XML data repositories: A survey. IEEE Trans. Knowl. Data Eng.,
19(10):1381–1403.

[Graefe and McKenna, 1993] Graefe, G. and McKenna, W. J. (1993). The vol-
cano optimizer generator: Extensibility and efficient search. In Proceedings of
the Ninth International Conference on Data Engineering, April 19-23, 1993,
Vienna, Austria, pages 209–218. IEEE Computer Society.

[Grant et al., 1993] Grant, J., Litwin, W., Roussopoulos, N., and Sellis, T. K.
(1993). Query languages for relational multidatabases. VLDB J., 2(2):153–
171.

[Gruhn et al., 2005] Gruhn, V., Pieper, D., and Röttgers, C. (2005). MDA – Ef-
fektives Software Engineering mit UML 2 und Eclipse (in German). Springer
Verlag, Berlin, Germany.

[Gupta and Mumick, 2006] Gupta, H. and Mumick, I. S. (2006). Incremental
maintenance of aggregate and outerjoin expressions. Inf. Syst., 31(6):435–464.

[Hakimpour and Geppert, 2001] Hakimpour, F. and Geppert, A. (2001). Re-
solving semantic heterogeneity in schema integration. In FOIS, pages 297–
308.

[Halevy, 2001] Halevy, A. Y. (2001). Answering queries using views: A survey.
VLDB J., 10(4):270–294.

[Halevy et al., 2005] Halevy, A. Y., Ashish, N., Bitton, D., Carey, M. J.,
Draper, D., Pollock, J., Rosenthal, A., and Sikka, V. (2005). Enterprise
information integration: successes, challenges and controversies. In Özcan,
F., editor, SIGMOD Conference, pages 778–787. ACM.

[Halevy et al., 2006] Halevy, A. Y., Rajaraman, A., and Ordille, J. J. (2006).
Data integration: The teenage years. In Dayal, U., Whang, K.-Y., Lomet,
D. B., Alonso, G., Lohman, G. M., Kersten, M. L., Cha, S. K., and Kim,
Y.-K., editors, VLDB, pages 9–16. ACM.

[Hammer and McLeod, 1993] Hammer, J. and McLeod, D. (1993). An approach
to resolving semantic heterogenity in a federation of autonomous, heteroge-
neous database systems. Int. J. Cooperative Inf. Syst., 2(1):51–83.

[Han and Kamber, 2000] Han, J. and Kamber, M. (2000). Data Mining: Con-
cepts and Techniques (The Morgan Kaufmann Series in Data Management
Systems). Morgan Kaufmann.

180 BIBLIOGRAPHY

[Härder et al., 2007] Härder, T., Mathis, C., and 0002, K. S. (2007). Com-
parison of complete and elementless native storage of XML documents. In
IDEAS, pages 102–113. IEEE Computer Society.

[Hitz et al., 2005] Hitz, M., Kappel, G., Kapsammer, E., and Retschitzegger,
W. (2005). UML@Work: Objektorientierte Modellierung mit UML2 (in Ger-
man). dpunkt-Verlag, Heidelberg, 3rd edition.

[Hümmer et al., 2003] Hümmer, W., Bauer, A., and Harde, G. (2003). XCube:
XML for data warehouses. In DOLAP, pages 33–40. ACM.

[Inmon, 2005] Inmon, W. (2005). Building the Data Warehouse. John Wiley &
Sons, New York, 4th edition.

[(ISO), 1992] International Organization for Standardization (ISO), (1992).
ISO/IEC 9075:1992: Information Technology – Database languages – SQL.
http://www.iso.ch/cate/d16663.html.

[Jensen et al., 2001] Jensen, M. R., Møller, T. H., and Pedersen, T. B. (2001).
Specifying OLAP cubes on XML data. J. Intell. Inf. Syst., 17(2-3):255–280.

[Josifovski et al., 2002] Josifovski, V., Schwarz, P. M., Haas, L. M., and Lin,
E. T. (2002). Garlic: a new flavor of federated query processing for DB2. In
Franklin, M. J., Moon, B., and Ailamaki, A., editors, SIGMOD Conference,
pages 524–532. ACM.

[Jukic, 2006] Jukic, N. (2006). Modeling strategies and alternatives for data
warehousing projects. Commun. ACM, 49(4):83–88.

[Kedad and Métais, 1999] Kedad, Z. and Métais, E. (1999). Dealing with se-
mantic heterogeneity during data integration. In [Akoka et al., 1999], pages
325–339.

[Kim and Seo, 1991] Kim, W. and Seo, J. (1991). Classifying schematic and
data heterogeneity in multidatabase systems. IEEE Computer, 24(12):12–18.

[Kimball, 2002] Kimball, R. (2002). The Data Warehouse Toolkit: Practical
Techniques for Building Dimensional Datawarehouses. John Wiley & Sons,
New York, 2nd edition.

[Kimball and Merz, 2000] Kimball, R. and Merz, R. (2000). The Data Web-
house Toolkit: Building the Web-Enabled Data Warehouse. John Wiley &
Sons, New York.

[Kleppe et al., 2003] Kleppe, A., Warmer, J., and Bast, W. (2003). MDA Ex-
plained: The Model Driven Architecture–Practice and Promise. Addison-
Wesley Professional.

[Koch, 2001] Koch, C. (2001). Data Integration against Multiple Evolving Au-
tonomous Schemata. PhD thesis, TU Wien, Vienna, Austria.

[Krishnamurthy et al., 1991] Krishnamurthy, R., Litwin, W., and Kent, W.
(1991). Language features for interoperability of databases with schematic
discrepancies. In Clifford, J. and King, R., editors, SIGMOD Conference,
pages 40–49. ACM Press.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=16663

BIBLIOGRAPHY 181

[Lakshmanan et al., 1997] Lakshmanan, L. V. S., Sadri, F., and Subramanian,
I. N. (1997). Logic and algebraic languages for interoperability in multi-
database systems. J. Log. Program., 33(2):101–149.

[Lakshmanan et al., 2001] Lakshmanan, L. V. S., Sadri, F., and Subramanian,
S. N. (2001). SchemaSQL: An extension to SQL for multidatabase interoper-
ability. ACM Trans. Database Syst., 26(4):476–519.

[Larsen et al., 2009] Larsen, T. J., Niederman, F., Limayem, M., and Chan, J.
(2009). The role of modelling in achieving information systems success: UML
to the rescue? Inf. Syst. J., 19(1):83–117.

[Lee et al., 1995] Lee, C., Chen, C.-J., and Lu, H. (1995). An aspect of query
optimization in multidatabase systems (extended abstract). SIGMOD Record,
24(3):28–33.

[Lee et al., 2007] Lee, K. Y., Son, J. H., and Kim, M.-H. (2007). Reducing the
cost of accessing relations in incremental view maintenance. Decision Support
Systems, 43(2):512–526.

[Lenz and Shoshani, 1997] Lenz, H.-J. and Shoshani, A. (1997). Summarizabil-
ity in OLAP and statistical data bases. In Ioannidis, Y. E. and Hansen,
D. M., editors, SSDBM, pages 132–143. IEEE Computer Society.

[Lenzerini, 2002] Lenzerini, M. (2002). Data integration: A theoretical perspec-
tive. In Popa, L., editor, PODS, pages 233–246. ACM.

[Levy et al., 1996] Levy, A. Y., Rajaraman, A., and Ordille, J. J. (1996).
Querying heterogeneous information sources using source descriptions. In
[Vijayaraman et al., 1996], pages 251–262.

[Litwin and Abdellatif, 1986] Litwin, W. and Abdellatif, A. (1986). Multi-
database interoperability. IEEE Computer, 19(12):10–18.

[Litwin et al., 1989] Litwin, W., Abdellatif, A., Zeroual, A., Nicolas, B., and
Vigier, P. (1989). MSQL: A multidatabase language. Inf. Sci., 49(1-3):59–
101.

[Litwin et al., 1990] Litwin, W., Mark, L., and Roussopoulos, N. (1990). In-
teroperability of multiple autonomous databases. ACM Comput. Surv.,
22(3):267–293.

[Luján-Mora and Trujillo, 2004] Luján-Mora, S. and Trujillo, J. (2004). Physi-
cal modeling of data warehouses using UML. In Song, I.-Y. and Davis, K. C.,
editors, DOLAP, pages 48–57. ACM.

[Luján-Mora and Trujillo, 2006] Luján-Mora, S. and Trujillo, J. (2006). Phys-
ical modeling of data warehouses using UML component and deployment
diagrams: Design and implementation issues. J. Database Manag., 17(2):12–
42.

[Luján-Mora et al., 2006] Luján-Mora, S., Trujillo, J., and Song, I.-Y. (2006). A
UML profile for multidimensional modeling in data warehouses. Data Knowl.
Eng., 59(3):725–769.

182 BIBLIOGRAPHY

[Luján-Mora et al., 2004] Luján-Mora, S., Vassiliadis, P., and Trujillo, J.
(2004). Data mapping diagrams for data warehouse design with UML. In
[Atzeni et al., 2004], pages 191–204.

[Maislinger, 2009] Maislinger, L. (2009). Visual tool for the integration of au-
tonomous data mart schemas (in german). Master’s thesis, University of
Linz.

[Mangisengi et al., 2003] Mangisengi, O., Eßmayr, W., Huber, J., and Weippl,
E. (2003). XML-based OLAP query processing in a federated data ware-
houses. In ICEIS (1), pages 71–78.

[Masermann and Vossen, 2000] Masermann, U. and Vossen, G. (2000). SISQL:
Schema-independent database querying (on and off the web). In Desai, B. C.,
Kiyoki, Y., and Toyama, M., editors, IDEAS, pages 55–64. IEEE Computer
Society.

[Mazón and Trujillo, 2007] Mazón, J.-N. and Trujillo, J. (2007). A model driven
modernization approach for automatically deriving multidimensional models
in data warehouses. In Parent, C., Schewe, K.-D., Storey, V. C., and Thal-
heim, B., editors, ER, volume 4801 of Lecture Notes in Computer Science,
pages 56–71. Springer.

[Mazón and Trujillo, 2008] Mazón, J.-N. and Trujillo, J. (2008). An MDA ap-
proach for the development of data warehouses. Decision Support Systems,
45(1):41 – 58. Data Warehousing and OLAP.

[Mazón et al., 2006] Mazón, J.-N., Trujillo, J., and Lechtenbörger, J. (2006). A
set of QVT relations to assure the correctness of data warehouses by using
multidimensional normal forms. In Embley, D. W., Olivé, A., and Ram,
S., editors, ER, volume 4215 of Lecture Notes in Computer Science, pages
385–398. Springer.

[Mazón et al., 2007] Mazón, J.-N., Trujillo, J., and Lechtenbörger, J. (2007).
Reconciling requirement-driven data warehouses with data sources via mul-
tidimensional normal forms. Data Knowl. Eng., 63(3):725–751.

[Mazón et al., 2005] Mazón, J.-N., Trujillo, J., Serrano, M. A., and Piattini, M.
(2005). Applying MDA to the development of data warehouses. In Song,
I.-Y. and Trujillo, J., editors, DOLAP, pages 57–66. ACM.

[McBrien and Poulovassilis, 2002] McBrien, P. and Poulovassilis, A. (2002).
Schema evolution in heterogeneous database architectures, a schema transfor-
mation approach. In Pidduck, A. B., Mylopoulos, J., Woo, C. C., and Özsu,
M. T., editors, CAiSE, volume 2348 of Lecture Notes in Computer Science,
pages 484–499. Springer.

[McBrien and Poulovassilis, 2003] McBrien, P. and Poulovassilis, A. (2003).
Data integration by bi-directional schema transformation rules. In Dayal,
U., Ramamritham, K., and Vijayaraman, T. M., editors, ICDE, pages 227–
238. IEEE Computer Society.

BIBLIOGRAPHY 183

[Medina and Trujillo, 2002] Medina, E. and Trujillo, J. (2002). A standard for
representing multidimensional properties: The Common Warehouse Meta-
model (CWM). In Manolopoulos, Y. and Návrat, P., editors, ADBIS, volume
2435 of Lecture Notes in Computer Science, pages 232–247. Springer.

[Miller, 1995] Miller, G. A. (1995). WordNet: A lexical database for english.
Commun. ACM, 38(11):39–41.

[Mohania and Bhide, 2008] Mohania, M. K. and Bhide, M. (2008). New trends
in information integration. In Kim, W. and Choi, H.-J., editors, ICUIMC,
pages 74–81. ACM.

[Navathe and Elmasri, 2004] Navathe, S. B. and Elmasri, R. A. (2004). Fun-
damentals of Database Systems. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 4th edition.

[Niemi et al., 2002] Niemi, T., Niinimäki, M., Nummenmaa, J., and Thanisch,
P. (2002). Constructing an OLAP cube from distributed XML data. In
[Theodoratos, 2002], pages 22–27.

[Nuseibeh and Easterbrook, 2000] Nuseibeh, B. and Easterbrook, S. (2000).
Requirements engineering: a roadmap. In ICSE ’00: Proceedings of the Con-
ference on The Future of Software Engineering, pages 35–46, New York, NY,
USA. ACM Press.

[(OMG), 2003a] Object Management Group (OMG), (2003a).
Common Warehouse Metamodel Specification v1.1.
http://www.omg.org/spec/CWM/1.1/PDF/.

[(OMG), 2003b] Object Management Group (OMG), (2003b). Model
Driven Architecture Specification Guide v1.0.1. http://www.omg.org/cgi-
bin/doc?omg/03-06-01.

[(OMG), 2009] Object Management Group (OMG), (2009). Unified Modelling
Language Specification v2.2. http://www.omg.org/spec/UML/2.2/PDF/.

[Özsu and Valduriez, 1999] Özsu, M. T. and Valduriez, P. (1999). Principles of
Distributed Database Systems, Second Edition. Prentice-Hall.

[Papakonstantinou et al., 1995] Papakonstantinou, Y., Garcia-Molina, H., and
Widom, J. (1995). Object exchange across heterogeneous information sources.
In Yu, P. S. and Chen, A. L. P., editors, ICDE, pages 251–260. IEEE Com-
puter Society.

[Pardillo et al., 2008] Pardillo, J., Mazón, J.-N., and Trujillo, J. (2008). Model-
driven metadata for OLAP cubes from the conceptual modelling of data ware-
houses. In [Song et al., 2008], pages 13–22.

[Pardillo and Trujillo, 2008] Pardillo, J. and Trujillo, J. (2008). Integrated
model-driven development of goal-oriented data warehouses and data marts.
In Li, Q., Spaccapietra, S., Yu, E. S. K., and Olivé, A., editors, ER, volume
5231 of Lecture Notes in Computer Science, pages 426–439. Springer.

http://www.omg.org/spec/CWM/1.1/PDF/
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/spec/UML/2.2/PDF/

184 BIBLIOGRAPHY

[Peckham, 1997] Peckham, J., editor (1997). SIGMOD 1997, Proceedings ACM
SIGMOD International Conference on Management of Data, May 13-15,
1997, Tucson, Arizona, USA. ACM Press.

[Pedersen et al., 2002a] Pedersen, D., Riis, K., and Pedersen, T. B. (2002a).
A powerful and SQL-compatible data model and query language for OLAP.
In Zhou, X., editor, Australasian Database Conference, volume 5 of CRPIT.
Australian Computer Society.

[Pedersen et al., 2002b] Pedersen, D., Riis, K., and Pedersen, T. B. (2002b).
Query optimization for OLAP-XML federations. In [Theodoratos, 2002],
pages 57–64.

[Pedersen et al., 2002c] Pedersen, D., Riis, K., and Pedersen, T. B. (2002c).
XML-extended OLAP querying. In SSDBM, pages 195–206. IEEE Computer
Society.

[Pendse and Creeth, 1995] Pendse, N. and Creeth, R. (1995). The FASMI test.
The OLAP Report.

[Poole and Mellor, 2001] Poole, J. and Mellor, D. (2001). Common Warehouse
Metamodel: An Introduction to the Standard for Data Warehouse Integration.
John Wiley & Sons, Inc., New York, NY, USA.

[Poole, 2003] Poole, J. M. (2003). Common Warehouse Metamodel Developer’s
Guide. John Wiley & Sons, Inc., New York, NY, USA.

[Pottinger and Halevy, 2001] Pottinger, R. and Halevy, A. Y. (2001). MiniCon:
A scalable algorithm for answering queries using views. VLDB J., 10(2-
3):182–198.

[Poulovassilis and McBrien, 1998] Poulovassilis, A. and McBrien, P. (1998). A
general formal framework for schema transformation. Data Knowl. Eng.,
28(1):47–71.

[Prakash et al., 2004] Prakash, N., Singh, Y., and Gosain, A. (2004). In-
formational scenarios for data warehouse requirements elicitation. In
[Atzeni et al., 2004], pages 205–216.

[Prat et al., 2006] Prat, N., Akoka, J., and Comyn-Wattiau, I. (2006). A UML-
based data warehouse design method. Decision Support Systems, 42(3):1449–
1473.

[Quass et al., 1996] Quass, D., Gupta, A., Mumick, I. S., and Widom, J. (1996).
Making views self-maintainable for data warehousing. In PDIS, pages 158–
169. IEEE Computer Society.

[Rahm and Bernstein, 2001] Rahm, E. and Bernstein, P. A. (2001). A survey
of approaches to automatic schema matching. VLDB J., 10(4):334–350.

[Reilles, 2007] Reilles, A. (2007). Canonical abstract syntax trees. Electronic
Notes in Theoretical Computer Science, 176(4):165 – 179. Proceedings of the
6th International Workshop on Rewriting Logic and its Applications (WRLA
2006).

BIBLIOGRAPHY 185

[Rood et al., 1999] Rood, C. M., Gucht, D. V., and Wyss, F. I. (1999). MD-
SQL: A language for meta-data queries over relational databases. Technical
Report TR528, Indiana University Computer Science.

[Rossgatterer, 2008] Rossgatterer, T. (2008). Query processing in a federated
data warehouse system (in german). Master’s thesis, University of Linz.

[Schmitt and Saake, 2005] Schmitt, I. and Saake, G. (2005). A comprehensive
database schema integration method based on the theory of formal concepts.
Acta Inf., 41(7-8):475–524.

[Schöning, 2001] Schöning, H. (2001). Tamino - a DBMS designed for XML. In
ICDE, pages 149–154. IEEE Computer Society.

[Schöning, 2003] Schöning, H. (2003). Tamino - a database system combining
text retrieval and XML. In Blanken, H. M., Grabs, T., Schek, H.-J., Schenkel,
R., and Weikum, G., editors, Intelligent Search on XML Data, volume 2818
of Lecture Notes in Computer Science, pages 77–89. Springer.

[Schwarz et al., 1999] Schwarz, K., Schmitt, I., Türker, C., Höding, M., Hilde-
brandt, E., Balko, S., Conrad, S., and Saake, G. (1999). Design support for
database federations. In [Akoka et al., 1999], pages 445–459.

[Seligman et al., 2002] Seligman, L. J., Rosenthal, A., Lehner, P. E., and Smith,
A. (2002). Data integration: Where does the time go? IEEE Data Eng. Bull.,
25(3):3–10.

[Sheth and Larson, 1990] Sheth, A. P. and Larson, J. A. (1990). Federated
database systems for managing distributed, heterogeneous, and autonomous
databases. ACM Comput. Surv., 22(3):183–236.

[Singh et al., 1997] Singh, M. P., Cannata, P., Huhns, M. N., Jacobs, N.,
Ksiezyk, T., Ong, K., Sheth, A. P., Tomlinson, C., and Woelk, D. (1997).
The carnot heterogeneous database project: Implemented applications. Dis-
tributed and Parallel Databases, 5(2):207–225.

[Song et al., 2008] Song, I.-Y., Eder, J., and Nguyen, T. M., editors (2008).
Data Warehousing and Knowledge Discovery, 10th International Conference,
DaWaK 2008, Turin, Italy, September 2-5, 2008, Proceedings, volume 5182
of Lecture Notes in Computer Science. Springer.

[Srivastava et al., 1996] Srivastava, D., Dar, S., Jagadish, H. V., and Levy,
A. Y. (1996). Answering queries with aggregation using views. In
[Vijayaraman et al., 1996], pages 318–329.

[Telang et al., 2008a] Telang, A., Chakravarthy, S., and Huang, Y. (2008a). In-
formation integration across heterogeneous sources: Where do we stand and
how to proceed? In [Das et al., 2008], pages 186–197.

[Telang et al., 2008b] Telang, A., Chakravarthy, S., and Li, C. (2008b). Query-
ing for information integration: How to go from an imprecise intent to a
precise query? In [Das et al., 2008], pages 245–248.

[The OLAP Council, 2009] The OLAP Council (2009).
http://www.olapcouncil.org/research/resrchly.htm.

http://www.olapcouncil.org/research/resrchly.htm

186 BIBLIOGRAPHY

[Theodoratos, 2002] Theodoratos, D., editor (2002). DOLAP 2002, ACM Fifth
International Workshop on Data Warehousing and OLAP, November 8, 2002,
McLean, VA, Proceedings. ACM.

[Thomsen, 2002] Thomsen, E. (2002). OLAP Solutions – Building Multidimen-
sional Information Systems. John Wiley & Sons, 2nd edition.

[Torlone, 2008] Torlone, R. (2008). Two approaches to the integration of het-
erogeneous data warehouses. Distributed and Parallel Databases, 23(1):69–97.

[Torlone and Panella, 2005] Torlone, R. and Panella, I. (2005). Design and de-
velopment of a tool for integrating heterogeneous data warehouses. In Tjoa,
A. M. and Trujillo, J., editors, DaWaK, volume 3589 of Lecture Notes in
Computer Science, pages 105–114. Springer.

[Tseng and Chen, 2005] Tseng, F. S. and Chen, C.-W. (2005). Integrating het-
erogeneous data warehouses using xml technologies. Journal of Information
Science, 31(3):209–229.

[Tzitzikas et al., 2005] Tzitzikas, Y., Spyratos, N., and Constantopoulos, P.
(2005). Mediators over taxonomy-based information sources. VLDB J.,
14(1):112–136.

[Van den Bussche et al., 1996] Van den Bussche, J., Van Gucht, D., and Vossen,
G. (1996). Reflective programming in the relational algebra. J. Comput. Syst.
Sci., 52(3):537–549.

[Vassiliadis and Sellis, 1999] Vassiliadis, P. and Sellis, T. K. (1999). A survey
of logical models for OLAP databases. SIGMOD Record, 28(4):64–69.

[Vijayaraman et al., 1996] Vijayaraman, T. M., Buchmann, A. P., Mohan, C.,
and Sarda, N. L., editors (1996). VLDB’96, Proceedings of 22th Interna-
tional Conference on Very Large Data Bases, September 3-6, 1996, Mumbai
(Bombay), India. Morgan Kaufmann.

[Warmer and Kleppe, 1999] Warmer, J. and Kleppe, A. (1999). The Object
Constraint Language OCL: Precise Modelling with UML. Addison Wesley,
Reading, MA, USA.

[Watson et al., 2001] Watson, H. J., Annino, D. A., Wixom, B., Avery, K. L.,
and Rutherford, M. (2001). Current practices in data warehousing. IS Man-
agement, 18(1):1–9.

[Wiederhold, 1992] Wiederhold, G. (1992). Mediators in the architecture of
future information systems. IEEE Computer, 25(3):38–49.

[Wirth, 1988] Wirth, N. (1988). Programming in Modula-2. Springer, 4th edi-
tion.

[Wyss and Robertson, 2005] Wyss, C. M. and Robertson, E. L. (2005). Re-
lational languages for metadata integration. ACM Trans. Database Syst.,
30(2):624–660.

BIBLIOGRAPHY 187

[Xu and Embley, 2004] Xu, L. and Embley, D. W. (2004). Combining the best
of global-as-view and local-as-view for data integration. In Doroshenko, A. E.,
Halpin, T. A., Liddle, S. W., and Mayr, H. C., editors, ISTA, volume 48 of
LNI, pages 123–136. GI.

[Xu and Embley, 2006] Xu, L. and Embley, D. W. (2006). A composite ap-
proach to automating direct and indirect schema mappings. Inf. Syst.,
31(8):697–732.

[Yan et al., 2001] Yan, L.-L., Miller, R. J., Haas, L. M., and Fagin, R. (2001).
Data-driven understanding and refinement of schema mappings. In SIGMOD
Conference, pages 485–496.

[Yang and Larson, 1987] Yang, H. Z. and Larson, P.-Å. (1987). Query trans-
formation for PSJ-queries. In Stocker, P. M., Kent, W., and Hammersley, P.,
editors, VLDB, pages 245–254. Morgan Kaufmann.

[Zhao and Ram, 2007] Zhao, H. and Ram, S. (2007). Combining schema and
instance information for integrating heterogeneous data sources. Data Knowl.
Eng., 61(2):281–303.

[Zhou et al., 2007] Zhou, J., Larson, P.-Å., and Elmongui, H. G. (2007). Lazy
maintenance of materialized views. In Koch, C., Gehrke, J., Garofalakis,
M. N., Srivastava, D., Aberer, K., Deshpande, A., Florescu, D., Chan, C. Y.,
Ganti, V., Kanne, C.-C., Klas, W., and Neuhold, E. J., editors, VLDB, pages
231–242. ACM.

[Zubcoff and Trujillo, 2007] Zubcoff, J. J. and Trujillo, J. (2007). A UML 2.0
profile to design association rule mining models in the multidimensional con-
ceptual modeling of data warehouses. Data Knowl. Eng., 63(1):44–62.

188 BIBLIOGRAPHY

Appendix

189

List of Figures

2.1 Health insurance – conceptual schemas of local Data Marts. . . . 16
2.2 Global conceptual schema of health insurance DM federation. . . 17
2.3 “Medication” fact tables and “drug” dimensions—[ALL] levels

omitted—of the local Data Marts dwh1, dwh2 (case study). . . . 18
2.4 “Treatment” fact tables and “time” dimensions of the local Data

Marts dwh1, dwh2 (case study). 19
2.5 Global fact tables and dimensions—[all] levels omitted—

computed from the local Data Marts dwh1, dwh2 21

3.1 Tasks and vocabulary of data integration [Koch, 2001]. 24
3.2 Five-tier schema architecture of federated databases

[Sheth and Larson, 1990]. 28

5.1 Overview of Categories for Multi-dimensional Heterogeneities . . 61

6.1 Federated Data Warehouse conceptual architecture. 83

7.1 Data Mart “foo” with facts treatmt, treats, and dimension date.
The [all]-level of dimension foo::date has been omitted. Moreover,
fact treatmt of Data Mart “foo2” is specified. 90

7.2 Paradigms for semantic mappings definition between Data
Marts—“hub” (left) vs. “point-to-point” (right). 99

7.3 Mapping strategies—maximum use vs. minimum match vs. mini-
mum use—demonstrated for dimension dwh2::date time2. Notice
that the month level must be generated – “reconstructed” – in
the case of maximum use and minimum match strategies. 105

9.1 Conceptual Data Mart schemas of companies Red and Blue in
Dimensional Fact Model notation [Golfarelli et al., 1998]. 144

9.2 Fact and dimension tables of company “Red”. 145
9.3 Fact and dimension tables of company “Blue”. 146
9.4 Implementation architecture of FedDW tool suite. 148
9.5 GSA schema editor—package diagram of global schema (left)

with multi-dimensional schema UML palette; class diagram of
customer dimension expanded (right) 151

191

192 LIST OF FIGURES

9.6 Representing Data Mart Schemas—Global Schema Architect
meta-model (GMM) [Maislinger, 2009] 152

9.7 GSA Import Mapping Editor (cube element “dw1” selected left) 155
9.8 GSA Global Mapping Editor (Merge Dimensions element selected

left) . 156
9.9 Modules of the FedDW GSA Eclipse plug-in [Maislinger, 2009] . 156
9.10 Profile Definition Diagram—extensions of the GSA profile 158
9.11 Example SQL-MDi statement, integrating Red’s and Blue’s Data

Marts. 163
9.12 FedDW Query Tool: graphical user interface. 164
9.13 Fact table “sales” of virtual global cube “dw0”. 164

A.1 Top-level structure of an SQL-MDi statement. 200
A.2 DEFINE clause of SQL-MDi – sub-clauses. 201
A.3 MERGE DIMENSIONS clause of SQL-MDi – sub-clauses. 202
A.4 MERGE CUBES clause of SQL-MDi – sub-clauses. 203
A.5 Identifiers in SQL-MDi statements. 204
A.6 Miscellaneous non-terminal symbols and terminal symbols of

SQL-MDi statements. 204
A.7 Updated production rules in SQL-MDi syntax Version 1.2

(changes given in bold font). 206

List of Tables

2.1 Overview of heterogeneities among Data Warehouses. 22

5.1 Schema versus instance heterogeneity in multi-dimensional models 75
5.2 Classes of heterogeneity among autonomous dimension schemas . 76
5.2 Classes of heterogeneity among autonomous dimension schemas . 77
5.3 Classes of heterogeneity among autonomous fact schemas 77
5.3 Classes of heterogeneity among autonomous fact schemas 78
5.4 Classes of heterogeneity among members of autonomous dimensions 79
5.5 Classes of heterogeneity among cells of autonomous cubes 79

7.1 Predefined conversion operators of Dimension Algebra / Fact Al-
gebra for facts respectively dimensions 115

9.1 FedDW conflict resolution—predefined operators in GSA. 154
9.2 GSA profile—stereotypes, constraints and icons [Maislinger, 2009] 158
9.3 Conflict resolution strategies of FedDW for facts, and correspond-

ing language support. 160
9.4 Conflict resolution strategies of FedDW for dimensions, and cor-

responding language support. 161

193

194 LIST OF TABLES

List of Definitions

4.1 Data Mart . 53
4.2 Dimension Schema . 54
4.3 Dimension Instance . 54
4.4 dimension functions . 55
4.5 roll-up functions . 55
4.6 base level of hierarchy . 55
4.7 roll-up consistency . 55
4.8 Fineness and coarseness of levels . 56
4.9 Cube Schema . 56
4.10 Cube instance . 57
4.11 Name function of dimension and cube schemas 57
5.1 Naming conflicts among dimension schemas 64
5.2 Naming conflicts among cube schemas 64
5.3 Conceptual correspondence of levels 65
5.4 Equivalence of levels . 65
5.5 Corresponding level sets . 66
5.6 Conceptual correspondence of dimension attributes 69
5.7 Equivalence of dimension attributes 69
5.8 Corresponding cube schemas . 69
5.9 Equivalent members . 72
5.10 Equivalent cells . 74
7.1 DA expression . 91
7.2 ζ – rename . 92
7.3 δ – change . 92
7.4 γ – convert . 93
7.5 Ω – override roll-up . 93
7.6 µ – merge dimensions . 93
7.7 Merge consistency . 93
7.8 FA expression . 94
7.9 σ–select, π–project, λ–delete measure, ζ–rename 95
7.10 γ – convert . 95

195

196 List of Definitions

7.11 ε – enrich dimensions . 95
7.12 % – roll-up . 96
7.13 χ – merge measures . 96
7.14 ξ – split measure . 97
7.15 µ – merge facts . 97
7.16 Semantic mappings – dimension and cube schemas 101
7.17 Semantic mappings – dimension and cube extensions 101

List of Examples

4.1 Data Mart . 53
4.2 dimension schema . 54
4.3 dimension instance . 54
4.4 dimension functions . 55
4.5 roll-up functions . 55
4.6 base level of hierarchy . 55
4.7 roll-up function consistency . 56
4.8 fineness and coarseness of levels . 56
4.9 cube schema . 57
4.10 cube instance . 57
4.11 Name functions . 57
5.1 schema–instance conflict . 62
5.2 naming conflicts among dimension schemas 64
5.3 naming conflicts among cube schemas 64
5.4 intensional equivalence of levels . 65
5.5 non-correspondence . 66
5.6 inner-level correspondence . 66
5.7 base-level correspondence . 67
5.8 flat correspondence . 67
5.9 inner level domain conflict . 68
5.10 base level domain conflict . 68
5.11 non-dimensional domain conflict . 68
5.12 non-corresponding cube schemas . 70
5.13 partial-corresponding cube schemas 70
5.14 dimensional attributes domain conflict 71
5.15 measure attributes domain conflict 71
5.16 heterogeneous roll-up functions . 73
5.17 Non-dimensional value conflict . 73
5.18 overlapping member extensions . 74
5.19 overlapping cube extensions . 75
5.20 disjoint cube instances . 75

197

198 List of Examples

7.1 σ – select . 91
7.2 π – project . 91
7.3 ψ – aggregate . 92
7.4 ζ – rename . 92
7.5 δ – change . 93
7.6 γ – convert (Dimension Algebra) . 93
7.7 Ω – override roll-up . 93
7.8 γ – convert (Fact Algebra) . 95
7.9 ε – enrich dimensions . 96
7.10 % - roll-up measure attribute . 96
7.11 χ – pivot, merge measures . 97
7.12 ξ – pivot, split measure . 97
7.13 µ – merge facts . 98
7.14 Data Mart integration – schema–instance conflicts 104
7.15 Dimension schema integration process 108
7.16 Cube schema integration process . 110
7.17 Member integration process . 112
7.18 Cells integration process . 114
8.1 Basic concepts—DEFINE CUBE clause 119
8.2 Basic concepts—MERGE DIMENSIONS clause 120
8.3 Basic concepts—MERGE CUBES clause 120
8.4 Basic concepts continued—rename operators 121
8.5 converting dimension members to measure variables 122
8.6 converting measure variables to dimension members 123
8.7 Rename operators . 124
8.8 Deleting unneeded levels in dimension hierarchies 126
8.9 Repairing dimensionality conflicts . 127
8.10 Roll-up of a dimensional attribute 128
8.11 Converting the domain of non-dimensional attributes 130
8.12 Converting the domain of measure attributes 130
8.13 Repairing heterogeneous roll-up functions 131
8.14 Renaming heterogeneous N-attribute values 132
8.15 Mapping table for heterogeneous N-attribute values 133
8.16 Handling overlapping members . 134
8.17 Applying the MINUS operation on overlapping members 134
8.18 Preferring particular sources of overlapping facts 136
8.19 Context dimension extending overlapping facts 136
8.20 Aggregating overlapping facts . 137
8.21 Merging disjoint facts . 138
8.22 Complete SQL-MDi statement . 139

Appendix A

Syntax Specification of
SQL-MDi

This Chapter specifies the syntax of the SQL-MDi query language introduced in
Chapter 8 of this thesis as formal, context-free grammar. The production rules
of the grammar are formulated in the well known EBNF, the Extended Backus–
Naur Form originally developed by Niklaus Wirth. The Chapter specifies two
versions of the SQL-MDi language grammar. While version 1.1 of SQL-MDi has
been implemented in the latest release of the FedDW Query Tool, version 1.2
contains some minor syntactical improvements.

199

200 APPENDIX A. SYNTAX SPECIFICATION OF SQL-MDI

As mentioned in Chapter 8, the basic structure of an SQL-MDi statement—
together with the SQL OLAP query—consists of the following clauses:

1 {DEFINE [GLOBAL] CUBE <cube -declarations >}

2 {MERGE DIMENSIONS <merge -dim -subclauses >}

3 MERGE CUBES <merge -cube -subclauses >

5 SELECT <dimension attributes >, <aggregated measures >

6 FROM <fact tables >, <dimension tables >

7 WHERE <selection criteria >

8 GROUP BY <dimension attributes >

9 [HAVING <group selection criteria >]

While Chapter 8 explains the syntax and semantics of all clauses and sub-
clauses available in SQL-MDi in detail, it omits the formal specification of the
language grammar for brevity. The implementation of a language parser, how-
ever, requires a formal grammar that defines unambiguously the allowed sym-
bols of a language, and possible “sentences” (sequences) of the symbols. There-
fore, this Chapter provides the syntax of SQL-MDi—originally introduced in
[Berger and Schrefl, 2006]—as formal grammar.

In what follows, we formally specify the clauses of SQL-MDi as context-free
grammar, formulated in the EBNF (Extended Backus–Naur Form) originally
developed by [Wirth, 1988]. The EBNF grammar formalizes the clauses and
sub-clauses of the SQL-MDi language exhaustively. For better clarity of the
production rules, we enclose every non-terminal symbol between angle brackets.
Terminal symbols, in turn, are all enclosed between quotation marks.

It is important to note that two different versions of SQL-MDi syntax have
been used in the FedDW project, and in this thesis as well. Version 1.1 of SQL-
MDi (Section A.1) has been implemented in the latest release of the FedDW
Query Tool, that is discussed in Chapter 9. In turn, version 1.2 of SQL-MDi
improved upon some minor syntactical details. The newer version 1.2 of the
SQL-MDi grammar corresponds to the language syntax that has been intro-
duced and explained in depth in Chapter 8 of this thesis.

A.1 SQL-MDi Syntax Version 1.1

The following Section specifies the EBNF rules of SQL-MDi version 1.1, which
is implemented in the FedDW Query Tool [Brunneder, 2008].

. .
<sql-mdi-query> ::= <define-clause> <merge-dim-clauses> <merge-cubes-

clauses>.. .
Figure A.1: Top-level structure of an SQL-MDi statement.

In Figure A.4, the non-terminal expression SQL DDL statement refers to a
CREATE TABLE statement as specified in the SQL standard [(ISO), 1992].

A.1. SQL-MDI SYNTAX VERSION 1.1 201

. .
<define-clause> ::= “DEFINE” <cube-specs>.

<cube-specs> ::= <cube-spec> {[“,”] <cube-spec>} <global-cube-spec>.

<global-cube-spec> ::= “GLOBAL CUBE” <node> “::” <cube-name> “AS”

<global-cube-alias>.

<cube-spec> ::= “CUBE” <node> “::” <cube-name> “AS” <cube-alias>

<source-schema-defs> <source-instance-defs>.
<source-schema-

defs>
::= [“(”] <measure-imports> [“,”] <dim-imports> [[“,”]

<pivot-schema>] [“)”].

<measure-imports> ::= “MEASURE” <measure-import> {[“,”] <measure-

import>}.
<measure-import> ::= <cube-alias> “.” <measure-attr-name> [“->” <new-

measure-attr-name>].

<dim-imports> ::= <dim-import> {[“,”] <dim-import>}.
<dim-import> ::= “DIM” <cube-alias> “.” <dim-attr-name> [“->” <new-

dim-attr-name>] [<level-mappings-subclause>].

<level-mappings-

subclause>
::= [“(”] “MAP LEVELS” <cube-alias> “.” <dim-attr-name>

<mapped-levels-list> [“)”].

<mapped-levels-list> ::= [“(”] “[” <level-name> [“->” <new-level-name>] {[“,”]

<level-name> [“->” <new-level-name>]}.
<pivot-schema> ::= “PIVOT” (<pivot-split-measure-attr> | <pivot-merge-

measure-attrs>).

<pivot-split-measure-

attr>
::= “MEASURE” <cube-alias> “.” <measure-attr-name>

“BASED ON” <cube-alias> “.” <dim-attr-name>

[<rename-context-dim-insts>].

<rename-context-

dim-insts>
::= <rename-context-dim-inst> {[“,”] <rename-context-dim-

inst>}.
<rename-context-

dim-inst>
::= [“(”] “RENAME CONTEXT DIM” <cube-alias> “.”

<context-dim-attr-name> [“′”] <old-value> [“′”] “>>”

[“′”] <new-value> [“′”] [“)”].

<pivot-merge-

measure-attrs>
::= “MEASURES” <measure-attr-list> “INTO” <cube-alias>

“.” <measure-attr-name> “USING” <cube-alias> “.”

<context-dim-attr>.

<measure-attr-list> ::= <cube-alias> “.” <measure-attr-name> {[“,”] <cube-

alias> “.” <measure-attr-name>}.
<source-instance-

defs>
::= {<rollup-instr>} <measure-conversion-instrs>.

<rollup-instr> ::= [“(”] “ROLLUP” <cube-alias> “.” <dim-attr-name> “TO

LEVEL” <cube-alias> “.” <dim-attr-name> “[”<level-

name>“]” [“)”].

<measure-conversion-

instrs>
::= [“(”] “CONVERT MEASURES APPLY” <measure-

conversion-instr> {[“,”] <measure-conversion-instr>}.
<measure-conversion-

instr>
::= <function-name> “FOR” <cube-alias> “.” <measure-attr-

name> (“DEFAULT” | “WHERE” <conditions>).

<conditions> ::= <condition> {[“,”] <condition>}.
<condition> ::= [“AND” | “OR”] <cube-alias> “.” [<dim-name> “.”]

<dim-attr-name> <operator> (<cube-alias> “.” [<dim-

name> “.”] <dim-attr-name> | [“′”] <value> [“′”]).
. .

Figure A.2: DEFINE clause of SQL-MDi – sub-clauses.

202 APPENDIX A. SYNTAX SPECIFICATION OF SQL-MDI

. .
<merge-dim-clauses> ::= <merge-dim> {[“,”] <merge-dim>}.
<merge-dim> ::= [“(”] “MERGE DIMENSIONS” <dim-list> “INTO” <dim-

def> [<set-operation>] {<member-rel-subclause>}
{<rename-instance-instrs>} {<attribute-mappings>}
[<attribute-conversion-instrs>] [“)”].

<dim-list> ::= <dim-def> {[“,”] <dim-def>}.
<dim-def> ::= (<global-cube-alias> | <cube-alias>) “.” <dim-name>

“AS” <dim-alias>.
<member-rel-

subclause>
::= [“(”] “RELATE” <levels-list> <join-conditions> “USING

HIERARCHY OF” <dim-alias> [“)”].

<levels-list> ::= <dim-alias> “.” <level-name> {[“,”] <dim-alias> “.”

<level-name>}.
<join-conditions> ::= “WHERE” <join-condition> {“AND” <join-

condition>}.
<join-condition> ::= <dim-alias> “.” <primary-key> “=” <dim-alias> “.”

<primary-key>.

<rename-instance-

instrs>
::= [“(”] “RENAME” <dim-alias> “.” <dim-attr-name>

(<mapping-table-spec> | <rename-instance-instr> {[“,”]

<rename-instance-instr>}) [“)”].

<mapping-table-

spec>
::= “USING MAPPINGTABLE” <node> “::” <table-name>

“TO” <dim-alias> “.” <dim-attr-name>.
<rename-instance-

instr>
::= “>>” [“′”] <value> [“′”] [“WHERE” <conditions>].

<attribute-mappings> ::= [“(”] “MATCH ATTRIBUTES” <attr-def> “IS” <attr-

list> [“)”].

<attr-list> ::= <attr-def> {[“,”] <attr-def>}.
<attr-def> ::= <dim-alias> “.” <attr-name>.
<attribute-conversion-

instrs>
::= [“(”] “CONVERT ATTRIBUTES APPLY” <attribute-

conversion-instr> {[“,”] <attribute-conversion-instr>}
[“)”].

<attribute-conversion-

instr>
::= <function-name> “FOR” <dim-alias> “.” <dim-attr-

name> (“DEFAULT” | “WHERE” <conditions>).
. .

Figure A.3: MERGE DIMENSIONS clause of SQL-MDi – sub-clauses.

A.1. SQL-MDI SYNTAX VERSION 1.1 203

. .
<merge-cubes-

clauses>
::= “MERGE CUBES” <cube-alias-list> “INTO” <global-

cube-alias> [<set-operation>] “ON” <dim-attr-list>

([<preference-subclauses>] [<aggregation-subclauses>]

| [<context-dim-subclause>]) <global-mapping-

subclause>.
<cube-alias-list> ::= <cube-alias> {[“,”] <cube-alias>}.
<dim-attr-list> ::= <local-dim-attr-id> {[“,”] <local-dim-attr-id>}.
<preference-

subclauses>
::= [“(”] <preference-subclause> {[“,”] <preference-

subclause>} [“)”].

<preference-

subclause>
::= “PREFER” <cube-alias> “.” <measure-attr-name>

(“DEFAULT” | “WHERE” <conditions>).

<context-dim-

subclause>
::= [“(”] “TRACKING SOURCE AS DIMENSION” <dim-

name> “(” <schema-spec> “)” (“IS” [“′”] <value>

[“′”] “WHERE” <source-condition> {[“,”] “IS” [“′”]

<value> [“′”] “WHERE” <source-condition>} | “DE-

FAULT”) [“)”].

<schema-spec> ::= SQL DDL statement.

<source-condition> ::= “SOURCE()” “=” [“′”] <value> [“′”].

<aggregation-

subclauses>
::= [“(”] <aggregation-subclause> {[“,”] <aggregation-

subclause>} [“)”].

<aggregation-

subclause>
::= “AGGREGATE MEASURE” [<global-cube-alias>] “.”

<measure-attr-name> “IS” <aggregation-function> “OF”

<local-measure-attr-id> [“WHERE” <conditions>].

<global-mapping-

subclause>
::= [“(”] <measure-mappings> [“,”] <dim-mappings> [“)”].

<measure-mappings> ::= <measure-mapping> {[“,”] <measure-mapping>}.
<measure-mapping> ::= “MEASURE” <global-cube-alias> “.” <measure-attr-

name> [“->” <new-measure-attr-name>].

<dim-mappings> ::= <dim-mapping> {[“,”] <dim-mapping>}.
<dim-mapping> ::= “DIM” <global-cube-alias> “.” <dim-attr-name> [“->”

<new-dim-attr-name>].
. .

Figure A.4: MERGE CUBES clause of SQL-MDi – sub-clauses.

204 APPENDIX A. SYNTAX SPECIFICATION OF SQL-MDI

. .
<node> ::= <identifier>.

<cube-name> ::= <identifier>.

<global-cube-name> ::= <identifier>.

<cube-alias> ::= <identifier>.

<global-cube-alias> ::= <identifier>.

<dim-name> ::= <identifier>.

<level-name> ::= <identifier>.

<new-level-name> ::= <identifier>.

<dim-alias> ::= <identifier>.

<dim-attr-name> ::= <identifier>.

<new-dim-attr-name> ::= <identifier>.

<attr-name> ::= <identifier>.

<new-attr-name> ::= <identifier>.

<context-dim-attr> ::= <identifier>.

<context-dim-attr-name> ::= <identifier>.

<measure-attr-name> ::= <identifier>.

<new-measure-attr-name> ::= <identifier>.

<primary-key> ::= <identifier>.

<local-measure-attr-name> ::= <identifier>.

<local-measure-attr-id> ::= <identifier>.

<local-dim-attr-id> ::= <identifier>.

<table-name> ::= <identifier>.

. .
Figure A.5: Identifiers in SQL-MDi statements.

. .
<identifier> ::= {<letter> | <digit> | <special-sign>}.
<value> ::= {<letter> | <digit>}.
<old-value> ::= {<letter> | <digit>}.
<new-value> ::= {<letter> | <digit>}.

<letter> ::= “ ” | “,” | “a”–“z” | “A”–“Z”.

<digit> ::= “0”–“9”.

<special-sign> ::= “/” | “$” | “#”.

<function> ::= <identifier> “(” {(<identifier> | <integer>} “)”.

<aggregation-

function>
::= (“SUM” | “COUNT” | “AVG” | “MIN” | “MAX”).

<set-operation> ::= (“UNION” | “JOIN” | “MINUS” | “FULL OUTER JOIN”

| “LEFT OUTER JOIN” | “RIGHT OUTER JOIN”).

<operator> ::= (“<>” | “<” | “>” | “<=” | “>=”).

. .
Figure A.6: Miscellaneous non-terminal symbols and terminal symbols of

SQL-MDi statements.

A.2. CHANGES IN SQL-MDI SYNTAX VERSION 1.2 205

A.2 Changes in SQL-MDi Syntax Version 1.2

Based on the testing experiences with the FedDW Query Tool prototype, we
refined several clauses of the SQL-MDi grammar. While the updated Version 1.2
of the syntax is not yet implemented in the latest release of the Query Tool
prototype, we explained the newest syntax in depth within the many examples
presented in Chapter 8 of this thesis. In particular, the update from 1.1 to 1.2
of the SQL-MDi syntax defined the following improvements:

• Uses the ‘->’ rename operator for matching non-dimensional attributes
among dimension import schemas within the MERGE DIMENSIONS
clause. This change simplified the syntax by eliminating the MATCH
ATTRIBUTES sub-clause (updated rule: <attribute-mappings>, see Fig-
ure A.3). Besides, the renaming operation with the ‘->’ operator is consis-
tent with other renaming operations of schema elements used within SQL-
MDi. Furthermore, and most importantly, to some degree the MATCH
ATTRIBUTES sub-clause contradicted FedDW’s hub integration paradigm
(cf. Chapter 7) by requiring pairwise mappings between import schemas.

• Changed the names of both PIVOT operations (updated rules: <pivot-
split-measure-attr> and <pivot-merge-measure-attrs>, see Figure A.2). In
version 1.2, the keywords SPLIT and MERGE were added, respectively,
to improve clarity of the resulting code. Version 1.1 of the pivot opera-
tions created sub-clauses that were too similar and thus easy to confuse.
Moreover, rule <rename-context-dim-insts> was eliminated to simplify the
syntax.

• Extended the ROLLUP clause of DEFINE CUBE with a sub-clause speci-
fying the desired aggregation function (updated rule: <rollup-instr>, see
Figure A.2). This additional sub-clause in SQL-MDi version 1.2 allows the
user to control how the bags of cells in the imported cube are merged when
decreasing the grain in one of the dimensions. Recall that this operation
is needed to repair heterogeneous base level domains among cubes.

• Refined the resolution of non-dimensional value conflicts by improving the
clarity of the RENAME clause of MERGE DIMENSIONS (updated rule:
<rename-instance-instr>, see Figure A.3).

• Moved the <set-operation> token within the MERGE DIMENSIONS and
MERGE CUBES clauses directly behind these keywords in order to im-
prove legibility of the resulting SQL-MDi statement. In case that several
of these clauses appear in a row—which happens almost certainly in ev-
ery statement—the position of the <set-operation> token in version 1.1
resulted in statements that were awkward to read and counter-intuitive.
For instance, in the code fragment MERGE DIMENSIONS dw1.a, dw2.a
UNION MERGE DIMENSIONS dw1.b, dw2.b UNION the UNION keywords
are misleading. In Version 1.2, the same code fragment is specified as fol-
lows: MERGE DIMENSIONS UNION dw1.a, dw2.a MERGE DIMENSIONS
UNION dw1.b, dw2.b. Updated rules: <merge-dim> (see Figure A.3) re-
spectively <merge-cubes-clauses> (see Figure A.4).

The following Figure A.7 shows the updated EBNF rules of the SQL-MDi
grammar, Version 1.2.

206 APPENDIX A. SYNTAX SPECIFICATION OF SQL-MDI

. .
<attribute-mappings> ::= [“(”] “ATTRIBUTE” <dim-alias> “.” <attr-name>

“->” <new-attr-name> [“)”].

<pivot-split-measure-

attr>
::= “SPLIT MEASURE” <cube-alias> “.” <measure-attr-

name> “BASED ON” <cube-alias> “.” <dim-attr-

name> [<rename-context-dim-insts>].
<pivot-merge-measure-

attrs>
::= “MERGE MEASURES” <measure-attr-list> “INTO”

<cube-alias> “.” <new-measure-attr-name> “USING”

<cube-alias> “.” <context-dim-attr>.

<rollup-instr> ::= [“(”] “ROLLUP” <cube-alias> “.” <dim-attr-name>

“TO LEVEL” <cube-alias> “.” <dim-attr-name>

“[”<level-name>“]” [“)”] “WITH” <aggregation-

function> “FOR” <cube-alias> “.” <measure-attr-

name>.
<rename-instance-

instr>
::= [“′”] <old-value> [“′”] “>>” [“′”] <new-value>

[“′”] [“WHERE” <conditions>].

<merge-dim> ::= [“(”] “MERGE DIMENSIONS” [<set-operation>]

<dim-list> “INTO” <dim-def> {<member-rel-

subclause>} {<rename-instance-instrs>} {<attribute-

mappings>} [<attribute-conversion-instrs>] [“)”].
<merge-cubes-clauses> ::= “MERGE CUBES” [<set-operation>] <cube-alias-list>

“INTO” <global-cube-alias> “ON” <dim-attr-list>

([<preference-subclauses>] [<aggregation-subclauses>]

| [<context-dim-subclause>]) <global-mapping-

subclause>.. .
Figure A.7: Updated production rules in SQL-MDi syntax Version 1.2

(changes given in bold font).

Curriculum Vitae

207

Stefan Berger
Research Assistant

Department of Business Informatics –
Data & Knowledge Engineering
Altenberger Str. 69
A-4040 Linz, AUSTRIA

H +43 650 68 30 100
T +43 70 2468-9518
u +43 70 2468-9471

B berger@dke.uni-linz.ac.at
http://www.dke.jku.at/staff/sberger.html

Personal Information
Date of Birth Jan 17, 1979
Place of Birth Braunau am Inn, AUSTRIA
Home Address Oberreikersdorf 47, A-4963 St. Peter am Hart, AUSTRIA

Nationality Austrian
Marital Status Engaged

Research Interests
• Data Warehousing (DW integration, design tools)
• Conceptual modelling (UML, E/R, etc.)
• Distributed OLAP
• Schema integration and data integration
• Ontologies, domain modelling
• XML Technologies

Academic Education
2004–2009 Dr. rer. soc. oec. in Business Informatics, Department of Business Informatics –

Data & Knowledge Engineering, Linz, AUSTRIA.
Home: http://www.dke.jku.at

1999–2004 Mag. rer. soc. oec. in Business Informatics, Johannes Kepler University of Linz,
Linz, AUSTRIA.
Home: http://www.jku.at; Curriculum: http://www.win.jku.at/diplomstudium-win-2002.html

1/4

Doctoral thesis
Title FedDW: a Model-Driven Approach for Querying Federations of Autonomous Data Marts

Supervisors o. Univ.-Prof. DI Dr. Michael Schrefl, a. Univ.-Prof. Dr. Josef Küng
Description The FedDW approach introduced in this thesis analyzes model-driven design of Data Mart

federations. FedDW provides a global “mediated”, multi-dimensional schema across the
analytical data stores of several autonomous and heterogeneous Data Marts. Thus, FedDW
allows strategic analysts to run Business Intelligence applications over larger repositories of
data across organizational boundaries, enabling better founded business decisions.

The advantages of FedDW are manifold. First, FedDW integrates multi-dimensional
data at the logical schema level while the underlying Data Marts remain autonomous. Second,
the privacy of confidential or sensitive data is ensured by FedDW’s conceptual architecture.
Every participating organization is entitled to decide which business Data Mart(s) to disclose
within the federation. Third, FedDW is system independent because it represents all multi-
dimensional schemas, data and the mappings in an internal “canonical” data model. Fourth,
FedDW uses source-to-target mappings from autonomous Data Marts to the federated layer.
Thus, the global schema remains stable despite possible changes of local Data Mart schemas,
and the federation is easier to extend.

Master thesis
Title Zerlegung von digitalisierten Lehrbüchern für den Aufbau eines Contentpools

(in German) [zipped PDF: www.dke.jku.at/research/publications/MTE0401.zip]
Supervisors o. Univ.-Prof. DI Dr. Christian Stary, Dr. Andreas Auinger
Description Telelearning environments (i.e. software supporting learning in virtual class rooms) are getting

more and more important nowadays. Users of those systems may expect electronic material
supporting the learning process to be provided by the teacher, for instance. However, all
material provided for learning purposes is completely static so far. What in most cases is
missing within telelearning environments is the possibility, be it for the teacher or the student,
to create learning materials dynamically. This diploma thesis contains a proposal for how to
satisfy these demands based on telelearning state-of-the-art.

Based upon the technical concept of XML Topic Maps, the author presents a way how
to create a semantics-based repository of so called “knowledge atoms” that can be created
by decomposition of and metadata creation on slices of electronic documents (books, papers,
scientific magazines, and so on). A knowledge atom repository, as mentioned above, will
provide teachers and learners with the possibility of creating individual learning materials,
tailored for their personal needs.

Publications & Talks
Peer Reviewed Conference Proceedings

2009 Stefan Berger, Michael Schrefl: FedDW: A Tool for Querying Federations of Data
Warehouses – Architecture, Use Case and Implementation. Proceedings of the 11th
International Conference on Enterprise Information Systems (ICEIS 2009).

2008 Stefan Berger, Michael Schrefl: From Federated Databases to a Federated Data Ware-
house System. Proceedings of the 41st Hawaii International Conference on System Sci-
ences (HICSS 2008) – Organizational Systems and Technology Track, pp. 394. [DOI:
http://doi.ieeecomputersociety.org/10.1109/HICSS.2008.178]

2/4

2006 Stefan Berger, Michael Schrefl: Analysing Multi-dimensional Data Across Autonomous
Data Warehouses. In: A Min Tjoa, Juan C. Trujillo (eds.): Proceedings of the 8th In-
ternational Conference on Data Warehousing and Knowledge Discovery (DaWaK 2006),
pp. 120–133. [DOI: http://dx.doi.org/10.1007/11823728_12]

Book Chapters
2009 Stefan Berger, Michael Schrefl: Federated Data Warehouses. To appear in:

Nguyen Manh Tho (editor): Complex Data Warehousing and Knowledge Dis-
covery for Advanced Retrieval Development: Innovative Methods and Appli-
cations, IGI Publishing, Hershey, PA, July 2009. ISBN: 978-1-60566-748-5.
http://www.igi-global.com/reference/details.asp?ID=34437&v=preface

Academic Appointments
2004–now Research and Teaching Assistant, University of Linz, Department of Business Infor-

matics – Data & Knowledge Engineering, Linz, AUSTRIA.
http://www.dke.jku.at

2002–2004 Project Assistant – “Scholion WB+”, University of Linz, Department of Business
Informatics – Communications Engineering, Linz, AUSTRIA.
https://scholion.jku.at/

Teaching Experience
2007–2009 Data Warehousing, lectures (3 ECTS) and laboratory exercises (3 ECTS)
2006–2007 Data Warehousing & Data Mining, practical course (6 ECTS)
2005–2006 Data & Knowledge Engineering, practical course (6 ECTS)
2005–2006 Data & Knowledge Engineering, laboratory exercises (3 ECTS)

Development Experience
2007-2009 FedDW Global Schema Architect (project leader). See master thesis:

Maislinger, L. (2009): Eclipse-based Visual Tool for Data Mart Integration (in German).
http://www.dke.jku.at/research/publications/abstracts/MT0901e.html

2006-2008 FedDW Query Tool (project leader). See following two master theses:
Rossgatterer, T. (2008): Development of a Federated Data Warehouse Query Processor
(in German). http://www.dke.jku.at/research/publications/abstracts/MT0809e.html
Brunneder, W. (2008): Parsing and Transforming SQL-MDi Queries (in German).
http://www.dke.jku.at/research/publications/abstracts/MT0802e.html

2002-2004 “Scholion WB+” Web-based e-learning environment (developer). University of Linz,
Department of Business Informatics – Communications Engineering.

Languages
English Fluently
German Fluently Mother Tongue

Spanish, French Intermediate University/School education, skill level B1/B2
Russian Basics University Education to skill level B1

3/4

Computer skills
Scientific
Writing

LATEX, Microsoft Office 2007

Databases Oracle, Microsoft SQL Server, MySQL
Query

Languages
SQL, MDX

Programming
Languages

Java, PL/SQL, Datalog

Web and
Markup

XML, PHP, HTML, XHTML, XSD, XMLT

Administration Apache Server, Tomcat Servlet Engine, Oracle and SQL Server databases
Java

Technologies
Servlets, XML Processing, Swing, JDBC, XML Topic Maps

IDEs Eclipse, Borland Together Architect, Borland JBuilder, IntelliJ IDEA

Services to the Profession
2006–now Member of “Studienkommission Wirtschaftsinformatik”

(curricular commission for Business Informatics) at Johannes Kepler University of Linz
http://www.win.jku.at/studienkommission.html

2005–now Occasional reviewer of DaWaK, DEXA, and WCBP Conferences

Interests
Mountains Hiking, mountain climbing (in summer), skiing (in winter)

Chess Club player, member of WSV/ATSV Ranshofen
Other sports Volleyball, inline skating, table tennis, jogging
Photography Digital photography is one of my latest hobbies

References
The following persons are familiar with my qualifications and personality:

o. Univ.-Prof. DI Dr. Michael Schrefl
Doctoral thesis supervisor T +43 70 2468-9480
Dept. of Business Informatics – Data & Knowledge
Engineering, University of Linz

u +43 70 2468-9471

Altenberger Str. 69, A-4040 Linz, AUSTRIA B schrefl@dke.uni-linz.ac.at

o. Univ.-Prof. DI Dr. Christian Stary
Master thesis supervisor
Dept. of Business Informatics – Communications
Engineering, University of Linz T +43 70 2468-7102
Freistädter Str. 315, A-4040 Linz, AUSTRIA B christian.stary@jku.at

Last Updated
May 30, 2009.

4/4

	Abstract (german)
	Abstract (english)
	Contents
	Introduction
	Motivation
	Challenges
	State of the Art
	Objectives
	Contributions of the FedDW Approach
	Prototype implementation of FedDW Tools
	Outline

	I The Need for Federated Data Warehouse Systems
	Case Study
	State of the Art
	Data Warehousing and OLAP
	Data Warehouses
	Data Marts
	On-Line Analytical Processing (OLAP)

	Federated and Multi-databases
	Physical Integration
	Logical Integration
	Multi-system Query Languages
	Global-As-View Approaches
	Local-As-View Approaches
	Both-As-View Data Integration
	Data Integration Approaches for Multi-dimensional Systems

	Multi-dimensional Schema Integration
	Model Driven Architecture (MDA)
	DW Modelling and Design with UML
	Summary and Requirements

	II Architecture and Concepts of Federated Data Warehouses
	Conceptual Data Model
	Data Marts
	Dimensions
	Functions and Properties of Dimensions
	Cubes
	Names of Dimension and Cube Schemas

	Taxonomy of Conflicts
	Schema versus Instance Conflicts
	Schema Level Conflicts
	Naming Conflicts
	Conflicts among Dimension Schemas
	Conflicts among Cube Schemas

	Instance Level Conflicts
	Conflicts among Dimension Instances
	Conflicts among Cube Instances

	Summary

	Federated DW Architecture

	III Enabling the Federated Data Warehouse—the FedDW Approach
	Integration Methodology
	Dimension/Fact Algebra Expressions
	Dimension Algebra
	Fact Algebra

	Defining Semantic Mappings
	Resolve Schema-Instance Conflicts
	Integrate Dimension and Fact Schemata
	Consolidate Dimension and Fact Instances

	Summary

	SQL-MDi Language
	Repairing Schema-Instance Heterogeneities
	Repairing Schema Level Heterogeneities
	Naming Conflicts
	Diverse Aggregation Hierarchies
	Dimensionality Conflicts
	Domain Conflicts

	Repairing Instance Level Heterogeneities
	Heterogeneous Roll-up Functions
	Value Conflicts among Non-dimensional Attributes
	Overlapping Sets of Dimension Members
	Disjoint Sets of Dimension Members
	Overlapping Cells
	Disjoint Cells

	Summary of SQL-MDi

	IV Realizing the Federated Data Warehouse
	Prototype Implementation
	Implementation Architecture of FedDW
	Modelling Primitives
	Representing Multi-dimensional Schemas
	Representing Semantic Mappings

	Global Schema Architect Prototype
	Design Rationale of GSA Schema Editor
	Design Rationale of the GSA Mapping Editors
	Import and Export Functionality of FedDW GSA

	Query Tool Prototype
	FedDW Query Tool Usage Example
	FedDW Query Tool Implementation

	Experimental Results

	Conclusions
	Summary of the FedDW Approach
	Multi-dimensional Conflict Taxonomy
	Federated DW Reference Architecture
	FedDW Integration Methodology
	Conversion Language SQL-MDi
	Prototypes of FedDW Tool Suite

	Future Work

	References
	Appendix
	List of Figures
	List of Tables
	List of Definitions
	List of Examples
	Syntax Specification of SQL-MDi
	SQL-MDi Syntax Version 1.1
	Changes in SQL-MDi Syntax Version 1.2

	Curriculum Vitae
	Stefan Berger

