
Dissertation zur Erlangung des akademischen Grades
Dr. rer. soc. oec.

im Doktoratsstudium der Sozial- und Wirtschaftswissenschaften

Flexible and Selective Indexing
in XML Databases

Angefertigt am

Institut für Wirtschaftsinformatik -
Data & Knowledge Engineering

Johannes Kepler Universität Linz

Eingereicht von

Mag.a Katharina Grün

Betreut von

o. Univ.-Prof. Dipl.-Ing. Dr. Michael Schrefl

a. Univ.-Prof. Mag. Dr. Werner Retschitzegger

Linz, August 2008

Johannes Kepler Universität Linz, Altenberger Straße 69, 4040 Linz, Austria

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig
und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfs-
mittel nicht verwendet und die den benutzten Quellen wörtlich oder inhaltlich
entnommenen Stellen deutlich als solche kenntlich gemacht habe.

Linz, August 2008
(Katharina Grün)

i

ii

Danksagung

An dieser Stelle möchte ich mich bei allen bedanken, die mich beim Erstel-
len dieser Dissertation unterstützten. Allen voran möchte ich meinem Betreuer
Michael Schrefl für die wertvollen Ratschläge und Ideen danken, welche in unse-
ren Diskussionen entstanden sind. Michael Schrefl bemühte sich ständig, mein
wissenschaftliches Interesse zu fördern, und gewährte stets die notwendige Frei-
heit bei der Erfüllung wissenschaftlicher Aufgaben. Ebenfalls danke ich Werner
Retschitzegger, dass er die Rolle als Zweitgutachter übernommen hat.

Großer Dank gebührt meinen InstitutskollegInnen Margit Brandl, Michael
Karlinger, Bernd Neumayr, Christian Eichinger, Stefan Berger sowie Georg Nit-
sche. Sie sorgten nicht nur für ein perfektes Arbeitsklima, sondern lieferten auch
wichtige Unterstützung in zahlreichen Diskussionen. Weiters bedanke ich mich
bei meinen DiplomandInnen Peter Lasinger, Anita Engleder, Walter Dorninger
und Christoph Wöllinger, welche in ihrer Diplomarbeit Teile dieser Dissertation
prototypisch implementierten.

Mein besonderer Dank richtet sich natürlich auch an meine Familie, die
meinen universitären Werdegang ermöglichte und förderte, sowie allen Freunden,
welche für den notwendigen Ausgleich sorgten.

iii

iv

Kurzfassung

XML ist eine Auszeichnungssprache, welche ursprünglich vor allem als Daten-
austauschformat eingesetzt wurde. Auch als Datenmodell gewinnt XML zu-
nehmend an Bedeutung, weshalb Datenbanken zur Speicherung und Abfrage
von XML Dokumenten benötigt werden. Um effizient Abfragen durchführen zu
können, müssen XML Datenbanken den Inhalt und die Struktur häufig abge-
fragter Dokumentfragmente indizieren. Bislang unterstützen XML Datenbanken
keine flexiblen, selektiven Indexstrukturen, welche den speziellen Anforderungen
des hierarchischen, semi-strukturierten Datenmodells von XML gerecht werden.

XML Datenbanken benötigen Indizes, welche Abfragen auf den Inhalt und
die Struktur von XML Dokumenten unterstützen. Diese Flexibilität stellt fol-
gende Herausforderungen: Wie können Indizes die hierarchische Dokument-
struktur darstellen und verarbeiten? Welche Indexstrukturen sind notwendig,
um beliebige Abfragen auf den Dokumentinhalt und die Dokumentstruktur zu
unterstützen? Um nicht Dokumente als Ganzes indizieren zu müssen, sollen
XML Datenbanken Indizes auf häufig abgefragte Dokumentfragmente definieren
können. Diese Selektivität wirft folgende Fragen auf: Wie kann ein Datenbank-
verwaltungssystem Indizes auf beliebige Dokumentfragmente verarbeiten? Wie
kann es beliebige Indizes mit Änderungen am Datenbestand konsistent halten?

Diese Dissertation stellt einen neuen Indizierungsansatz namens sciens
(Structure and Content Indexing with Extensible, Nestable Structures) vor.
sciens repräsentiert und verarbeitet die Dokumentstruktur mit Hilfe von La-
bels, welche strukturelle Eigenschaften kodieren. Während bestehende XML In-
dizierungsansätze auf proprietären Indexstrukturen basieren, passt sciens exi-
stierende Indexstrukturen an das XML Datenmodell an. Durch Erweitern und
Schachteln dieser Indexstrukturen stellt sciens Indizes für beliebige Abfragen
zur Verfügung. Das Indexframework von sciens kann beliebige Indizes basie-
rend auf einem Indexmodell verarbeiten. Um Indizes mit Dokumentänderungen
konsistent zu halten, verwendet es einen neuen Algorithmus, welcher Indexände-
rungen aus den zu ändernden Dokumentfragmenten extrahiert.

Die Vorteile von sciens sind vielfältig. Flexibilität ermöglicht die Definiti-
on jener Indizes, welche die zu erwartenden Abfragen am besten unterstützen.
Selektivität reduziert den Speicherbedarf und beschleunigt den Indexzugriff. Ob-
wohl sciens lediglich auf einer kleinen Anzahl an Indexstrukturen basiert, kann
es mehr Abfragen als bestehende Ansätze unterstützen. Das Indexframework ga-
rantiert, dass Indizes angelegt werden können, ohne Abfragen und Änderungen
an Dokumenten zu beeinflussen. Der Algorithmus, welcher Indizes mit Doku-
mentänderungen konsistent hält, ist effizienter als bestehende Ansätze.

v

vi

Abstract

XML, the eXtensible Markup Language, is becoming more and more popular
not only as data exchange format on the Web but also as data format in database
applications. The emerging trend towards XML applications creates the need
for persistent storage of XML documents in databases. To efficiently query
documents, XML databases require indices on the content and structure of
frequently queried document fragments. Currently, XML databases still fail in
offering flexible and selective indexing support for the specific requirements of
the hierarchical, semi-structured XML data model.

Flexibility in indexing refers to supporting arbitrary queries on the content
and/or structure of XML documents. Providing flexibility poses the following
challenges: How can indices represent and process the hierarchical document
structure? Which index structures are necessary to support arbitrary queries
on the document content and structure? Selectivity refers to indexing frequently
queried document fragments instead of entire documents. Providing selectivity
raises the following research questions: How can a database management system
process indices that refer to arbitrary document fragments? How can it keep
arbitrary indices consistent with updates on documents?

The indexing approach sciens (Structure and Content Indexing with
Extensible, Nestable Structures), which is presented in this thesis, provides
flexible and selective indexing for XML databases. To represent and process
the document structure, sciens uses a labeling scheme that encodes structural
relationships into labels. While existing XML indexing approaches propose pro-
prietary index structures, sciens adapts existing index structures to the XML
data model. By extending and nesting index structures, sciens provides indices
for arbitrary query workloads. The index framework enables sciens to process
arbitrary indices based on an index model. To keep indices consistent with
document updates, the maintenance algorithm of sciens exploits the document
fragments being updated to extract relevant index updates.

The advantages of sciens are manifold. Flexible indices enable the defini-
tion of those indices that best match the query workload. Selectivity reduces
index size and accelerates index traversal. Compared to existing XML indexing
approaches, sciens only requires a small number of existing index structures,
but can support a wider range of queries. The index framework guarantees that
querying and updating documents remains unaffected by specific indices used.
By exploiting the structure of update fragments, the maintenance algorithm can
process updates more efficiently than existing approaches.

vii

viii

Notations

Document
D document
N nodes
F edges between nodes
L node names
V node values
E element nodes
A attribute nodes
T text nodes
P rooted paths

Schema
S schema
N node schemas
F edges between node schemas

and types
L node schema names
E element node schemas
A attribute node schemas
T text node schemas
P rooted path schemas

Types
T types
TC complex types
TS simple types
L type names
H type hierarchy
H+ transitive closure of type hi-

erarchy
H∗ reflexive, transitive closure of

type hierarchy

Labels
Z instance labels
Z path schema labels
Z type labels

Index
I index
E index entries
K index keys
V index variables
T index structures
O search conditions
CI index configuration
CS search configuration

Index Pattern
P index pattern
N pattern nodes
F edges between pattern

nodes
L pattern node names
S stacks

Operators & Symbols
∼ contains word
∼̇ contains word prefix
≺ precedes
² instance of
` parent
° ancestor
a child°

descendant
⊥ null

ix

x

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Challenges . 3

1.3 State of the Art . 5

1.4 Objectives . 6

1.5 Approach . 7

1.6 Outline . 10

I Labeling and Indexing XML Documents 11

2 Preliminaries 13

2.1 XML Documents and Schemas 14

2.2 Processing Queries . 22

2.3 Indexing Requirements . 26

3 Labeling Scheme 31

3.1 Introduction . 32

3.2 Related Work . 33

3.3 Basic Approach . 37

3.4 Including Type Hierarchies . 41

3.5 Processing Labels . 44

3.6 Summary . 47

4 Index Structures 49

4.1 Introduction . 50

4.2 Related Work . 50

4.3 Concepts . 61

4.4 Extending Index Structures . 63

4.5 Nesting Index Structures . 70

4.6 Summary . 73

xi

xii CONTENTS

II Processing Secondary Indices 77

5 Index Framework 79

5.1 Introduction . 80
5.2 Related Work . 80
5.3 Index Model . 83
5.4 Components . 89
5.5 Summary . 95

6 Index Maintenance 97

6.1 Introduction . 98
6.2 Related Work . 99
6.3 Concepts . 103
6.4 Maintenance Algorithm . 113
6.5 Evaluation and Extensions . 130
6.6 Summary . 132

III Evaluation 135

7 Case Study: The XML Database SemCrypt 137

7.1 Introduction . 138
7.2 Architecture . 139
7.3 Concepts . 140
7.4 Indices in Action . 148
7.5 Summary . 151

8 Performance Studies 153

8.1 Introduction . 154
8.2 Index Structures . 157
8.3 Index Maintenance . 172
8.4 Indexing in SemCrypt . 178
8.5 Summary . 179

9 Conclusion 181

List of Figures 183

List of Tables 187

References 189

Curriculum Vitae 207

Chapter 1

Introduction

Contents
1.1 Motivation . 2

1.2 Challenges . 3

1.3 State of the Art . 5

1.4 Objectives . 6

1.5 Approach . 7

1.6 Outline . 10

This chapter gives a general introduction to the topics of this thesis, starting
with the motivation in Section 1.1. Section 1.2 describes its main challenges and
Section 1.3 reviews related work. Based on the objectives of Section 1.4, Section
1.5 introduces the approach taken in this thesis and its main contributions.
Finally, Section 1.6 outlines the overall structure of this thesis.

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

XML, the eXtensible Markup Language [38], is becoming more and more pop-
ular not only as data exchange format on the Web but also as data format
in database applications. The emerging trend towards XML applications re-
sults in an increase in the document size and in the number of documents
to be processed, creating the need for persistent storage of XML data in XML
database management systems (DBMS). In contrast to storing XML documents
in files and processing queries in main memory, a DBMS provides amongst oth-
ers specific storage and index structures, efficient query processing techniques,
transactions, concurrency control and recovery1.

XML is a hierarchical, semi-structured data format. XML documents con-
tain structured data (data-centric XML) and unstructured data (document-
centric XML). While structured data has been investigated by relational
databases, unstructured data is the focus of information retrieval techniques.
Many applications need to handle both structured and unstructured data
(e.g. book catalogs, product specifications), generating the demand for new
techniques to efficiently store, query and update semi-structured data.

Currently, there exist two approaches for storing and accessing XML doc-
uments in databases: XML-enabled and native XML databases [47]. To cope
with the popularity of XML, many database vendors offer XML extensions for
their databases (cf. [36]). These extensions, which are typical for relational
databases, map XML documents to relations and XML queries to SQL, or they
store XML as text and provide proprietary XQuery extensions. As they apply
relational storage, query and indexing techniques to XML, they fail in support-
ing the specific requirements of processing hierarchical, semi-structured data.
Native XML databases are based on the XML data model and integrate specific
techniques for storing and accessing XML documents. These techniques include,
for example, new storage and index structures and join algorithms.

Databases typically distinguish the primary index from secondary indices
[83]. The primary index defines how to store entire documents and physically
organizes documents. To evaluate search conditions without traversing entire
documents, secondary indices provide additional search structures. They map
certain properties of documents, such as values, names or types, to the cor-
responding document fragments in the primary index using physical or logical
addresses. By accessing secondary indices, a database can retrieve the fragments
that match indexed properties without scanning the entire primary index. Sec-
ondary indices are therefore indispensable to efficiently process arbitrary queries
in databases.

In contrast to the primary index, secondary indices are created on demand
in consideration of the query workload. Important requirements for secondary
indices include (i) flexibility to handle arbitrary queries and (ii) selectivity to in-
dex frequently queried document fragments instead of entire documents only2.

1In literature, the term database system usually refers to both the database, i.e. the collec-
tion of data, and the database management system, which is the software to manage databases.
In this thesis, we use the term database as a short form for database system.

2In our terminology, selectivity does not refer to the number of distinct values in an index
(e.g. gender vs. social security number), but to the portion of the document being indexed.

1.2. CHALLENGES 3

While flexibility enables databases to adapt indices to arbitrary query work-
loads, selectivity reduces the index size, which accelerates index traversal. Sec-
ondary indices are well-established in relational databases. XML databases,
however, still fail in offering flexible and selective indexing support for the spe-
cific requirements of hierarchical, semi-structured data.

1.2 Challenges

XML is an extensible markup language that hierarchically structures document
content with the help of tag names. The hierarchical document structure logi-
cally consists of an ordered tree of nodes. Each node has a name and optionally
a type. The document content is logically represented in the leaf nodes that
have associated values. The path of a node is the sequence of nodes from the
root of the tree to the node. The labelpath consists of the node names on a
node’s path. The document structure may be defined in a schema document,
such as a DTD [38] or an XML Schema [187].

project

milestone

title resource

@date title description

milestone

'design'

'2007-03-12'

'xml indexing'

'XML is a

data…'

<Report> title resource

@date title'implementation'

'2008-01-30'
'system'

<Documentation> resource

title

'user'

Figure 1.1: XML document representing project resources.

Example 1.1 (XML document) Figure 1.1 shows a sample XML document
comprising information about project resources grouped into milestones. Each
resource has a title and optionally a date and a description. The nodes, which
are represented by their tag names (e.g. title), form a hierarchical structure.
The content of the document is made up of values, which are represented as leaf
nodes in the figure (e.g. ‘xml indexing’). In the example, resource nodes can
have an explicit type, which is either <Report> or <Documentation>. A sample
path is /project [1]/ milestone [2]/ resource [1], which is the path from the
root of the tree to the first resource of the second milestone. The corresponding
labelpath is /project/ milestone/ resource.

The XML data model clearly differs from other data models, such as the
relational, object-oriented or object-relational data model. Queries on XML
documents typically constrain both the document structure (names, paths, la-
belpaths, types) and the document content (values).

Example 1.2 (queries) Regarding Figure 1.1, a sample query workload may
comprise the following queries: (i) retrieve all resources with title ‘xml
indexing’; (ii) return all resources with type <Report> that have been writ-
ten in the year ‘2007’; (iii) retrieve the titles of resources within the milestone
‘design’ that contain the word ‘xml’ in their description.

4 CHAPTER 1. INTRODUCTION

To support queries on XML documents, secondary indices need to provide
the flexibility to index structure- and content-oriented properties and to support
various operations on these properties. Relational databases index values and
object-oriented databases provide simple indices on paths and types. XML
databases require indices on names, paths, labelpaths, types and values of nodes
as well as indices on arbitrary combinations of these properties.

Example 1.3 (flexibility) Evaluating the first query of Example 1.2 on the
document of Figure 1.1 may require scanning the titles of all resources. This
query can be accelerated with a secondary index (e.g. a hash table) on the values
of titles. The second query can be supported with an index on resource types
and a value index on resource dates. To avoid the need for accessing each index
and joining index results, it would also be possible to create an index on both
the resource types and date values. A full-text index on resource descriptions
accelerates the third query. If the index groups resource descriptions according
to their milestone, the database need not traverse the entire index, but only the
part of the index that addresses the requested milestone.

To support arbitrary queries, a database requires indices on the document
structure and content. Each index builds a data structure on indexed proper-
ties and uses algorithms to traverse and update the data structure. For this
purpose, it requires a representation of properties that allows for comparing
indexed properties. A database further requires a representation of nodes re-
turned by indices that allows for subsequent query processing, e.g. for joining
index results. Example 1.3 shows that each index more efficiently supports dif-
ferent kinds of queries. However, a database cannot provide one index structure
for each possible kind of query. It therefore needs to adapt index structures to
handle various properties of the XML data model. Offering flexibility poses the
following challenges:

• How can an index represent indexed properties as well as nodes to be
returned by the index?

• Which index structures are necessary to index structure- and/or content-
oriented properties?

To efficiently support various queries, a database requires several secondary
indices. Defining indices on entire documents does not only slow down index
traversal, but also increases required storage space. Databases should therefore
provide selectivity in indexing, denoting the ability to define indices on relevant
document fragments instead of on entire documents only. For example, a value
index should not need to index all node values, but only the values of nodes
with the requested labelpath or name. Selective indices are smaller in size,
which accelerates index traversal.

Example 1.4 (selectivity) Considering Examples 1.2 and 1.3, the index that
supports the query on resource titles should not index all values of the document,
but only the values of resource titles. Such a selective index is smaller in size
and supports queries on resource titles more efficiently. However, the database
cannot use the index to process every query on values. While the index can
return all resources with a certain title, it cannot select resources by their date.

1.3. STATE OF THE ART 5

Similarly, when updating a node value, the database needs to decide whether the
update affects the index. When adding a new resource, for example, the index
need not be updated with each node value of the new resource, but only with the
value of the new title.

As each selective index refers to different document fragments, selectivity
entails that (i) each index only supports the queries that refer to the indexed
fragments, and (ii) an index only needs to be updated when updates on the
document affect indexed fragments. Selectivity poses the following challenges:

• How can a database define, select and process indices that refer to arbi-
trary document fragments?

• How can indices that are defined on arbitrary document fragments be
maintained when updating documents?

1.3 State of the Art

Indexing plays an important role in any database to retrieve requested data
without scanning all data. The most well-known index structures have been de-
veloped for relational databases, including hash tables and B-trees [83] as well
as multidimensional index structures [82]. Object-oriented index structures [28]
extend these index structures for aggregation graphs and inheritance hierarchies.
Information retrieval (IR) [20] uses inverted lists, signature files and suffix ar-
rays. The Generalized Search Tree (GiST) [101] is an extensible index structure
that can handle different data types and operations.

To conform to the specific requirements of the XML data model, various
XML index structures have been proposed recently [43]. Most of them rely
on a labeling scheme that assigns a unique label to each node of a document
(e.g. [8, 39, 57]). Labels do not purely serve as node identifiers, but also capture
structural relationships between nodes. They enable the processing of nodes
returned by indices without accessing documents, e.g. to perform structural
joins between nodes. XML indices can primarily be classified into structure-
and content-oriented indices.

Structure-oriented approaches first divide the search space according to the
document structure and reflect the document hierarchy in the index structure
(e.g. [59, 85]). While they favor queries on the document structure, content-
oriented indices (e.g. [70]) group nodes with identical node values to efficiently
retrieve nodes with a specific value. A tradeoff between structure- and content-
oriented indices are those approaches that either build indices on node names
and values and perform structural joins to restore the node hierarchy (e.g. [135])
or use multidimensional search structures (e.g. [202]). To answer frequent
queries more efficiently, some approaches dynamically adapt the index structure
to the query workload (e.g. Apex [56]). However, the possibilities for adaption
are limited and only few queries are well supported.

Current XML databases [47] offer limited support for secondary indices.
They provide simple structural and value indices, but cannot adapt their index
structures to support more complex queries. Some object-relational databases

6 CHAPTER 1. INTRODUCTION

enable the extension of the database with new index structures. The General-
ized Search Tree (GiST) [101] is an extensible index structure that can handle
different data types and operations. Oracle data cartridges [184], DB2 database
extenders [64] and Informix data blades [32] provide uniform index interfaces
that enable the integration of new index structures into the database.

A database that provides flexible and selective indices needs to be able to
process various indices. Several join-based, navigational and hybrid XPath pro-
cessing techniques have been proposed that optimize queries based on DTDs,
cost models and/or heuristics [93, 122, 123, 146, 205]. They focus on specific
evaluation approaches, e.g. on whether to execute a query by navigating the
document structure or by accessing indices.

To process arbitrary indices in XML, a database requires a more generic
approach. In literature, two approaches are worth mentioning: XML Access
Modules (XAMs) [17] and KeyX [94]. XAMs are generic descriptions of what is
stored in a storage or index structure. The primary purpose of this approach is
to achieve physical data independence by selecting XAMs for queries without re-
quiring knowledge of underlying storage structures. KeyX describes algorithms
to select, maintain and suggest indices based on a more limited index model
than XAMs. The maintenance algorithm of KeyX has rather poor update per-
formance as it processes each update node individually.

Current XML index structures are better suited for different kinds of queries
and index entire documents. They therefore do not provide the flexibility and
selectivity required by secondary XML indices. While the XAM approach is
appropriate for selecting arbitrary indices for queries, an efficient algorithm to
maintain arbitrary indices is still missing.

1.4 Objectives

The primary focus of this thesis is to provide flexible and selective indices for
XML databases. To handle the challenges presented in Section 1.2, the thesis
pursues the following objectives:

• Labeling scheme: To represent indexed properties and nodes in an index,
define a labeling scheme that assigns unique labels to structural proper-
ties, such as paths, labelpaths and types. To compare indexed properties
when traversing or updating an index, labels must support evaluating
structural relationships and keep document order. They further should
support updates without relabeling and provide an efficient encoding.

• Index structures: To index arbitrary properties, select index structures
that support typical queries on both the structure and the content of XML
documents. As there already exists a large number of index structures
each of which can accelerate different kinds of queries, the objective is not
to develop new index structures. Instead, the focus is on extending and
combining existing index structures to adapt them to the requirements of
the XML data model.

• Index framework: Provide an index framework that allows for processing
indices defined on arbitrary properties and document fragments. Index

1.5. APPROACH 7

processing requires an index model that can represent arbitrary indices.
Based on this index model, the framework requires algorithms to select3

and access indices when processing queries and to maintain indices when
updating documents.

• Index maintenance: Define an index maintenance algorithm to keep sec-
ondary indices consistent with updates on documents. The algorithm
should handle arbitrary indices regardless of what they index and of which
specific index structures they use. Further, it should be efficient in the
sense that it should require the minimum possible number of accesses to
documents to determine necessary updates.

This thesis focuses on providing flexible and selective indexing, but not on
query optimization with indices. To select appropriate indices for queries, the
thesis adapts the XAM approach [17]. A cost model to find the optimal set of
indices for a query during query optimization as well as an algorithm to suggest
the optimal set of indices for a query workload during database design are out
of scope of this thesis.

1.5 Approach

This thesis has emerged from a research project called SemCrypt [176]4, which
is a secure, native XML database. To query and update outsourced, encrypted
XML documents, integral parts of SemCrypt are a schema-aware labeling
scheme and secondary indices. The overall steps to achieve the objectives pre-
sented in the previous section followed the design-science research paradigm
(cf. [103, 189]). After becoming aware that existing XML indexing approaches
do not offer the necessary flexibility and selectivity, we suggested a new ap-
proach that extends, combines and improves existing approaches. All concepts
have been implemented and integrated into the XML database SemCrypt and
tested analytically through performance studies.

In the following, we outline and exemplify the approach of this thesis and
its contributions. Details will be given in the subsequent chapters.

Labeling scheme: The labeling scheme assigns a unique label to each node
of a document as well as to the labelpaths and types of a document. It does not
only encode structural relationships into node labels, but also integrates schema
information to improve query and update processing. Labels enable the repre-
sentation and comparison of indexed properties as well as the representation
and processing of nodes returned by indices.

Example 1.5 (labeling scheme) Figure 1.2 assigns a label to each node of
a sample document fragment, which is depicted to the right of each node. The
first part of the label identifies the labelpath, e.g. the labelpath of each resource

3The term index selection is sometimes used to denote the process of suggesting possible
indices for query workloads during database design, which is out of scope of this paper.

4SemCrypt is a secure, native XML database that has been developed at the Department
of Business Informatics - Data & Knowledge Engineering at Johannes Kepler University Linz
with partners Electronic Competence Center Vienna and EC3 Networks GmbH. The research
project has been funded by FIT-IT Semantic Systems under grant 809262/9315-KA/HN.

8 CHAPTER 1. INTRODUCTION

7-1.1

62-1.1.1 63-1.1.1

188-1.1.1

milestone

resource

@date title

'xml indexing'

21-1.1.1

63-1.1.3

188-1.1.3

resource

title

'query'

21-1.1.3
title

'design'

20-1.1

59-1.1

Figure 1.2: Document fragment with labels.

is identified by 21. The second part of the label identifies the position of a node
in the document and enables structural comparisons. E.g. the milestone with
label 7–1.1 is the parent of the resource with label 21–1.1.1.

Index structures: To support flexibility, we select a small set of index
structures and describe how to extend them to both structure- and content-
oriented properties. We further propose the concept of index nesting to adapt
these index structures to specific query workloads on the hierarchies of XML doc-
uments. We refer to this indexing approach as sciens (Structure and Content
Indexing with Extensible, Nestable Structures).

XML indexing 21-1.1.1

... ...

query 21-1.1.3, 21-5.3.7,...

20 20-1.1, 20-1.3, 20-1.5,...

... ...

63 63-1.1.1, 63-1.1.3, 63-1.3.1,...

Figure 1.3: Hash table on title values (left) and hash table on title labelpaths
(right).

Example 1.6 (index structures) To retrieve all resources with a specific title
(cf. Example 1.2), we can define a hash table on the values of resource titles.
We can also define an index that returns titles with the same labelpath. Figure
1.3 depicts parts of the corresponding hash tables. To keep the figure simple,
we assume that the hash table is collision-free. The left hash table maps each
distinct title value to the labels of its resource nodes, whereas the right hash
table associates each distinct labelpath of title nodes with its node labels. This
example demonstrates that the hash table can easily be used to index values or
labelpaths. To support more complex indices, we propose to extend range and
multidimensional indices by adapting their comparison operators to structural
properties in this thesis.

Index framework: We present a framework to process arbitrary indices
independently of their physical data structures. The framework enables the
database to select indices during query optimization, to access indices during
query execution and to maintain indices when updating documents. The basis
of the index framework is an index model that defines the properties and the
nodes on which an index is defined.

Example 1.7 (index model) Two sample index definitions are depicted in
Figure 1.4. The left index indexes the values of resource titles (= pv). The

1.5. APPROACH 9

title

resource

= pv

description

resource

~ pv

 pt

text() text()

@date
 pv

Figure 1.4: Index model for defining an index on resource titles (left) and an
index on types, dates and descriptions of resources (right).

border around the resource node indicates that the index maps each distinct title
value to the label of its resource. The right index definition is more complex.
It defines a multidimensional index on types of resources and values of resource
dates and descriptions. This index supports different operations on indexed
properties, i.e. hierarchical queries on type hierarchies (° pt), range queries on
dates (≤ pv) and full-text queries on descriptions (∼ pv).

Index maintenance: We propose a generic index maintenance algorithm
that can update arbitrary index structures defined on arbitrary document frag-
ments. By exploiting the structure of fragments that are inserted into or deleted
from an XML document, the proposed algorithm requires a minimum number
of queries to extract relevant updates and to propagate them to affected index
structures.

title

resource

text()

21-1.1.1

'xml indexing'

21-1.1.3

'query'
= pv

Figure 1.5: Updating an index on resource titles with the document fragment
of Figure 1.2.

Example 1.8 (index maintenance) Assume that we insert the document of
Figure 1.2 and update the sample index on resource titles as depicted in Figure
1.5. By comparing the index definition with the update fragment, the main-
tenance algorithm extracts indexed properties and nodes to be returned by the
index. It determines that value ‘xml indexing’ maps to the node with label
21–1.1.1 and value ‘query’ to label 21–1.1.3 according to the index definition.
In this case, the algorithm can extract all updates from the update fragment.
However, if we modify the title of the first resource, the update only affects the
title, but does not contain the resource label. To update the index, the mainte-
nance algorithm has to determine the resource label before modifying the title in
the index.

The proposed concepts allow for defining those indices that best match the
query workload. Indexing frequently queried fragments instead of entire docu-
ments accelerates index traversal and reduces required storage space. The devel-
oped index processing techniques handle arbitrary indices that can be expressed
by the index model and guarantee that querying and updating documents re-
mains unaffected by specific indices used.

10 CHAPTER 1. INTRODUCTION

1.6 Outline

The remainder of this thesis is organized into three parts. Part I addresses
labeling and indexing XML documents. Part II presents an index framework
and a maintenance algorithm to process secondary indices. Part III evaluates
the concepts of this thesis by describing their integration into the native XML
database SemCrypt as well as performance studies.

Chapter 2 - Preliminaries defines the data and schema model used in this
thesis. Based on typical queries on XML documents, it then derives require-
ments for secondary indices in XML databases.

Chapter 3 - Labeling Scheme proposes a labeling scheme that assigns labels
to nodes of documents as well as to labelpaths and types defined in schemas. The
labeling scheme bases on existing dynamic labeling schemes and their encodings.
The chapter also describes how to process labels to support the required indexing
operations.

Chapter 4 - Index Structures describes the indexing approach sciens. Af-
ter reviewing related work on index structures, the chapter presents the main
concepts of sciens. To index structure- and/or content-oriented properties, the
chapter shows how to extend and nest a hash table, a B+-tree and a KDB-tree
and how to adapt their comparison operators to structural properties. Finally,
the chapter contrasts various indexing alternatives and compares them to exist-
ing indexing approaches.

Chapter 5 - Index Framework presents an index framework to select, access
and maintain arbitrary indices. The framework bases on an index model that
represents index definitions as tree patterns. To process arbitrary indices based
on this index model, the chapter describes how to select indices using the XAM
approach [16].

Chapter 6 - Index Maintenance describes an index maintenance algorithm
to propagate relevant updates to affected index structures when updating docu-
ments. After outlining shortcomings of existing approaches, the chapter presents
the main concepts of the proposed approach and its algorithms.

Chapter 7 - Case Study: The XML Database SemCrypt presents SemCrypt,
which is a native, secure XML database in whose context the concepts of this
thesis have been developed and implemented. After giving a general introduc-
tion to SemCrypt, the chapter describes its architecture and main concepts.
Thereby, it uses a case study to show how to process documents, schemas,
queries and indices in SemCrypt.

Chapter 8 - Performance Studies evaluates the performance of the indexing
approach sciens. It includes performance studies on the index structures and
the maintenance algorithm that show the efficiency of the developed approach
and its improvements compared to existing approaches.

Chapter 9 - Conclusion summarizes the concepts of flexible and selective
indexing in XML databases and gives an outlook on possible future work.

Part I

Labeling and Indexing
XML Documents

11

Chapter 2

Preliminaries

Contents
2.1 XML Documents and Schemas 14

2.1.1 Data Model . 15

2.1.2 Schema Model . 18

2.2 Processing Queries 22

2.3 Indexing Requirements 26

This chapter introduces documents and schemas as well as queries and in-
dices on documents. Section 2.1 first describes documents and schemas in gen-
eral and then defines the data and schema model used in this thesis. Based
on typical queries on documents presented in Section 2.2, Section 2.3 derives
requirements for indices in XML databases.

13

14 CHAPTER 2. PRELIMINARIES

2.1 XML Documents and Schemas

XML, the eXtensible Markup Language [38], is a recommendation of the World
Wide Web Consortium (W3C) with the primary purpose of facilitating data
exchange on the Web. While HTML [163] uses tags to specify how to format
data, XML tags do not describe how to present data but the meaning of data.
XML is extensible as it is possible to define custom tags that describe the
data enclosed by them. Further, XML documents are self-describing as the
tags define the document structure. While tags enclose so-called elements and
structure data hierarchically, attributes further describe elements.

<project>
<resource date=‘2008-03-12’>

<title>XML</title>
<description>

XML is a language for data representation that has been
designed by the W3C. This resource describes storage,
query and indexing techniques for XML.

</description>
</resource>

</project>

Figure 2.1: XML document.

Example 2.1 Figure 2.1 shows a sample XML document describing a project
resource. The tag <title> defines that ‘XML’ is a title. As the tag <title> is
enclosed by the tag <resource>, its value ‘XML’ is the title of a resource. The
resource has a date, which is modeled as an attribute of the resource element.

While XML has primarily been designed as data exchange format on the
Web, it has become increasingly popular for data modeling, information integra-
tion and document representation. Dependent on what XML is used for, there
exist various types of XML documents. Data-centric documents contain struc-
tured data, such as financial data, while document-centric XML refers to un-
structured data as in books. Structured data is typical for relational databases,
whereas information retrieval techniques focus on unstructured data. In many
application domains, data is neither completely structured nor unstructured.
This kind of data is referred to as semi-structured data. Examples for semi-
structured data are emails, contracts and health records.

Example 2.2 The XML document in Figure 2.1 can be regarded as semi-
structured. It contains structured parts, such as the date and title of a resource.
The description is unstructured, entailing that the relationship between ‘XML’
and the ‘W3C’ is not explicitly marked, but only described textually.

The main characteristics of semi-structured data are [6]:

• The structure is irregular and can vary among and within documents,
i.e. data items may add or miss information.

2.1. XML DOCUMENTS AND SCHEMAS 15

• Documents are self-describing and do not depend on a schema.

• The structure is partial, i.e. documents can contain unstructured parts.

• The structure of documents may change in the course of time.

Example 2.3 When adding a second resource to the XML document of Figure
2.1, this resource need not have the same structure as the existing resource. It
may miss the date or additionally contain information about the editor of the
resource.

XML shares the characteristics of semi-structured data and additionally im-
poses the following restrictions:

• XML documents have a hierarchical structure.

• The order among elements is important.

XML documents do not depend on a schema, but there exist schema lan-
guages for defining the structure of XML documents. The most popular ones
are DTDs [38] and XML Schemas [187] of the W3C. Schemas describe which
elements and attributes can be contained in a document, how they are struc-
tured, how often they can occur and which data types are allowed for values.
A document which conforms to a schema is said to be valid. Schemas are es-
pecially useful for data-centric applications and many public vocabularies have
been defined to enhance interoperability, e.g. for e-government, healthcare and
human resources [84].

Although XML documents do not depend on a schema, it is reasonable to
extract schema information and use it for optimizing and accelerating query
and update processing and for defining storage and index structures [7, 190].
The indexing approach proposed in this thesis exploits the schema of XML
documents to facilitate index processing. As the W3C recommendations for
representing documents and schemas are very complex, we propose a simplified
data and schema model in the following, which capture all information necessary
for processing indices in XML databases.

2.1.1 Data Model

Each database requires an underlying data model, defining the type of data
that can be stored and operations on it. As XML has not been designed as data
model, there exist various data models for XML. The object exchange model
(OEM) [161] is a data model for semi-structured data, but compared to XML,
it has the form of a graph and is not ordered. The XML Information Set [60]
defines XML with a set of information items, while the Document Object Model
(DOM) [104] describes the logical structure of documents and an application
programming interface to access and manipulate documents. In contrast to
these data models, the XQuery 1.0 and XPath 2.0 data model [76] of the W3C
additionally supports types.

The data model used in this thesis is based on the XQuery 1.0 and XPath
2.0 data model and defines an XML document as a tree of element, attribute

16 CHAPTER 2. PRELIMINARIES

and text nodes with one element node forming the root of the tree. Element
nodes can contain nested nodes, attribute and text nodes have a value. Each
node has a name and may have a type. The name is a qualified name, consisting
of an optional namespace URI and a local name. The type of a node is either
implicitly defined by the value of the node, or it can be assigned to element nodes
via the type attribute of the XML Schema specification [187]. In contrast to
the XQuery 1.0 and XPath 2.0 data model, our data model does not consider
document, namespace, processing instruction and comment nodes. To index
these node kinds, we could adopt the same concepts as for element, attribute
and text nodes.

Definition 2.1 (document) A document D is an ordered, directed tree with
node names, values and types, D = (N,F, name, value, type, root, L, V, T),
where

• N = E ∪ A ∪ T is a finite set of nodes classified into the following node
kinds: element nodes E, attribute nodes A and text nodes T .

• F ⊆ E ×N is a finite set of directed edges.

• Nodes have a name, represented by function name : N → L, where L is
a set of node names. The name of attribute nodes is preceded with the
symbol @ and text nodes are assigned the special name text().

• Attribute and text nodes have associated a value, represented by function
value : A ∪ T → V , where V is a set of values.

• Nodes may have a type, represented by partial function type : N → T ,
where T is a set of types. Each type is represented by a unique type name.

• Function root : D → N returns the root node of document D, which has
no incoming edge.

¤

project

milestone

title resource

@date title description

milestone

'design'

'2007-03-12'

'xml indexing' 'XML…'

<Report> title resource

@date title'implementation'

'2008-01-30'

'system'

<Documentation>

projects

title

'semcrypt'

@id

'26543'

Figure 2.2: Document as a tree of nodes.

Example 2.4 (document) Figure 2.2 depicts a sample XML document, show-
ing the name of element and attribute nodes and the value of attribute and text
nodes. The types of element nodes are written within tags <>. For example, there
is an element node with name resource and type <Report>, an attribute node
with name @id and value ‘26543’ and a text node with value ‘xml indexing’.
The node projects is the root of the document.

2.1. XML DOCUMENTS AND SCHEMAS 17

Except for the root node, each node has a parent, parent : N → E, where
parent(n) = e iff (e, n) ∈ F . Element nodes have children, defined by children :
E → 2N , where children(e) = {n ∈ N | parent(n) = e}. The ancestor relation
is the transitive closure of the parent relation, whereas the descendant relation
is its inverse. Note that this definition simplifies the XQuery 1.0 and XPath
2.0 data model, which ignores attribute nodes in the children and descendant
relations. Nodes with the same parent are referred to as siblings. A node,
which is not a leaf of the tree, is referred to as internal node. Attribute and
text nodes are always leaves.

Definition 2.2 (document order) The document order among all nodes
n, n′ ∈ N of a document is defined as follows. Node n precedes node n′, de-
noted by n ≺ n′, if n is visited before n′ in a preorder traversal of the document
tree. Attribute nodes immediately follow the element nodes with which they
are associated.

Pursuant to the XQuery 1.0 and XPath 2.0 data model, each node has
a unique identity. Attribute nodes with the same parent must have distinct
names. The content of an element node corresponds to the concatenation of the
values of all its text node descendants in document order. If an element node
has both element and text nodes as children, it is said to have mixed content.
The children of an element node must not contain two consecutive text nodes.

To reduce complexity, we disallow mixed content. We further define that the
descendants of a node must not have the same name as the node, which impedes
recursion. However, we describe necessary extensions to support mixed content
and recursion in the chapters that are affected by these extensions.

Edges connect nodes and define paths to traverse the XML tree. There is
one path from the root of the document to each node.

Definition 2.3 (path) Let D be a document according to Definition 2.1 with
the set of nodes N .

• A rooted path p is a sequence of k connected nodes 〈/n1/ . . . /nk〉, where
n1 = root(D) ∧ parent(ni+1) = ni for ni ∈ N and i = 1 . . . k−1.

• Let P be the set of rooted paths in D.

• Function last : P → N returns the last node of a path p ∈ P ,
last(〈/n1/ . . . /nk〉) = nk for k ≥ 1.

• The access path, or shortly path, of a node n ∈ N is defined by function
path : N → P , such that path(n) is the path p ∈ P where last(p) = n.

• The labelpath of a node corresponds to the sequence of node names on its
path.

¤

Example 2.5 (path) In the document of Figure 2.2, a sample path is
/projects [1]/ project [1]/ milestone [2]/ title [1]/ text(), whereby the
numbers in parenthesis denote the position of the corresponding nodes within
siblings with the same name. This path is the access path of the text node with
value ‘implementation’. The corresponding labelpath is /projects/ project/

milestone/ title/ text().

18 CHAPTER 2. PRELIMINARIES

2.1.2 Schema Model

While the primary purpose of schema languages, such as DTDs [38] and XML
Schema [187] of the W3C, is to provide a grammar for validating documents,
databases use schema information to efficiently store, index and query docu-
ments. Although XML databases should be able to handle schemaless doc-
uments, integrating structural information about documents accelerates and
facilitates query and update processing.

Previous schemas considered for XML databases are mainly structural sum-
maries, such as DataGuides [85]. They comprise labelpaths to summarize the
tag hierarchy of documents. Ludäscher et al. [143] argue that schemas also need
to incorporate information about types to support queries on the conceptual
level instead of on the syntactic level only. In our context, a schema is a struc-
tural summary that integrates types and type hierarchies. It can be constructed
from a DTD or an XML Schema or it can directly be extracted from XML doc-
uments, similarly to DataGuides. Our schema model is based on XML Schema,
but simplifies it by omitting all constructs that only serve for validation and by
adapting it to our data model. It basically contains only information present
in XML documents to be independent of specific schema languages. The only
exception are optional type hierarchies, which can be defined in XML Schema,
but not directly in documents.

A schema is a graph of node schemas and types. Node schemas define the
kind and name of nodes in documents. Analogous to nodes in the document,
there are element, attribute and text node schemas. The cardinality of a node
schema determines how often a node with a certain kind, name and parent
can appear in a document. Each node schema has a type, which is either
simple or complex. Simple types specify allowed values of attribute and text
nodes, whereas complex types comprise node schemas to define which children
an element node may have. Various node schemas may refer to the same type.
Complex types can extend complex types, forming a tree hierarchy of types.

Definition 2.4 (schema) A schema S is an ordered, acyclic, connected,
directed graph, S = (N, T ,F, type, defines, extends, name, card, root,L,L),
where

• N, T represent vertices.

• Functions type, defines and extends define edges between node schemas
and types, F ⊆ N× T ∪ T ×N ∪ T × T .

• N = E∪A∪T is a finite set of node schemas classified into element node
schemas E, attribute node schemas A and text node schemas T.

• T = TS ∪ TC is a finite set of types classified into simple types TS and
complex types TC .

• Function type assigns a type to each node schema, type : N → T . More
precisely, attribute and text node schemas have a simple type, type :
A ∪T → TS , whereas element node schemas have a complex type, type :
E → TC .

2.1. XML DOCUMENTS AND SCHEMAS 19

• Function defines assigns node schemas to complex types, defines : TC →
2N.

• Complex types may be derived from complex types, forming a tree of
types, represented by function extends : TC → TC . The tree hierarchy
H represents all subtype-supertype relationships, H ⊆ TC × TC such that
(t, t′) ∈ H iff extends(t) = t′. A complex type that has subtypes can
be declared as abstract. An abstract type cannot be instantiated in a
document (cf. Definition 2.7).

• Node schemas have a name, name : N → L, where L is a set of node
schema names. The name of attribute node schemas is preceded with the
symbol @ and text node schemas are assigned the special name text().

• A type either has a name or is anonymous, as defined by partial function
name : T → L, where L is a set of type names. The type name uniquely
identifies a type. Anonymous types cannot have subtypes.

• Each node schema has a cardinality, represented by function card : N →
{0, 1, ∗, +}. A node schema is called single-valued if card(n) ∈ {0, 1},
otherwise it is referred to as multi-valued. Attribute node schemas are
always single-valued. If card(n) ∈ {0, ∗}, the node schema is referred to
as optional, otherwise it is required. Text node schemas are single-valued
and required to disallow mixed content.

• Function root : S → N returns the root node schema of schema S, which
has no incoming edge.

¤

Example 2.6 (schema) Figure 2.3 depicts a sample schema with the root
node schema projects. Each node schema has a name, the superscript in-
dicates the cardinality of the node schema. The node schema milestone refer-
ences an anonymous type and the node schema resource has type <Resource>.
This type has two subtypes, <Documentation> and <Report>, which itself has
two subtypes. The subtype <Report> defines that reports additionally have a
description. There are two simple types, namely <integer> and <string>.

Except for the root node schema, each node schema is defined in a com-
plex type. We define function definedAt : N → TC as the inverse of function
defines. An extended type does not only define new node schemas, but also
inherits the node schemas of its supertypes. Function inherits : TC → 2N

comprises the inherited node schemas of a type, where inherits(t) = {n ∈
N | ∃(t, t′) ∈ H+ : n ∈ defines(t′)}. The node schemas which a type defines
and inherits must have distinct names.

Two node schemas are connected via a type if the type of one node schema
defines the second node schema or if the second node schema is defined in a
subtype of the first node schema. We express this with function parent : N →
2N, where parent(n2) = {n1 ∈ N | (definedAt(n2), type(n1)) ∈ H∗}. One
node schema has several parents if the type that defines the node schema is
referenced by several (parent) node schemas (cf. Example 2.7). Node schemas
that are defined in the same type hierarchy are siblings.

20 CHAPTER 2. PRELIMINARIES

project
*

title
1

resource
*

@date0 title1

<Report>

@id1

<>

milestone+ <>

<integer>
S

<Resource>
<Documentation>

description0

<TextType> text()1

<string>
S

projects
1

<>

title1

<FinancialReport>

<TechnicalReport>

vertex/edge of schema graph notation in the figure

ve
rt

ic
es nodeschema n name(n)card(n)

simple type t < name(t) >S

complex type t < name(t) >

ed
ge

s type n → t
defines t → n
extends t−. t′

Figure 2.3: Schema model for the document of Figure 2.2.

Definition 2.5 (document order) The order between two sibling node
schemas n,n′ ∈ N, written as n ≺ n′, corresponds to the order in which their
type defines the node schemas. If a type inherits node schemas, its own node
schemas succeed inherited node schemas. Attribute node schemas always pre-
cede element node schemas.

The main differences between this schema model and XML Schema are that
XML Schema defines text node schemas only implicitly by assigning a simple
type to an element declaration. To handle all node kinds analogously, we use
node schemas instead of element and attribute declarations. To reduce com-
plexity, the schema model does not support recursion. As the purpose of our
schema model is not validation, it does not support e.g. enumerations, restric-
tion and extension of simple types and more complex cardinality constraints.
XML Schema defines a wide range of simple types. In this thesis, we only
consider string and integer, which are the most important simple types.

Similar to nodes in a document, node schemas are connected via edges,
defining path schemas to traverse the schema graph. There is one path schema
from the root of the schema to each node schema.

Definition 2.6 (path schema) Let S be a schema according to Definition 2.4
with the set of node schemas N.

• A rooted path schema p is a sequence of k connected node schemas
〈/n1/ . . . /nk〉, where n1 = root(S) ∧ ni ∈ parent(ni+1) for ni ∈ N and
i = 1 . . . k−1.

• Let P be the set of rooted path schemas in S.

2.1. XML DOCUMENTS AND SCHEMAS 21

• Function last : P → N returns the last node schema of a path schema
p ∈ P, last(〈/n1/ . . . /nk〉) = nk for k ≥ 1.

• The sequences of node schema names of the path schemas represent the
labelpaths of a schema. Each path schema has a distinct labelpath.

¤

Example 2.7 (path schema) In the schema of Figure 2.3, sample path
schemas consist of the following sequences of node schemas, which are rep-
resented by their labelpaths: /projects/ project/ milestone/ title/ text()

and /projects/ project/ milestone/ resource/ description. Note that
node schema text() has four parent node schemas (the three title node
schemas and the node schema description). With each parent node schema
it forms a distinct path schema. Regarding the second labelpath, node schema
description has the parent node schema resource.

A document is instance of a schema if each path of the document is instance
of one path schema and each node of the document is instance of one node
schema. The following definitions formally define when a document is a valid
instance of a schema.

Definition 2.7 (path and node instance) Let D be a document with nodes
N and paths P and S be a schema with node schemas N and path schemas P.

• A path p = 〈/n1/ . . . /nk〉 ∈ P is instance of a path schema p =
〈/n1/ . . . /nk〉 ∈ P, written as p ² p, iff for i = 1 . . . k, k ≥ 1

– name(ni) = name(ni), and

– if the type of ni is defined, it either equals the type of ni or it is a
subtype of the type of ni, (type(ni), type(ni)) ∈ H∗. The type of ni

must not be declared as abstract in the schema.

The first property ensures that the path and the path schema have the
same labelpath. In a valid schema, there exists at most one path schema
that fulfills this property because each path schema has a distinct label-
path. The second property checks whether the nodes on a path have types
that are defined in the schema.

• The path schema of a node n ∈ N , represented by function pathschema :
N → P, is defined to be the path schema p ∈ P such that path(n) ²
p. The node schema of a node is defined by nodeschema : N → N,
where nodeschema(n) = last(pathschema(n)). If the type of a node is
undefined, it implicitly adopts the type of its node schema.

¤

Example 2.8 (path and node instance) In the document of Figure 2.2,
a sample path is /projects [1]/ project [1]/ milestone [2]/ title [1]/

text(). This path is instance of the path schema /projects/ project/

milestone/ title/ text(), which belongs to the schema of Figure 2.3. It fol-
lows that this is the path schema of the text node with value ‘implementation’
and that the node schema of this node is the node schema named text().

22 CHAPTER 2. PRELIMINARIES

In sciens, each document is instance of one schema, i.e. it is said to be
valid against the schema or to conform to the schema. Based on Definition 2.7,
Definition 2.8 defines when a document is a valid instance of a schema.

Definition 2.8 (document instance) A document D is a valid instance of a
schema S, D ² S, iff

• The set of types defined in D is a subset of the types defined in S, i.e. for
each type name in D there exists a type in S with the same name.

• Each path p in P is instance of exactly one path schema p in P:

– ∀p ∈ P : ∃p ∈ P : p ² p and

– ∀p ∈ P,p,p′ ∈ P : p ² p ∧ p ² p′ ⇒ p = p′.

• There do not exist two distinct nodes which have the same parent and
are instances of the same node schema if the node schema is single-
valued, ∀n, n′ ∈ N : parent(n) = parent(n′) ∧ nodeschema(n) =
nodeschema(n′) ∧ card(nodeschema(n)) ∈ {0, 1} ⇒ n = n′.

• Each node whose type defines or inherits a required node schema has
at least one child for each required node schema, ∀n ∈ N, ∀n ∈
(defines(type(n)) ∪ inherits(type(n))) : card(n) ∈ {1, +} ⇒ ∃n′ ∈ N :
parent(n′) = n ∧ nodeschema(n) = n.

• The order between node schemas is respected within sibling nodes, ∀n, n′ ∈
N : parent(n) = parent(n′) ∧ nodeschema(n) ≺ nodeschema(n′) ⇒ n ≺
n′.

¤

Example 2.9 (document instance) The document of Figure 2.2 is a valid
instance of the schema of Figure 2.3. Each of its types is defined in the schema,
each path is instance of a path schema and it fulfills the cardinality constraints of
the schema. For example, each resource has exactly one title (the node schema
title is single-valued and required) and at most one date. Sibling nodes respect
the order of their node schemas. For example, the title of the first resource
precedes the description of this resource.

2.2 Processing Queries

The most well-known XML query languages are XPath [27] and XQuery [33],
which have been proposed by the W3C. XPath provides path expressions to
address nodes of XML trees, whereas XQuery extends XPath by expressions
for combining, restructuring and sorting information and constructing XML
structures.

XPath expressions consist of one or more steps that are evaluated from left
to right. Each step generates a sequence of nodes, which are input for the subse-
quent step. A step consists of an axis, defining the direction of movement, and
a node test, selecting nodes based on their kind, name and/or type. Optionally
it is followed by predicates that filter the node sequence to which the step has

2.2. PROCESSING QUERIES 23

evaluated and only retain the nodes that fulfill the predicates. The result of
a path expression contains a sequence of nodes that is duplicate-free and in
document order.

Example 2.10 (path expression) A sample path expression is //project

[title = ‘semcrypt’]// resource [@date < ‘2008-01-01’], selecting all re-
sources of project ‘semcrypt’ that have been edited before ‘2008-01-01’. Looking
at the document of Figure 2.2, the path expression is evaluated as follows. The
first step is //project [title = ‘semcrypt’] and selects all descendants of the
document that have the name project. In the example, this step generates
the node sequence consisting of the one and only project node. The predicate
filters this sequence, retaining only projects with title ‘semcrypt’. More pre-
cisely, it selects the child nodes named title and tests whether they have a
text node with value ‘semcrypt’. As the project node has a corresponding child,
the project node is input to the second step expression, //resource [@date <

‘2008-01-01’]. This step first selects all descendants of the project node with
name resource and then discards the resources edited after 2007. The project
has two resources, but only the first one fulfills the predicate and is returned by
the path expression.

This thesis uses a subset of XPath 2.0 [27], which is expressive enough
to formulate common queries on XML documents. Compared to Core XPath
[86], which is a subset frequently referred to in literature, this subset also sup-
ports full-text queries and queries on type hierarchies. In contrast to XPath or
XQuery, it does not support e.g. sorting, grouping, aggregation functions and
result construction as the focus is on queries to be supported by indices. For
better readability, we use a simplified version of the XPath syntax for these
queries.

PathExpr ::= (StepExpr PredicateList)+

StepExpr ::= “/” | “//” NodeTest
NodeTest ::= NodeName | “*” (“<” TypeName “*”? “>”)?
PredicateList ::= (“[” Predicate “]”)∗

Predicate ::= ComparisonExpr (“and” ComparisonExpr)?
ComparisonExpr ::= NodeTest (StepExpr)∗ (CompOp Value)?
CompOp ::= “<” | “≤” | “=” | “≥” | “>” | “∼” | “∼̇”

Table 2.1: Simplified EBNF for queries on XML documents.

Table 2.1 depicts the grammar used to formulate queries in this thesis. The
syntax corresponds to the EBNF of the XPath 2.0 specification. The query
language only supports the child (/) and descendant (//) axes. Each node test
consists of a node name or a wildcard (*) and an optional type name. If the
type name is followed by a star (*), the query refers to the corresponding type
hierarchy, otherwise it only retrieves nodes with the specific type and not nodes
belonging to any of its subtypes. Predicates allow for evaluating structural con-
ditions on nodes or comparing node values. The special comparison operators
∼ and ∼̇ are used for full-text queries, similar to the matches function in XPath
2.0. The operators determine whether any word of a node value equals (∼)
or starts with (∼̇) the specified value, respectively. Node names, type names

24 CHAPTER 2. PRELIMINARIES

and values consist of characters, taken from the set of node names, type names
and values of the data model (cf. Section 2.1.1). Pursuant to the XPath 2.0
specification, value comparisons take the content of element nodes or the value
of attribute or text nodes and compare it with the specified value. The query
result comprises the nodes returned by the query and their descendants.

Typical queries on XML documents specify structural conditions using path
expressions and search the document content with predicates (cf. XML query
use cases [44] and XML benchmarks [173, 199]). Catania et al. [43] propose to
classify queries according to each one of the following three dimensions:

• Simple/branching path query: In contrast to a simple path query, a branch-
ing path query contains branches, i.e. it visits several labelpaths.

• Total/partial matching query: While a total matching query begins at the
root of a document, a partial matching query starts from some nodes of
the document that are selected via the descendant axis.

• Structure/content-oriented query: Queries with predicates on node val-
ues are content-oriented, whereas remaining queries are referred to as
structure-oriented queries.

Queries on the document structure are hierarchical queries as both the paths
as well as the types in a document form hierarchies. Queries on the document
content compare node values by exact match, range or textual constraints. Gen-
erally, queries evaluate the following conditions on XML documents (cf. Example
2.11 for sample queries):

• Queries on the document structure:

– Queries select nodes by their node names. They either specify all
names of a path or omit some of them by using wildcards or the
descendant axis. As the node names of a path form the labelpath of
a node, we refer to such queries as queries on the labelpath hierarchy.

– As several nodes may share the same labelpath, labelpaths alone are
insufficient to select nodes. Apart from node names, the queried
hierarchy can be restricted by any kind of predicate. Predicates limit
search to specific paths (subtrees) of documents. These queries thus
restrict the path hierarchy of documents.

– Not only paths but also types form a tree hierarchy in XML. Queries
either select all nodes belonging to a specific type, to a partial type
hierarchy or to the entire type hierarchy. We refer to such queries as
queries on the type hierarchy.

As labelpaths, paths and types form trees in XML, queries on the docu-
ment structure are typically hierarchical queries, selecting either the entire
hierarchy, a partial hierarchy or only a specific part of the hierarchy.

• Queries on the document content:

– To filter nodes returned by a path expression, queries can compare
the values of these nodes with a specific value and discard all nodes
whose value does not equal the specified value. These queries are
referred to as exact match queries.

2.2. PROCESSING QUERIES 25

– Queries do not compare values with one specific value only. Instead,
queries test whether node values (e.g. numbers, dates) are within a
certain value range. In this case, we talk about range queries.

– An important characteristic of XML documents is that they can con-
tain unstructured parts. To enable search within unstructured data,
an essential class of queries determines whether a node value contains
a specific word or word prefix via a regular expression. We refer to
such queries as full-text queries.

Queries on the document content select nodes whose value equals a certain
value, is within a value range or contains a specific word or word prefix.

Structure-oriented queries
Q1 /projects/project/title
Q2 //milestone//title
Q3 //title
Q4 //resource[description]/title
Exact match queries on labelpath hierarchy
Q5 /projects/project[title = ‘semcrypt’]
Q6 //*[title = ‘xml’]
Q7 //resource[@date = ‘2007-10-31’][title = ‘xml’]
Range queries on path hierarchy
Q8 //resource[@date ≥ ‘2007-01-01’ and @date < ‘2008-01-01’]
Q9 //project[title = ‘semcrypt’]//resource[@date ≥ ‘2008-01-01’]
Q10 //project[@id = ‘26543’]/milestone[title = ‘design’]/resource[@date ≥

‘2008-01-01’]
Full-text queries on type hierarchy
Q11 //resource<Report*>
Q12 //resource[description ∼ ‘database’]
Q13 //resource<TechnicalReport>[description ∼̇ ‘data’]

Table 2.2: Queries on the document of Figure 2.2.

Example 2.11 (queries) Table 2.2 depicts sample queries on the document of
Figure 2.2 using the query syntax of Table 2.1. Q1-Q4 are structure-oriented
queries and select nodes according to the node names contained in their label-
paths. Q1 is a total matching query and selects all project titles. Q2-Q4 are
partial matching queries. Q2 retrieves all titles which are descendants of mile-
stones, i.e. the titles of milestones and resources, whereas Q3 returns all titles.
Q4 is a branching path query with a structural predicate, returning the titles of
resources that have a description.

The subsequent queries do not only restrict the structure, but also contain
value-based predicates. Thereby, each query group focuses on one structure-
and one content-oriented condition. Q5-Q7 are exact match queries, comparing
titles with a specific value. While Q5 exactly specifies the labelpath of the nodes
to be returned, Q6 refers to the entire hierarchy and returns all nodes with the
specified title. Q7 retrieves all resources with a specific date and title.

26 CHAPTER 2. PRELIMINARIES

Q8-Q10 are examples for range queries that select resources according to their
date. All resources have the same labelpath, but they are located in different
path hierarchies. While Q8 looks at all resources, Q9 and Q10 limit search
to certain subtrees of the document using predicates. Q9 selects resources of
project ‘semcrypt’, Q10 resources of the first milestone of this project in the
sample document of Figure 2.2. The first two predicates of Q10 select the partial
hierarchy with root /projects [1]/ project [1]/ milestone [1], within which
the remaining part of the query is evaluated.

The remaining queries of Table 2.2 query the type hierarchy of resources,
whereby Q12 and Q13 additionally contain full-text queries. Q11 returns all
nodes with type <Report>, whereas Q12 selects resources whose description con-
tains the word ‘database’. As only nodes with type <Report> have a descrip-
tion, Q12 implicitly refers to the partial hierarchy of type <Report>. Q13 re-
trieves all nodes with type <TechnicalReport> whose description contains any
word starting with the prefix ‘data’ (such as ‘data’ or ‘database’). All sam-
ple queries use the simplified XPath syntax of Table 2.1. In XPath 2.0, Q13,
for example, would be written as //element(resource, TechnicalReport)

[description/fn:matches(., ‘\bdata.*’)].

Various approaches exist to evaluate queries. Gottlob et al. [86] present
algorithms for processing XPath queries in main memory. Pattern matching
algorithms (e.g. [42, 50, 142, 200]) represent queries as tree patterns and find
occurrences of these patterns in the document. To avoid scanning whole docu-
ments, various approaches use indices on the document structure and/or con-
tent. To evaluate queries by accessing several indices, structural join algorithms
(e.g. [135]) join nodes returned by indices according to their structural relation-
ships.

Example 2.12 (query evaluation) Basically, the following steps are nec-
essary to evaluate Q8 of Table 2.2 (//resource [@date≥ ‘2007-01-01’ and

@date < ‘2008-01-01’]) without indices: (1) traverse the document to locate
resource nodes, (2) for each resource node, navigate to its date and determine
whether the date value is within the specified value range. To accelerate the first
step, we could use an index on labelpaths which returns all nodes belonging to
the labelpath of resources. Instead of indexing the document structure, we could
also use a B-tree on date values to accelerate the second step of the query pro-
cessing algorithm. If we access both indices, we need a structural join algorithm
to determine which dates belong to which resources.

2.3 Indexing Requirements

Databases organize records into files, which consist of pages. To process queries
without scanning all records, databases rely on indices. Ramakrishnan and
Gehrke [164] define an index as ‘a data structure that organizes data records
on disk. . . to efficiently retrieve all records that satisfy search conditions on the
search key fields of the index’. The search key fields are any properties of the
indexed records. An index either returns (i) the actual data records that match
the search keys or returns (ii) references to the corresponding data records.
Garcia-Molina et al. [83] refer to alternative (i) as the primary index, whereas

2.3. INDEXING REQUIREMENTS 27

alternative (ii) is a secondary index. Ramakrishnan and Gehrke [164] use a
different definition, which does not focus on what the index returns but on
what it indexes. According to them, an index on a set of fields including the
primary key is a primary index, otherwise it is a secondary index.

In XML, records comprise nodes of documents. In our terminology, an index
is a search function that consists of a set of index entries. Each index entry maps
a list of index keys to nodes. An index search compares the index keys with the
search conditions and returns all nodes associated with index keys that match
the search conditions. An index key can be any property of a node that can be
indexed. Indexable properties are the value, type, labelpath, path or name of a
node. An index structure is the specific data structure used to organize index
entries, such as a hash table or a B-tree.

Concerning primary and secondary indices, we follow the definition of
Garcia-Molina et al. [83]. An index which organizes the nodes of a document
is referred to as the primary index. On the contrary, a secondary index returns
node identifiers. We assume that node identifiers are logical identifers that can
be used to obtain the corresponding nodes from the primary index. Typically
there is one (default) primary index defined on each document. However, it is
possible to add several secondary indices defined on various properties of the
XML data model.

Example 2.13 (index) To support Q8 of Table 2.2 (//resource [@date≥
‘2007-01-01’ and @date < ‘2008-01-01’]), we can define a secondary index
on dates which uses the value of dates as index keys and returns the node iden-
tifiers of resource nodes. To support range queries, a B-tree is an adequate
data structure for this index. Regarding the sample document of Figure 2.2, a
sample index entry maps the index key ‘2007-03-12’ to the node identifier of
the first resource. When accessing the index with search keys ‘2007-01-01’ and
‘2008-01-01’, specifying the requested date range, the index returns the node
identifier of the first resource as its index key ‘2007-03-12’ matches the search
condition.

In consideration of frequent queries presented in Section 2.2, a database
requires indices on the document structure and on the document content as
well as indices on both the structure and the content of documents:

• Indices on the document structure:

– Labelpath hierarchy: Indices should enable the database to select
nodes by their labelpath or node name to return all nodes belonging
to a specific labelpath or having a certain node name, respectively.
As queries frequently refer to several labelpaths that form a subhier-
archy, indices should be able to select all nodes of a subhierarchy
without having to access the index for each individual labelpath of
the queried subhierarchy.

Example 2.14 (labelpath hierarchy index) An index on label-
paths supports Q1 of Table 2.2 by returning all nodes with the queried
labelpath. Similarly, an index on node names is efficient for Q3,
which selects all nodes with the requested name. As Q3 selects sev-
eral labelpaths, it is also possible to define an index on the labelpath

28 CHAPTER 2. PRELIMINARIES

hierarchy of title nodes. This index supports Q1-Q3 as it can select
titles within different subhierarchies, i.e. within projects, milestones
or resources.

– Path hierarchy: Similar to indices on the labelpath hierarchy, indices
on the path hierarchy support queries on specific subtrees of docu-
ments. When a query restricts search to a specific subtree, e.g. with
the help of a predicate, or starts search from a previous query result,
an index on paths can identify the queried subtree and limit index
traversal to the queried subtree. Indices on paths therefore avoid the
need of looking at the entire document and performing structural
joins between partial query results.

Example 2.15 (path hierarchy index) Queries Q8-Q10 of Ta-
ble 2.2 select resources within different projects and milestones.
As soon as the requested project/milestone has been identified, it
should no longer be necessary to consider all resources regardless
of the project/milestone within which they are located. To avoid
processing structural joins between all resources and the queried
project/milestone, an index on the path hierarchy of resources is ap-
propriate. It groups resources according to their project and milestone
and can therefore limit search to the queried project or milestone hi-
erarchy.

– Type hierarchy: Indices on types are required to support querying
nodes by types without the need of scanning all nodes. They should
return all nodes with a specific type or whose type is part of the
requested type hierarchy.

Example 2.16 (type hierarchy index) Indexing the type hierar-
chy of resources supports queries Q11-Q13 of Table 2.2, by selecting
all resources that are reports or only technical reports.

As labelpaths, paths and types form a tree hierarchy, indices on the doc-
ument structure need to support hierarchical queries, selecting either the
entire hierarchy, a partial hierarchy or only a specific part of the hierarchy.

• Indices on the document content:

– Exact match index: A database should provide indices that can re-
turn all nodes with a specific value without scanning the values of all
nodes.

Example 2.17 (exact match index) To support Q5 of Table 2.2,
an exact match index on the values of title nodes can return all nodes
with the requested title ‘semcrypt’.

– Range index: While exact match indices support queries asking for
one specific value, range indices are required for retrieving all nodes
whose value is within a certain value range.

2.3. INDEXING REQUIREMENTS 29

Example 2.18 (range index) Queries Q8-Q10 of Table 2.2 com-
pare the values of date nodes with a value range. With the help of
a range index on date values, a database can evaluate these queries
without having to look at each date.

– Full-text index: To support full-text queries, it is necessary to index
the individual words of node values and structure them in a way that
allows for comparing the indexed words with words or word prefixes.

Example 2.19 (full-text index) Queries Q12 and Q13 of Table
2.2 compare node values with a word and word prefix, respectively. A
full-text index on the values of description nodes can evaluate these
queries without looking at each node value.

Indices on the document content index node values, but need to support
different operations on these values. Required operations include exact
and range comparisons as well as word and word prefix search. Instead
of indexing all node values, indices on the document content are typically
selective indices in that they only index the values of nodes with the same
labelpath or name.

• Indices on the document structure and content: Queries typically
constrain both the document structure and the document content. Indices
should therefore support any combination of structure- and/or content-
oriented properties. When indexing multiple properties in one index, it
should be possible to adapt indices to the query workload. For example, in-
dices on the structure and content should either favor structure-oriented or
content-oriented queries or equally support both kinds of queries. Which
query is best supported by an index depends on how the index structures
its search space, i.e. according to which properties it orders index entries.

Example 2.20 (indices on the structure and content) With regard
to queries Q8-Q10 of Table 2.2, a range index on dates and a path hierar-
chy index on resources can be useful. To avoid accessing both indices and
joining their results, an index on both the date and the path hierarchy is
most appropriate. If Q8 is evaluated most often, this index should favor
querying the date, whereas if Q10 is more frequent, the index should favor
querying the path hierarchy. In case that Q8-Q10 occur the same number
of times, the index should perform equally for all queries.

To summarize, an XML database requires indices on the document structure
and content. For this purpose, indices need to be able to index various properties
of nodes, namely labelpaths, paths, types and values. They should support
various operations on these properties - hierarchical comparisons on structural
properties and exact, range and textual comparisons on values. Queries typically
constrain various properties, raising the need for indices on multiple properties
that can be adapted to the query workload.

30 CHAPTER 2. PRELIMINARIES

Chapter 3

Labeling Scheme

Contents
3.1 Introduction . 32

3.2 Related Work . 33

3.2.1 Path Operations . 34

3.2.2 Dynamic Documents 34

3.2.3 Encoding Labels . 35

3.2.4 Integrating Schema Information 36

3.2.5 Comparison . 37

3.3 Basic Approach . 37

3.3.1 Schema Labeling . 37

3.3.2 Document Labeling 39

3.4 Including Type Hierarchies 41

3.4.1 Schema Labeling . 42

3.4.2 Document Labeling 43

3.5 Processing Labels 44

3.5.1 Document Order . 45

3.5.2 Structural Relationships 46

3.5.3 Navigation . 47

3.6 Summary . 47

This chapter describes how to assign labels to schemas and documents such
that indices can use labels for comparing and representing nodes and their prop-
erties. Section 3.1 identifies requirements to be supported by labels for indexing
and Section 3.2 reviews related work. Based on existing labeling approaches,
Section 3.3 proposes how to label path schemas and how to integrate schema in-
formation into node labels. Section 3.4 extends this approach by labeling type
hierarchies and by integrating type information into node labels. Processing
labels to support the required indexing operations is discussed in Section 3.5.
Finally, Section 3.6 summarizes the main ideas of the proposed labeling scheme.

31

32 CHAPTER 3. LABELING SCHEME

3.1 Introduction

Indices require nodes and their properties to be represented in a way that allows
for efficiently querying and updating the index as well as compactly storing
the index structure. More precisely, indices on the document structure need to
represent and compare paths, labelpaths and types. As secondary indices return
node identifiers, encoding structural information into node identifiers enables
the database to process nodes returned by indices without accessing documents.
Integrating schema information into node identifiers further improves query and
update processing.

A labeling scheme assigns a unique label to each node of a document. The
label is not a simple number, but encodes structural information about the
node. Recently, a number of labeling schemes have been proposed (e.g. [72,
130, 135, 158]) with the main purpose of (i) accelerating query and update
processing by performing operations on labels instead of accessing documents
and (ii) providing a compact storage representation of nodes.

With regard to indexing, a labeling scheme (i) accelerates index traversal,
selection and maintenance and (ii) provides a compact storage representation of
indexed properties and nodes returned by indices. For this purpose, the labeling
scheme should fulfill the following requirements:

• Path operations: Labels should encode paths in such a way that the fol-
lowing operations can be performed directly on labels:

– Evaluate structural relationships between nodes, i.e. determine doc-
ument order, parent-child and ancestor-descendant relationships be-
tween nodes.

– Facilitate navigation by enabling to calculate the labels of ancestor
nodes.

Labels that support these path operations facilitate processing nodes re-
turned by indices. They enable indices on paths to compare search keys
with indexed properties when accessing or updating the index structure.
With regard to index maintenance, navigating to nodes via labels speeds
up finding all nodes which are affected by an index update operation.

• Dynamic documents: XML documents are not static but may be subject to
frequent updates. If updates on documents modify existing node labels, it
is necessary to update all indices referring to these labels. Only immutable
labels impede such expensive relabeling operations and guarantee that
existing nodes labels do not change when inserting or deleting nodes.

• Efficient encoding: Labels allow for representing nodes returned by indices
as well as structural properties that can be indexed. An efficient encoding
of labels is necessary to compactly store indices. The encoding should also
provide for fast comparison between labels.

• Schema information: Labels should be as expressive as possible and cap-
ture all structural information about a node. This implies that they should
not only encode paths and support operations on paths. Integrating label-
paths and types, which are defined by schemas, enables indices to represent

3.2. RELATED WORK 33

and compare these properties and further improves index maintenance.
Comparing labelpaths requires the same operations as on paths, whereas
types are typically compared according to super/subtype relationships.

To summarize, the labeling scheme must support representing and compar-
ing paths, labelpaths and types. Labels must be immutable and provide an
efficient encoding. In [88], we have outlined a labeling scheme fulfilling these
requirements, which we describe in this chapter. Although indexing does not
depend on this particular labeling scheme, it improves many index processing
tasks. We will point out these advantages in the subsequent chapters after
reviewing related work.

3.2 Related Work

Numerous labeling schemes1 have been proposed recently to support querying
and updating XML documents.

Containment labeling schemes2 assign to each node two numbers (express-
ing a range) in some kind of tree traversal such that the range of each node is
within the range of its ancestors. First presented by Dietz [67] and Agrawal et
al. [10], containment labeling schemes were later applied to XML [90, 135]. A
containment label mostly consists of three numbers (order, size, level) (cf. Ex-
ample 3.1). The labeling scheme assigns order and size tags, which are ascending
numbers, in a preorder and postorder traversal, respectively. The level indicates
the tree depth at a particular node and equals the number of nodes on a node’s
path.

In a prefix labeling scheme, each node encodes the label of its parent as a
prefix in its label. This idea originates from the Dewey Decimal Classification
[65], which has been proposed to classify topics in libraries. In XML labeling
schemes, each node takes the label of its parent as prefix and adds a self label
(cf. Example 3.1). The self label is ascending and unique within siblings. As
self label, labeling schemes either use numbers [158, 186] or binary strings [57,
120, 130].

Lee et al. [127] represent a document as a k-ary complete tree where k is the
largest number of children of an element node in the document. They assign
labels to the nodes by traversing the tree in level order (cf. Example 3.1).

Example 3.1 (labeling schemes) Figure 3.1 labels a sample document using
the containment, prefix and k-ary complete-tree labeling scheme. Containment
labels are shown left to each node in parenthesis, prefix labels are written below
each node and k-ary labels are depicted in brackets to the right of each node.
Thereby, k = 2 as each node contains at most two children.

In the following, we look at how existing labeling schemes fulfill the require-
ments identified in Section 3.1.

1The terms numbering scheme or node identification scheme are also frequent.
2Containment labeling schemes are also referred to as range or interval labeling schemes.

34 CHAPTER 3. LABELING SCHEME

project

milestone

resource resource

@id

(1,5,1)

(2,1,2) (3,4,2)

(4,2,3) (5,3,3)

1

1.1
1.2

1.2.1 1.2.2

[1]

[2] [3]

[6] [7]

Figure 3.1: Containment, prefix and k-ary complete-tree labeling schemes.

3.2.1 Path Operations

Containment labeling schemes represent document order by assigning order tags
in a preorder traversal. Node u is an ancestor of node v iff order(u) < order(v)∧
size(v) < size(u). If additionally level(u) = level(v) − 1 holds, node u is
the parent of node v. Despite enabling to evaluate structural relationships,
containment labeling schemes fail in supporting navigation to ancestor labels.

Prefix labeling schemes compare document order between nodes by the lex-
icographic order of their labels. Node u is an ancestor of node v iff label(u) is a
prefix of label(v). As prefix labeling schemes encode parent labels, they easily
support navigating to ancestors by calculating their node labels.

The k-ary complete-tree labeling scheme [127] can calculate the parent u of
node v by label(u) = (label(v)− 2)/k + 1 and therefore supports both evaluat-
ing structural relationships as well as navigating to ancestor labels. To evaluate
document order between labels that are not in an ancestor-descendant relation-
ship, it is necessary to determine the level of each label and compare the numeric
order between labels at the same level.

Example 3.2 (path operations) In Figure 3.1, the node with label (3, 4, 2) is
the parent of the node with label (4, 2, 3) because 3 < 4∧ 2 < 4∧ (2 = 3− 1). By
looking at the prefix labels, we see that label 1.2 is a prefix of label 1.2.1. From
the prefix label 1.2.2, we can also calculate its ancestor labels, which are 1.2 and
1. The parent of the 2-ary label 6 can be calculated by (6− 2)/2 + 1 = 3.

3.2.2 Dynamic Documents

The first XML labeling schemes only considered static documents. To support
dynamic documents, labeling schemes must guarantee that inserting or delet-
ing nodes does not affect existing node labels. Basically, containment labeling
schemes need to relabel all nodes after an insert operation. Prefix labeling
schemes need to relabel following-siblings and their descendants. If the maxi-
mum number of children increases, the k-ary complete-tree labeling scheme has
to relabel all nodes.

Example 3.3 (relabeling) When inserting a new resource between the exist-
ing resources in Figure 3.1, the containment and k-ary complete-tree labeling
scheme require relabeling all nodes. Regarding the prefix labeling scheme, the
new resource gets the label 1.2.2 and the last resource needs to be relabeled to
1.2.3.

3.2. RELATED WORK 35

The first approaches which support dynamic documents use floating point
numbers [13] or leave gaps when assigning node labels [135]. However, floating
point numbers and gaps only support a limited number of insertions. Some
approaches try to reduce relabeling costs by computing the necessary gap size
based on statistics [73] or by limiting relabeling to certain fragments of a docu-
ment [115, 181, 204]. The approach of Wu et al. [198] is based on prime numbers.
The label of each node is the product of the parent’s label and the own self la-
bel. They keep document order among nodes by a special value calculated by
the Chinese Remainder Theorem. However, this value grows rapidly and its
calculation is very expensive [130].

To avoid costly relabeling of nodes after updates, dynamic prefix labeling
schemes guarantee immutable node labels. Binary string prefix labeling schemes
[120, 130] avoid relabeling by assembling binary strings in document order. For
example, the approach of Li and Ling [130] uses the following algorithm to
insert a new node nm between the nodes nl and nr. If size(nl) ≥ size(nr),
then nm = nl+‘1’. Otherwise, nm = nr with last bit ‘1’ changed to ‘01’. Kit
et al. [119] present a multi-dimensional labeling scheme which adds dimensions
when an update would otherwise require relabeling. Another possibility is to
use numbers and letters in the labels to support order-sensitive updates (cf. [72,
116]). Ordpath [158] is a prefix labeling scheme which initially only assigns odd
numbers and reserves even numbers for updates. Härder et al. [97] pursue a
similar approach, but additionally use a distance parameter to leave gaps.

project

milestone

resource resource

@id

(01) (1)

(1.01) (1.1)

1

1.1 1.3

1.3.1 1.3.3

r1 r2r3

Figure 3.2: Dynamic labeling schemes.

Example 3.4 (dynamic labeling) Figure 3.2 assigns node labels according to
the approach of Li and Ling [130], shown to the left in parenthesis of each node,
and Ordpath [158], depicted to the right of each node. When inserting resources
r1, r2 and r3 (in this order), Li and Ling assign the labels 1.011, 1.0111 and
1.01101. Ordpath associates the labels 1.3.2.1, 1.3.2.3 and 1.3.2.2.1 with the new
nodes.

3.2.3 Encoding Labels

Various encodings have been proposed to compactly store labels. While static
labeling schemes can use a fixed-length encoding, dynamic labeling schemes
require a variable-length encoding [57, 110].

Li et al. [132] present an encoding based on binary strings, O’Neil et al. [158]
for integer based prefix labels. They store the size of each variable-length label
in a fixed-length field. However, the fixed-length field may become too small

36 CHAPTER 3. LABELING SCHEME

to represent labels [97, 133], entailing that this encoding may be insufficient for
dynamic documents.

Separators enable the distinction of the individual parts of a prefix label
(e.g. [57]). However, the use of separators impedes fast bit- or byte-level com-
parison between labels [97]. Li et al. [131, 133] present a more efficient solution
based on a quaternary encoding, but it may result in long labels when the size
of a document is not known in advance.

Härder et al. [97] present a Huffman encoding for prefix labels. Huffman
trees provide prefix-free codes, each of which is associated with a specific length
determining the length of a label. Huffman codes support encoding labels with-
out requiring a fixed-length field or a separator. Thus they provide both a
compact representation as well as efficient comparisons of labels.

Example 3.5 (encoding) According to the encoding of Härder et al. [97],
we can associate the Huffman code 0 with length 3 and code 100 with length
4. We then encode label 1.3.5 with 0 001 0 011 0 101 and label 1.3.11 with
0 001 0 011 100 0011. The bit sequence 0 001 encodes the first part of the label,
1, with the three bits 001, as indicated by the Huffman code 0. The lexicograph-
ical order between the encodings expresses document order.

3.2.4 Integrating Schema Information

Only few labeling schemes integrate schema information to improve query and
update processing. Bremer and Gertz [39, 40] construct a DataGuide [85] from
XML documents, which is a summarization of path information. Each path of
the DataGuide is assigned a number that identifies the corresponding labelpath.
The label of each node consists of the number of its labelpath and a prefix label.
The authors also propose how to improve query processing with the additional
schema information encoded into labels. This approach has later been applied
to processing the nodes returned by indices [96, 174].

Example 3.6 (schema integration) Looking at Figure 3.2, assume that
we associate labelpath /project/ milestone with number 3 and labelpath
/project/ milestone/ resource with number 4. By enhancing prefix labels
with these numbers, we get label 3–1.3 for the milestone node and label 4–1.3.1
for the first resource. With the help of the node label and the schema, it is
possible to determine the node name and its labelpath, which facilitates query
processing.

Instead of simply assigning ascending numbers to labelpaths, Li et al. [134]
encode structural relationships into the numbers assigned to labelpaths. The
BUS indexing scheme [180] assigns numbers to the document structure in the
same way as the k-ary complete-tree labeling scheme. Spider [81, 114] uses a
similar approach, which does not only support evaluating structural relation-
ships between labelpaths, but also calculating ancestor labelpaths to further
improve query processing.

3.3. BASIC APPROACH 37

3.2.5 Comparison

Containment labeling schemes cannot calculate ancestor labels and require rela-
beling after updates. Prefix labeling schemes support the required path opera-
tions, dynamic documents and efficient encoding. While existing schema-aware
labeling schemes integrate labelpaths, they do not take into account types and
type hierarchies and only consider static documents.

None of the existing labeling schemes fully matches the requirements pre-
sented in Subsection 3.1. By combining several approaches, we can construct a
dynamic labeling scheme that supports representing and comparing paths and
labelpaths. We further need to extend this labeling scheme to also include types
and type hierarchies.

3.3 Basic Approach

This section looks at how to extend existing labeling schemes with labelpaths.
A schema defines all labelpaths that exist in a document via path schemas. By
labeling these path schemas, each labelpath gets a unique label as well. Subsec-
tion 3.3.1 describes labeling the schema graph, while Subsection 3.3.2 addresses
integrating schema labels into node labels. Neither labeling the schema nor la-
beling the document depends on a specific labeling scheme, as several labeling
approaches support the identified requirements (cf. Section 3.2). When describ-
ing the labeling algorithms, we therefore first abstract from specific labeling
schemes and subsequently depict a sample labeling approach. We basically con-
struct labels that directly support all required operations. Additionally, we
discuss some space improvements assuming that the schema resides in main
memory and can be accessed efficiently to compare labels.

3.3.1 Schema Labeling

This subsection describes an algorithm to label the schema graph defined in Sec-
tion 2.1.2 in order to support representing and comparing labelpaths. Required
operations on labelpaths include evaluating document order and structural re-
lationships and calculating ancestor labelpaths. The schema is usually very
small compared to the documents and fits into main memory. Nevertheless per-
forming operations directly on labels is preferable to accessing the schema to
compare labelpaths. In case that the schema is not static, the labeling scheme
must further support updates without relabeling.

Labelpaths form a tree. To support the required operations on labelpaths,
we convert the schema graph into a tree of path schemas. Each path schema
represents a labelpath and is assigned a unique label. Algorithm 3.1 describes
how to recursively extract and label the path schemas of a schema graph. The
algorithm is first called with the root node schema as current node schema and
with the parent and previous-sibling path schema set to null. Each recursion
visits a node schema n and creates a new path schema p = 〈n1/ . . . /nk〉, where
〈n1/ . . . /nk−1〉 equals the parent path schema and nk = n. After assigning
a label to this path schema, the algorithm determines all children of the node

38 CHAPTER 3. LABELING SCHEME

schema. The algorithm then recursively creates a path schema for each child
node schema.

Algorithm 3.1 Extract and label the path schemas of a schema graph.
Input: Node schema n of the schema graph; Parent path schema ppar, which
is the path schema of one of the node schema’s parents or null if the node
schema does not have a parent; Previous-sibling path schema psib, which is the
path schema of the node schema’s previous sibling or null if the node schema
does not have a previous sibling.
Output: Labeled path schema p, which has the parent path schema ppar

and the last node schema n.
Description: Generate path schema p for node schema n with parent path
schema ppar and assign a label to this path schema based on its parent and
its sibling path schema psib. Then recursively generate path schemas for
descendant node schemas.
Result: Path schema for node schema n with a unique label.

1: procedure labelSchema(n, ppar, psib)
2: p = createPathschema(n, ppar)
3: label(p) = createLabel(label(ppar), label(psib))
4: Nchild = {nc ∈ N | n ∈ parent(nc)}
5: psib =⊥ . set to null
6: for all nchild ∈ Nchild do . in document order
7: psib = labelSchema(nchild,p,psib)
8: end for
9: return p

10: end procedure

To assign labels to path schemas, procedure createLabel requires (i) the
label of the parent path schema to encode structural relationships and (ii) the
label of the previous-sibling to keep order among labels. In case that the parent
label is null, it assigns a new root label. A sibling label set to null indicates
that the label to be assigned represents the first child of the parent. Various
labeling schemes and encoding approaches presented in Section 3.2 support these
requirements. For example, prefix labeling schemes can label dynamic schemas,
whereas the k-ary complete-tree labeling scheme is sufficient for static schemas.
Example 3.7 shows a sample labeling, which we will use in this thesis. As we
assume the schema to be static, we use the k-ary complete-tree labeling scheme
[127] to assign labels. This labeling scheme generates smaller labels than prefix
labeling schemes. It requires to traverse the schema once before assigning labels
to determine the value of k, which equals the maximum number of child node
schemas. Labels can then be calculated with the parent and sibling label and
with the static value k.

We define function label : P → Z to return the label of a path schema,
where Z is the set of path schema labels. As path schemas form a tree, we
define functions children, descendant, parent and ancestor analogous to the
corresponding functions on nodes in a document tree (cf. Subsection 2.1.1).

Example 3.7 (schema labeling) Figure 3.3 depicts the tree of path schemas
generated by Algorithm 3.1 for the schema graph of Figure 2.3. Each path

3.3. BASIC APPROACH 39

project

title resource

@date title

@id milestone

description

text()

projects

title

text()

text()

text()

1

2

6

17

5 7

20

59

21

62 63

188

64

191

Figure 3.3: Labeling the path schemas of the schema in Figure 2.3.

schema represents a labelpath. As each path schema has at most three chil-
dren, we use k = 3. For example, to assign a label to the path schema
/projects/ project/ milestone, the algorithm receives as input the node
schema milestone, the parent path schema ppar = 2 and the sibling path schema
psib = 6. To calculate the new label, procedure createLabel increments the
sibling label by 1. The newly created path schema has two children with node
schemas title and resource, for which the algorithm generates labels in the
next steps.

In Section 2.1.2, we defined a schema graph to be acyclic, which impedes
recursion. In case of a recursive schema graph, we propose to keep track of
the maximum recursion depth in instance documents and extract as many path
schemas as there currently exist in the documents.

3.3.2 Document Labeling

When labeling the document tree defined in Section 2.1.1, each node is assigned
a unique label, consisting of a schema label and an instance label. The schema
label corresponds to the label of the node’s path schema (cf. Subsection 3.3.1),
whereas the instance label identifies the position of the node in the specific
document. The schema and instance label need to support the path operations
identified in Subsection 3.1.

Algorithm 3.2 describes how to recursively assign labels to the nodes of a
document. To assign a label to a node, procedure createLabel requires the
label of (i) the node’s path schema to encode its labelpath, (ii) the parent node
to encode structural relationships and (iii) the node’s previous-sibling to keep
document order between labels. In case that the parent label is null, the labeling
scheme assigns a new root label. An unknown sibling label indicates that the
current node is the first child of the parent.

In Subsection 2.1.1, we have introduced function pathschema, which returns
the path schema of a node and thus connects a document with its schema.
Programmatically, the algorithm can determine the path schema of a node as
follows. The node schema of the node must be defined by the type or any
supertype of the node’s parent. Functions defines and inherits return these
node schema candidates. Among these node schema candidates, there is one

40 CHAPTER 3. LABELING SCHEME

Algorithm 3.2 Label the nodes of a document.
Input: Node n of the document; Parent node npar, which is the node’s
parent or null if the node does not have a parent; Previous-sibling node nsib,
which is the previous sibling of the node or null if the node does not have a
previous-sibling.
Description: Determine the path schema of node n and generate a label for
the node with the help of its path schema, its parent npar and its previous-
sibling node nsib. Then recursively generate labels for its descendants.
Result: Node n and all its descendants have assigned a unique label.

1: procedure labelDocument(n, npar, nsib)
2: label(n) = createLabel(label(pathschema(n)), label(npar), label(nsib))
3: nsib =⊥ . set to null
4: for all nchild ∈ children(n) do . in document order
5: labelDocument(nchild, n, nsib)
6: nsib = nchild

7: end for
8: end procedure

node schema which has the same name as the node. The requested path schema
is the child of the parent path schema that ends with that node schema. When
calling the algorithm with the root node, the parent and the sibling node are
still set to null. In this case, the path schema of the processed node has to equal
the root path schema.

The label of each node consists of a schema label, which corresponds to the
label of the node’s path schema, and an instance label. We define function
ilabel : N → Z to return the instance label of a node, where Z is a set of
instance labels. Function slabel : N → Z returns the schema label of a node.
Function label : N → (Z × Z) returns the entire label of a node, consisting of
its schema and instance label.

The labels must support the required path operations, efficient encoding and
updates without relabeling as documents are usually not static. Various labeling
schemes presented in Section 3.2 fulfill these requirements. In this thesis, we
use a dynamic prefix labeling scheme to assign instance labels, which is similar
to Ordpath [158]. However, we enhance labels with schema labels, which also
influences the assignment of instance labels (cf. [39]).

To reduce label size, we propose two properties. Property (i) is based on the
fact that sibling nodes respect the order defined between sibling node schemas
(cf. Definition 2.8). This allows for assigning self labels in ascending order within
nodes with the same parent and with the same node schema. We refer to this
property as node schema property. Property (ii) further reduces the label size
by only adding a self label to a node’s label if the node’s node schema is multi-
valued (cardinality property). When using this property, certain path operations
require access to the schema (cf. Subsection 3.5).

Example 3.8 describes the sample labeling considering properties (i) and
(ii). In subsequent chapters, we use both properties to assign instance labels
as we believe that the smaller label size improves readability. Note that these

3.4. INCLUDING TYPE HIERARCHIES 41

properties cannot be used if the assumption that nodes follow the order defined
in the schema does not hold, e.g. in case that mixed content occurs. In this
case, it is necessary to assign instance labels in ascending order within nodes
with the same parent independent of their node schema.

@id

project

milestone

title resource

milestone

'design'

title resource

projects

title

'semcrypt'

1

2-1

5-1.1

6-1.1

17-1.1.1

7-1.1 7-1.3

20-1.1.1

59-1.1.1.1

resource

21-1.1.1 21-1.1.3 20-1.3.1

21-1.3.1

@date title

'system'

62-1.3.1.1

63-1.3.1.1

188-1.3.1.1.1

Figure 3.4: Labeling the document of Figure 2.2 with schema labels from Fig-
ure 3.3.

Example 3.8 (document labeling) Figure 3.4 depicts a labeled document
tree whose schema labels correspond to the labels of the schema in Figure 3.3.
Each label consists of a schema label and an instance label, separated by a hy-
phen. Instance labels are generated by property (i), whereby the part written in
grey can be omitted if additionally using property (ii). Assume that we want to
assign a label to the first milestone node. The algorithm takes as input the node,
its parent node project and its previous sibling title. The path schema of the
node has label 7. The schema label of the node equals the label of its path schema
7. As node schema milestone is multi-valued, we add a new self label. We take
1 as self label because the previous sibling belongs to a different node schema
(node schema property). Adding this self label to the parent instance label 1
yields instance label 1.1. The first milestone node thus receives label 7–1.1. We
use hyphens to separate the schema label and the instance label, i.e. slabel = 7
and ilabel = 1.1. The title of this milestone receives label 20–1.1.1. When using
the cardinality property, the final self label can be omitted as each milestone can
only have one title, yielding label 20–1.1.

3.4 Including Type Hierarchies

Existing labeling schemes neglect type hierarchies. In our data model, either
each node has explicitly associated a type or it implicitly adopts the type of
its node schema, which may be part of a type hierarchy defined in the schema
model. The query language used in this thesis supports applying queries to
single types as well as to full or partial type hierarchies. To support these
queries, we identified the need for indices on type hierarchies (cf. Chapter 2).

The concepts of types, type hierarchies and node schemas can be compared to
the concepts of classes, inheritance and attributes in object-oriented databases
(OODBs). To support queries on class hierarchies, OODBs distinguish between

42 CHAPTER 3. LABELING SCHEME

single-class and class-hierarchy indices [30]. Single-class indices build a separate
index for each class. When the query scope refers to a class hierarchy, resolving
the query by single-class indices would require to access the index for each class
individually. In this case, it is more efficient to build one index for all classes of
an inheritance hierarchy. Analogous to single-class and class-hierarchy indices,
we can distinguish two labeling approaches:

• Encoding the type directly into the schema label allows for filtering nodes
with a specific type and labelpath. However, if type labels depend on
labelpaths, types occurring in multiple path schemas will have different
labels, which complicates operations on types as well as on labelpaths.

• If labels refer to type hierarchies instead of to single types, the labels only
support queries on the type hierarchy, whereas queries on single types
depend on additional information, e.g. special index structures.

To support both approaches, we propose to extend the label of a node with
an additional type label. This enables the labeling scheme to encode specific
types without modifying schema labels. In the following subsections, we extend
the labeling approach of Section 3.3 by type hierarchies. Note that in [88], we
used a different approach to label types, which makes the type label dependent
on the schema label. If a type occurs in various path schemas, the same type
has different labels, which complicates handling queries and indices on types.
We therefore propose to label types independently in this thesis.

3.4.1 Schema Labeling

Type hierarchy indices need to compare types for index construction and traver-
sal. For this purpose, we assign a unique label to each type defined in the schema
model. To support the required operations on types, the labels must allow for
(i) evaluating super/subtype relationships between the types of a type hierarchy
and (ii) calculating the labels of the supertypes of a type.

Each type hierarchy defined in the schema model forms a tree. If we simply
assign a label to each type, the label of a supertype represents both the specific
type as well as the partial type hierarchy of which it is the root. For example,
when using the label as search key in an index, the label cannot express whether
to retrieve the single type or all types of the partial type hierarchy. To solve
this problem, we generate a tree of types such that each supertype is abstract
(cf. abstract superclass rule [105]). More precisely, we create an additional
subtype for each non-abstract type which has subtypes to represent the specific
type. When labeling the tree, each leaf label identifies a single type, whereas
each inner label refers to a partial hierarchy.

To assign labels, we can use any labeling scheme of Section 3.2 that supports
evaluating structural relationships and navigation. Example 3.9 shows a sample
labeling, which we use in this thesis. As we assume type hierarchies to be static,
we use the k-ary complete-tree labeling scheme [127] to assign labels.

We define function label : T → Z, which returns the label of a type, where Z
is a set of type labels. We further define functions parent, ancestor, descendant
and children on each type of a type hierarchy, which are analogous to the
corresponding functions in the document tree (cf. Subsection 2.1.1).

3.4. INCLUDING TYPE HIERARCHIES 43

Project

Industrial

Project

Research

Project

Resource

Documen

tation
Report

Technical

Report

Financial

Report
Report

Resource

2 3

5 6 8 9 10

29 30 31

Figure 3.5: Labeling the type hierarchies of the schema in Figure 2.3.

Example 3.9 (labeling type hierarchies) Figure 3.5 depicts two labeled
type hierarchies. As there are two type hierarchies with at most three subtypes
per type, we chose k = 3. Projects are abstract and are classified into industrial
and research projects. Additionally, there are different types of resources and
reports. Assume that these supertypes are originally not abstract. We added
a subtype to each of these abstract supertypes that represents the specific type.
Type label 10 thus refers to the partial hierarchy of reports, whereas type label
29 refers to all reports, which are neither technical nor financial reports.

3.4.2 Document Labeling

To encode type hierarchies into labels, we extend each label with a type label.
The type label identifies the specific type of the node and therefore must be a leaf
of the labeled type hierarchy. The type label does not affect the remaining parts
of the label, i.e. the schema and instance label still uniquely identify each node.
Further, only nodes whose node schema references a type hierarchy require a
type label.

We define partial function tlabel : N → Z to return the type label of a node.
Further, we extend function label to also incorporate the type label. Function
label : N → (Z×Z×Z) returns the schema label, instance label and - if existent
- type label of a node.

Example 3.10 In Figure 3.4, assume that the resources of the first milestone
have the types <Report> and <Documentation>, respectively. The first resource
has label 21–1.1.1–29, where 29 identifies the specific type <Report>. Note that
we use hyphens to separate the individual parts of a label, i.e. the schema, in-
stance and type label. The second resource receives label 21–1.1.3–9.

The type label enables the comparison of nodes by their type as well as
navigation to the supertypes of a type. When navigating to ancestor nodes,
the label of a node allows for calculating the schema and instance labels of its
ancestor nodes. However, the type labels of ancestors are not encoded into the
label. To determine their type labels, access to the document is necessary.

If labels shall also support calculating the types of ancestor nodes, the type
label of a node needs to include the type label of all nodes on the node’s path. As
the schema is defined to be acyclic, it basically allows for determining which type
label belongs to which ancestor. To determine the types of ancestors without

44 CHAPTER 3. LABELING SCHEME

access to the schema, each type label needs to be associated with its level or
schema label. Including type labels of ancestor nodes facilitates navigation, but
at the same time increases the label size. Calculating types of ancestors mainly
influences query processing. For indexing, it is sufficient to calculate supertypes
as well as ancestor labelpaths and paths. In this thesis, we therefore only include
the individual type of a node into its label.

Example 3.11 (type labeling) In Figure 3.4, label 21–1.1.1–29 identifies the
first resource. When including type labels of ancestor nodes, we require the
schema to determine whether the type label 29 belongs to the resource or any
of its ancestors. If we associate each type label with its level, we get label
21–1.1.1–4.29 for this resource. In this case, access to the schema is not required
to determine to which node the type belongs. Assume that there are different
types of projects and that the sample project is of type <ResearchProject>.
Then the first resource gets the label 21–1.1.1–2.6, 4.29. This label allows for
determining the labels of all ancestors including their type label without access
to the schema or the document.

3.5 Processing Labels

This section looks at how labels support the required operations on paths, la-
belpaths and types. After labeling the schema, type-hierarchy and document
trees, the vertices of each tree have a unique label. There are different kinds
of labels, i.e. schema, type and instance labels. The labeling schemes used to
assign the labels directly support the following comparisons and operations on
two labels l1 and l2 of the same kind (cf. Subsection 3.2.1).

• Document order:

– l1 ≺ l2 if l1 precedes l2 in document order;

• Structural relationships:

– l1 = l2 if l1 and l2 are equal and reference the same vertex;

– l1 ` l2 if l1 is the parent of l2;

– l1 ° l2 if l1 is an ancestor of l2;

– l1 a l2 if l1 is a child of l2;

– l1

°

l2 if l1 is a descendant of l2;

The child and descendant relationships are the inverse of the parent and
ancestor relationships, respectively. If l1 and l2 are type labels, the struc-
tural relationships denote whether a type is a supertype or a subtype of
another type. For example, if l1 ` l2, l1 is the direct supertype of l2.

• Navigation:

– Function parent(l) returns the parent label of label l, which enables
the recursive calculation of all ancestors of a label;

3.5. PROCESSING LABELS 45

The labels can also calculate the level of a vertex in the tree. In a prefix
label, the level corresponds to the number of individual self labels. While some
approaches using the k-ary complete-tree labeling scheme include the level of a
vertex into its label (e.g. [180]), it is possible to calculate the level of a k-ary
label. Equation 3.1 determines the maximum label n at a certain level. Based
on this equation, Equation 3.2 calculates the level of a k-ary label n.

n =
i=level∑

i=0

ki =
klevel − 1

k − 1
(3.1)

level(n) = dlogk(n(k − 1) + 1)e (3.2)

Schema and type labels directly support the required operations on label-
paths and types, respectively. In contrast, operations on paths need to consider
both schema and instance labels due to the node schema property (cf. Subsec-
tion 3.3.2), When additionally using the cardinality property, some operations
may require access to the schema. In the following, we look at each operation
in more detail. Thereby, we describe operations on paths by referring to their
last nodes as each node label also uniquely identifies the corresponding path.

3.5.1 Document Order

Determining document order between vertices of the schema or the type tree is
directly supported by the labeling scheme. This is illustrated by Equation 3.3,
where v1 and v2 are vertices of a schema or type tree.

v1 ≺ v2 ⇔ label(v1) ≺ label(v2) (3.3)

Evaluating document order between nodes or paths requires comparing both
the schema and instance label of node labels. When assigning instance labels
dependent on node schemas (node schema property), the instance labels do
not reflect document order between nodes that have a common ancestor at the
intersection path schema of their path schemas. To compare document order,
we require functions ilevel and ilabel.

The intersection path schema between two path schemas p′ = 〈n′1 . . .n′j〉
and p′′ = 〈n′′1 . . .n′′m〉 is the maximum path schema p = 〈n1 . . .nk〉, where
name(ni) = name(n′i) = name(n′′i) for i = 1 . . . k. The label of the intersection
path schema can be calculated by operations on the labels of the two path
schemas (cf. Subsection 3.5.3). Function ilevel(label(p′), label(p′′)) returns the
level at which the path schemas intersect.

To compare nodes at their intersection path schema, function
ilabel(label(n), ilevel) returns the instance label of a node label at a cer-
tain level. The returned instance label either equals the instance label of the
node or is a prefix of its instance label. When labeling documents based on the
node schema property, the function simply needs to return the instance label
at the specified level. If additionally using the cardinality property, the level of
the instance label need not express the level of its node in the document tree.
In this case, access to the schema is required to determine the levels that miss
their self labels due to single-valued node schemas.

46 CHAPTER 3. LABELING SCHEME

Determining document order between two nodes n1 and n2 works as follows.
If both nodes are situated in the same subtree with respect to their intersection
path schema, their schema labels express document order, otherwise it is neces-
sary to compare their instance labels. This is shown by Equation 3.4, assuming
that ilevel = ilevel(slabel(n1), slabel(n2)).

n1 ≺ n2 ⇔ (ilabel(label(n1), ilevel) = ilabel(label(n2), ilevel)∧
slabel(n1) ≺ slabel(n2))

∨(ilabel(label(n1), ilevel) 6= ilabel(label(n2), ilevel)∧
ilabel(n1) ≺ ilabel(n2))

(3.4)

Example 3.12 (document order) Looking at Figure 3.4, assume that we
want to compare the document order between nodes n1 = 59–1.1.1.1 and n2 =
21–1.1.1. At their intersection path schema with schema label 7, the nodes have
the same instance label 1.1. We therefore compare the document order of their
schema labels. Schema label 59 is situated at level 5, whereas schema label 21
is situated at level 4. The parent of schema label 59 has schema label 20. As it
is also situated at level 4, we can compare it with schema label 21. As 20 < 21,
node n1 precedes node n2 in document order. When comparing document or-
der between nodes n1 = 20–1.1.1 and n2 = 21–1.3.1, we get the intersection
path schema 7. The nodes have different instance labels at this intersection path
schema (1.1 6= 1.3). Thus, their instance labels express document order, and
1.1.1 ≺ 1.3.1.

3.5.2 Structural Relationships

Schema and type labels allow for directly evaluating structural relationships be-
tween labelpaths (or path schemas) and types, respectively. Comparing nodes or
paths depends on the schema and instance labels of the node labels. Equations
3.5-3.7 evaluate structural relationships between nodes n1 and n2.

n1 = n2 ⇔ slabel(n1) = slabel(n2) ∧ ilabel(n1) = ilabel(n2) (3.5)

n1 ` n2 ⇔ slabel(n1) ` slabel(n2) ∧ ilabel(n1) ` ilabel(n2) (3.6)

n1 ° n2 ⇔ slabel(n1) ° slabel(n2) ∧ ilabel(n1) ° ilabel(n2) (3.7)

Child and descendant relationships correspond to the inverse of the parent
and ancestor relationships, respectively. Note that in case of using the cardinal-
ity property to label documents, a child or descendant need not add a new self
label. The last part of Equations 3.6 and 3.7 then needs to be adapted to also
compare instance labels by equality.

3.6. SUMMARY 47

3.5.3 Navigation

Schema and type labels directly support calculating parent labels. Navigating
to the parent of a node n or its path requires calculating the parent of both the
schema and instance label. Thereby, the following conditions need to be consid-
ered. (i) In case of the cardinality property, the instance label only changes if
the node schema of n is multi-valued. To determine the cardinality of the node
schema, access to the schema is necessary. (ii) If the type label consists of all
types of a node’s path, calculating the parent of n requires removing the last
type label if this type label is situated at the same level as n.

The labels also allow for calculating labels of children in certain cases. Re-
garding schema and type labels, access to the schema is required to determine
whether the calculated labels of children exist. Calculating the child label of a
node in the document tree requires the following steps. (i) Access the schema to
determine its schema label. (ii) In case that the child node schema is required
and single-valued, the child instance label must either add the self label 1 to its
parent instance label or remains unchanged when using the cardinality property.
Otherwise, access to the document is necessary to determine the instance label.
(iii) If the type of the child node schema has subtypes, look up its type in the
document.

Example 3.13 (navigation) The parent of node 7–1.1 in Figure 3.4 has
schema label (7− 2)/3 + 1 = 2 and instance label prefix(1.1) = 1. To calculate
the child of node 2–1 with node name title, we first look up the corresponding
path schema in the schema, which has label 6. The corresponding node schema
is single-valued and required. We therefore know that the child instance label is
1.1 or - in case of using the cardinality property - it is 1.

3.6 Summary

Labels facilitate processing queries and updates as well as representing and
comparing structural properties in indices. The labeling scheme should assign
labels to paths, labelpaths and types and support determining document order,
evaluating structural relationships and navigating to ancestors via labels. Labels
should not change when updating documents. Efficiently encoding labels helps
reducing the storage space required for indices.

Existing labeling schemes support path operations, dynamic documents and
efficient encoding (e.g. [97, 132]). Schema-aware approaches consider labelpaths
[40, 81], but none of them labels type hierarchies to support operations on types.

The labeling scheme presented in this thesis extends existing approaches
with schema information. To support the required operations on labelpaths, it
constructs a tree of path schemas and labels both the path schemas as well as the
type hierarchy trees. To improve query processing, labels assigned to nodes of a
document incorporate these schema and type labels. We also discussed reducing
the label size, assuming that the schema is small and can be accessed efficiently.
The labeling scheme is based on the schema and document model used in this
thesis. When assigning labels, it basically abstracts from how to generate the
labels as several existing approaches support the identified requirements. As
such, the labeling approach used in the examples can easily be replaced.

48 CHAPTER 3. LABELING SCHEME

While the main purpose of the proposed labeling scheme is to support in-
dexing, it also facilitates query processing. Integrating schema information im-
proves query optimization and index selection. The labels enable structural joins
and certain navigation without accessing the document when evaluating queries.
With regard to indexing, indices can use labels as index keys. To construct and
traverse the index structure, they evaluate structural relationships between in-
dex keys. Schema information improves determining which updates affect which
indices. Labels also accelerate index maintenance by offering support for query
processing.

Chapter 4

Index Structures

Contents
4.1 Introduction . 50

4.2 Related Work . 50

4.2.1 Index Structures in Non-XML Databases 50

4.2.2 XML Index Structures 55

4.2.3 Comparison . 59

4.3 Concepts . 61

4.4 Extending Index Structures 63

4.4.1 Content Indexing . 64

4.4.2 Structure Indexing 66

4.4.3 Content and Structure Indexing 69

4.5 Nesting Index Structures 70

4.6 Summary . 73

This chapter describes the indexing approach sciens (Structure and Content
Indexing with Extensible, Nestable Structures), which this thesis proposes to
provide flexible and selective secondary indices for XML databases. After giving
a general introduction to indexing in Section 4.1, Section 4.2 reviews existing
index structures for non-XML and XML databases. The main concepts of sci-
ens are presented in Section 4.3 and are detailed in the subsequent sections.
Section 4.4 addresses extending index structures, whereas Section 4.5 describes
the concept of index nesting. Finally, Section 4.6 summarizes the main ideas of
sciens and contrasts various indexing alternatives. All examples used in this
chapter refer to the running example (cf. Figures 2.2 and 2.3 for the document
and schema, and Figures 3.3, 3.4 and 3.5 for the corresponding labels). The
sample queries are taken from Table 2.2.

49

50 CHAPTER 4. INDEX STRUCTURES

4.1 Introduction

XML databases require indices to efficiently evaluate queries on the document
content and the document structure. In addition to the primary index struc-
ture, which represents entire documents, they need to provide secondary indices
adapted to the query workload. These indices must fulfill the requirements
presented in Subsection 2.3.

Each index maps index keys to the records (nodes) that are associated with
the index keys in the document. For this purpose, the index organizes index
keys and records into a file, consisting of a boundary and a data structure. The
boundary structure organizes the index keys into pages for efficient retrieval,
whereas the data structure contains the records that match the index keys.
While traditional secondary indices represent records by pointers to the address
of the actual records in the data file, we use node labels instead of physical
address pointers. These node labels do not only uniquely identify each node,
but also encode structural properties of nodes (cf. Chapter 3). We refer to pages
of the boundary structure as index pages and to pages of the data structure as
data pages. If a page exceeds a certain size, it needs to be split.

An index can be defined on one or more properties. The number of prop-
erties determines the number of index dimensions. When accessing the index,
it is possible to specify a search condition for all or partial dimensions. The
index then looks for all index keys that match the search conditions and returns
associated node labels.

4.2 Related Work

Indices play an essential role in databases. After reviewing index structures
in non-XML databases in Subsection 4.2.1, we look at index structures that
have been specifically developed for XML in Subsection 4.2.2. Subsection 4.2.3
compares existing indexing approaches with regard to the sample queries of
Table 2.2.

4.2.1 Index Structures in Non-XML Databases

This subsection reviews index structures in non-XML databases and looks at
which XML indexing requirements they can fulfill. Relational databases use
hash tables, B-trees and multidimensional index structures to index values.
Object-oriented index structures extend these index structures for represent-
ing structural properties, such as aggregation graphs and inheritance hierar-
chies. Information retrieval techniques use index structures for full-text queries.
Object-relational databases propose the concept of extensible indexing to adapt
indices to new data types.

One-dimensional Index Structures

The most well-known index structures are hash tables and B-trees, which orga-
nize index entries with one index key [83, 164]. Relational databases use hash

4.2. RELATED WORK 51

tables and B-trees to index attribute values. Similarly, XML databases can
use hash tables and B-trees to index the document content for exact and range
comparisons, respectively.

Hash tables apply a hash function to each index key, which maps the index
key to a bucket. The bucket consists of pages holding the index entries. Ex-
tendible hashing [75] and linear hashing [139] are dynamic hashing techniques.
Hash tables do not support range searches, but only equality comparisons.

B-trees [24] are tree-structured dynamic indices to support range searches. In
contrast to hash tables, they sort index keys and organize them into a balanced
boundary structure. There exist several variants of the B-tree, such as the B+-
tree and the B*-tree [58]. The prefix B-tree [25] is a special kind of B-tree,
which uses minimal prefixes as keys to handle characters as index keys more
space-efficiently.

Multidimensional Index Structures

Searches often do not only involve one search key. To support queries with
several search keys, i.e. queries on multiple dimensions, various approaches exist.
They have in common that they index values in each dimension and can therefore
be used for indexing node values in XML documents. Multidimensional index
structures can be classified according to whether they reuse one-dimensional
index structures or develop specific data structures.

When using one index structure for each dimension, a search on multiple
dimensions requires to traverse each index structure and to join the results.
Multiple-key indexes [83] build an index for one dimension, which recursively
points to an index on another dimension, such that there is one (nested) index
for each dimension. If the search does not specify a key for the first index,
every nested index needs to be visited, which is very time-consuming. Sim-
ilarly, by simply concatenating keys, only exact match queries are supported
efficiently. The UB-tree [23] maps multidimensional points to one dimensional
points according to z-order and then stores these points in a B+-tree.

To support exact and range queries on all or partial dimensions more effi-
ciently, several multidimensional index structures have been developed. Gaede
and Günther provide an extensive overview of multidimensional index structures
in [82].

Tree-based indices. The kd-tree [26] is an unbalanced main-memory data
structure generalizing the binary search tree to multidimensional data. Each
internal node of the tree splits one dimension into two parts, which are smaller
and greater than a certain value, respectively. Several approaches adapt the
kd-tree to secondary storage by grouping nodes of the kd-tree into pages.

The KDB-tree [169] is a balanced tree combining ideas from the kd-tree
and the B-tree. Each page of the boundary structure consists of regions, which
specify ranges for each dimension. For each region, there is a pointer to a page
in the next lower lever of the KDB-tree, which further subdivides the region.
In the KDB-tree, page splits may result in cascading splits of pages of the data
structure, which may result in low storage utilization. Variants of the KDB-tree
propose different splitting strategies by representing regions in a kd-tree [203] or

52 CHAPTER 4. INDEX STRUCTURES

by shifting splitting lines [137]. Other examples for tree-based multidimensional
index structures are the hB-tree [141] and the Buddy-tree [178].

2-e

1-

2006

2-s

2005-04-04

concept

1-

2007

2006-09-10

concept

2007-07-01

btree

2005-04-04

index

2005-04-04

evaluation

2006-09-10

evaluation

2006-09-10

system

2007-10-31

xml

Figure 4.1: KDB-tree on the values of resource dates and titles.

Example 4.1 (KDB-tree) Figure 4.1 depicts a small KDB-tree on the date
and title of resources, which uses a kd-tree to organize regions. Each node in the
kd-tree expresses a splitting line, indicating the splitting dimension and the value
at which the split occurs. In case of characters, minimal prefixes are used for
splitting values. The figure depicts index keys in data pages, but for simplicity
it omits data records.

Hash-based indices. Instead of organizing the boundary structure into
a tree, hash-based multidimensional index structures partition dimensions by
applying a function on index keys. The grid file [155] partitions each dimension
into ranges and maintains a grid directory that provides a mapping between
ranges and data pages. The ranges are kept in main memory and enable the
index to identify the relevant grids, which in turn point to the relevant data
pages. Several variants of the grid file try to reduce the growth of the grid
directory and increase its space utilization. Instead of partitioning dimensions,
other approaches apply hash functions on dimensions (e.g. [83]). While these
hashing techniques are efficient for exact match queries, they are not adequate
for range queries.

Bitmap indices. A different multidimensional index structure is the
bitmap index [83, 157]. It uses one bit vector for each index key, represent-
ing the position of records with that index key. To combine index results, it
can take the bitwise AND and OR of bit-vectors without having to access the
records themselves.

Object-oriented Index Structures

In the object-oriented data model, objects are instances of classes, which define
instance attributes. The value of an attribute can be an object or a set of
objects belonging to the same class. Class definitions form a directed graph,
which is referred to as aggregation graph. A path is a branch in the aggregation
graph, whereas a path instantiation is a sequence of nested objects on a path. A
class can be a specialization of one or more classes, resulting in an inheritance
hierarchy. In contrast to relational databases, object-oriented databases require

4.2. RELATED WORK 53

special index structures to support queries on the aggregation and/or inheritance
dimension (cf. [30]).

The concepts of classes, class hierarchies and attributes are comparable to
types, type hierarchies and node schemas in XML. Objects, paths and path
instantiations resemble nodes, labelpaths and paths, respectively. To index
these structural properties, we will look at how XML databases can reuse ideas
from object-oriented indexing in the following.

Indices on aggregation graphs basically index objects on values of nested
objects to find all path instantiations for a given path. They either build one
index for each class on a path (multi-index [144], join index [191]) or collect all
path instantiations in one index to reduce the number of index accesses (path
index and nested index [29]). The path index returns all path instantiations,
whereas the nested index provides a direct association between objects at the
end and at the beginning of a path. While most indices can evaluate a path in
reverse order, some indices also support forward traversal (e.g. join index).

With regard to XML, indices on aggregation graphs can support navigation
in XML documents. While forward traversal corresponds to navigation to de-
scendants, evaluating a path in reverse order is comparable to navigating to
ancestor nodes. The tree-structure of XML documents allows for navigating
to ancestors by operations on labels instead of by accessing index structures
(cf. Chapter 3). While it is therefore not necessary to support reverse traversal
by returning all nodes on a path, indices on aggregation graphs can be used to
index nodes on values and labelpaths and to support navigation to descendants.

index 7-1.1, 7-2.3,...

XML 7-1.3, 7-2.3, 7-5.7,...

... ...

Figure 4.2: Nested index mapping title values to milestone nodes.

Example 4.2 (nested index) Figure 4.2 depicts a nested index on the partial
labelpath milestone/ resource/ title/ text(), mapping each distinct resource
title to the corresponding milestone nodes.

Indexing inheritance hierarchies. In object-oriented databases, queries
either refer to a single class or to a (partial) class hierarchy. Similarly, queries on
the tree-structure of XML documents can be expressed as hierarchical queries.
To support such queries, object-oriented indices either reuse one- or multidi-
mensional index structures or develop proprietary index structures.

The first proposals for indexing both attribute values and inheritance hier-
archies are based on B+-trees. The CH-index (class-hierarchy index) maintains
a unique B+-tree on the attribute value of all classes of the indexed hierarchy,
while the SC-index (single-class index) creates a separate B+-tree for each class
in the indexed hierarchy [118]. The main difference between these indices is
the kind of grouping, which influences their query performance. Key-grouping
indices, such as the CH-index, first divide index entries by their attribute value,
whereas type-grouping indices first group objects according to their type. For
exact match queries, key-grouping is the better choice, while for range queries

54 CHAPTER 4. INDEX STRUCTURES

type-grouping structures have better performance [117]. Several approaches aim
at combining the advantages of key and type-grouping by building specialized
tree-structured indices (H-tree [160], CG-tree [117], hcC-tree [183]). Instead of
building complex tree structures, the CD-Index [166] and the Index Set [11] try
to find the optimal sets of classes which to index.

Indexing inheritance hierarchies can also be reduced to a two-dimensional
range search problem, whereby one dimension is the class and the other is the
value. Instead of maintaining complex tree structures, it is therefore possible to
use multidimensional index structures. One difficulty in this approach is that the
class domain is small and unordered, while multidimensional index structures
have been designed for large, ordered key domains. To address this problem, the
MT-Index [153] maps the class hierarchy to a linear order of classes. As the class
domain is small in comparison to the attribute domain, the x-tree [46] and the
2D-CHI index [126] propose splitting strategies based on the query workload.

Documentation

TechnicalReport

FinancialReport

Report

Resource

20
07

-0
3-

12

20
07

-0
4-

12

20
07

-0
4-

30

20
07

-0
5-

20

20
08

-0
1-

30

x

x

x

x

x

Figure 4.3: Type and value dimension of an index on resource types and date
values.

Example 4.3 (type and value dimension) An index on the date and type
of resources has a value dimension and a type dimension, as depicted in Figure
4.3. The dashed rectangle shows a sample search space asking for all reports
written between ‘2007-03-12’ and ‘2007-04-30’.

While these indices assume that the indexed attribute belongs to the indexed
class hierarchy, indices which integrate aggregation graphs and inheritance hi-
erarchies support indexing all class hierarchies on a path (e.g. nested-inherited
index [28]).

Information Retrieval

Information retrieval (IR) [20] aims at retrieving documents that are of interest
for a user. Query results do not only include documents that exactly contain the
keywords in the user query, but rank the documents according to their relevance.
To speed up query processing, IR systems index the words of documents. To
reduce the number of indexed words, common techniques include elimination of
stop words, such as articles, and stemming, which refers to reducing words to
their grammatical root. Typical indices used are inverted lists, signature files
and suffix arrays. Other data structures, such as the Patricia Trie [152], have
been developed for use in main memory.

4.2. RELATED WORK 55

An inverted list consists of a vocabulary, which contains all the distinct
words in a document. Each word points to a list of occurrences, referring to
the positions of the word in the document. By searching the vocabulary for a
specific keyword, the inverted list can determine all documents containing that
keyword. The use of e.g. a B-tree on the vocabulary speeds up scanning the
vocabulary. By processing the list of occurrences, inverted lists enable phrase
or proximity queries.

Information retrieval indices have also been extended to take into account
simple structural information about a document. For example, an inverted list
can represent the position of a word in terms of its path [170]. Such indices
can be applied to XML indexing by primarily enabling to specify search condi-
tions on the document content, but also taking into account simple structural
conditions, such as the name or labelpaths of nodes returned.

Extensible Indexing

New applications, such as geographic information systems, document libraries
and multimedia systems, require databases to process new kind of data. In-
stead of relational data, databases need to support domain-specific data types
as well as specific operations on these types. Efficient search in such data re-
quires specialized index structures. For each domain, a large number of spe-
cific index structures has been proposed (e.g. spatial and text indices). As a
database cannot implement all of them, object-relational, extensible and com-
ponent databases [69] provide the ability of integrating new index structures.
Generally, there are two approaches to extensible indexing:

• Provide an index interface that lets users implement their own index struc-
tures by implementing methods for index definition, maintenance and
search. For example, this approach is supported by Oracle data cartridges
[184], DB2 database extenders [64] and Informix data blades [32]. Their
main disadvantage is that they require high implementation effort as each
index structure needs to be implemented from scratch.

• Apply existing index structures to new data types and only leave type and
operator specific implementations to the user [185]. For example, B+-trees
can index any data type with a linear ordering. The generalized search
tree (GiST) [101] is such a generic template index that can be extended to
support new data types. It can represent balanced trees, such as B+-trees
and R-trees, and index arbitrary data types by implementing six methods
for each new type.

4.2.2 XML Index Structures

Various index structures have been proposed for XML. Vakali et al. [190] present
an overview of these indices. In contrast to relational databases, XML databases
need to provide indices on the document structure, in the same way as object-
oriented databases. Additionally, they need to support full-text queries similar
to IR systems. Thus, we basically distinguish structure-oriented and content-
oriented indexing. There also exist so-called hybrid approaches which try to
support structure- and content-oriented queries.

56 CHAPTER 4. INDEX STRUCTURES

Structure-oriented Indexing

Structure-oriented indices summarize the structure of XML documents. They
can basically be classified into path, element and sequence indices. While path
indices refer to (parts of) labelpaths, element indices are defined on node names
and require structural joins to reconstruct the document structure. Sequence
indices represent both documents and queries as sequences.

Path indices1 summarize the labelpaths which exist in a document and as-
sociate with each labelpath the nodes which can be reached along the labelpath.
They can be classified according to the following characteristics.

• Total/partial summary indices: The most well-known representative of
these indices is the DataGuide [85], which is a structural summary of
all the labelpaths in a document. It can retrieve all nodes belonging to
a certain labelpath. While the strong DataGuide is a total summary
index, covering all labelpaths starting from the root, partial summary
indices only index the most common labelpaths to reduce index size. For
example, the T-index [150] only indexes path templates that are frequently
queried. The A(k)-index [113] uses k-bsimilarity to store exact answers
only to simple paths of length up to k. The M(k)-index [100] and the
D(k)-index [162] extend the A(k)-index to be workload aware and build
an adaptive structural summary. Apex [56] indexes frequently queried
paths to improve query performance.

• Simple/branching path indices: The DataGuide covers all simple path
queries, but cannot directly support branching path queries. The F&B-
index [111] can evaluate branching path queries without having to decom-
pose the query. While the F&B-index is the smallest index that covers
all branching path queries, its size may grow rapidly. Similar to simple
path indices, the F&B-index can reduce its size by restricting the set of
branching path queries to be indexed.

• Content-aware path indices: Pure structural indices are not efficient for
queries on the document content. In addition to the document structure,
several approaches integrate node values into indexing. Basically, they
build one value index for each labelpath by associating with each labelpath
of the DataGuide an inverted file [121] or a B-tree [128]. The Index Fabric
[59] proposes a balanced storage structure for Patricia Tries on labelpaths
and values. All these indices require traversing the structural summary
before being able to evaluate predicates on the document content. To
avoid traversing parts of the structural summary that do not contain the
queried value, some approaches propose to associate signatures with each
labelpath [52, 195].

Several variants of these path indices exist, which improve processing partial
matching queries. Supex [194] builds a so-called element map, which maps each
node name to all the nodes in the structural summary with the corresponding
name. Barg and Wong [21] construct an inverted list for each node name, which
groups nodes according to their labelpath.

1The term path actually refers to the labelpath.

4.2. RELATED WORK 57

Path indices are comparable to indices on aggregation graphs in object-
oriented databases. Similar to object-oriented indices, they typically return
node identifiers that do not express structural relationships between nodes. To
evaluate predicates on internal nodes, they would therefore need to represent
all nodes on a node’s path, in the same way as object-oriented indices, or use a
labeling scheme.

project

title resource

@date title

@id milestone

description

text()

projects

title

text()

text()

text()

26543

1

semcrypt

1

design

implementation

1.1

1.3

XML...

2008-01-30

1.1.1

1.1.3, 1.3.1

xml indexing

system

1.1.1, 1.1.3

1.3.1

2007-03-12

1.1.1

Figure 4.4: Content-aware path index.

Example 4.4 (path index) Figure 4.4 depicts a sample content-aware path
index that is based on our labeling scheme. For each labelpath, there is an in-
verted list on values, which points to the node labels with the corresponding label-
path and value. The schema labels are not included as they can be inferred from
the labelpath. The index is efficient for simple path queries starting at the root
node, e.g. /projects/ project/ title (Q1). Partial matching queries, such
as //title (Q3), require traversing the whole structural summary. Answering
a content-oriented query, such as /projects/ project [title = ‘semcrypt’]

(Q5), requires traversing the structural summary and the (nested) value index.
The query contains a predicate on an internal node. As the sample index returns
node labels, it is possible to navigate from the matching text node label (17–1)
to the corresponding project node (2–1), which the query returns.

To summarize, path indices are efficient for simple total matching queries.
Variants exist to support branching path queries or partial matching queries.
Content-aware path indices can answer queries on the document content, but
also favor queries on specific labelpaths. Path indices that are not based on
labeling schemes do not directly support predicates on internal nodes.

Element indices2 build an index on node names. In contrast to path in-
dices, they use labeling schemes to be able to evaluate structural relationships
between nodes. To process a query, they access the index to determine can-
didate nodes and then reconstruct structural relationships between the nodes

2Element indices are also referred to as structural join indices.

58 CHAPTER 4. INDEX STRUCTURES

by structural join algorithms. While XISS [135] requires accessing each node
with the queried node names, several enhancements have been proposed to skip
nodes that cannot match the query. When building a B+-tree on node names
and labels, searching the descendants of a node corresponds to a range search
in the B+-tree, which is efficient in skipping descendants that have no matches
in a join [55]. Chen et al. [49] propose to enhance the B+-tree with sibling
pointers to skip siblings. The XR-tree [109] extends the B+-tree with stab lists
to support skipping ancestors and descendants in structural joins. These indices
can support content-oriented queries by building an additional index on node
values. Processing structural joins can also be improved by labeling schemes
(cf. [142, 174]).

@id

@date

milestone

title

...

5-1

62-1.1.1, 62-1.1.3, 62-1.3.1

7-1.1, 7-1.3

6-1, 20-1.1, 63-1.1.1, 63-

1.1.3, 20-1.3, 63-1.3.1

...

26543

2008-01-30

2007-03-12

design

5-1

62-1.1.1

62-1.1.3, 62-1.3.1

59-1.1

... ...

Figure 4.5: Index on node names (left) and values (right).

Example 4.5 (element index) An inverted list on node names and values
(cf. Figure 4.5) is efficient for partial matching queries. For example, the index
can directly retrieve all titles, //title (Q3). A simple path query, such as
/projects/ project/ title (Q1), involves retrieving all titles and then filtering
the ones that do not belong to projects. In our example, the schema labels can
be used to filter the desired nodes. Without a schema-aware labeling scheme,
it would be necessary to retrieve all project nodes and perform structural joins
between title and project nodes. Answering a content-oriented query (e.g. //*
[title = ‘xml’] (Q6)), involves one index access for each queried node name
and each queried value and then joining the results.

Element indices are efficient for partial matching queries. They do not
represent structural relationships between nodes in the index, but use label-
ing schemes and join algorithms instead. Therefore answering total matching
queries may require multiple index accesses and a large number of joins. Ele-
ment indices support content-oriented queries by handling node values in the
same way as node names.

Sequence indices [167, 192] transform the document and the query into
sequences and process queries based on subsequence matching. They can an-
swer branching path queries without the need of decomposing the query into
subqueries. They do not use labeling schemes and only support equality com-
parisons.

Content-oriented Indexing

Content-oriented indices extend IR techniques, such as inverted lists, to capture
the document structure. These extended inverted lists do not simply return

4.2. RELATED WORK 59

nodes with a specific keyword, but additionally group these nodes according to
their node name or labelpath [70]. To process the nodes returned by indices,
they either require representing all nodes on a node’s path similar to object-
oriented indices, or make use of labeling schemes [174]. Additionally, there exist
various models for approximate matching and ranking results with regard to
both values and structural conditions (e.g. [15, 40, 196]).

Content-oriented indices favor content-oriented queries. They are either
more efficient for total or partial matching queries dependent on whether they
group nodes according to labelpaths or node names, respectively.

Hybrid Indexing

Hybrid indexing techniques support querying the content and structure of XML
documents by either building multidimensional indices or by constructing sev-
eral indices.

To avoid favoring structure- or content-oriented queries, multidimensional
XML indices represent documents by three dimensions - paths, values and doc-
ument identifiers. They use multidimensional index structures, such as UB-trees
[22] or bitmap indices [202], which can process queries without favoring a par-
ticular dimension.

Building indices on both the document structure and the document content
naturally enables the processing of various kinds of queries. This approach,
which has been proposed for the semi-structured database Lore [147], has also
been adopted to XML (e.g. [51, 168]). Shimizu and Yoshikawa [179] build a B+-
tree on labelpaths and a prefix B+-tree on node values to support structural
and full-text queries.

Similarly, various native XML databases integrate indices into query pro-
cessing, e.g. eXist [148], Berkeley [47], Timber [106] and Tamino [175]. They
support simple structural and value indices by specifying either the name of the
nodes to be indexed or their labelpath. As index structures, they generally use
hash tables to index node names or labelpaths and B-trees to index node values.
They do not offer indexing support for more complex queries.

4.2.3 Comparison

Relational databases use hash tables, B-trees and multidimensional index struc-
tures, which enable the database to index values for exact and/or range compar-
isons. In contrast, XML databases require indices on the document structure
and the document content. Structure-oriented indices mainly focus on label-
paths and node names. While path indices are efficient for retrieving all nodes
with a certain labelpath, element indices are more appropriate for partial match-
ing queries, retrieving nodes with a certain node name. Sequence indices support
branching path queries, but require a specific representation of the document.
Content-oriented indices extend inverted lists and enable full-text queries. Hy-
brid approaches try to support both structure- and content-oriented queries
with multidimensional index structures or by constructing several indices.

Element indices and most of the hybrid approaches that use several indices
are based on labeling schemes and return node labels. These node labels enable

60 CHAPTER 4. INDEX STRUCTURES

the database to evaluate structural relationships and join nodes returned by
indices. In contrast, path indices are not based on labels, which makes it diffi-
cult to evaluate predicates on internal nodes without accessing the document.
Without labels, they would require representing all nodes on a node’s path for
this purpose, similar to object-oriented indices on aggregation graphs.

Dat
aG

uid
e [85

]

A(k
) ind

ex
[11

3]

F&
B

ind
ex

[11
1]

In
de

x Fa
br

ic
[59

]

XIS
S
[13

5]

PR
IX

[16
7]

In
ve

rte
d
lis

t [17
4]

Hyb
rid

ind
ice

s [17
9]

Q1 ⊕ + + ⊕ + + − ⊕
Q2 + ⊕ + + + + − +
Q3 + + + + ⊕ + − +
Q4 ª ª ⊕ +1 + ⊕ − +
Q5 ª ª ª ⊕1 + + ⊕1 +
Q6 ª ª ª +1 − + ⊕1 +
Q7 ª ª ª +1 + ⊕ +1 +
Q8 ª ª ª +1 ⊕ ª +1 +
Q9 ª ª ª +1 + ª +1 +

Q10 ª ª ª +1 − ª +1 +
Q11 ª ª ª ª ª ª ª ª
Q12 ª ª ª ª ª ª ⊕1 ⊕
Q13 ª ª ª ª ª ª ª ª

⊕ specific strength compared to other indices
+ supported
− possible but inefficient
ª not directly supported
1 only supported if index returns node labels for processing

structural joins and/or navigating to ancestors

Table 4.1: Support for queries of Table 2.2 offered by existing index structures.

Example 4.6 (comparison) Table 4.1 contrasts existing XML indices and the
sample queries of Table 2.2. For each index category, one representative is cho-
sen for comparison. Structure-oriented indices are sufficient for path queries,
whereas various indices help evaluating simple content-oriented queries. Hy-
brid approaches can process a large number of queries as they build several in-
dices. Nevertheless, they also miss efficient support for more complex queries.
For example, evaluating Q10 (//project [@id = ‘26543’]/ milestone [title
= ‘design’]/ resource [@date≥ ‘2008-01-01’]) with existing indices results
in a large number of joins, as no index can directly process the query. Current
XML indices do not address queries on the type hierarchy (Q11 and Q13).

Table 4.1 shows that each index is more appropriate for different queries and
no index supports all queries. With regard to the requirements of Subsection 2.3,
existing XML indices support queries on the labelpath hierarchy as well as on the
document content. Element indices can support queries on the path hierarchy,

4.3. CONCEPTS 61

but may require a large number of structural joins for this purpose. Indexing
type hierarchies has not been regarded yet. For this purpose, it is possible to
adapt object-oriented indices on inheritance hierarchies. Efficient support for
complex queries is also missing and can currently be achieved at most by hybrid
approaches. Although many approaches extend well-known index structures,
such as hash tables and B-trees, adapting the concepts of extensible indexing to
XML has not been studied yet. Instead, each approach proposes its own index
structure and algorithms.

4.3 Concepts

This section presents the main concepts of our indexing approach sciens
(Structure and Content Indexing with Extensible, Nestable Structures), whose
main ideas we have outlined in [87]. Its primary purpose is to provide secondary
indices for XML databases that efficiently support evaluating arbitrary query
workloads. To support queries on XML documents, we identified the main re-
quirements for secondary indices in Subsection 2.3. Flexibility refers to the
ability of indexing structure- and content-oriented properties and of supporting
various operations on these properties. Selectivity denotes the ability of defining
indices on document fragments instead of on entire documents only.

Existing XML indexing approaches fail in providing flexibility and selectivity
(cf. Subsection 4.2.2). They propose proprietary structures, each of which better
supports indexing a different property and operation on that property. Further,
each index is defined on the whole document, making the index large in size.
Consequently, an XML database has to implement a large number of index
structures to support arbitrary query workloads with existing approaches. In
case of new requirements, it needs to implement new index structures, which is
infeasible in general.

The main objective of sciens is to provide the flexibility of selectively index-
ing frequently queried document fragments with only a small number of index
structures. In sciens, each index has one or several dimensions and can index
one property in each dimension. The indexed property can be the value, name,
labelpath, path or type of a node. The domain of a dimension consists of all
values of the indexed property. For example, the domain of a type index refers
to all types of nodes on which the index is defined.

Each index consists of a set of index entries that map a list of index keys,
extracted from the domain values, to node labels. Each index entry specifies one
index key for each dimension. An index structure consists of a data structure
and algorithms to traverse and update the data structure. It organizes the index
keys into pages for quickly retrieving all node labels associated with the search
conditions. To evaluate search conditions, the index structure needs to compare
search keys with index keys. For index construction and maintenance, it has
to compare existing index keys with the index keys to be inserted, deleted or
updated.

sciens makes use of the following two concepts, which are described in more
detail in the subsequent sections:

62 CHAPTER 4. INDEX STRUCTURES

• Extensibility: Each index structure performs operations on index keys
and search keys for constructing and traversing its data structure. By
binding comparison operators to indexed properties, the same operation
can be performed on various properties. An extensible index structure can
index those properties on which its operations can be performed and it can
evaluate those search conditions that can be expressed with its operations.
It need not know which nodes it indexes or how indexed nodes relate to
each other.

• Nestability: Index nesting refers to placing one index structure beneath an-
other index structure. Dependent on the nesting order, it can favor specific
query workloads, e.g. content- or structure-oriented queries. Compared to
existing XML indexing approaches, sciens provides more flexibility with
regard to how to nest index structures to adapt them to the query work-
load.

To provide flexibility, sciens abstracts from specific properties indexed and
adapts operators to indexed properties. Each index allows for specifying one
search condition for each dimension and returns all node labels that match all
search conditions. sciens distinguishes simple and range search conditions.
A simple search condition specifies one search key v, expressing the queried
value, and one operator ◦. A domain value d fulfills the search condition if
v ◦ d evaluates to true. A range search condition consists of two search keys
v1 and v2 that express a value range based on two operators ◦1 and ◦2, where
◦1, ◦2 ∈ {<,≤}. The first value represents the lower bound, whereas the second
value refers to the upper bound of the search condition. A domain value d fulfills
a range search condition if v1 ◦1 d ◦2 v2 returns true.

Dependent on the indexed property, search conditions use different oper-
ators for comparing search values with domain values. Table 4.2 depicts sup-
ported operators for content- and structure-oriented properties. sciens assumes
that structural indices serve for grouping index entries according to structural
conditions rather than for supporting navigation. Therefore, it currently only
supports evaluating whether a search key is part of an indexed hierarchy. It is
however possible to extend sciens to support more properties and operators.

property simple search range search
structure =, °

content =, ∼, ∼̇ <, ≤

Table 4.2: Simple and range operators on structure- and content-oriented
properties.

sciens supports selectivity by abstracting from what an index is defined
on or how indexed nodes relate to each other. This is only relevant when
selecting indices for queries or generating index entries for index maintenance.
An extensible index simply compares search conditions with domain values and
can therefore index arbitrary document fragments. It need not know which
nodes it indexes as it only operates on index entries.

In the following, we abstract from what an index returns and define indexed
fragments only textually. Defining and processing indices will be detailed in

4.4. EXTENDING INDEX STRUCTURES 63

Chapter 5. We further do not specify whether node labels are stored together
with index keys or in separate pages, which is implementation-dependent.

4.4 Extending Index Structures

In this thesis, we have selected three index structures, namely hash table, B+-
tree and KDB-tree. Each of these index structures can be extended to support
various properties and operations on these properties. The concepts of this
thesis are however not restricted to these specific index structures, but can be
conferred to other index structures as well (e.g. other multidimensional indices,
GiST). Concerning the hash table, any hashing technique can be used (cf. Sub-
section 4.2.1). As B+-tree and KDB-tree, we use the prefix B+-tree [25] and
the KDB-tree that represents regions as kd-trees [169, 203], respectively.

Extending index structures does not require changing their algorithms. We
only need to ensure that their operations, which they require to compare index
keys and search keys, can be performed on arbitrary properties (cf. Table 4.3).
While the hash table only supports the equality operator, the B+-tree and the
KDB-tree additionally compare the order of index and search keys.

operation hash table B+-tree KDB-tree
v = k × × ×
v < k × ×

Table 4.3: Operators required by index structures.

The hash table is a one-dimensional index structure, which represents each
distinct domain value as index key. Applying a hash function to an index or
search key yields a hash value that identifies the bucket of relevant pages. It
then only needs to find the index key k that equals search value v in the page. As
the hash table only supports exact comparisons, it only requires the = operator.

The B+-tree is a one-dimensional index structure that orders index keys and
constructs a boundary structure to search index keys. To traverse the boundary
structure and identify relevant index keys, it requires to compare values by their
order. The prefix B+-tree uses minimal prefixes in index pages for index keys
that are strings.

The KDB-tree is a multidimensional index structure. In contrast to the
B+-tree, it splits pages according to different dimensions. As there is no global
ordering between the index entries, it cannot link data pages. There is only a lo-
cal ordering within the pages, which determines the pointers to be followed from
the root of the tree to the data pages when traversing the boundary structure.
Thereby, it compares values by their order similar to the B+-tree.

While hash tables only support simple search conditions, the B+-tree and
the KDB-tree also support range search. Evaluating range search conditions
requires comparing ranges with index keys, as shown in Equation 4.1. A range
(v1, ◦1, ◦2, v2) equals an index key k if k is within the range. A range is smaller
than k if its lower bound is smaller than k. If a range is smaller than k, it
contains index keys that are smaller than k.

64 CHAPTER 4. INDEX STRUCTURES

(v1, ◦1, ◦2, v2) = k ⇔ v1 ◦1 k ◦2 v2

(v1, ◦1, ◦2, v2) < k ⇔ v1 < k
(4.1)

Each index structure can index the properties that support the required
operators. It supports the search operations that can be mapped to exact or
range search conditions. In the following, we look at how to extend the index
structures to index and query content-oriented properties (Subsection 4.4.1),
structure-oriented properties (Subsection 4.4.2) and both kinds of properties
(Subsection 4.4.3).

4.4.1 Content Indexing

Content indices need to support exact match, range and text queries on node
values. The most appropriate index for exact match queries is the hash table,
whereas the B+-tree is efficient for range queries. The hash table needs to
compare node values by equality only. Dependent on the data type, the B+-
tree needs to compare the numeric or lexicographic order of node values. In
case that a range search condition does not specify a lower or upper bound, we
use an infinite value ∞ instead.

Example 4.7 (exact match and range index) To support query Q5
(/projects/ project [title = ‘semcrypt’]), we can create a hash table
on the values of project titles. A B+-tree on the date of resources supports
Q8 (//resource [@date≥ ‘2007-01-01’ and @date < ‘2008-01-01’]) as it
allows for retrieving all resources within a specific date range.

These index structures can also support text queries by splitting each indexed
node value into its words and indexing the individual words, in the same way as
an inverted list. Thereby, applying IR indexing techniques, such as stemming
and eliminating stop words, reduces the index size. Each word represents an
index key. A hash table on the individual words can retrieve all node labels
associated with values in which a specific word appears.

A prefix B+-tree additionally supports searching values with a specific word
prefix, as each word prefix search corresponds to a range query. More precisely,
searching a specific word v in a B+-tree corresponds to the range search (v,≤
,≤, v). Let ∞ be larger than any letter. Then the range search (v,≤,≤, v+∞)
expresses a word prefix search, where v is the word prefix and v+∞ concatenates
the largest letter ∞ to the word prefix.

data database document electronic encrypted index

en kba da

do

.........

node

labels

Figure 4.6: Prefix B+-tree on the values of resource descriptions.

4.4. EXTENDING INDEX STRUCTURES 65

Example 4.8 (text index) To support Q12 (//resource [description ∼
‘database’]), we can create a prefix B+-tree on the values of resource descrip-
tions. Figure 4.6 depicts a corresponding prefix B+-tree. Assume that we want
to index the node value ‘The database stores data with an index’. Split-
ting the node value into words and applying stemming and elimination of stop
words yields the words ‘database’, ‘store’, ‘data’ and ‘index’. These words
represent the index keys of the prefix B+-tree. To guide the search through the
boundary structure, the prefix B+-tree uses minimal prefixes. For example, the
minimal prefix between ‘electronic’ and ‘encrypted’ corresponds to ‘en’. Re-
trieving all node labels associated with the word ‘database’ corresponds to a
standard B+-tree search. Evaluating a word prefix search on ‘data’ corresponds
to the range search condition (‘data’, ≤, ≤, ‘data∞’). Starting from the root
of the B+-tree, we first follow the first pointer (‘data’ < ‘do’) and then the
third pointer (‘da’ ≤ ‘data’). Both the index keys ‘data’ and ‘database’ fulfill
the search condition (‘data’ ≤ ‘database’ ≤ ‘data∞’) and their node labels are
returned. As the index key ‘document’ does not fulfill ‘document’ ≤ ‘data∞’,
the remaining index keys do not match the search condition.

This thesis only regards word and word prefix search. However, we can easily
extend our approach to also support more complex text queries, such as phrase
search and approximate queries. For this purpose, the index needs to take into
account the positions at which words occur in node values and associate the
positions with the node labels. Evaluating a phrase query requires accessing
the index for each word of the queried phrase and then determining the index
entries in which the words appear in the required order.

Example 4.9 (phrase search) Assume that we want to evaluate the phrase
search ‘encrypted document’ with the index of Figure 4.6 and that the index
maps the index key ‘encrypted’ to the node label 191–3.5.1 with positions 3 and
5 and the index key ‘document’ to the node labels 191–3.3.5 with position 2 and
191–3.5.1 with position 6. The node label 191–3.5.1 has associated a node value
in which the word ‘encrypted’ appears directly before the word ‘document’. It
therefore matches the search condition.

A multidimensional index, such as the KDB-tree, can index several value do-
mains in one index. It supports multiple search conditions on different domains
without the need of first evaluating each search condition and then joining the
results. By using minimal prefixes as index keys for strings in index pages, the
KDB-tree can also support word prefix search in the same way as the prefix
B+-tree. In case of using the KDB-tree for phrase search, it needs to consider
that each index key occurs at different positions.

Example 4.10 (multidimensional index) We can build a KDB-tree on
the date and title of resources to support query Q7 (//resource [@date =
‘2007-10-31’] [title = ‘xml’]) (cf. Figure 4.1). The sample KDB-tree can
evaluate the range search condition (‘2007-10-31’, ≤, ≤, ‘2007-10-31’) on
the date dimension and the range search condition (‘xml’, ≤, ≤, ‘xml’) on the
title dimension. Starting from the root of the KDB-tree, we first follow the
right pointer, as ‘e’ ≤ ‘xml’. The corresponding index page first divides the in-
dex entries according to their date, whereby we follow the right pointer (‘2006’
≤ ‘2007-10-31’), and secondly according to the title. As ‘s’ ≤ ‘xml’, search

66 CHAPTER 4. INDEX STRUCTURES

again follows the right pointer, which yields the requested index entry with keys
‘2007-10-31’ and ‘xml’.

4.4.2 Structure Indexing

Indices on the document structure need to support queries on node names, label-
paths, paths and types. Similar to existing XML indexing approaches, sciens
uses hash tables to retrieve all nodes with a specific node name or labelpath.
As each property supports the equal operator, the extensible hash table3 can
index any property of the XML data model.

6 1.1, 1.3

20

63

2

6

9

20

6

63

1

1.1.1, 1.3.1, 1.1.3

index keys hash values data pages

Figure 4.7: Hash table on the labelpaths of titles.

Example 4.11 (labelpath index) Figure 4.7 depicts a hash table on the la-
belpaths of nodes with the node name title. Each labelpath is represented
by its schema label. E.g. schema label 6 identifies labelpath /projects/

project/ title and schema label 20 identifies labelpath /projects/ project/

milestone/ title. The labelpaths represent the index keys and are mapped to
hash values. In this example, the hash function simply calculates the checksum
of the schema label representing the labelpath. Each data page consists of the in-
dex entries whose labelpaths have the same schema label. The index can be used
for evaluating queries Q1 (/projects/ project/ title), Q2 (//milestone//
title) and Q3 (//title). As it only supports exact comparisons, the labelpaths
need to be extracted from the schema before accessing the index. Evaluating
queries Q2 and Q3 requires accessing the index for several labelpaths. Note that
in the rest of this thesis, we omit hash values when graphically representing hash
tables to keep figures simple.

A hash table does not consider any relationships between index keys and it
can only answer queries which can determine all index keys in advance. This
is efficient for retrieving e.g. all nodes with a specific node name, labelpath or
type. However, it does not allow for evaluating queries that return all nodes of
a subhierarchy. This subhierarchy can refer to a specific part of the schema, a
subtree of the document or to a partial type hierarchy.

To support queries within hierarchies, indices have to evaluate structural
relationships between search and index keys. Labelpaths, paths and types form
trees in XML. The preorder traversal of such a tree establishes a linear order
between its vertices, which can be used for comparing these properties in an

3In this thesis, the term ‘extensible’ does not refer to the hashing technique, but to the
ability of indexing various properties with a hash table.

4.4. EXTENDING INDEX STRUCTURES 67

index. Each index key can be represented by a label that supports evaluating
structural relationships.

sciens assumes that index keys represent leaves of the indexed hierarchy,
i.e. there are no ancestor-descendant relationships between the index keys of
an index. A search key can either be an index key or an ancestor of the index
keys, whereby the latter case expresses a hierarchical query. A hierarchical
query retrieves all descendants of a search key. As sciens assigns labels in
document order, a hierarchical query corresponds to a range query on labels. It
can be evaluated by comparing the labels of the search key with the index keys.
Therefore, it is possible to use standard range indices, such as the B+-tree or
the KDB-tree, to index structural properties.

Range search conditions contain operators < and ≤. To compare structural
properties, range indices therefore have to adapt the operators for equality and
order. More precisely, they need to (i) compare equality between search and
index keys by evaluating structural relationships between labels and (ii) compare
order between structural properties via the document order of labels. An index
key matches a search key if their labels equal of if the index key is a descendant
of the search key. A search key is smaller than an index key if it precedes the
index key in document order. Equation 4.2 shows how to compare a search key
v with an index key k with respect to their labels vl and kl.

v = k ⇔ vl = kl ∨ vl ° kl

v < k ⇔ vl ≺ kl

(4.2)

Evaluating search conditions works as follows. The simple search condition
(v, =), looking for a specific value, corresponds to the range search condition
(v,≤,≤, v). A hierarchical search, expressed by (v, °), is equally translated to
the range search condition (v,≤,≤, v). Equation 4.2 guarantees that each index
key k, where vl ° kl, is part of the query result.

For example, when indexing a type hierarchy, each type label which does
not have subtypes represents an index key. Due to the abstract superclass rule
(cf. Subsection 3.4.1), there is one type label for each concrete type. A search
condition either retrieves all nodes with a concrete type or with any supertype.
In a hierarchical query, all subtypes equal the queried supertype because they
are descendants of the supertype (cf. Equation 4.2).

Note that if the assumption that ancestors of index keys only appear as
search keys does not hold, sciens has to take the largest possible child label as
upper bound in a hierarchical query.

1.3.1 1.3.3 1.3.5 1.5.1 3.1.1 3.1.3

3.1.1 5.1.11.1.3 1.3.1

1.3.5

.........

Figure 4.8: B+-tree on the path hierarchy of resources.

68 CHAPTER 4. INDEX STRUCTURES

Example 4.12 (path index) Figure 4.8 depicts a B+-tree on the paths of re-
source nodes, whereby the corresponding node labels represent the index keys.
The example abstracts from what the index returns (e.g. it could return the
date of resources). The B+-tree can retrieve all index entries associated with a
specific resource, e.g. (1.3.3, =), by comparing document order between labels.
Additionally, it supports hierarchical queries, such as searching index keys be-
longing to the second milestone (1.3, °). Starting from the root of the B+-tree,
we first follow the first pointer (1.3 < 1.3.5) and then the second pointer (1.1.3
< 1.3 < 1.3.1). The first index key which fulfills the search condition in the fig-
ure has label 1.3.1. According to Equation 4.2, 1.3 = 1.3.1 because 1.3 ° 1.3.1.
Search stops at label 1.5.1 because it is not part of the queried hierarchy. Sim-
ilarly, the B+-tree can also look for all index keys belonging to the first project
with the search condition (1, °).

With regard to the sample queries, the B+-tree can be used to locate the
resources requested by queries Q8-Q10. Query Q8 (//resource [@date≥
‘2007-01-01’ and @date < ‘2008-01-01’]) requires a full scan of the B+-tree
to retrieve all resources. In contrast, Q9 (//project [title = ‘semcrypt’]//
resource [@date≥ ‘2008-01-01’]) and Q10 (//project [@id = ‘26543’]/
milestone [title = ‘design’]/ resource [@date≥ ‘2008-01-01’]) only
look at a subtree of resources by selecting a certain project or milestone. As
the index accepts paths as input, it avoids the need for structural joins between
the selected project/milestone labels and (all) resource labels. The index does
not depend on how the queried project or milestone is selected as it expects the
corresponding paths (labels) as input. For example, the project could be selected
by its id, title or position.

Support for hierarchical queries on structural properties offers the following
advantages. By indexing labelpaths, an index can evaluate queries that refer to
a specific labelpath or any subhierarchy of the indexed structural summary. An
index on paths allows for evaluating search conditions within subtrees without
performing structural joins. As the search keys of a path index correspond to
intermediate query results, it allows for limiting the scope of index traversal
to queried subtrees. Indices on types support queries on specific types or type
hierarchies.

Example 4.13 (structure indexing) Instead of indexing the labelpaths of ti-
tle nodes with a hash table (cf. Figure 4.7), we can use a B+-tree on the title
labelpaths. With regard to the sample queries, Q1 retrieves a specific title label-
path, whereas Q2 and Q3 are hierarchical queries, asking for all titles of mile-
stones and of the whole document, respectively. To support queries Q11-Q13,
we can build a B+-tree on the type of resource nodes, which uses type labels as
index keys. It allows for retrieving all resources belonging to a particular type
(e.g. <TechnicalReport>) or to a partial type hierarchy (e.g. <Report>). If we
want to index both the path and the type of resources in one index, we can use
a KDB-tree.

By adapting the comparison operator to the property being indexed, the
B+-tree can index structural properties, such as labelpaths, paths and types.
As the KDB-tree uses the same operators as the B+-tree, it can index several
structural properties without any modification of its algorithms.

4.4. EXTENDING INDEX STRUCTURES 69

4.4.3 Content and Structure Indexing

In the previous subsections, we have shown how to index content- or structure-
oriented properties. Indexing multiple properties in one index is more compact
and avoids joining intermediate results. To index both kinds of properties,
existing XML indexing approaches either build proprietary index structures or
use multidimensional indices (cf. Subsection 4.2.2). While the original KDB-tree
only considers value domains, we have shown how to express structural queries
as range queries in Subsection 4.4.2. The concept of extensibility therefore
enables the KDB-tree to support all indexing requirements.

Indexing values and structural properties in one index structure raises the
question of how to split index entries. Some OODB indices propose query-based
splitting when indexing class hierarchies and values in a multidimensional index
structure (e.g. [46, 159]). However, Lepouchard et al. [129] argue that the im-
provements of query-based splitting do not outweigh the required effort. Based
on their results, the KDB-tree of sciens only adapts comparison operators to
indexed properties, but is independent of the splitting strategy used.

1-

2007

2-1.3
1-

2006

2005-03-04

1.3

2006-04-04

3.3

2008-09-10

1.3

2007-09-10

1.5

2008-02-01

1.5

2005-04-04

7.5

Figure 4.9: KDB-tree on values of resource dates and paths of milestones.

Example 4.14 (content and structure indexing) Figure 4.9 shows a sim-
plified KDB-tree on the date of resources and the path of milestones. Assume
that each index entry maps index keys to resource nodes. The index sup-
ports evaluating Q8-Q10. Evaluating Q8 (//resource [@date≥ ‘2007-01-01’

and @date < ‘2008-01-01’]) only restricts the value dimension of the in-
dex. In contrast, Q9 (//project [title = ‘semcrypt’]// resource [@date≥
‘2008-01-01’]) and Q10 (//project [@id = ‘26543’]/ milestone [title =

‘design’]/ resource [@date≥ ‘2008-01-01’]) contain search conditions for
both dimensions. For example, to evaluate Q10, we first determine the desired
milestone node(s). Let this node have label 1.5. We then evaluate the search
conditions (1.5, °) and (‘2008-01-01’, ≤, ≤, ∞) on the KDB-tree, resulting
in the index entry with keys ‘2008-02-01’ and 1.5. The index search does not
access and return the index entry with index keys ‘2008-09-10’ and 1.3 because
the corresponding resource belongs to a different milestone. Indexing the path
and the date therefore enables the KDB-tree to restrict search on resource dates
to the requested milestone. Otherwise, if the index only referred to dates, the
index would return all resources within the queried date range. Afterwards, it
would be necessary to discard those resources that do not belong to the queried
milestone by processing structural joins between the queried milestones and the
resources returned by the date index. Similarly, we can use a KDB-tree on the

70 CHAPTER 4. INDEX STRUCTURES

labelpath and value of titles to support queries Q5-Q7 and a KDB-tree on the
resource types and description values for queries Q11-Q13.

Existing XML indexing approaches can mainly be classified into structure-
and content-oriented approaches, dependent on whether they first group index
entries according to structural properties or to values. Grouping index entries
according to certain dimensions can be useful to adapt indices to specific queries.
Multidimensional index structures treat each dimension equally. However, it is
sometimes useful to favor queries on the structure or the content. We therefore
introduce the concept of index nesting in the following section.

4.5 Nesting Index Structures

Index nesting refers to placing one index structure beneath another index struc-
ture. It allows for combining different kinds of index structures and indexing
various properties without implementing proprietary structures. In contrast to
multidimensional index structures, index nesting favors queries on specific di-
mensions. Dependent on which dimension represents the highest level of the
nesting hierarchy, different queries are better supported. Generally, the most
selective index should be placed first in the nesting hierarchy to quickly nar-
row down the result and reduce the size of the nested index structures to be
traversed.

Existing XML and object-oriented index structures use the idea of index
nesting to combine index structures on structure- and content-oriented prop-
erties. They create one value index for each labelpath (cf. content-aware path
indices in Subsection 4.2.2) or for each type (e.g. CH-index [118]) or they first
group index entries according to their value and then according to their label-
path (cf. Subsection 4.2.2). While each of these approaches uses proprietary
structures and only supports a specific kind of nesting, sciens generalizes the
idea of index nesting. Basically, sciens can nest arbitrary index structures.
Thereby, the index keys of the superior index structure do not point to the
node labels to be returned, but to a nested index structure. There is one nested
index structure for each distinct index key of the superior index structure.

Nesting index structures only makes sense if the nesting reflects the hier-
archical structure. The kind of nesting influences query performance (cf. key-
and type-grouping in object-oriented indices in Subsection 4.2.1). If a structure
index is nested beneath a value index, queries on the entire hierarchy are better
supported. Nesting the index structures the other way round favors queries on a
specific part of the hierarchy. As such, nesting always favors specific queries. If
each dimension shall be treated equally, it is better to index the dimensions with
a multidimensional index structure. sciens provides the flexibility to choose the
alternative that best matches the query workload.

Example 4.15 (index nesting) To support queries Q11-Q13, we can index
the resource type and the description value by nesting index structures. Figure
4.10 depicts a B+-tree on the resource type with a nested B+-tree on the text
of description values. This kind of nesting results in one B+-tree on the de-
scription value for each type and favors queries on a specific type. For example,
to evaluate Q13 (//resource <TechnicalReport> [description ∼̇ ‘data’]),

4.5. NESTING INDEX STRUCTURES 71

30 318 9

30

computer database document

do

21-3.5.7,

21-7.4.7
21-1.5.3 ...

B-

tree

B-

tree

B-

tree

Figure 4.10: Nesting a text index on descriptions beneath an index on resource
types.

only one nested index structure needs to be traversed, which is the one associated
with type label 30. Figure 4.11 nests the index structures the other way round.
There is one B+-tree on the type hierarchy for each word of indexed descrip-
tion values. This kind of nesting favors queries on the entire or a large part of
the type hierarchy. Q12 (//resource [description ∼ ‘database’]), for ex-
ample, refers to all reports. If Q12 was evaluated with the index of Figure 4.10
instead, it would require traversing multiple B+-trees on the description value.
This example shows that the most selective index structure should be placed first
in the nesting hierarchy. Further, each kind of nesting is only appropriate for
specific queries. If both queries should be supported equally, it would be better to
build a KDB-tree on both dimensions.

B-

tree

data database document encrypted

do

21-9.2.2,

21.3.5.5
21-1.5.3 ...

319 30

31
B-

tree

B-

tree

Figure 4.11: Nesting an index on resource types beneath a text index on de-
scriptions.

It is also possible to nest several structure- or content-oriented indices. How-
ever, nesting content-oriented indices only makes sense if the nested index struc-
tures have a hierarchical relationship. Otherwise, if the first index is not very

72 CHAPTER 4. INDEX STRUCTURES

selective, it is necessary to traverse a large number of index structures at the
nested levels (cf. multiple-key indexes [83]). In this case, a multidimensional
index structure is the appropriate choice.

Example 4.16 (nesting alternatives) To support queries Q8-Q10, we can
nest a B+-tree on date values beneath a B+-tree on milestone paths, return-
ing resource nodes. This results in one B+-tree on the date for each mile-
stone. When evaluating Q10 (//project [@id = ‘26543’]/ milestone [title
= ‘design’]/ resource [@date≥ ‘2008-01-01’]), the index allows for retriev-
ing the resources with the requested date after determining the queried milestone
node. If we nest the B+-trees vice versa, the index favors queries which are
mostly not limited to certain milestones or projects, such as Q8 (//resource
[@date≥ ‘2007-01-01’ and @date < ‘2008-01-01’]). To equally support Q8-
Q10, it is better to build a KDB-tree on both dimensions (cf. Figure 4.9). Instead
of indexing the paths of milestone nodes, it is also possible to index the values of
project and milestone titles. By nesting these index structures, we can still reflect
the hierarchy. However, in this case, the index does not support restricting the
project if it is selected by its id and not by its title. Such an index therefore would
not be appropriate for Q10 (//project [@id = ‘26543’]/ milestone [title =

‘design’]/ resource [@date≥ ‘2008-01-01’]). Nesting index structures on
the date and title of resources, e.g. to support query Q7 (//resource [@date =
‘2007-10-31’] [title = ‘xml’]), would not be appropriate as these node val-
ues do not hierarchically relate to each other. As there can be a large number of
index keys for each dimension in this case, the nesting would result in a large
number of index structures.

Object-oriented and XML index structures use proprietary structures to nest
structural and value indices (e.g. CH and SC index [118], CADG [195]). Each
of these approaches only supports a specific kind of nesting. By generalizing the
idea that one index key either points to a list of node labels or to another index
structure, sciens can nest arbitrary one- or multi-dimensional index structures.
Note that index nesting differs from simply concatenating index keys. E.g. in
Figure 4.10, it would not be possible to evaluate hierarchical queries on types
when concatenating index keys. Concatenation would only support exact com-
parisons, which can be reflected by using a hash table instead of a B-tree.

As a hash table only allows for exact comparisons and thus is usually the
most selective index structure, it should always be placed first in the nesting
hierarchy. Nesting multiple hash tables corresponds to a concatenation of the
index keys to be hashed and only makes sense if the queries to be supported
restrict each dimension with an exact comparison.

Example 4.17 (nesting with hash tables) Assume that we want to sup-
port Q5 (/projects/ project [title = ‘semcrypt’]) and Q6 (//* [title =
‘xml’]) with an index. A hash table on the title with a nested B+-tree on
the labelpath of title nodes is an appropriate choice as both queries specify an
exact comparison on the title.

When nesting tree-shaped index structures, such as the B+-tree or the KDB-
tree, each index key of the superior index structure points to the root of a nested
index structure. This implies that at each nesting level, there are as many index

4.6. SUMMARY 73

structures as there are distinct index keys in the superior index structure. When
traversing the superior index structure for performing an update or retrieval
operation, the superior index structure retrieves the root of the nested index
structure and forwards the update or retrieval operation to the nested index
structure. After completing the operation, the nested index structure returns
its result to the superior index structure. As such, each index structure can
operate in two modes: as a nested index structure, the superior index structure
accesses the root page, whereas in the independent mode, the index structure
loads the root page itself.

Example 4.18 (nesting operations) To evaluate query Q13 (//resource
<TechnicalReport> [description ∼̇ ‘data’]) with the index of Figure 4.10,
search starts at the B+-tree on the type. The queried index key with label 30
points to the root of a nested index structure. The superior index structure
retrieves this root and forwards it together with the retrieval operation to the
B+-tree on the description. The nested B+-tree evaluates the search condition
(‘data’, ≤, ≤, ‘data∞’) and returns the associated node labels (21–1.5.3) to the
superior index structure.

When nesting index structures, it also has to be considered that the total
index size increases as there is one nested boundary structure for each index key
of the superior index structure. Putting the index structure which has fewer
distinct index keys first reduces the number of nested boundary structures and
therefore the total index size. To further reduce index size, sciens proposes to
nest index pages. This implies that a page can contain a page of a nested index
structure as long as it is not full.

Example 4.19 (index size) Considering the nesting alternatives of Figure
4.10 and Figure 4.11, the second alternative is expected to be larger in size
because its superior index structure has many distinct index keys. In both fig-
ures, we depict pointers from index keys to the nested index structure and to the
node labels as simple lines. This indicates that the corresponding pages could be
nested within the pages of the superior index structure.

4.6 Summary

sciens supports indexing the structure and content of XML documents with
extensible, nestable structures. Extensibility refers to using one index structure
for various properties and operations on these properties. Nestability allows for
adapting index structures to hierarchical queries to favor queries on the entire
hierarchy or queries on a specific part of a hierarchy.

In this thesis, we have selected a hash table, a prefix B+-tree and a KDB-tree.
While the hash table only supports exact comparison, the prefix B+-tree and
the KDB-tree are efficient for range queries. By adapting operators to indexed
properties, the index structures do not only support comparing values, but also
indexing structural properties, such as labelpaths, paths and types. Each index
structure can index every property that supports its operators. The KDB-tree
can index an arbitrary number of content- and structure-oriented properties.

74 CHAPTER 4. INDEX STRUCTURES

Nesting index structures enables the grouping of index entries according to cer-
tain properties without the need of changing their algorithms or implementing
proprietary index structures.

Note that the B+-tree can substitute the hash table as well as the KDB-
tree can also be used to index a single dimension. However, the hash table is
more efficient for exact queries than the B+-tree, and the KDB-tree with one
dimension is less efficient than the B+-tree. Further, the concepts of sciens are
not restricted to the specific index structures selected, but can be transferred
to other index structures as well.

To summarize the flexibility of sciens, Table 4.4 defines sample indices
and Table 4.5 contrasts these indices with the sample queries, as explained in
Examples 4.20 and 4.21.

Example 4.20 (sample indices) Table 4.4 defines sample indices for the
queries of Table 2.2. I1-I5 focus on the labelpath and value of title nodes
(cf. sample queries Q1-Q7), whereas I6-I10 index date values and milestone
paths (Q8-Q10). I11-I15 support queries Q11-Q13 by indexing resource types
and description texts. Indexing the text refers to indexing the individual words
of each description value to create a full-text index. Assume that I1-I4 return
labels of title nodes and I5-I15 return labels of resource nodes. All indices are
selective, i.e. they are defined on some parts of the document. For example, I2
does not index all values, but only the values of title nodes. sciens offers a wide
flexibility of which indexing alternative to choose. To index two properties, the
table defines one index for each property, one index for each possible nesting and
one multidimensional index. With the help of sciens, it is possible to choose
the alternative that best matches the query workload.

I1 B+-tree on title labelpaths
I2 hash table on title values
I3 hash table on title values, nested B+-tree on title labelpaths
I4 KDB-tree on title values and title labelpaths
I5 KDB-tree on resource title values and date values
I6 B+-tree on date values
I7 B+-tree on milestone paths
I8 B+-tree on date values, nested B+-tree on milestone paths
I9 B+-tree on milestone paths, nested B+-tree on date values

I10 KDB-tree on date values and milestone paths
I11 B+-tree on resource types
I12 B+-tree on description texts
I13 B+-tree on description texts, nested B+-tree on resource types
I14 B+-tree on resource types, nested B+-tree on description texts
I15 KDB-tree on description texts and resource types

Table 4.4: Indexing alternatives for queries of Table 2.2.

Example 4.21 (queries and indices) Table 4.5 contrasts the sample queries
of Table 2.2 with the sample indices of Table 4.4. As each index is selective,
it can only support specific queries. For each query, we mark the best suited
index with a star (?). Further, we distinguish between well supported (⊕) and

4.6. SUMMARY 75

Q·I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 ? ∼
2 ? ∼
3 ? ∼
4 + ∼ ∼
5 ∼ ⊕ ? ⊕
6 ∼ ? ⊕ ⊕
7 ∼ + + + ? + ∼ + + +
8 + ? ∼ + ⊕ ⊕
9 ∼ ∼ ∼ ∼ ∼ + ∼ + + ?

10 ∼ ∼ ∼ ∼ ∼ + ∼ + ? ⊕
11 ? ∼ +
12 ∼ ? ⊕ + ⊕
13 ∼ + + ? ⊕

? best index
⊕ well supported
+ supported
∼ index offers minor support

Table 4.5: Support for queries of Table 2.2 offered by indices of Table 4.4.

supported (+). The latter denotes that either the index only supports part of the
query or that the query needs to traverse large parts of the index. Some indices
only offer minor support for a query (∼). For example, the index on milestone
paths (I7) only offers minor support for Q9 and Q10. However, it is efficient
in combination with an index on date values (I8-I10). I11 offers minor support
for Q4 because only reports contain descriptions.

To show the flexibility of sciens, Table 4.6 contrasts existing XML indexing
approaches with sciens. While existing approaches propose various proprietary
structures, sciens can represent the same indices by extending and nesting
existing structures. As such, it is not necessary to implement a large number
of different index structures to create arbitrary indices on the structure and
content of XML documents.

As can be seen in the table, there is no equivalent for indices supporting
branching path queries (branching path and sequence index) in sciens. Further,
sciens only supports total summary indices and not partial summary indices.
Also other specific indexing improvements have no counterpart in sciens. For
example, the structure-oriented CADG [195] proposes to store signatures in the
structure index to prune subtrees whose content does not match the search con-
dition. However, we believe that selective indices compensate for such specific
improvements because they can be adapted to specific queries and are smaller
in size.

In case that an application requires indices that are currently not supported
by sciens, it is possible to add new index structures. For example, if queries
frequently need to traverse the same index structure multiple times and then
join the results (e.g. to search keywords), a bitmap index will be more efficient.

76 CHAPTER 4. INDEX STRUCTURES

Index Example sciens
Structure-oriented indexing
summary index [85] B+-tree on labelpaths
branching path index [111]
content-aware path index [59, 195] B+-tree on labelpaths, nested index

on values
path index variants [21] hash table on node names, nested

B+-tree on labelpaths
basic element index [135] hash table on node names, hash ta-

ble on values
element index variants [55] hash table on node names, nested

B+-tree on paths
sequence index [167]
Content-oriented indexing
content-oriented index [70, 195] B+-tree on values, nested B+-tree

on labelpaths or node names
full-text index [179] B+-tree on text
Hybrid indexing
multidimensional index [22, 202] KDB-tree on paths and values

Table 4.6: Representing existing indexing approaches with sciens.

sciens does not concentrate on specific index structures, but on adapting them
to arbitrary query workloads.

With the concepts of extensibility and nestability, sciens can combine vari-
ous index structures defined on arbitrary properties, which offers more flexibility
than all existing approaches. Examples include indices on type hierarchies as
well as path indices that can restrict index search to subtrees and avoid struc-
tural joins.

Part II

Processing Secondary
Indices

77

Chapter 5

Index Framework

Contents
5.1 Introduction . 80

5.2 Related Work . 80

5.2.1 Interfaces for Extensible Indexing 80

5.2.2 XML Databases . 81

5.2.3 KeyX . 81

5.2.4 XML Access Modules 81

5.3 Index Model . 83

5.3.1 Index vs. Index Structure 83

5.3.2 Index Variables and Index Definition 84

5.3.3 Index Pattern . 85

5.3.4 Index Configuration 87

5.3.5 Search Configuration 88

5.4 Components . 89

5.4.1 Index Selection . 90

5.4.2 Index Engine . 93

5.5 Summary . 95

To integrate indices into query processing, an XML database requires an
index framework that enables the database to select, access and maintain in-
dices. Section 5.1 introduces the main concepts of such an index framework
and Section 5.2 reviews related work. To process arbitrary indices, an index
framework requires a generic index model, which is presented in Section 5.3.
Section 5.4 describes the components of the index framework, which allow for
processing arbitrary indices. Finally, Section 5.5 summarizes the main ideas of
the framework.

79

80 CHAPTER 5. INDEX FRAMEWORK

5.1 Introduction

XML databases require indices to support frequently issued queries on specific
document fragments. In Chapter 4, we have presented the indexing approach
sciens, which enables the extension and nesting of index structures to reflect
arbitrary query workloads. As there does not exist one index which is optimal
for all queries, an XML database needs to process several indices, which index
different parts of documents using various index structures. Processing indices
comprises selecting indices during query optimization, accessing indices during
query execution and maintaining indices when updating documents. Note that
the term index selection is sometimes also used to denote the process of sug-
gesting possible indices for query workloads during database design, which is
out of scope of this thesis (cf. e.g. [94]).

Example 5.1 (index processing) Q9 (//project [title = ‘semcrypt’]//
resource [@date≥ ‘2008-01-01’]) selects all resources that belong to project
‘semcrypt’ and that have been created in ‘2008’ or later. To answer this query
without looking at each project and each resource, the query optimizer looks for
appropriate indices. Assume that there exists an index on date values (I6 of
Table 4.4). The query optimizer has to detect that this index answers part of
the query and it has to rewrite the query plan such that it uses the index.

Basically, two possibilities exist for index processing: (i) define proprietary
query and update algorithms for each index or (ii) provide a uniform way to
process various indices based on an index model. Alternative (i) only works for
a small set of predefined indices. Each time when adding a new index, the query
and update algorithms need to be adapted as well. Alternative (ii) provides a
generic approach, which is not restricted to currently existing indices. Adding
new indices does not require changing the query and update algorithms as these
can handle arbitrary indices.

As alternative (i) is inappropriate for flexible, selective indexing, an XML
database requires an index framework that enables the database to process
arbitrary indices. For this purpose, it requires an index model that represents
what an index is defined on to select and maintain indices.

5.2 Related Work

This section reviews related work on index frameworks. It first looks at index in-
terfaces of object-relational databases that enable extensible indexing. Current
XML databases support querying and updating a limited set of index struc-
tures, as will be shown by looking at the eXist XML database [148]. Finally,
two index processing approaches, KeyX [94] and XAMs [16], will be described
in more detail.

5.2.1 Interfaces for Extensible Indexing

Extensible indexing refers to integrating new index structures into databases
(cf. Subsection 4.2.1). For this purpose, object-relational databases provide in-
dex interfaces that let users implement their own index structures. For example,

5.2. RELATED WORK 81

Oracle data cartridges [184] provide an SQL based framework for index defini-
tion, index maintenance and index scan. Each index structure has to implement
corresponding methods and is responsible for defining the index structure, main-
taining the index content and searching the index during query processing.

An XML index framework needs to provide similar interfaces. As XML
indices are not defined on table columns, it additionally requires generic query
and update algorithms.

5.2.2 XML Databases

Current XML databases only offer limited support for indexing, which facili-
tates index processing. For example, the native XML database eXist [1, 148]
creates element indices on node names and supports full-text and range indices
on node values. Thereby, the nodes to be indexed can be selected by a total
or a partial matching query. The main drawbacks are that it does not sup-
port multidimensional index structures nor predicates in index definitions. As
a consequence, each index entry has exactly one index key and no navigation is
supported between indexed and returned nodes. This restriction greatly facili-
tates index processing as it does not require to consider relationships between
indexed nodes. Offering more complex indices requires a more advanced index
framework.

5.2.3 KeyX

KeyX [94] is an XML indexing approach that provides a representation of in-
dices and algorithms to select, suggest and maintain indices. Each index is
represented by a set of path expressions, one for each key and each qualifier
and one expressing the index return. Keys express index keys on node values,
whereas qualifiers represent required nodes.

Example 5.2 (KeyX) KeyX represents a value index on the title and date of
all resources that have a description as follows:

keys={//resource/@date, //resource/title}
qualifiers={//resource/description}

return={//resource}

The main drawbacks of KeyX are that the approach does not consider more
complex indices, e.g. on paths or type hierarchies. The provided algorithms
for index processing are still limited as well. For example, the index selection
algorithm can find at most one index for a query. If several indices match a
query, it selects the best index based on simple statistics about the document.
It does not consider executing a query by accessing several indices. Further,
KeyX does not make use of schema information to improve index processing.

5.2.4 XML Access Modules

XML Access Modules (XAMs) [16, 17] are generic descriptions of what is stored
in the primary storage structure, in a view or in a secondary index structure.

82 CHAPTER 5. INDEX FRAMEWORK

Their primary purpose is to achieve physical data independence by processing
queries on XAMs without requiring knowledge of underlying data structures.

Tree patterns are frequently used to represent queries on XML documents
[42, 54]. XAMs use annotated tree patterns to represent what is stored in a
storage structure. Each node in a XAM may be annotated with an identifier
(ID), a tag, a value (Val) or a content specification. These specifications indicate
which properties are stored in a XAM. Specifications that are marked as required
(R) express keys in an index. Nodes in the pattern are connected via parent-child
(/) or ancestor-descendant (//) edges. Edges have associated a join semantic
and may be marked as optional.

@date title

resource

projects

ID

Val (R) Val (R)

Figure 5.1: XAM defining a value index on resource dates and titles.

Example 5.3 (XAM) Figure 5.1 shows a sample XAM representing a value
index on the date and title of resources. The required value specifications (Val
(R)) express index keys on node values. The resource node represents the
return of the index, which is indicated by its border. The ID specification as-
sociated with the resource node denotes that the index returns the id (label)
of resource nodes. The dotted edge between the resource and @date node ex-
presses that the date is optional, i.e. the index also indexes resources that do
not have a date.

Besides providing a representation for storage structures, the authors of the
XAM approach also describe an algorithm for selecting XAMs for queries. The
first step is to extract query patterns from XQuery based on a logical query
algebra [19]. It then tests whether there exists a XAM which is equivalent
to a query pattern [18]. Equivalence is determined by checking containment
between patterns based on a structural summary. If there does not exist a
single XAM which is equivalent to the query pattern, the algorithm joins XAMs
and compares their equivalence to the query pattern. For each query pattern
that can be answered with the available storage structures, there finally exists
a query plan consisting of a set of XAMs connected via joins. The selection
algorithm does not consider costs for accessing XAMs, but selects the query
plan which accesses the lowest number of XAMs.

The XAM approach, which has been developed in parallel to sciens, pro-
vides the necessary abstraction to process indices regardless of what they index.
While it provides an algorithm to select indices for query processing, it does
not consider maintaining XAMs when updating documents. The index model,
which we present in the following, has some similarities to XAMs, but can ex-
press all indices of the sciens approach.

5.3. INDEX MODEL 83

5.3 Index Model

The index model provides a generic description of indices, which is expressive
enough to select and maintain arbitrary indices without depending on their un-
derlying data structures. It represents each index on a logical and a physical
level. The index definition specifies what the index is defined on. It is rep-
resented as an annotated tree pattern, which enables the processing of index
definitions in a language-independent way. Each tree pattern is referred to as
index pattern and logically defines an index. An index structure determines the
physical data organization of an index. When an index has been selected for a
query, the search configuration contains the search keys to be looked up in the
index. Index patterns and search configurations are completely independent of
the physical data organization. The index configuration associates logical index
patterns with physical index structures. In the following, we look at the various
parts of the index model in more detail.

5.3.1 Index vs. Index Structure

An index is a search function that maps index keys to nodes in a document. An
index key can be any property of the XML data model, i.e. the value, name,
type, path or labelpath of a node.

Definition 5.1 (index) An index I for a document D with nodes N consists
of a set of index entries, I = (E), which contain index keys K and nodes from the
document. Each entry in an index e ∈ E maps a list of index keys, specifying
the search condition, to a number of labels, representing the nodes returned by
the search function, e = ((k1, . . . , kj) ∈ K) → (label(n1), . . . , label(nm)), where
n1 . . . nm ∈ N . The number of index keys j is identical for each entry in an
index and determines the dimensionality of the index. The index keys of one
index entry may refer to different properties, however, all index entries index
the same property at ki, where i ∈ {1 . . . j}. In case that an index key does not
exist, it is represented by a null value (⊥).

For ease of presentation, we assume that each index is defined on one doc-
ument. The presented approach can however equally support indices on collec-
tions of documents. In this case, the index will contain index keys and nodes
from different documents. It is therefore necessary to add a document identifier
to each node label. The index itself is not affected by the number of documents
it indexes. This is only relevant when generating index entries (cf. Chapter 6).

The node labels that an index returns can belong to the same nodes as the
indexed properties or represent any other nodes that structurally relate to these
nodes, e.g. ancestor nodes (cf. object-oriented indices on aggregation graphs in
Subsection 4.2.1). Returning labels of ancestor nodes reduces index size because
the number of ancestors corresponds at most to the number of their descendants.
However, returning ancestor labels is only appropriate for queries which do not
need the descendants for further processing. Otherwise additional queries would
be necessary to retrieve the descendants.

Example 5.4 (index entry) Consider an index that selects resources accord-
ing to their type and description text (I15 of Table 4.4). This index is two-

84 CHAPTER 5. INDEX FRAMEWORK

dimensional and each index entry has two index keys. Sample index en-
tries of this index are e1 = ((<Report>,‘XML’) → (21–1.1.1)) and e2 =
((<Documentation>,⊥) → (21–1.9.7,21–3.5.5)).

Physically, sciens represents each index with index structures. While in the
general case one index has one underlying index structure, the concept of index
nesting (cf. Section 4.5) entails that several index structures can be used to
represent one index.

Definition 5.2 (index structure) An index structure is a data structure that
organizes index entries into pages, such as a hash table, a prefix B+-tree or a
KDB-tree. It provides algorithms to traverse its data structure for retrieving
and updating index entries.

5.3.2 Index Variables and Index Definition

Index variables define the properties which an index uses as index keys and
supported operations. Each index entry has one index key for each variable.
The number of variables of an index determines the dimensionality of the index.

Table 5.1 depicts the properties and operators that are provided by sciens.
The operator ° denotes that hierarchical queries are supported on the property.
Concerning values, the operator ≤ expresses range queries, whereas operator ∼
stands for full-text queries. Value variables index node values, i.e. the values of
attribute or text nodes. Defining variables on the content of element nodes is
currently not supported as queries typically refer to the values of attribute or
text nodes instead of to the concatenation of the values of several text nodes.

property operator
name =
labelpath =, °
path =, °
type =, °
value =, ≤, ∼

Table 5.1: Index variables defining the property being indexed and supported
operators.

Definition 5.3 (index variable) An index variable v consists of one operator
and one property, v = (o p), where o ∈ {=,°,≤,∼} and p ∈ {pn, pl, pp, pt, pv}.
The subscript of a property denotes whether the property is the name, labelpath,
path, type or value of a node. Supported combinations of operators and prop-
erties are defined in Table 5.1. Variables can be optional or required. Required
variables express that each search condition must provide a search key for that
variable. Required variables are enclosed in brackets (o p), optional variables in
square brackets [o p].

Example 5.5 (index variable) An index on resource types and description
texts contains two index variables, v1 = [° pt] and v2 = [∼ pv]. The first
variable indicates that the index supports hierarchical comparisons on types, the
second that it supports full-text queries on values.

5.3. INDEX MODEL 85

An index definition selects the nodes to be indexed by specifying which
properties to use as index keys and which nodes to return by the search function.
It corresponds to a query which contains index variables to define the index keys
and the operations to be supported on these keys.

Definition 5.4 (index definition) An index definition specifies the nodes to
be indexed and corresponds to a query with index variables. The nodes returned
by the query represent the nodes returned by the index. The index variables
define the index keys and supported operations.

A database provides an index definition language, which allows users to
create indices. An index definition language can extend the query language
with index variables. We use index patterns to represent and process index
definitions (cf. Subsection 5.3.3). A syntax for defining indices is however out
of scope of this thesis. Example 5.6 shows a possible index definition using an
enhanced XPath syntax. The index definition numbers the index variables. The
numbers can then be used to specify an order of the index variables in case of
index nesting.

Example 5.6 (index definition) An index definition language can use
the enhanced XPath expression //resource [sc:type ° $1] [description/

text()/ sc:value ∼ $2] to define an index on the type and description of
resources (cf. I15 of Table 4.4). The index definition contains two index vari-
ables $1 and $2. The names with namespace prefix sc denote which properties
to use as index keys and the comparison operators define the operations to be
supported on the properties. The first variable defines to index types and to
support hierarchical comparisons on types. The second defines to support full-
text queries on node values. By default, the database can use a KDB-tree as
underlying index structure. If we want to use two nested index structures, we
can add nest by $1, $2 to the index definition. In this case, the database can
decide to nest two prefix B+-trees as the prefix B+-tree supports each property
and operation. In this case, the index will be physically represented as a B+-tree
on resource types with nested B+-trees on description texts.

5.3.3 Index Pattern

While an XPath like syntax can be used to create an index, a tree pattern is
adequate to represent and efficiently process an index definition in a language-
independent way. Tree patterns are frequently used to evaluate queries by tree
pattern matching [42, 50, 54, 200]. The XAM approach [16] uses tree patterns
to provide a generic description of XML storage structures. Similarly, we use
tree patterns to represent index definitions, which we refer to as index patterns.
These patterns do not only provide a language-independent description of what
is indexed. They also allow for comparing index and query patterns for index
selection (cf. Subsection 5.4.1) as well as for comparing index patterns with
update fragments for index maintenance (cf. Chapter 6). Translating index
definitions in XPath or XQuery into index patterns resembles extracting query
patterns from XQuery (cf. [19, 54]) and is out of scope of this thesis.

Definition 5.5 (index pattern) An index pattern P is an unordered, directed
tree, P = (N,F, name, var, req, root, return, doc, L,V, D), where

86 CHAPTER 5. INDEX FRAMEWORK

• N is a finite set of pattern nodes.

• F ⊆ N× N is a finite set of directed edges. There are two kinds of edges,
namely parent-child (F/) and ancestor-descendant (F//) edges.

• Pattern nodes have a name, represented by function name : N → L, where
L is a set of pattern node names.

• Pattern nodes may have associated variables, represented by function var :
N → 2V, where V is a set of index variables.

• A pattern node is either marked as required or optional, represented by
function req : N → {0, 1}, where 1 denotes a required pattern node.

• Each index pattern has one pattern node which has no incoming edge and
which is returned by function root : P → N.

• Each index pattern has one distinguished pattern node which marks the
return of the index. This pattern node is always required and it is returned
by function return : P → N.

• Each index pattern is defined on one document D, which is returned by
function doc : P → D.

¤

We define functions parent, children, ancestor and descendant in the same
way as the corresponding functions in a document (cf. Subsection 2.1.1). Index
variables that are associated with optional pattern nodes define index keys as
optional. An optional pattern node may not have required pattern nodes as
descendants. We refer to an index pattern that consists of one pattern node as
a simple index pattern. If any pattern node has more than one child, the pattern
is called a twig index pattern, otherwise it is referred to as path index pattern.

An index pattern is associated with one document (which could be extended
to a collection of documents). Each index consists of nodes of the document that
structurally correspond to the pattern. More precisely, nodes of the document
match an index pattern if their names comply with the names of the pattern
nodes and their structural relationships correspond to the edges defined between
the pattern nodes. The index variables associated with pattern nodes specify
which properties of the nodes represent index keys. Chapter 6 provides details
on how to extract index entries from documents based on index patterns.

Each index entry specifies one index key for each index variable of the as-
sociated index pattern. The preorder traversal of index variables in the index
pattern determines the order of index keys in an index entry. An index key of an
index entry is null if there does not exist a node in the document that matches
the pattern node of the index variable. An index key may only be null if the
corresponding index variable is associated with an optional pattern node.

Example 5.7 (index patterns) Figure 5.2 shows three sample index pat-
terns. Parent-child edges are depicted as single lines, ancestor-descendant edges
as double lines and optional pattern nodes are connected via dotted lines. The
return pattern node is bordered and index variables are written down to the right
of the pattern node with which they are associated. The left-most index pattern

5.3. INDEX MODEL 87

@date title

resource

projects

[pv]

[= pv]

description

resource

projects

[~ pv]

[pt]
title

projects

(= pv)
text()

text() text()

Figure 5.2: Index patterns defining a value index on titles (left), a multidimen-
sional index on description values and resource types (middle) and
a multidimensional value index on resource dates and titles (right).

is a path index pattern defining a value index on title nodes that supports exact
comparisons. Note that the variable is defined on the text node and not on the
element node title because indexing the element content is not supported. In
the document of Figure 3.4, for example, nodes 1, 6–1 and 17–1 match pattern
nodes projects, title and text(), respectively. As the pattern node text()

has associated a value index variable and the pattern node title represents the
return of the index, a sample index entry maps the index key ‘semcrypt’ to the
node label 6–1. The index pattern in the middle specifies to index the value of
description nodes and the type of resource nodes for full-text and hierarchical
queries, respectively. The right-most index pattern is a twig index pattern. It
specifies an index that can select resource nodes according to their @date and
title. The index supports range comparisons on dates and exact comparisons
on titles. As @date nodes are optional, the index also contains index entries
whose date is null. This entails that the index can also be used to look for re-
sources that do not have a date. The index patterns correspond to the indices
I2, I15 and I5 of Table 4.4, respectively.

5.3.4 Index Configuration

Each index can physically use one or - alternatively - several nested index struc-
tures as underlying data structure. An index configuration defines the index
structures for an index by providing a mapping between the index variables of
the associated index pattern and the index structures.

Definition 5.6 (index configuration) Given an index pattern P with index
variables V, an index configuration CI = (T, config) consists of a list of index
structures T and function config : V → T, which maps index variables to
index structures. In case that an index configuration consists of several index
structures, the order of the index structures defines the nesting order between
the index structures. The first index structure is first in the nesting hierarchy.

Function config is total because each variable requires a mapping to an
index structure. It may map several variables to the same index structure if
this index structure is multidimensional. In case of index nesting, the index
configuration consists of several index structures. Note that it defines one in-
dex structure for each nesting level, independent of how many physical index
structures there actually exist. For example, when nesting two B+-trees, there is

88 CHAPTER 5. INDEX FRAMEWORK

one nested (physical) B+-tree for each index key of the superior index structure.
However, the index configuration simply defines one B+-tree for each nesting
level (i.e. each index variable) as the actual number of nested index structures
dynamically changes.

Dependent on the types of index structures supported, function config may
have to consider further restrictions. sciens currently supports hash tables, pre-
fix B+-trees and KDB-trees (cf. Chapter 4). As each index structure supports
different operators, the mapping is only valid if the index structure can handle
the operator defined in the index variable. While hash tables only accept vari-
ables with exact comparisons, the prefix B+-tree can handle any variable. Note
that an optional index variable cannot be mapped to a hash table (cf. Subsection
5.3.5). Multiple variables can only be mapped to the KDB-tree.

Example 5.8 (index configuration) Consider the second index pattern of
Figure 5.2. A sample index configuration maps the type variable to a B+-tree
and the variable on descriptions to a (nested) prefix B+-tree. Alternatively, the
index configuration can also map both variables to a KDB-tree.

5.3.5 Search Configuration

Queries access indices to evaluate different search conditions. A search config-
uration specifies a set of search conditions to access an index. It consists of
one search condition for each index variable. There are simple and range search
conditions. A simple search condition consists of one search key and one com-
parison operator. A range search condition comprises two search keys and two
comparison operators, whereby one search key and comparison operator repre-
sent the lower, the others the upper bound. Simple search conditions can also
be expressed as range search conditions (cf. Subsection 4.4).

Definition 5.7 (search configuration) Given an index pattern P with index
variables V, a search configuration CS = (O, search) consists of a set of search
conditions O and a bijective function search : V → O, which maps index vari-
ables to search conditions. The function must provide a mapping for at least
every required index variable.

In case that a search configuration does not contain any search condition,
the index performs an entire index lookup. Note that certain index structures,
such as the hash table, cannot perform lookups without search conditions. This
is insofar reflected as the index configuration may not map an optional index
variable to a hash table. Therefore, a valid search configuration must provide a
search condition for the hash table.

variable operator search operator
= =
° =, °
∼ ∼, ∼̇
≤ =, <, ≤

Table 5.2: Search operators supported by operators of index variables.

5.4. COMPONENTS 89

Each search key must match the property of its variable. For example, in
case of a variable on types, the search key has to be a type as well. The search
keys of a range search condition can have the special value infinite (±∞), which
matches any index key. This is necessary to specify range searches with an
infinite lower or upper bound. Which search operator is allowed in a search
condition depends on the operator defined in the index variable (cf. Tables 5.2,
4.2). For example, when an index defines a type variable with operator °, the
index supports exact queries on types as well as queries on type hierarchies.

Example 5.9 (search configuration) Consider the third index pattern of
Figure 5.2. A sample search configuration specifies the range search condition
o1 = (‘2007-01-01’,≤,≤,∞) for the date variable and the simple search con-
dition o2 = (=,‘XML’) for the title variable. Evaluating this search condition on
the index returns all resources written in ‘2007’ or later and having the title
‘XML’.

5.4 Components

To process queries and updates, databases provide a query optimizer and an
execution engine. The query optimizer rewrites query plans based on heuristics
and/or statistics and selects the plan with minimal costs. The execution engine
then processes the execution plan, which exactly defines the necessary steps to
process a query or update operation. Integrating indices into databases requires
to extend these components. The query optimizer needs to select appropriate
indices for queries and the execution engine has to access and maintain indices
when processing queries and updates, respectively.

To provide flexibility and extensibility, performing these tasks must be in-
dependent of specific indices. In Section 5.3, we have presented an index model
which provides a generic description of indices. Each index has associated an
index pattern, specifying what the index is defined on, and an index configu-
ration, providing a mapping between the logical index pattern and its physical
index structures. With the help of index patterns, the query optimizer can se-
lect indices and the execution engine is able to access indices and to determine
relevant updates for indices. The index configuration then enables indices to
perform the necessary query or update operations on their index structures.
The main advantage of this approach is that the components do not require
knowledge about specific index structures to perform their tasks. They can
handle any existing (or future) index that can be expressed by the index model.
When integrating a new index structure, it is possible to change the physical
organization of an index (e.g. replace the prefix B+-tree of an index with a
new full-text index structure). As long as the index model does not change,
processing the index remains unaffected by the new index structure.

In the following, we describe how to extend the query optimizer and the
execution engine to process indices. Subsection 5.4.1 shows how the query op-
timizer can select indices using the XAM approach. The index engine adopts
the tasks of accessing and maintaining indices from the execution engine and is
introduced in Subsection 5.4.2. As there still does not exist a generic approach
for maintaining indices, Chapter 6 provides details on index maintenance.

90 CHAPTER 5. INDEX FRAMEWORK

5.4.1 Index Selection

The query optimizer has to select indices for queries and generate query plans
that use indices. The main challenges are (i) to determine which indices equal
which parts of a query and (ii) to rewrite the query such that it uses the index
and still produces the same result. To provide extensibility, the index selection
must not assume the existence of specific indices, but needs to operate on a
generic description of indices, such as index patterns.

The XAM approach of Arion et al. [16, 18] describes how to select storage
modules for queries (cf. Subsection 5.2). It uses schema information in the
form of a structural summary to ease the selection process. As indices are
part of storage modules and our schema contains all information of a structural
summary, the query optimizer can use the XAM approach for index selection.
Its prerequisite is to represent every storage structure (primary and secondary
indices, views) as a XAM. In [17], Arion et al. have shown how to express
various XML index structures as XAMs. In the following, we first look at
differences between index patterns of sciens and XAMs, describe the XAM
selection algorithm and then look at necessary extensions to the XAM approach
to support the full flexibility of sciens.

Both index patterns and XAMs are annotated tree patterns. XAMs annotate
pattern nodes with identifier, tag, value and content specifications, whereas
index patterns use index variables. When expressing an index pattern as a
XAM, it is necessary to translate the index variables into required specifications.
Path index variables correspond to identifier specifications, index variables on
node names are equal to tag specifications and value index variables correspond
to value specifications. XAMs do not consider indices on types and labelpaths
and therefore need to be extended with corresponding specifications to be able
to express all index variables.

To a certain extent, XAMs are more expressive than index patterns as they
describe storage structures in general. For example, they can specify multiple
return nodes as well as multiple properties to be returned. It is further pos-
sible to add join semantics to XAM edges and to add value ranges to value
specifications, which enables XAMs to restrict the nodes that are contained in
a storage structure based on their value. To describe indices, one return node
and default join semantics are sufficient. Adding value ranges to index pattern
nodes would enable index patterns to further restrict the set of nodes indexed.
Such enhancements to index patterns are possible, but are not further regarded
in this thesis.

In Subsection 5.2, we have shortly outlined the main steps of how to select
XAMs for queries. To select XAMs for queries, the XAM approach tests equiv-
alence between query patterns and index patterns. For this purpose, it first
generates canonical models from query and index patterns by replacing wild-
cards and ancestor-descendant edges with the help of the structural summary.
Canonical models facilitate determining equivalence between patterns. Roughly
speaking, a query pattern p is equivalent to a pattern p′ if for each canonical
model pm of p, there exists a canonical model p′m of p′ that has the same struc-
ture and the same return nodes. If no single XAM is equivalent to a query, the
algorithm combines XAMs via structural joins and tests their equivalence to
the query. Different XAMs may return different properties of nodes or even use

5.4. COMPONENTS 91

different labeling schemes. As each XAM defines what exactly it returns and
even distinguishes various kinds of labels, the query optimizer can decide how
to combine several XAMs, e.g. which join algorithm to use.

If no single XAM or no combination of XAMs equals the query pattern, the
query cannot be answered with the available storage structures. In many cases,
there will be several alternative query plans that access a different combination
of XAMs. The XAM approach chooses the query plan which accesses a minimum
number of XAMs. The alternative use of a cost model is not discussed. When
using a cost model, calculating index access and update costs is straightforward
in sciens as it uses well-known index structures. For example, accessing a hash
table is always more efficient than accessing a B+-tree for exact comparisons.
Cost models discussed in literature are still limited (cf. e.g. [93, 122, 205]).
A detailed cost model is out of scope of this thesis as it is orthogonal to our
indexing approach.

title

@date

resource

project

(= 'semcrypt') ('2008-01-01')

projects

text()

Figure 5.3: Query pattern on title
and date values.

title

project

(= pv)

projects

@date

resource

[pv]

projects

text()

Figure 5.4: Index patterns for the
query of Figure 5.3.

Example 5.10 (index selection) Figure 5.3 depicts a sample query pat-
tern and Figure 5.4 visualizes two index patterns. The query corresponds
to sample query Q9 (//project [title = ‘semcrypt’]// resource [@date≥
‘2008-01-01’]). To generate a query plan for this query, the XAM approach
proceeds as follows:

1. Generate canonical patterns. In this example, each pattern has exactly one
canonical representation because for each ancestor-descendant edge, there
is only one matching labelpath in the schema. For example, considering
the query pattern, we can use the schema to extend the path /projects/

project// resource to /projects/ project/ milestone/ resource.

2. Determine equivalence between each individual index pattern and the query
pattern. In this case, no single index pattern is equivalent to the query
pattern.

3. Combine the index patterns via joins. As each index returns node labels,
we can combine the index patterns via a structural join between projects
and resources, p1 ./ project ° resource p2. The combined index pattern has
the same structure as the query pattern and the index variables support
the operations of the search condition. A possible query plan thus is to
access each index and then structurally join the results.

92 CHAPTER 5. INDEX FRAMEWORK

Some enhancements to the XAM approach are required to select indices
based on index patterns. The XAM approach tests structural equivalence be-
tween XAMs and query patterns based on their canonical representation. We
further need to ensure that an index pattern supports the search conditions of
a query based on its index variables. More precisely, the index variable and the
search key must refer to the same property. Additionally, the search operator
must be supported by the operator of the index variable (cf. Table 5.2). For
example, assume that there is an index with a variable that only supports exact
comparisons, which may physically be represented by a hash table. In case of
a range search, the operator of the index variable does not support the search
condition and thus the index must not be selected.

Further, we need to extend the XAM approach to enable the selection of
path, labelpath and type indices. Selecting type hierarchy indices corresponds
to selecting value indices. In the following, we outline how to select path and
labelpath hierarchy indices, respectively.

Path hierarchy indices. XAMs provide ID specifications, which are sim-
ilar to paths, but they do not consider hierarchical queries on paths. Path
hierarchy indices in sciens accept node labels as index keys. This enables the
database to take the result of one index access as input into another index
instead of accessing each index individually and joining their results. Instead
of combining two index patterns by structural joins only, it should therefore
also be possible to access indices consecutively. The result of one index access
dynamically becomes the input of another index.

@date

milestone

[pv]

projects

[pp]

resource title

project

projects

(= pv)

text()

Figure 5.5: Index patterns to retrieve resources by their milestone path and
date value (left) and projects by the value of their title (right).

Example 5.11 (index selection with path index) Consider the index pat-
terns of Figure 5.5 and assume that we want to evaluate sample query
Q9 (//project [title = ‘semcrypt’]// resource [@date≥ ‘2008-01-01’]).
With the original XAM approach, we can evaluate the query by accessing the two
index patterns and performing a structural join between the results (cf. Example
5.10). The left index pattern specifies a path hierarchy variable on milestones.
We can therefore replace the structural join by using the project labels returned
by the right index as search keys for this variable.

Labelpath hierarchy indices. To find indices on labelpath hierarchies,
XAMs have to be extended by labelpath specifications. Testing equivalence
between a query and an index pattern with a labelpath variable works as follows.
If the query is equivalent to some canonical index pattern, check if search in the
index can be restricted to these patterns by adding a search condition on the

5.4. COMPONENTS 93

labelpath. While a search condition with an exact comparison restricts search
to one canonical pattern, a hierarchical comparison selects a set of canonical
patterns.

title

projects

[pl]
title

projects

project

projects

project

title

milestone

projects

project

title

milestone

resource

Figure 5.6: Index pattern on labelpaths of titles and its canonical patterns.

Example 5.12 (index selection with labelpath index) The index pattern
in Figure 5.6 depicts an index on title labelpaths (I1 of Table 4.4) and its canon-
ical patterns. Figure 5.7 represents queries Q3, Q1 and Q2 of Table 2.2. Q3
exactly matches the index, whereas Q1 only matches the first canonical pattern.
To access the index for Q1, it is therefore necessary to restrict search to the
labelpath of project titles. As schema label 6 represents the desired labelpath,
evaluating search condition (=,6) on the index answers Q1. Q2 matches the
second and third canonical pattern of the index as it comprises milestone and
resource titles. The search condition (°,7) restricts search to these patterns,
where schema label 7 identifies the milestone hierarchy.

title

projects

title

projects

project

title

projects

milestone

Figure 5.7: Query patterns Q3, Q1, Q2, retrieving titles by their labelpath.

5.4.2 Index Engine

The index engine is the part of the execution engine that is responsible for
initializing, accessing and maintaining indices. Figure 5.8 depicts the overall
structure of the index engine. All index structures provide the same interface,
which allows the index engine to perform its tasks independently of specific
index structures and to extend and add index structures. To store and retrieve
pages from disk, each index structure interacts with the storage layer.

The index engine processes indices via the generic interface of their index
structures, each of which provides the following functionality to the index engine:

• Initialization - create/remove: The index structure initializes its data
structure (e.g. root page) or completely eliminates its data structure.

94 CHAPTER 5. INDEX FRAMEWORK

in
d

e
x
 s

tr
u

c
tu

re

access

initialization hash table

B+-tree

KDB-tree s
to

ra
g

e
 l
a

y
e

r

e
x
e

c
u

ti
o

n
 e

n
g

in
e

index engine

maintenance

Figure 5.8: Architecture of the index engine.

• Maintenance - insert/delete/update: Each maintenance operation receives
as input the index entries to be inserted, deleted or updated. The index
structure performs the required maintenance operation on its structure
using its proprietary algorithms.

• Access - retrieve: The index structure receives as input a search configura-
tion, traverses its structure to evaluate the search conditions and returns
matching nodes.

The index engine initializes, maintains and accesses indices. With the help
of the index and search configurations of indices, it interacts with their index
structures. The concept of index nesting entails that one index can have one
or several underlying index structures. The index engine always interacts with
the first index structure of the nesting hierarchy, which it determines with the
help of the index configuration. It then performs each operation on this index
structure as follows:

Index initialization. The index engine is responsible for creating and
removing indices. When creating indices, it first forwards the creation operation
to the index structure. In case that the index is created on an existing document,
it needs to determine the index entries to be inserted into the index structure.
For this purpose, it interacts with the maintenance module, which determines
relevant index entries. In case of removing an index, the index engine needs to
ensure that the index structure is completely removed as well. For this purpose,
it is necessary to delete all index entries from the index structure. While some
index structures can remove their structure themselves (e.g. trees), others may
require as input all index entries (e.g. hash tables). To determine these index
entries, the initialization module again interacts with the maintenance module.

Index maintenance. The index engine needs to keep indices consistent
with document updates. For this purpose, the execution engine forwards the
nodes to be inserted, deleted or modified to the index engine. Based on index
patterns, the index engine can determine relevant index entries for an index
without requiring knowledge about how the index is internally organized. It
then forwards the maintenance operation along with relevant index entries to
affected index structures. Chapter 6 provides details about how to extract
relevant index entries from document updates.

Index access. To access an index, the index engine receives as input
the search conditions to be evaluated on the index. A search condition can
be dynamic if an index takes the result of another index as input (cf. path

5.5. SUMMARY 95

hierarchy indices). In this case, the search key is not known at query compile
time, but after executing part of the query. The index engine forwards the
search configuration to the index structure and returns matching nodes to the
execution engine.

Index structures insert, update and delete index entries and process search
configurations. The index engine passes entire index entries and search config-
urations to index structures. In case of index nesting, these index entries and
search configurations refer to several index structures. With the help of the
index configuration, each index structure can extract the index keys which it
needs to index as well as the search conditions which it has to evaluate. To
perform the required operations on all index structures, each index structure
has to interact with its nested index structure, which it can determine with the
help of the index configuration. After completing a maintenance or retrieval
operation, it forwards the operation to the nested index structure.

5.5 Summary

To provide flexibility in indexing, an XML database requires an index framework
that allows for processing arbitrary indices. Index processing comprises the tasks
of selecting appropriate indices for queries, accessing and maintaining indices.
With the help of a generic index model, the index framework presented in this
chapter can perform these tasks without depending on specific index structures.
It therefore offers the flexibility to adapt indices to the query workload as well
as to easily extend and add index structures.

The index model logically represents each index as an annotated tree pattern.
The tree pattern uses index variables to specify the properties to use as index
keys and defines the nodes to be returned. Search configurations contain search
conditions on these variables. Index patterns and search configurations do not
depend on underlying index structures. Only the index configuration knows
about index structures and maps each index to its physical index structures.

To process indices, a database needs to extend the query optimizer and the
execution engine. The query optimizer selects appropriate indices for queries
based on index patterns. The execution engine accesses and maintains indices.
For this purpose, it uses index patterns to determine index entries that are
relevant for maintenance operations. Based on index configurations, it forwards
retrieval and maintenance operations to affected index structures.

Based on the index model, the index framework can select, access and main-
tain indices. When extending or adding index structures, no change in the query
optimizer or the execution engine is required as long as the new indices can be
represented by the index model.

96 CHAPTER 5. INDEX FRAMEWORK

Chapter 6

Index Maintenance

Contents
6.1 Introduction . 98

6.2 Related Work . 99

6.2.1 Maintaining Indices in Object-Relational Databases 99

6.2.2 Maintaining Object-Oriented Indices 100

6.2.3 XML Index Maintenance 101

6.2.4 XML View Maintenance 102

6.2.5 Comparison . 103

6.3 Concepts . 103

6.3.1 Update Fragments 106

6.3.2 Embeddings . 106

6.3.3 Stack Encoding . 107

6.3.4 Schema-aware Index Patterns 108

6.3.5 Queries . 111

6.3.6 Index Entries . 112

6.4 Maintenance Algorithm 113

6.4.1 Find Embeddings . 114

6.4.2 Execute Queries . 121

6.4.3 Generate Index Entries 129

6.5 Evaluation and Extensions 130

6.6 Summary . 132

This chapter presents an index maintenance algorithm to propagate relevant
updates to affected index structures when updating documents. After giving a
general introduction in Section 6.1, Section 6.2 reviews related work on index
maintenance. Section 6.3 presents the main concepts of the proposed algorithm,
which is described in detail in Section 6.4. Possible extensions of the algorithm
are discussed in Section 6.5. Finally, Section 6.6 summarizes the main ideas of
the algorithm.

97

98 CHAPTER 6. INDEX MAINTENANCE

6.1 Introduction

To keep indices consistent with updates on documents, databases need to propa-
gate relevant updates to affected index structures. In XML, updating comprises
inserting, deleting or modifying document fragments. We refer to such fragments
as update fragments and to their nodes as update nodes. Index maintenance
is the process of extracting index entries from these update fragments based
on index definitions. It also comprises determining relevant index entries when
creating or deleting indices on existing documents.

sciens provides selective indices, which can be defined on arbitrary parts of a
document. Selective indices imply that update fragments need not correspond
to indexed fragments. They either contain more nodes than are required for
index maintenance, or miss required nodes. Therefore, the database needs to
determine which nodes of the update fragment affect an index and determine
all nodes which are part of index entries.

Example 6.1 (index update) Consider a multidimensional value index on
resource titles and resource dates, returning resource labels. When adding a
new resource, the maintenance algorithm needs to extract the title, date and
resource label from the new resource and insert the corresponding index entry
into the index structure. If the title of the resource changes, the index also needs
to be updated. As in this case only the title changes, the maintenance algorithm
has to determine the date value and the resource label to modify the index entry.

The index definition specifies the fragment to be indexed and is represented
as a tree pattern in sciens (cf. Subsection 5.3.3). Assume that an index maps
the value of a node to the label of the node. In this case, the index pattern only
consists of one pattern node. Each node which matches the pattern node affects
the index and constitutes an index entry. In case of path patterns, the nodes
of an index entry are in an ancestor-descendant relationship. For example, an
index can map the value of a node to an ancestor of the node. As soon as one
of the nodes changes, all nodes on the indexed path are required to perform the
maintenance operation. The most difficult case arises when the index definition
has the form of a tree pattern. An example is an index on two different values,
e.g. on the date and title of resources. In this case, the nodes of an index entry
have different paths. To retrieve all structurally related nodes of an index entry,
several navigations are necessary.

To be applicable to sciens, the index maintenance algorithm should support
arbitrary patterns and index structures. Many indexing approaches propose
proprietary maintenance algorithms. These algorithms take into account what
the index is defined on and thus can only handle specific index patterns. sciens
bases on the idea of decoupling index structures and index patterns. One index
structure can index various patterns and one pattern can be indexed by various
index structures. To ensure this extensibility, the maintenance algorithm must
neither depend on specific index structures nor on specific index patterns.

As update fragments need not correspond to indexed fragments, the mainte-
nance algorithm has to determine the nodes that are required for performing the
maintenance operation. For this purpose, it can (i) maintain relevant nodes in
an auxiliary data structure or (ii) retrieve relevant nodes from the correspond-
ing document. Alternative (i) needs to maintain one auxiliary data structure

6.2. RELATED WORK 99

for each index, which increases size and maintenance overhead. As each index
requires a different auxiliary data structure, it also impedes flexibility in index-
ing. Alternative (ii) is referred to as issuing source queries on base data. Which
queries are necessary can be inferred from index patterns. This alternative may
require a large number of queries, but can handle arbitrary indices. The number
of queries can be reduced by extracting required nodes from update fragments
instead of querying them from documents.

sciens requires a generic index maintenance algorithm that can handle ar-
bitrary index patterns and index structures. It therefore cannot use auxiliary
data structures to determine relevant nodes, but has to query relevant nodes. In
XML, updates usually do not comprise single nodes, but document fragments.
To improve update performance, the maintenance algorithm should extract rel-
evant nodes from update fragments instead of querying them from base data.
Further, integrating schema information improves update performance. As sci-
ens is based on a schema-aware labeling scheme, the algorithm should exploit
the schema to be more efficient.

6.2 Related Work

This section reviews related work on index maintenance. Indices are well-
established in databases and each database needs to maintain its indices.
Thereby, the data model influences which indices are supported as well as
how they can be maintained. Subsection 6.2.1 looks at maintaining indices
in (object-) relational databases and Subsection 6.2.2 considers object-oriented
databases. The focus of Subsection 6.2.3 is on existing approaches for XML
index maintenance. As views are related to indices and need to be updated as
well, Subsection 6.2.4 reviews related work on XML view maintenance. Finally,
Subsection 6.2.5 compares current approaches and relates them to sciens.

6.2.1 Maintaining Indices in Object-Relational Databases

Relational databases support indices on values defined on columns of relations.
Each value of an indexed column represents an index key. Updates in relational
databases are investigated e.g. by Schkolnick and Tiberio [172]. Denuit et al. [63]
consider updates on secondary indices and views defined on complex types.
Basically, an update affects an index if the index references one or more columns
being updated. In case that an index may only refer to columns of one relation,
the index simply needs to be updated when the values of these columns change
due to the insertion, deletion or modification of a tuple. The more difficult case
arises when an index may be defined on columns of different relations according
to a join condition. If the attribute of one relation changes, in the worst case the
other relation needs to be scanned entirely to find the attributes that match the
join condition. Relations do not support direct navigation from the tuples of
one relation to structurally related tuples of another relation. Such navigation
can at most be supported by join indices [151]. Updating indices on multiple
relations is especially considered in the context of data warehouses (e.g. [124]).

Example 6.2 (relational index update) Consider a milestone relation,
which assigns a unique id to each milestone, and a resource relation with a

100 CHAPTER 6. INDEX MAINTENANCE

foreign key on the milestone id. We define (i) an index on the resource date
and (ii) a multidimensional index on the resource date and the milestone title.
Inserting a new resource triggers the insertion of a new attribute into the date
column of the resource relation. This attribute is required for maintaining index
(i). With regard to index (ii), a query on the milestone relation is necessary to
find the corresponding milestone title before inserting the date and title into the
index.

Extensible databases (cf. Subsection 4.2.1) support adding index structures
to databases, but leave the task of updating these indices to the developer. In
DB2 database extenders [64], the developer needs to specify a function (called
key transform) which takes values of indexed columns as input and generates
index keys from these values. With regard to Oracle data cartridges [184], the
developer defines methods for insertion, deletion and update that are specific
to each index structure. Whenever a base table changes, these methods are
invoked with the old and new values of the indexed columns and their tuple
identifiers.

6.2.2 Maintaining Object-Oriented Indices

Object-oriented databases incorporate the nested structure between objects into
index structures (cf. Subsection 4.2.1). As long as indices only refer to object
attributes, updates can be processed similarly to relational databases. However,
object-oriented databases typically support indices on aggregation graphs, which
index objects on values of nested objects. When one of the objects changes, all
objects on the indexed path are required to perform the maintenance operation.
For this purpose, specific index structures have been developed [28], which can
be classified into two categories. (i) The multi-index and the join index maintain
all relevant objects in the index structure, which are accessed when processing
updates. (ii) The nested index and the path index need to perform queries,
i.e. traverse nested objects, to determine relevant objects. In each case, the
maintenance process depends on the underlying data structure.

Example 6.3 (object-oriented index update) Consider a nested index on
the title of resource nodes, which returns for each title value the labels of related
milestone nodes (cf. Figure 4.2). When adding a title to a resource, a query
is necessary to determine the corresponding milestone label. This query can
be performed by following backward references from the resource object to the
milestone object.

To maintain object-oriented indices regardless of underlying data structures,
Henrich [102] proposes index update definitions. There is one index update
definition for each class and each index structure which may be affected when
updating an object belonging to this class. The index definition consists of
(i) a description of the event, which causes the update, (ii) a reference to the
index structure, for which one or more entries have to be updated, (iii) a query
determining relevant objects to generate index entries, (iv) the necessary index
actualization. When processing an update, the index definitions associated with
the class of the updated object enable the database to generate index entries
for affected index structures.

6.2. RELATED WORK 101

6.2.3 XML Index Maintenance

Several XML index structures incorporate the hierarchical structure of XML
documents (cf. Subsection 4.2.2) and thus need to consider relationships be-
tween nodes when propagating updates to index structures. Various algorithms
have been proposed to update structural indices, e.g. [112, 201]. However, these
algorithms are tailored to specific index structures and do not support the main-
tenance of arbitrary indices.

Various native XML databases [47] provide simple structural and value in-
dices. To determine whether an update affects an index, they compare the
labelpath of the update node with the path of the index definition via query
containment techniques (e.g. [149, 154, 177]) or path subsetting [188]. However,
they do not support more complex indices whose index definitions have the form
of path or tree patterns.

Example 6.4 (eXist index update) In the native XML database eXist [2],
one can define a secondary index on the value of date nodes, which returns the
labels of these nodes. When processing an update, the database simply needs to
compare the name of the update node with the node name of the index definition,
which both refer to @date. As long as no navigation between indexed nodes is
supported, index maintenance remains trivial.

The KeyX approach of Hammerschmidt et al. [94, 95] supports selective
XML indexing. It represents each index definition as a set of linearized path
expressions, which are comparable to index patterns (cf. Subsection 5.2). To
maintain indices, KeyX compares the nodes that are inserted, deleted or mod-
ified with the index definitions. More precisely, it compares each update node
with each index definition to determine whether the node affects the index. If
this is the case, it executes queries to navigate to all nodes which are part of
the index entry. More precisely, for each update node and each index definition,
KeyX performs the following steps. (i) Check whether the update node is either
a key, a qualifier or the return of an index by comparing the labelpath of the
update node with each linearization of the index definition through path inter-
section. In case that the path intersection is not empty, i.e. both paths select
common nodes, (ii) calculate relative path expressions to the remaining keys,
qualifiers or the return of the index definition. Then execute queries on these
paths to retrieve all nodes that are part of the index entry. (iii) Each combina-
tion of qualifier, return and key constitutes an index entry and is forwarded to
the corresponding index structure for maintenance. There also exists an index
creation algorithm for KeyX. When creating an index on an existing document,
it queries the document to determine associated index entries.

Example 6.5 (KeyX index update) Consider a multidimensional value in-
dex on the date and title of resources, returning resource labels. KeyX represents
the corresponding index definition with one path expression for each key, namely
//resource/ title/ text() and //resource/ @date, and one for the return,
which is //resource. Assume that we add a new resource with a date and a ti-
tle. The KeyX approach performs the following steps for each node of the update
fragment, starting with the resource node. (i) It first determines whether the la-
belpath of the resource node intersects with any path of the index definition. As
the intersection with the return of the index definition is not empty, the resource

102 CHAPTER 6. INDEX MAINTENANCE

node is part of an index entry. (ii) To retrieve the corresponding date and ti-
tle, it executes queries on the keys of the index definition. (iii) It then inserts
the index entry, which maps the title and date value to the resource label, into
the index. The same steps are performed for the remaining nodes of the update
fragment, i.e. for the date and title node, yielding the same index entry. The ap-
proach needs to execute two queries for each affected update node (resource, date
and title). As it considers each node individually, it needs to execute six queries
in total and generates the same index entry three times. However, the update
fragment contains all nodes that are relevant for the maintenance operation and
therefore no query would be necessary.

Sanders [171] also considers updates on multidimensional indices, referred to
as compound indices. This approach associates with each node name the index
definitions that include the node name. When updating a node, the following
steps are performed for each associated index definition. The sets of index
keys that exist in the document prior to and after the update are calculated.
These sets are referred to as before keys and after keys, respectively. Then
the difference between these sets is calculated and maintained. Calculating
before and after keys consists of (i) collecting the set of all relevant nodes in
the document and (ii) combining them into index entries based on structural
relationships. To reduce the number of nodes considered, only nodes that relate
to the update node according to the index definition are collected.

6.2.4 XML View Maintenance

Maintaining XML views is closely related to maintaining XML indices since
views need to be updated as well when base data changes. Several approaches
have been proposed to incrementally maintain XML views instead of recomput-
ing the view. Thereby, the main assumption is that incremental maintenance
is more efficient than recomputation. To incrementally maintain a view, the
following steps are necessary: (i) determine whether an update affects a view,
(ii) select the nodes required for maintenance, and (iii) generate and execute
the maintenance statement. The main difficulty in performing these steps is to
reduce the number of accesses to base data. For this purpose, incremental view
maintenance approaches either keep relevant nodes in auxiliary data structures
[9, 48, 68, 74] or only support updating views for which required nodes are
known [136, 156].

Abiteboul et al. [9] propose to maintain an auxiliary data structure for each
view. The auxiliary data structure consists of the object identifiers which are
required for determining whether an update is relevant. Chen et al. [48] ex-
tend this approach and use as auxiliary data structure an aggregate path index
(APIX). As this index also encodes structural information, it helps reducing
the number of accesses to base data. To keep all relevant nodes in the aux-
iliary data structure, El-Sayed et al. [68, 74] materialize intermediate query
results of the algebraic operator tree, which defines the view, in an auxiliary
data structure. This data structure can then process updates with the help of
propagation rules. All of these approaches have the disadvantage that auxiliary
data structures grow rapidly and need to be maintained as well when base data
changes.

6.3. CONCEPTS 103

Liefke and Davidson [136] and Nilekar [156] propose maintenance approaches
which only depend on the view and the update, but neither require auxiliary
data structures nor access to base data. However, these approaches are limited
with regard to which updates they support over views. If an update requires
nodes which are not part of the update or the view, they cannot update the
view.

6.2.5 Comparison

XML index maintenance approaches cannot directly adopt relational mainte-
nance approaches as they need to consider structural relationships between in-
dexed nodes. Extensible object-relational databases leave the task of index
maintenance to the developer. The maintenance process needs to be reimple-
mented for each specific index structure, which naturally causes redundancy. As
maintenance depends on the specific index definitions, this approach impedes
extending index structures and is not applicable to sciens.

Object-oriented and XML indices consider structural relationships between
objects and nodes, respectively, and thus require more complex maintenance
algorithms. Object-oriented maintenance approaches traverse object references
to generate index entries. They only support path patterns, but not tree pat-
terns. While the first approaches for XML index maintenance only considered
path patterns as well, they have recently been extended to tree patterns. Basi-
cally, they determine for each update node whether it affects an index and then
execute queries to retrieve all nodes which are required for the maintenance
operation. XML view maintenance approaches equally query relevant nodes or
maintain them in auxiliary data structures.

As sciens cannot maintain auxiliary data structures and requires a generic
maintenance algorithm, it could adopt existing XML index maintenance ap-
proaches that query relevant nodes. The main drawback of these approaches
is that they consider each update node individually and thus may need to exe-
cute a large number of queries. An important observation is that by extracting
relevant nodes from update fragments instead of querying them, the number of
queries can be greatly reduced. Existing maintenance approaches do not exploit
schema information. However, integrating schema information does not only im-
prove processing queries (cf. Subsection 2.1.2), but can also accelerate updates.
In contrast to existing approaches, the maintenance algorithm of sciens should
therefore exploit update fragments and schema information.

6.3 Concepts

This section presents the main concepts of the index maintenance approach of
sciens, which we have published in [89]. The main idea of our approach is to
extract index entries from update fragments based on index patterns. Index
patterns uncouple the algorithm from specific index structures and guarantee
support for indices defined on arbitrary document fragments. By exploiting the
structure of update fragments, the proposed algorithm minimizes the number
of additional queries without relying on auxiliary data structures. It only needs
to retrieve those nodes from the database that are required for indexing but are

104 CHAPTER 6. INDEX MAINTENANCE

not contained in the update fragment. If all index entries can be inferred from
the update fragment, the algorithm is completely self-maintainable. The algo-
rithm also supports determining relevant index entries when creating or deleting
indices on existing documents. The developed techniques are not restricted to
index maintenance, but can be carried over to the maintenance of caches, views
or related problems.

project

milestone

title resource

'design'

projects 1

2-1

7-1.1

20-1.1

59-1.1

resource21-1.1.1 21-1.1.3

@date 62-1.1.1

@id 5-1

@date 62-1.1.3

(a)

(b)

(c)

'2007-03-12' '2008-01-08'

'26543'

Figure 6.1: Update fragments to update the entire document (a), a milestone
(b) and a date (c).

Example 6.6 (index updates) Assume that we successively insert fragments
(a)-(c) of Figure 6.1 and propagate updates to the indices whose patterns are
shown in Figure 6.2. After executing the update on the document, each node
of the update fragment has assigned a unique label, which encodes the position
of the node in the document. The insertion of fragment (a) only affects the
first index, which needs to be updated with index entry ((‘26543’) → (5–1)).
When inserting fragment (b), we need to insert index entry ((‘2008-01-08’) →
(21–1.1.3)) into the second index. The update further affects the third index,
in which we need to insert the index entries ((‘design’,⊥) → (21–1.1.1)) and
((‘design’,‘2008-01-08’) → (21–1.1.3)). Note that the date is required in the
second index and is optional in the third index. As the first resource still does not
have a date, it is not part of the second index. Now let us add a date to the first
resource by inserting fragment (c). The insertion affects both the second and the
third index. In each case, the insertion is not self-maintainable. We first need
to determine the resource label belonging to the date node. We can then insert a
new index entry into the second index, namely ((‘2007-03-12’) → (21–1.1.1)).
With regard to the third index, the update also requires the title of the milestone.
In this case, we do not need to insert a new but update an existing index entry.
More precisely, we have to update index entry ((‘design’,⊥) → (21–1.1.1)) by
replacing the null value with the value of the new date node. Note that only the
update of fragment (c) depends on executing queries on base data to determine
all nodes required for maintenance. In the other cases, relevant index entries
can be extracted from update fragments.

To extract index entries from update fragments, the algorithm adopts ideas
from XML query processing techniques. XML pattern matching [42, 50, 142,
200] and tree inclusion [31, 53] algorithms represent queries as tree patterns and
find the nodes in the document that match the pattern. Each subtree that struc-
turally corresponds to a pattern is referred to as embedding. Pattern matching

6.3. CONCEPTS 105

@date

projects

[pv]

resource

@id

projects

[= pv]

project

@date

title

milestone

projects

[pv][= pv]

resource

text()

Figure 6.2: Simple index pattern on project ids (left), path index pattern on
resource dates (middle) and twig index pattern on milestone titles
and resource dates (right).

algorithms are based on index structures and labeling schemes. Tree inclusion
algorithms traverse whole documents to find embeddings. XML filtering tech-
niques [45, 66] have been developed for publish/subscribe systems to evaluate
several queries, represented as patterns, by traversing the document only once.
They do not return embeddings, but only determine the documents that match
the queries.

The index maintenance approach of sciens finds embeddings of index pat-
terns in update fragments and then generates index entries from these embed-
dings. Each embedding consists of nodes in the document that structurally
correspond to the index pattern and represents an index entry. While it reuses
some ideas of query processing techniques to find embeddings, it has to con-
sider several differences: (i) It needs to find embeddings in update fragments,
but should not traverse whole documents or access auxiliary data structures
for this purpose. (ii) If the update fragment misses nodes that are required for
indexing, it needs to issue source queries. (iii) It needs to associate the index
keys with the nodes to be returned and generate index entries from embeddings.
Dependent on the update operation, the index structures can then insert, delete
or modify the index entries.

To extract index entries from update fragments based on index patterns, the
proposed algorithm performs the following steps:

1. Find embeddings of index patterns in update fragments.

2. Execute queries to retrieve the nodes that are not contained in the update
fragment but are required for generating index entries.

3. Generate index entries from embeddings by extracting the index keys and
the nodes to be returned. Forward the generated index entries to the
specific index structures, which insert, delete or modify the generated
index entries.

In the following, we present the main concepts of the maintenance algorithm.
We start with update fragments in Subsection 6.3.1, define embeddings in Sub-
section 6.3.2 and present a stack encoding for embeddings in Subsection 6.3.3.
Subsection 6.3.4 describes how to improve finding embeddings and reduce the

106 CHAPTER 6. INDEX MAINTENANCE

size of the stack encoding by integrating schema information into index pat-
terns. Subsection 6.3.5 presents the main concepts for querying required nodes
and Subsection 6.3.6 for generating index entries.

6.3.1 Update Fragments

Each update (insertion, deletion, modification) consists of an update operation
that specifies the location of the update in the document. The update operation
corresponds to a query that returns the nodes relative to which the update is
performed. In case of a deletion, each fragment returned by the update operation
represents an update fragment that needs to be deleted. In case of an insertion,
the update additionally contains the fragment to be inserted. This fragment
constitutes the update fragment that is inserted relative to the nodes returned
by the update operation. Each modification also specifies an update fragment
that replaces the nodes returned by the update operation. In the following, we
assume that a modification is executed as a deletion followed by an insertion.
Although modifying index entries instead of deleting and reinserting them may
be more efficient, we omit modifications for ease of presentation. The algorithm
could however easily be extended to handle modifications as well.

Each update operation specifies the path from the root of the document to
the root of each update fragment. The maintenance algorithm receives as input
the update fragments after executing the update operation. Each node of the
update fragments therefore has assigned a unique label, which implies that the
algorithm knows the path of each node in the update fragment. In the following,
each update fragment is a tree of labeled nodes that are inserted into or deleted
from a document.

6.3.2 Embeddings

To determine relevant index entries, the maintenance algorithm finds embed-
dings of index patterns in update fragments. Nodes of a document that struc-
turally correspond to the pattern nodes of an index pattern are referred to as
embedding. This means that their names, parent-child and ancestor-descendant
relationships must comply. In case that a pattern node is required, there must
exist a corresponding node in the document. If it is optional, it has associated
a corresponding node in the document only if this node exists.

Definition 6.1 (embedding) An embedding of an index pattern P = (N, F)
in a document D = (N,F) is a mapping from N to N . The edges of an index
pattern can be classified into parent-child and ancestor-descendant edges, F =
F/ ∪F// (cf. Definition 5.5). Functions parent and ancestor determine whether
nodes N in the document are connected via edges F (cf. Subsection 2.1.1). An
embedding is defined by partial function emb : N → N , such that ∀x, y ∈ N:

(a) if req(x) = 1 → emb(x) is defined

(b) if (x, y) ∈ F/ → emb(x) = parent(emb(y))

(c) if (x, y) ∈ F// → emb(x) ∈ ancestor(emb(y))

¤

6.3. CONCEPTS 107

Nodes of a document that represent an embedding are called matching nodes.
The pattern nodes that match a node are referred to as matching pattern nodes.
Note that an embedding need not be an injective function as a node of the
document may match several pattern nodes.

project

milestone

title resource

'design'

projects

resource

@id

@date

title

milestone

projects

resource

text()@date

1

2-1

7-1.1

20-1.1

59-1.1

21-1.1.1 21-1.1.3

5-1

62-1.1.3

Figure 6.3: Embeddings of an index pattern (right) in a document (left).

Example 6.7 (embedding) Figure 6.3 depicts two embeddings of an index
pattern in a document. Each embedding associates each required pattern node
with one node of the document. The first embedding, depicted with dotted lines,
consists of the nodes with labels (1, 7–1.1, 20–1.1, 59–1.1, 21–1.1.1). Note that
pattern node @date is optional. Thus the embedding need not contain a matching
node for this pattern node. The second embedding, depicted with dashed lines,
consists of the nodes with labels (1, 7–1.1, 20–1.1, 59–1.1, 21–1.1.3, 62–1.1.3).

We refer to an embedding which still misses matching nodes as a partial
embedding and to its matching nodes as candidate nodes. A partial embedding
is complete as soon as there exists a matching node for each required pattern
node of the corresponding index pattern. If there does not exist a matching node
for each required pattern node, we say that the embedding and its candidate
matching nodes are false positives.

Example 6.8 (false positive) Considering the second index pattern of Figure
6.2 and update fragment (b) of Figure 6.1, node 21–1.1.1 is a candidate node as
it matches pattern node resource. However, before inserting fragment (c), this
partial embedding misses a matching node for the required @date pattern node
and thus represents a false positive.

Note that we associated each index pattern with one document in Subsection
5.3.3. When defining an index on a collection of documents, the index pattern
has embeddings in each document of the collection.

6.3.3 Stack Encoding

When traversing a document to extract embeddings, embeddings do not appear
in a linear order. Instead, successive nodes may belong to different embeddings,
or some nodes may be part of several embeddings. It is therefore necessary to

108 CHAPTER 6. INDEX MAINTENANCE

keep matching nodes in an intermediate data structure that encodes embed-
dings. For this purpose, it is possible to reuse stack encodings proposed by
pattern matching algorithms (cf. e.g. [200]). This data structure associates with
each pattern node of an index pattern a stack. Each entry in a stack consists of
a matching node from the document and a pointer to its ancestor node in the
stack of the parent pattern node, encoding the structural relationships between
the nodes.

@date

title

milestone

projects

resource

text()

7-1.1

20-1.1

59-1.1

21-1.1.1

21-1.1.3

62-1.1.3

1

Figure 6.4: Stack encoding of the embeddings in Figure 6.3.

Example 6.9 Figure 6.4 depicts the stack encoding of the embeddings of Figure
6.3. Some nodes belong to both embeddings, e.g. node 20–1.1. It is therefore
not possible to remove this node from the stack as long as not all embeddings
that contain this node have been found. The two embeddings differ in their
nodes matching the resource and @date pattern nodes. We know that date
62–1.1.3 belongs to resource 21–1.1.3 because of the pointer between these nodes.
Note that in this case, the first resource could be removed from the stack when
matching the second resource because its embedding is already complete. It might
therefore seem sufficient if one stack only contains one matching node at the
same time and that keeping references is not necessary. However, imagine that
each milestone can have several titles. In this case, all titles of a milestone
are found before any resources of the milestone. As each resource forms one
embedding with each title, it is indispensable to keep all titles in the stack.

6.3.4 Schema-aware Index Patterns

All embeddings have the same structure as the index pattern. Integrating struc-
tural information from the schema facilitates finding embeddings. For this pur-
pose, this subsection presents schema-aware and minimal index patterns.

Each document has associated a schema in sciens. A valid index pattern
only refers to paths that exist in the document, i.e. that have been defined in
the schema. Therefore each path in the index pattern matches one or several
path schemas of the schema tree. By associating matching path schemas with
pattern nodes, schema information can be exploited when finding embeddings.

Matching path schemas of pattern nodes can be determined by finding em-
beddings of the index pattern in the schema tree. For this purpose, existing

6.3. CONCEPTS 109

query pattern matching algorithms can be used [42, 50, 142, 200]. Each match-
ing path schema of a pattern node has one ancestor path schema in the corre-
sponding parent pattern node. One path schema could have several ancestor
path schemas in the parent pattern node only if we allowed recursion in the
schema or wildcards in the index pattern.

A schema-aware index pattern associates matching path schemas with each
pattern node and uses one stack for each matching path schema. This implies
that each pattern node has as many stacks as it has matching path schemas.
To be valid, each pattern node must have at least one matching path schema.

Definition 6.2 (schema-aware index pattern) A schema-aware index pat-
tern PS = (N,F, name, var, req, root, return, doc, paths, stack, pstack, L,V, D, S,
P) extends an index pattern P, as defined in Definition 5.5, by a set of stacks
S and by the set of path schemas P which are taken from the schema S of the
document D on which the index pattern is defined. It further defines functions
paths and stack and partial function pstack.

• Function paths : N → 2P associates each pattern node with matching
path schemas.

• Function stack : (N,P) → S maps each matching path schema of each
pattern node to a stack such that ∀n ∈ N : ∀p ∈ paths(n) : stack(n,p) ∈ S.

• Partial function pstack : (N,P) → S relates each stack with a par-
ent stack, such that the parent stack is associated with a parent pat-
tern node and an ancestor path schema, i.e. ∀n ∈ (N \ root(PS)), n′ ∈
N,p ∈ paths(n),p′ ∈ paths(n′) : parent(n) = n′ ∧ p′ ∈ ancestor(p) →
pstack(n,p) = stack(n′,p′).

¤

title

projects

milestone

20 63

7

1

Figure 6.5: Schema-aware index pattern on milestone and resource titles.

Example 6.10 (schema-aware index pattern) The schema-aware index
pattern of Figure 6.5 depicts the labels of embedded path schemas and their
stacks. The paths relationships are shown as dotted lines, pstack relationships
as simple lines. As both milestones and resources have titles, the title pattern
node has two matching path schemas, namely the path schemas with labels 20
and 63.

The number of matching nodes increases with the size of an index pattern.
The more pattern nodes an index pattern has, the more matching nodes does
the maintenance algorithm find and encode into the stacks. To extract index
entries, only those nodes of an embedding are required that are either index keys

110 CHAPTER 6. INDEX MAINTENANCE

or return nodes. We therefore propose to omit all pattern nodes of an index
pattern that are redundant, i.e. that are not relevant for generating index entries.
Using minimal index patterns improves the space complexity of the maintenance
algorithm. Various approaches have been proposed to minimize tree patterns
by finding smaller, equivalent patterns (cf. [14, 78, 165]). By exploiting schema
information, it is similarly possible to reduce the size of index patterns.

Each index pattern must contain the return pattern node and the pattern
nodes that have associated index variables. To preserve structural relationships,
it requires branching pattern nodes. As pattern nodes can be required or op-
tional, it must further contain those pattern nodes that separate required from
optional fragments. All other pattern nodes are redundant and can be removed
because they are not relevant for defining the index.

Definition 6.3 (redundant pattern node) A pattern node nr of a schema-
aware index pattern PS with pattern nodes N, nr ∈ N, is redundant if it fulfills
each one of the following conditions:

(a) nr 6= return(PS) (the pattern node is not the return pattern node)

(b) var(nr) = ∅ (the pattern node has not associated index variables)

(c) (∀n1, n2 ∈ children(nr) : n1 = n2) ∨ (children(nr) = ∅ ∧ req(nr) = 0) (the
pattern node has exactly one child pattern node or it is an optional leaf)

(d) ∀n1 ∈ children(nr) : req(nr) = req(n1) (the pattern node and its child are
either both required or both optional)

¤

The size of a schema-aware index pattern can be reduced by removing redun-
dant pattern nodes. A minimal index pattern can be obtained from a schema-
aware index pattern by removing each redundant pattern node and its associ-
ated edges and inserting an ancestor-descendant edge between its parent and
its children. Note that each pattern node of a schema-aware index pattern has
associated path schemas. Therefore it is possible to omit redundant pattern
nodes and insert ancestor-descendant edges without changing the semantics of
the index pattern. Minimization could be further enhanced by also taking into
account the cardinality of node schemas. In the following, we assume that each
index pattern is schema-aware and minimal.

Definition 6.4 (minimal index pattern) A minimal index pattern is a
schema-aware index pattern that does not contain redundant pattern nodes.

Example 6.11 (minimal index pattern) Figure 6.6 depicts a non-minimal
index pattern on the left and its minimal version on the right. Each pattern
node has associated the labels of matching path schemas. The non-redundant
pattern nodes are the branching pattern node milestone, the return pattern
node resource and the pattern nodes text() and @date that have associated
index variables. The minimal index pattern contains an ancestor-descendant
edge between pattern nodes milestone and text(). Nevertheless, only text
nodes whose parents are title nodes (but e.g. not description nodes) will
match the text() pattern node because of its associated path schema.

6.3. CONCEPTS 111

milestone

projects

project

resource

@date

title

text()

[= pv] [pv]

59

20

7

2

1

21

62

milestone

resource

@datetext()

[= pv] [pv]

59

7

21

62

Figure 6.6: Non-minimal (left) and minimal (right) index pattern on milestone
titles and resource dates.

6.3.5 Queries

In the previous subsection, we defined embeddings of index patterns in docu-
ments. Updates usually do not refer to entire documents, but to fragments only.
When finding embeddings of an index pattern in an update fragment, each em-
bedding may miss nodes that have not been contained in the update fragment.
However, it is necessary to find all nodes of affected embeddings before generat-
ing index entries. To determine missing nodes, it is necessary to execute source
queries on the document.

An embedding may miss ancestors of the update fragment or any descen-
dant of these ancestors (except for the descendants that constitute the update
fragment itself). If it misses nodes, at least one matching node, which is not as-
sociated with the root pattern node, has not associated an ancestor in the stack
encoding. In this case, the ancestors and (possibly) the descendants of these
ancestors have to be queried. As the index pattern associates path schemas
with pattern nodes, it is possible to generate source queries for missing nodes.

Example 6.12 (queries) Assume that we delete a resource and update the
third index of Figure 6.2. The resource node matches pattern node resource.
However, the update fragment misses the milestone title, which needs to be
queried. As the resource node has not associated an ancestor, we first need to
execute a query to determine its parent, which matches the milestone pattern
node. Departing from this node, we can then query the missing title.

The efficiency of this step can be improved with labeling schemes that allow
for navigating along certain axes without accessing base data (cf. Chapter 3).
The update of whole documents is always self-maintainable as no queries are
executed. The update of simple index patterns, which only consist of one pattern
node, is always self-maintainable as well.

When creating or deleting an index on an existing document, it is necessary
to retrieve all embeddings from the document and generate index entries from
these embeddings. For this purpose, it is likewise necessary to query all matching
nodes based on the index pattern. Therefore, the same algorithm can be used as
for querying missing nodes. Note that the step of generating index entries can
be omitted when completely deleting tree-structured indices, such as a B+-tree.
In contrast to e.g. a hash table, these index structures can retrieve and delete
all pages themselves.

112 CHAPTER 6. INDEX MAINTENANCE

6.3.6 Index Entries

Each index consists of a set of index entries, mapping index keys to nodes in
the document. These index entries are referred to as complete index entries in
the following. When finding embeddings of index patterns in update fragments,
each embedding consists of index keys and one return node. We refer to these
index keys and the return node as a partial index entry. When inserting a
fragment, the index has to insert the partial index entries into the complete
index entries. If no index entry with the same index keys exists, it must generate
a new complete index entry. Otherwise, it has to insert the return node into the
index entry having the same index keys. Handling deletions is analogous.

Definition 6.5 (partial index entry) A partial index entry maps a list of
index keys to one label, representing a return node. A complete index entry
consists of as many partial index entries as it has return nodes.

Example 6.13 (partial index entry) Assume that the third index of Figure
6.2 contains the index entry ((‘design’,‘2008-03-03’) → (21–1.3.1, 21–7.3.5,
21–7.3.7)). When inserting a new resource, we find a new embedding,
e.g. ((‘design’,‘2008-03-03’) → (21–5.5.3)). This embedding represents a par-
tial index entry. When inserting the partial index entry, we need to extend the
complete index entry by adding the new return label 21–5.5.3.

To generate partial index entries from embeddings, the maintenance algo-
rithm needs to extract the embeddings from the stack encoding. The index
entries need to be inserted into the index structure in case of an insert opera-
tion, and deleted in case of a delete operation. The update of index structures
with index entries is not subject of this work, as each index structure provides
specific algorithms for this purpose.

The set of return labels of a complete index entry may contain duplicates if
several embeddings contain identical index keys. In this case, a list of index keys
maps to the same return node multiple times. Duplicates are necessary to handle
deletions correctly, as demonstrated below in Example 6.14. Similar ideas are
used by counting algorithms for view maintenance [91]. The KeyX approach
of Hammerschmidt (cf. Subsection 6.2.3) does not handle duplicates correctly
because it may generate the same index entry several times (cf. Example 6.5).
Note that we do not make any assumptions on how an index structure stores
duplicates. For example, it can associate with a label the number of occurrences
instead of storing the same label multiple times.

Example 6.14 (duplicates) Consider the index on milestone and resource ti-
tles of Figure 6.5. Assume that a resource has the same title as its milestone. In
this case, we find the same partial index entry twice, yielding e.g. the complete
index entry ((‘design’) → (7–5.3, 7–5.3)). When deleting the corresponding
resource, we have to delete one partial index entry. As the milestone title still
exists, we may only remove one milestone node from the complete index entry.
Without duplicates, a query would be necessary to decide whether the index entry
can be deleted, resulting in additional overhead.

Special attention needs to be paid when an update operation affects an index
key that is associated with an optional pattern node (remember that the return

6.4. MAINTENANCE ALGORITHM 113

is always required). We refer to these index keys as optional index keys. The
insertion/deletion of an optional index key does not trigger an insertion/deletion
of the corresponding partial index entry. Instead, an existing partial index entry
needs to be updated. An insertion of an optional key replaces a null value of
one of its index keys, whereas a deletion generates a null value.

Example 6.15 (optional index key) Considering the third index of Figure
6.2 whose pattern node @date is optional, assume that it contains the partial
index entry ((‘design’,⊥) → (21–5.3.1)). If we insert a new date with value
‘2008-09-09’ into this milestone, we need to update the index entry by replacing
the null value with the new date.

An optional index key always stems from a matching node of an optional
pattern node that has been contained in the update fragment and has not been
queried. To insert a new optional index key, it is necessary to (i) replace the
index key with a null value and delete this partial index entry from the index,
(ii) restore the new index key in the index entry and insert it into the index.
Handling several optional keys and deletions is analogous.

6.4 Maintenance Algorithm

The maintenance algorithm generates index entries based on index patterns and
update fragments by performing the following steps:

1. Find embeddings of index patterns in update fragments and encode them
into stacks associated with each index pattern.

2. Execute queries to retrieve nodes that are not contained in the update
fragment but are part of embeddings.

3. Generate index entries from the embeddings by extracting index keys and
the nodes to be returned. Forward the index entries to the index structures
for insertion or deletion.

The algorithm uses an intermediate data structure in the form of a stack
encoding to compactly store the nodes of an embedding up to the time of gener-
ating index entries. The index entries are then forwarded to the affected index
structures, which update their data structure with proprietary algorithms. In-
sertions and deletions can be handled analogously as they only differ in the
update operation executed on the index structure.

In the following, we assume that each update affects one update fragment and
one index pattern as extending the algorithm to several fragments and patterns
is straightforward. Note that in case of several index patterns, the algorithm has
to process each index pattern individually. This could be improved by adopting
ideas from XML filtering [45, 66] to share commonalities between patterns.

Procedure maintain maintains an index when inserting or deleting a docu-
ment fragment. It receives as input the root node of the update fragment, the
index pattern of the index to be maintained and the kind of update operation,
which is either an insert or a delete operation. Algorithm 6.1 provides the de-
tails of the procedure. It basically executes the three steps which are necessary

114 CHAPTER 6. INDEX MAINTENANCE

Algorithm 6.1 Maintain an index with an update fragment based on its index
pattern.
Input: Update node n ∈ D, which constitutes the root of the update
fragment; Schema-aware, minimal index pattern P defined on the document D
to which the update fragment belongs; Update operation o ∈ {i, d}, indicating
whether the update is an insertion i or a deletion d.
Description: Find embeddings of the index pattern in the update fragment
and encode them into the stacks associated with the index pattern. Then
execute queries to retrieve missing nodes and push them onto the stacks of the
index pattern. Finally, generate index entries from the embeddings that are
encoded into the stacks of the index pattern and forward them to the index
structure for insertion or deletion.
Result: The index with index pattern P has been updated with update node
n and its descendants.

1: procedure maintain(n, P, o)
2: findEmbeddings(n, P)
3: executeQueries(P)
4: generateIndexEntries(P, o)
5: end procedure

to maintain an index. First it finds embeddings of the index pattern in the
update fragment and encodes them into the stacks associated with the index
pattern. It then executes queries to missing nodes and again stores these nodes
in the stack encoding of the index pattern. The first two procedures therefore
modify the index pattern by pushing matching nodes onto its stacks. Finally, it
generates index entries from the embeddings that are encoded into the stacks of
the index pattern. The algorithm calls several procedures, as depicted in Figure
6.7.

The following subsections describe each procedure of the algorithm in more
detail, whereby focusing on step 1 and 2 of the algorithm. The algorithm need
not execute these steps sequentially. Instead of first finding all embeddings and
then generating index entries, it could also generate an index entry as soon as
an embedding has been found. Although the latter would reduce the size of the
intermediate data structure, we follow a sequential order for ease of presentation.

6.4.1 Find Embeddings

To find embeddings of an index pattern in an update fragment, the algorithm
traverses the update fragment once in document order and compares its struc-
ture with the structure of the index pattern. If a node of the update fragment
has the same path schema as is associated with a pattern node, it represents a
candidate node and is put onto the corresponding stack. If a subfragment can-
not be relevant for the index pattern, the algorithm does not further process its
nodes. Discarding non-relevant subfragments improves the runtime complexity
of the algorithm. By traversing the update fragment in document order, the
algorithm finds candidate nodes of an embedding one after another. As soon as
it detects that a partial embedding cannot become complete, it deletes the false

6.4. MAINTENANCE ALGORITHM 115

FINDEMBEDDINGS

EXECUTEQUERIES

GENERATEINDEXENTRIES

DETECTFALSEPOSITIVES

DELETEFALSEPOSITIVES

QUERY

MOVEUP

MOVEDOWN

M
A

IN
T

A
IN

Figure 6.7: Maintenance algorithm.

positives from their stacks to keep space complexity, i.e. the number of nodes
encoded into stacks, as small as possible.

The algorithm consists of three main procedures. Procedure findEmbed-
dings matches the update fragment against the index pattern to find partial
embeddings. Procedure detectFalsePositives detects false positives and
procedure deleteFalsePositives deletes partial embeddings that represent
false positives. Figure 6.8 gives an abstract example to depict the interaction
between the various procedures.

A

D F

Ec1

1

2

3 5

8

7

9

10

11

12

4 6

c2 e1 e2

b1 d1 g1

a1

Figure 6.8: Find embeddings of index pattern (right) in update fragment
(left).

Example 6.16 (find embeddings) Figure 6.8 gives an abstract example of
how to find embeddings of an index pattern in an update fragment. For simplic-
ity, each node of the update fragment has a unique lower-case letter and each
node of the index pattern a unique upper-case letter. Procedure findEmbed-
dings traverses the update fragment (solid arrows). Procedures detectFalse-
Positives and deleteFalsePositives traverse the stack encoding associated
with the index pattern to find false positives (dashed arrows) and to delete them
from the stack encoding (dotted arrows).

116 CHAPTER 6. INDEX MAINTENANCE

Before describing each of these procedures in more detail, we define some
more functions and methods:

• Function topnode : S → N returns the top-most node associated with a
stack, or null (⊥) if the stack is empty.

• Function toppointer : S → N returns the node to which the top-most
node of a stack points, or null (⊥) if such a node does not exist or if the
top-most node has not associated a pointer.

• Method push(n, s) puts node n onto stack s.

• Method pop(n, s) removes node n from stack s. Note that in our context,
this node need not necessarily be the top-most node of the stack.

• Method createPointer(n, s, na, sp) creates a pointer from node n asso-
ciated with stack s to node na associated with stack sp, whereby stack sp
is the parent of stack s. If na is undefined, no pointer is created.

In the following, we will give a concrete algorithm for each procedure and
demonstrate its usage based on the abstract example of Figure 6.8 and on the
example of updating an index pattern of Figure 6.2 with update fragment (b)
of Figure 6.1.

Find embeddings

Procedure findEmbeddings recursively processes the nodes of an update frag-
ment to find matching pattern nodes and encodes partial embeddings into
stacks. To reduce runtime complexity, the algorithm only processes relevant
fragments, i.e. that possibly contain matching nodes. For each node, it deter-
mines matching pattern nodes by comparing their path schemas. If a node has
the same path schema as a pattern node, it represents a candidate node and is
put onto the corresponding stack.

To determine whether a node is relevant for an index pattern and to find
matching pattern nodes for a relevant node, the procedure uses functions
relevant and matches. Let n be an update node of document D and P be
an index pattern with pattern nodes N that is associated with document D.
Each node in the document and each pattern node in the index pattern has
associated path schemas, which are accessible via functions pathschema and
paths, respectively. The set of path schemas P is taken from the schema to
which the document D belongs.

• The fragment rooted at n is relevant for index pattern P, relevant(n, P), iff
the path schema of n is an ancestor-or-self of any path schema associated
with P. ∃n ∈ N : ∃p ∈ paths(n) : pathschema(n) = p ∨ pathschema(n) ∈
ancestor(p) ↔ relevant(n,P).

• Function matches : N → 2N returns matching pattern nodes for a node,
matches(n) = {n ∈ N | pathschema(n) ∈ paths(n)}.

6.4. MAINTENANCE ALGORITHM 117

Algorithm 6.2 Find embeddings of an index pattern in an update fragment.
Input: Update node n, which is the root of the update fragment; Schema-
aware, minimal index pattern P.
Description: Find embeddings of index pattern P in the update fragment
rooted at n and encode matching nodes into stacks associated with P.
Result: Update node n and its descendants that match index pattern P have
been encoded into stacks associated with the pattern.

1: procedure findEmbeddings(n,P)
2: if relevant(n, P) then
3: for all n ∈ matches(n) do
4: s = stack(n, pathschema(n))
5: push(n, s)
6: if n 6= root(P) then
7: na = topnode(pstack(n, pathschema(n)))
8: createPointer(n, s, na, pstack(n, patschema(n)))
9: end if

10: end for
11: for all nc ∈ children(n) do
12: findEmbeddings(nc, P)
13: end for
14: for all n ∈ matches(n) do
15: detectFalsePositives(n, n)
16: end for
17: end if
18: end procedure

By integrating schema information, it is possible to pregenerate a list of
relevant path schemas as well as a map from path schemas to matching pattern
nodes, which avoids the need for comparing each node with each pattern node.

Algorithm 6.2 shows the details of procedure findEmbeddings. It takes
as input a node n, representing the root of the currently processed update
fragment, and an index pattern P. To determine whether the node matches the
pattern, it invokes various functions on the node and the index pattern. With
the help of function relevant, it determines whether the fragment rooted at n
is relevant for the index pattern P. In case that the fragment is not relevant, it
does not further process n or any of its descendants. Otherwise, it determines
matching pattern nodes for n via function matches. Each matching pattern
node n has associated one stack s with the same path schema as n. Procedure
push puts node n onto this stack. Procedure createPointer creates a pointer
from n to its ancestor in the parent stack to encode structural relationships.
As the algorithm processes update fragments in document order, the ancestor
must be the top-most node na of the parent stack. If the parent stack is still
empty, the update fragment did not contain the ancestor and the ancestor is still
undefined. After matching node n, the algorithm recursively invokes procedure
findEmbeddings for each child nc of n.

As soon as all descendants of node n have been processed, the detected par-
tial embeddings must contain candidate nodes for required descendants. Oth-

118 CHAPTER 6. INDEX MAINTENANCE

erwise the partial embeddings represent false positives, which is determined by
calling procedure detectFalsePositives for each matching pattern node.

Example 6.17 (find embeddings) Consider the update fragment and the in-
dex pattern of Figure 6.8. Procedure findEmbeddings recursively traverses the
update fragment, starting with the root node a1. After matching this node with
pattern node A, the algorithm reinvokes the procedure with each child of a1.
Node b1 is not relevant for the index pattern, and the algorithm does not fur-
ther process its children. Node d1 matches pattern node D and its children e1

and e2 match pattern node E. Every time when the algorithm has processed all
children of a node, it invokes procedure detectFalsePositives. Therefore,
after having processed nodes e1 and e2 respectively, it calls this procedure (steps
4 and 6). After having processed the children of d1, the algorithm again invokes
procedure detectFalsePositives (step 7). The final child of node a1 is node
g1 which is not relevant for the pattern. Finally, the algorithm invokes procedure
detectFalsePositives one more time (step 9).

@date

text()

milestone

resource

7-1.1

59-1.1 21-1.1.1

21-1.1.3

62-1.1.3

7

59 21

62

Figure 6.9: Embeddings of fragment (b) of Figure 6.1 encoded into stacks.

Example 6.18 (find milestone titles and resource dates) Assume that
we insert fragment (b) of Figure 6.1 and update the index pattern shown in
Figure 6.9. The algorithm starts with processing node 7–1.1. The corresponding
fragment is relevant, and the algorithm determines that the node matches
pattern node milestone and puts it onto its stack. As pattern node milestone

is the root pattern node, it need not create a pointer. Then it recursively
processes the children, starting with node 20–1.1. This node is relevant, but it
does not match any pattern node. The algorithm proceeds with node 59–1.1,
which matches pattern node text() as it has the same path schema. After
putting the node onto the corresponding stack, the algorithm creates a pointer
to node 7–1.1, which is its ancestor in the parent stack. The algorithm then
matches nodes 21–1.1.1 and 21–1.1.3 with pattern node resource and node
62–1.1.3 with pattern node @date.

Detect false positives

Procedure detectFalsePositives determines whether partial embeddings
contain candidate nodes for required pattern nodes. It bases on the observa-
tion that after processing the descendants of a node, all required descendants of
matching pattern nodes must have associated candidate nodes that are part of

6.4. MAINTENANCE ALGORITHM 119

the same embeddings. If required descendants are missing, they cannot appear
later on and the corresponding embeddings represent false positives.

Algorithm 6.3 Detect false positives that miss required nodes of a subfragment.
Input: Node n of document D; Pattern node n of index pattern P; Node n
matches pattern node n, n ∈ matches(n), and is associated with a stack of the
pattern node.
Description: Recursively determine whether each required child of pattern
node n has associated a candidate node, which is a descendant of n. Initiate
deletion of false positives.
Result: False positives that are descendants of node n and match a descen-
dant of pattern node n have been detected and removed from the stack encoding.

1: procedure detectFalsePositives(n,n)
2: for all nc ∈ children(n) do
3: if req(nc) = 1 then
4: if n /∈ ⋃

p∈paths(nc)
toppointer(stack(nc,p))) then

5: deleteFalsePositives(n, n)
6: end if
7: end if
8: end for
9: end procedure

Algorithm 6.3 shows the details of procedure detectFalsePositives. The
procedure takes as input a node n of the update fragment and one of its matching
pattern nodes n of the affected index pattern. It recursively processes each child
pattern node nc of pattern node n. If the child pattern node is required, one
of its stacks must have associated a descendant of n. This is true if one of its
stacks contains a top node with an ancestor pointer to n. If this is not the case,
the candidate nodes of the partial embedding represent false positives and are
deleted.

Example 6.19 (detect false positives) Considering Figure 6.8, Example
6.17 invokes procedure detectFalsePositives four times. We will now look
at step 9 in more detail, which invokes the procedure with node a1 and pattern
node A. Assume that both child pattern nodes D and F are required. Pattern
node D has associated candidate node d1, but pattern node F does not have
any candidate node. Therefore, the partial embedding represents a false positive
and is deleted by calling procedure deleteFalsePositives with node a1 and
pattern node A as input.

Example 6.20 (detect resource without date) Figure 6.10 depicts partial
embeddings encoded into stacks when inserting fragment (b) of Figure 6.1. Node
21–1.1.1 matches pattern node resource. After processing the descendants of
this node, the algorithm calls procedure detectFalsePositives with the node
and its pattern node as input. The child @date of pattern node resource is
required. However, its stack does not contain a node that points to 21–1.1.1.
Note that the date of the resource can only appear within the descendants of
node 21–1.1.1, but not in a later step. Therefore node 21–1.1.1 represents a false

120 CHAPTER 6. INDEX MAINTENANCE

@date

resource

21-1.1.1

21-1.1.3

62-1.1.3

21

62

Figure 6.10: Detect and delete false positives when updating fragment (b) of
Figure 6.1.

positive. When matching the second resource, node 21–1.1.3 matches pattern
node resource and node 62–1.1.3 matches pattern node @date. As this resource
has a date, the nodes are not false positives and form a complete embedding.

Delete false positives

Procedure deleteFalsePositives recursively removes a node and its descen-
dants, which represent false positives, from their stacks to delete the correspond-
ing partial embedding.

Algorithm 6.4 Delete false positives from partial embeddings.
Input: Node n of document D; Pattern node n of index pattern P; Node n
matches pattern node n, n ∈ matches(n), and is associated with a stack of the
pattern node.
Description: Recursively remove all descendants of n that match a child
pattern node of n. Then remove node n from the stack of pattern node n.
Result: False positives that are descendants of node n and match a descendant
of pattern node n have been removed from the stack encoding.

1: procedure deleteFalsePositives(n,n)
2: for all nc ∈ children(n) do
3: for all p ∈ paths(nc) do
4: while toppointer(stack(nc,p)) = n do
5: deleteFalsePositives(topnode(stack(nc,p)), nc)
6: end while
7: end for
8: end for
9: pop(n, stack(n, pathschema(n)))

10: end procedure

Algorithm 6.4 shows the details of procedure deleteFalsePositives. The
procedure takes as input a node n of the update fragment and one of its match-
ing pattern nodes n of the affected index pattern. Node n matches pattern node
n and is associated with a stack of the pattern node. However, it is part of
an embedding that represents a false positive and therefore has to be deleted.
The algorithm recursively deletes descendant nodes that point to n bottom-up.
For this purpose, it determines for each child pattern node nc of pattern node n

6.4. MAINTENANCE ALGORITHM 121

whether one of its stacks has a corresponding descendant. In case that a child
stack has nodes that point to n, it recursively calls procedure deleteFalse-
Positives to pop them from the stack. Procedure pop removes node n from
the stack of the currently processed pattern node n, including its pointer to an
ancestor in the parent stack.

Example 6.21 (delete false positives) Considering Figure 6.8, Example
6.19 invokes procedure deleteFalsePostives with node a1 and pattern node
A as input (step 10). The child pattern node D has associated node d1, which is
a descendant of a1. The algorithm therefore reinvokes the procedure with node
d1 and pattern node D as input. Pattern node D again has a child pattern node
E. The candidate nodes associated with this pattern node, namely nodes e1 and
e2 are descendants of d1. Therefore, the algorithm reinvokes the procedure with
node e1 and pattern node E and node e2 and pattern node E, respectively (steps
11 and 12). At the end of each recursion, it deletes the processed node from the
stack encoding.

Note that if node n and its descendants represent false positives, they are
deleted. The corresponding partial embeddings may also contain ancestors of n
or their descendants. These candidate nodes may also be part of other embed-
dings and are kept at first. As false positives are detected bottom-up, they will
be deleted in a later step if necessary.

Example 6.22 (delete resource without date) Consider Example 6.20
that detects that node 21–1.1.1 represents a false positive in Figure 6.10.
Procedure deleteFalsePositives receives as input this node and its pattern
node resource. It first reinvokes the procedure with child pattern node @date.
As the stack associated with this pattern node has no descendant pointing to
node 21–1.1.1, the procedure only has to delete node 21–1.1.1 from the stack
encoding.

6.4.2 Execute Queries

After the step of finding embeddings, the index pattern encodes candidate nodes
into stacks. To retrieve nodes that are part of embeddings but not contained
in the update fragment, the algorithm recursively processes the pattern nodes
bottom-up to query missing ancestors. When adding an ancestor to a pattern
node, the algorithm recursively traverses its children top-down to query missing
descendants. The algorithm encodes queried nodes into the stacks of the pro-
cessed index pattern in the same way as when finding embeddings. Thereby, it
marks queried nodes, which is necessary when generating index entries (cf. Sub-
section 6.4.3). Note that the algorithm currently does not consider query opti-
mization strategies when retrieving missing nodes.

The algorithm to execute queries uses three main procedures. Procedure
query traverses the index pattern top-down to find those pattern nodes whose
candidate nodes miss ancestor pointers. This procedure then calls procedure
moveUp to query missing ancestors, which itself calls procedure moveDown
to query missing descendants. Figure 6.11 gives an abstract example to depict
the interaction between the various procedures.

122 CHAPTER 6. INDEX MAINTENANCE

A

B E

D

e1

f1c1

e2b1

a1

F

d1 d2

Figure 6.11: Query missing nodes (left) for an index pattern (right).

Example 6.23 (execute queries) Figure 6.11 gives an abstract example of
how to query missing nodes based on an index pattern. Assume that the up-
date fragment contains nodes d1 and d2, which are candidate nodes for pattern
node D. Procedure query traverses the index pattern to determine the pattern
nodes whose matching nodes miss ancestors (solid arrows). Procedure moveUp
queries missing ancestors (dashed arrows) and procedure moveDown queries
missing descendants (dotted arrows).

Procedure maintain initiates the execution of queries by calling procedure
executeQueries with the currently processed index pattern as input. Algo-
rithm 6.5 provides the details of the procedure. Each pattern node has associ-
ated one or several stacks. Procedure executeQueries simply calls procedure
query with each stack associated with the root pattern node as input.

Algorithm 6.5 Initiate the execution of queries.
Input: Index pattern P with candidate nodes of the update fragment encoded
into stacks.
Description: Call procedure query with each stack of the root pattern node
as input.
Result: All missing nodes that relate to candidate nodes encoded into index
pattern P have been queried and encoded into the stacks of P.

1: procedure executeQueries(P)
2: n = root(P)
3: for all s ∈ stacks(n) do
4: query(s)
5: end for
6: end procedure

Each stack has associated a matching path schema. These path schemas can
be used to generate queries to missing nodes (cf. Subsection 6.3.5). The stacks
associated with an index pattern form stack hierarchies. As the procedures
operate on these stack hierarchies to query missing nodes, we introduce some
more functions:

6.4. MAINTENANCE ALGORITHM 123

• Function nodes : S → 2N returns all nodes associated with a stack.

• Function path : S → P associates each stack with its path schema: ∀n ∈
N,p ∈ paths(n) : path(stack(n,p)) = p.

• Function stacks : N → 2S returns all stacks of a pattern node: ∀n ∈ N :
stacks(n) =

⋃
p∈paths(n) stack(n,p).

• Function pnode : S → N associates a stack with its pattern node: ∀n ∈
N, s ∈ stacks(n) : pnode(s) = n.

• Function children : S → 2S returns the children of a stack: children(s) =
{sc ∈ S | pstack(pnode(sc), path(sc)) = s}.

• Partial function parent : S → S returns the parent stack of a stack:
parent(s) = sp iff s ∈ children(sp).

In the following, we will give a concrete algorithm for each procedure and
demonstrate its usage based on the abstract example of Figure 6.11 and on the
running example of managing project resources.

Query index pattern

After finding embeddings of the index pattern in the update fragment, several
embeddings may only be partial, i.e. miss nodes. Queries to missing nodes have
to start from those candidate nodes that do not have ancestor pointers and are
not in a stack of the root pattern node. Several stacks of an index pattern may
have associated candidate nodes that do not have such ancestor pointers.

Algorithm 6.6 Traverse index pattern to locate stacks from which queries
start.
Input: Stack s associated with index pattern P.
Description: Recursively traverse the children of stack s to find those stacks
whose candidate nodes do not have ancestor pointers. Start queries from these
candidate nodes.
Result: If stack s has associated candidate nodes, missing ancestors of these
nodes and their descendants have been queried and encoded into stacks.

1: procedure query(s)
2: if topnode(s) =⊥ then
3: for all sc ∈ children(s) do
4: query(sc)
5: end for
6: else
7: moveUp(s)
8: end if
9: end procedure

Algorithm 6.6 shows the details of procedure query. The procedure is
first invoked with the stacks of the root pattern node by procedure execute-
Queries. It then recursively traverses the stacks top-down as long as the stacks

124 CHAPTER 6. INDEX MAINTENANCE

are empty. As soon as it has reached a non-empty stack, the nodes of this stack
cannot have ancestor pointers because their parent stack was empty. The algo-
rithm calls procedure moveUp to query missing nodes. In case that the update
fragment did not contain any matching nodes, procedure query does not find
a non-empty stack and therefore does not initiate queries.

Example 6.24 (query) In Figure 6.11, the index pattern encodes nodes d1

and d2 after having executed step 1 of the maintenance algorithm. Assume that
each pattern node has associated exactly one stack. Procedure executeQuery
calls procedure query with the stack of the root pattern node A. It recursively
traverses the stack structure to determine that the stack of pattern node D is
not empty. Thus, it calls procedure moveUp with this stack as input.

@date

text()

milestone

resource

62-1.1.1

7

59 21

62

Figure 6.12: Initiate querying missing nodes when updating fragment (c) of
Figure 6.1.

Example 6.25 (query from resource date) Figure 6.12 depicts the stack
encoding when updating fragment (c) of Figure 6.1. The first step of the main-
tenance algorithm matches node 62–1.1.1 with pattern node @date. All other
nodes need to be queried. Procedure query traverses the stacks of the index
pattern until reaching the stack associated with pattern node @date. As this
stack is the upper-most non-empty stack, queries need to start from this stack.

Query missing ancestors

If a stack is not empty, all nodes in the stack miss the same ancestor because the
maintenance algorithm considers each update fragment individually. Procedure
moveUp queries the missing ancestors of these nodes. Note that all descendants
of these nodes have been contained in the update fragment and need not be
retrieved from the document.

Algorithm 6.7 contains the details of procedure moveUp. The procedure
receives as input a stack s whose candidate nodes miss ancestor pointers. In
general, the parent stack is still empty (the opposite case will be discussed below)
and the procedure queries the missing ancestor by calling retrieveAncestor.
It then adds it to the parent stack and creates a pointer from each node in the
stack to the ancestor. By calling procedure moveDown, it queries missing
descendants of this ancestor. Finally, it recursively moves up to query further
missing ancestors.

6.4. MAINTENANCE ALGORITHM 125

Algorithm 6.7 Move up the index pattern to query missing ancestors.
Input: Stack s associated with index pattern P whose nodes miss ancestor
pointers.
Description: Query the ancestors of the nodes associated with s and push
them onto the parent of stack s. Then initiate queries to missing descendants
of these ancestors.
Result: All missing ancestors of candidate nodes associated with stack s and
their descendants have been queried and encoded into stacks.

1: procedure moveUp(s)
2: if ∃parent(s) ∧ (topnode(s) 6=⊥) then
3: if topnode(parent(s)) 6=⊥ then
4: na = topnode(parent(s))
5: else
6: na = retrieveAncestor(topnode(s), path(parent(s)))
7: push(na, parent(s))
8: end if
9: for all n ∈ nodes(s) do

10: createPointer(n, s, na, parent(s))
11: end for
12: moveDown(na, parent(s), pnode(s))
13: moveUp(parent(s))
14: end if
15: end procedure

Procedure retrieveAncestor receives as input a context node, from which
the query starts, and the path schema of the ancestor which it queries. Note
that the algorithm does not make any assumption on how the database executes
this procedure. It may either issue a query on the document or calculate its
label with the help of a labeling scheme (cf. Chapter 3).

Example 6.26 (move up) Considering Example 6.24 and Figure 6.11, proce-
dure query calls procedure moveUp with the stack of pattern node D as input.
This stack contains nodes d1 and d2. The procedure queries the missing ances-
tor belonging to pattern node B, which is node b1. It pushes this node onto the
stack of pattern node B and creates pointers from d1 and d2 to b1. As pattern
node B may have further children apart from D, the procedure calls procedure
moveDown, which queries missing descendants of b1. It then reinvokes proce-
dure moveUp with the stack of pattern node B as input. In the second pass,
the procedure queries the ancestor a1 of node b1 and pushes it onto the stack of
pattern node A.

Example 6.27 (query ancestors of date) To continue with Example 6.25,
procedure moveUp has to retrieve missing ancestors of node 62–1.1.1 as depicted
in Figure 6.13. It first executes a query to retrieve the ancestor of node 62–1.1.1
with path schema 21. It adds this ancestor, which has label 21–1.1.1, to the
parent stack associated with pattern node resource and adds a pointer from node
62–1.1.1 to the queried ancestor. The ancestor does not miss any descendants
and thus the procedure is reinvoked to calculate the ancestor of node 21–1.1.1,

126 CHAPTER 6. INDEX MAINTENANCE

@date

text()

milestone

resource

7-1.1

21-1.1.1

62-1.1.1

7

59 21

62

Figure 6.13: Query missing ancestors when updating fragment (c) of Figure
6.1.

which has label 7–1.1. The algorithm finally calls procedure moveDown to
query the missing descendants of node 7–1.1.

A special case arises when procedure query calls procedure moveUp more
than one time, i.e. if sibling stacks contain candidate nodes that miss ancestor
pointers. Again all candidate nodes miss the same ancestor, which is queried
when invoking procedure moveUp the first time. In succeeding calls, the an-
cestor need not be queried again, but corresponds to the top-most node of the
parent stack (cf. lines 3 and 4 in the algorithm).

text()

milestone

@date

7

59 62188

188-1.1.5 62-1.1.5

7-1.1

Figure 6.14: Stack encoding when ancestor queries start from several stacks.

Example 6.28 (queries from several stacks) Consider the index pattern of
Figure 6.14, which indexes all titles and dates of milestones without considering
resources (ancestor pointers are omitted for better readability). Assume that we
insert a new resource with label 21–1.1.5 that has a title with label 188–1.1.5 and
a date with label 62–1.1.5. The first step of the maintenance algorithm finds a
candidate node for the text() and the @date pattern nodes (depicted in bold).
Queries start from each of these candidate nodes. Both candidate nodes have
the same ancestor with label 7–1.1, which only needs to be queried when calling
procedure moveUp the first time.

Query missing descendants

After having queried a missing ancestor, procedure moveUp calls procedure
moveDown to query missing descendants of this ancestor. Thereby, procedure
moveDown has to query all descendants except for those descendants that have

6.4. MAINTENANCE ALGORITHM 127

been the context nodes for the ancestor queries, i.e. which have been contained in
the update fragment. After having queried missing descendants, the procedure
has to call procedure detectFalsePositives to determine if required nodes
are missing in the document.

Algorithm 6.8 Move down the index pattern to query missing descendants.
Input: Context node n and stack s to which the node belongs; Pattern node
nq, which is a child of the pattern node with which stack s is associated or null.
Description: Recursively query missing descendants of node n that need to
be associated with children of s. Thereby, exclude children stacks that belong
to pattern node nq. Push queried nodes onto the corresponding stacks, which
are children of stack s. Check for false positives that need to be deleted from
the stack encoding.
Result: All missing descendants of node n have been queried and encoded
into descendant stacks of stack s.

1: procedure moveDown(n, s, nq)
2: Sc = {sc ∈ children(s) | pnode(sc) 6= nq)}
3: for all sc ∈ Sc do
4: Nd = retrieveDescendants(n, path(sc))
5: Nr = {nd ∈ Nd | nd /∈ nodes(sc)}
6: for all nr ∈ Nr do
7: push(nr, sc)
8: createPointer(nr, sc, n, s)
9: moveDown(nr, sc,⊥)

10: end for
11: end for
12: detectFalsePositives(n, pnode(s))
13: end procedure

Algorithm 6.8 provides the details of procedure moveDown. It receives as
input a context node n and a stack s. Node n has been pushed to stack s by
procedure moveUp. Further, the procedure receives as input a pattern node
nq which marks the pattern node from which procedure moveUp has started
the ancestor query. Procedure moveDown first determines the set of stacks
Sc whose candidate nodes need to be queried. This set consists of the children
of stack s that do not belong to pattern node nq. The descendants that match
pattern node nq have already been contained in the update fragment. For each
stack to be queried, procedure retrieveDescendants executes a query to
retrieve the descendants Nd of node n that have the path schema of the queried
stack. In general, these descendants still have not been queried, i.e. they are
not part of the child stack (the opposite case will be discussed below). In this
case, the set of descendants Nr is equal to Nd. The algorithm then adds each
descendant nr to the child stack sc and creates a pointer from the descendant
nr to node n to keep structural relationships. It then recursively queries further
descendants. Finally, the procedure calls procedure detectFalsePositives to
detect and eliminate false positives.

For ease of presentation, we chose to look for false positives after having
queried all descendants. In case that a child pattern node misses required nodes,

128 CHAPTER 6. INDEX MAINTENANCE

the procedure executes queries on remaining children before detecting false pos-
itives. However, these queries would not be necessary as its nodes represent
false positives anyway.

Example 6.29 (move down) Considering Example 6.26 and Figure 6.11,
procedure moveUp calls procedure moveDown with node a1, the stack of pat-
tern node A and pattern node B as input. The latter pattern node represents the
pattern node from which the query to node a1 started. Therefore, this pattern
node does not miss further descendants. The procedure only has to query the
descendants of node a1 that belong to stack E. The corresponding query returns
nodes e1 and e2, which are pushed onto the stack of pattern node E. As both
nodes miss further descendants, procedure moveDown is reinvoked with each
node and the stack of pattern node E. Note that this time the third parameter
is null because all descendants of these nodes have to be queried. The query for
the descendants of node e1 returns node f1, whereas node e2 does not have any
descendants. By calling procedure detectFalsePositives with node e2 and
pattern node E as input, the algorithm will detect that this node represents a
false positive and will delete it from the stack.

@date

text()

milestone

resource

7-1.1

59-1.1 21-1.1.1

62-1.1.1

7

59 21

62

Figure 6.15: Query missing descendants when updating fragment (c) of Figure
6.1.

Example 6.30 (query missing descendants of milestone) Reconsider
Example 6.27 that calls procedure moveDown after having queried the missing
ancestor with label 7–1.1 (cf. Figure 6.15). The procedure receives as input the
queried ancestor label 7–1.1, its stack and pattern node resource. Procedure
moveDown first determines the stacks which it needs to query. As the missing
resource node has already been queried when moving up the index pattern, it
only needs to query the missing milestone title, which has label 59–1.1.

A special case arises when queries start from several stacks (cf. Example
6.28). In this case, procedure moveUp may call procedure moveDown several
times with the same ancestor as input. In this case, it is still necessary to
query missing descendants because the pattern node, which is excluded from
querying, can be different in each invocation of the procedure. As the algorithm
may therefore query the same descendants several times, it only adds those
descendants to the stack encoding which still have not been queried (cf. line
5 of Algorithm 6.8). To avoid executing the same query multiple times, an
alternative solution would be to keep track of the pattern nodes to which queries
have already been executed.

6.4. MAINTENANCE ALGORITHM 129

text()

milestone

@date

7

59 62188

188-1.1.5 62-1.1.5

7-1.1

62-1.1.1

62-1.1.3

59-1.1

188-1.1.1

188-1.1.3

Figure 6.16: Stack encoding when several descendant queries start from the
same ancestor.

Example 6.31 (queries from several stacks) Considering Example 6.28,
procedure moveUp has been invoked twice to add ancestor pointers from the
candidate nodes of the update fragment to the queried ancestor 7–1.1. The new
title forms an embedding with the date of every resource of the milestone. Simi-
larly, the date relates to the milestone title and every resource title according to
the index pattern. Figure 6.16 depicts the stack encoding when querying missing
descendants. In this example, procedure moveDown is called twice by procedure
moveUp. It first queries missing dates, which have labels 62–1.1.1 and 62–1.1.3.
In the second call, it queries missing titles, which have labels 59–1.1, 188–1.1.1
and 188–1.1.3. Note that according to the index pattern, each combination of
title and date forms an index entry (we do not discuss the meaningfulness of
such a pattern here).

Procedure moveDown can also be used to retrieve all embeddings from a
document when creating or deleting an index on an existing document. In this
case, it queries all embeddings from the document. Alternatively, it would also
be possible to query the entire document and match it with the index pattern
when creating an index on an existing document. However, in case of large
documents, the latter approach will be very inefficient as each index usually
only refers to some nodes of the document.

6.4.3 Generate Index Entries

To generate partial index entries, the maintenance algorithm calls procedure
generateIndexEntries. This procedure receives as input an index pattern
P which encodes embeddings into its stacks and the kind of update operation.
It then extracts the embeddings from the stack encoding. As query pattern
matching algorithms use similar procedures (cf. [200]), we do not provide details
for this step. Based on the index pattern, the algorithm has to determine
for each embedding which nodes form index keys and which node represents
the return. Finally, it has to forward the partial index entries to the index
structures. The index entries need to be inserted into the index structure in
case of an insert operation, deleted in case of a delete operation and updated if
the insert or delete operation affects optional keys.

Example 6.32 (generate index entries) Figure 6.9 encodes two embed-
dings, resulting from inserting fragment (b) of Figure 6.1. The em-
bedding (7–1.1, 59–1.1, 21–1.1.1, ⊥) is transformed into the partial

130 CHAPTER 6. INDEX MAINTENANCE

index entry ((‘design’,⊥) → (21–1.1.1)). The embedding (7–1.1,
59–1.1, 21–1.1.3, 62–1.1.3) is transformed into the partial index entry
((‘design’,‘2008-01-08’) → (21–1.1.3)). When inserting fragment (c), the
algorithm finds embedding (7–1.1, 59–1.1, 21–1.1.1, 62–1.1.1), as depicted in
Figure 6.15. As the update affects an optional key, the corresponding partial
index entry ((‘design’,⊥) → (21–1.1.1)) is deleted and the new partial index
entry ((‘design’,‘2007-03-12’) → (21–1.1.1)) is inserted into the corresponding
index structure.

In Subsection 6.4.2, we have mentioned that the execution algorithm has
to mark queried nodes. This is necessary to easily detect optional index keys,
which stem from nodes of the update fragment (cf. Subsection 6.3.6). However,
there is another situation in which the distinction between queried nodes and
nodes of the update fragment is essential. It can arise if candidate nodes of
different stacks miss ancestor pointers before executing queries (cf. Examples
6.28, 6.31 and 6.33). In this case, the algorithm may generate index entries
which only contain queried nodes. These index entries must not be updated
because they are already part of the index. We refer to such index entries as
unaffected index entries.

Example 6.33 (unaffected index entries) Consider the index pattern of
Figure 6.16, which depicts matching nodes of the update fragment in bold.
Amongst others, the stacks encode the embedding with nodes (7–1.1, 59–1.1,
62–1.1.1), which however only consists of queried nodes. Therefore the mainte-
nance algorithm must not update this index entry. The update only affects those
index entries which include at least one node of the update fragment.

6.5 Evaluation and Extensions

To update all relevant index entries, the maintenance algorithm needs to find
all affected embeddings and then generate partial index entries from these em-
beddings. This section shortly explains why the proposed algorithm finds all
affected embeddings and then looks at possible extensions to index patterns.

The maintenance algorithm needs to find all affected index entries. This
implies that it must not generate index entries that the index is not defined
on, nor must it miss index entries. As the algorithm generates index entries
from embeddings, it has to find all affected embeddings, which it guarantees as
follows:

• An embedding does not contain nodes that do not match the index pattern:
Each matching node has the same path schema as its matching pattern
node and thus matches the index pattern. The stack encoding ensures
that an embedding does not contain nodes that structurally do not belong
together via ancestor pointers.

• An embedding does not have too many nodes: Each embedding contains at
most one candidate node for each pattern node and thus cannot contain
more nodes than required.

6.5. EVALUATION AND EXTENSIONS 131

• An embedding does not miss nodes: The algorithm matches all nodes of
the update fragment. If partial embeddings miss nodes, it executes source
queries. Therefore, each embedding contains all nodes that it requires.

• The algorithm does not find too many embeddings: The algorithm does
not find embeddings that are already contained in the index because each
embedding contains at least one node of the update fragment. It does not
produce embeddings that are not relevant by deleting false positives.

• The algorithm does not miss embeddings: The algorithm generates an
embedding for each matching node of the update fragment and therefore
cannot miss embeddings.

Several parts of the algorithm depend on current restrictions of index pat-
terns (cf. Section 5.3). Possible extensions to index patterns include wildcards,
required pattern nodes beneath optional pattern nodes or value variables on ele-
ment nodes. Supporting such extensions also affects the maintenance algorithm
as we shortly outline in the following.

title

projects

*

@date

milestone

resource2 7 21

17 59 188

1

Figure 6.17: Index pattern with wildcard (left) and with required pattern
nodes beneath optional pattern nodes (right).

Wildcards entail that one matching node may have several ancestors in the
parent pattern node. A similar situation arises when allowing recursive schemas.

Example 6.34 (wildcards) The left index pattern of Figure 6.17 contains a
wildcard that matches pattern nodes project, milestone and resource. Each
title does not only form an embedding with its parent, but also with any ancestor
matching the wildcard. Assume that we insert a new resource with a title. The
insertion affects three embeddings because the title forms an embedding with the
resource node as well as with the milestone and project nodes, which are its
ancestors.

In case that an optional pattern node may have a required pattern node as
descendant, an insertion of a fragment may trigger a deletion of index entries
and vice versa.

Example 6.35 (required and optional pattern nodes) The right index
pattern of Figure 6.17 defines a required pattern node beneath an optional pat-
tern node. It indexes all milestones that either have no resource or that have at
least one resource with a date. The insertion of a single milestone node, which
does not have any resource, triggers the insertion of a new index entry. Assume
that we then add a resource without a title to this milestone. According to the
index pattern, if the milestone has a resource, the resource must have a date.
Therefore, the milestone may no longer be indexed. Thus, the insertion of a
new node triggers the deletion of an index entry in this case.

132 CHAPTER 6. INDEX MAINTENANCE

Index patterns currently only support value variables on text and attribute
nodes. A value variable on an element node expresses that the index key consists
of the element content, i.e. the concatenation of its text node descendants. In
this case, an update of any of these text nodes affects the index although the
corresponding path schema is not directly indexed. Further, the index key is
composed of the values of several nodes. To insert/delete single values of this
composed index key, the entire index key needs to be determined. A similar
situation arises when indexing the text nodes of an element that allows mixed
content.

Example 6.36 (content variables) Assume that we define a value variable
on resource nodes, which corresponds to a variable on the element content of
resources. The index key of each resource node is composed of its title and
description. Updating the title affects the content variable associated with the
resource node. Maintaining the index requires the corresponding description to
determine the entire index key and perform the update operation.

6.6 Summary

To keep indices consistent with updates on documents, a database requires an
index maintenance algorithm. The algorithm presented in this chapter extracts
index entries from update fragments based on index patterns. By matching
update fragments against index patterns, the algorithm can update arbitrary
index structures defined on arbitrary document fragments.

The algorithm consists of three steps: (1) find embeddings of index patterns
in update fragments, (2) execute queries if nodes are required for maintenance
that are not part of the update fragment, (3) generate index entries from the
embeddings and forward them to the corresponding index structures.

To determine whether an update node matches an index pattern, the algo-
rithm matches the index pattern against the schema and associates each pattern
node with affected path schemas. A node of the update fragment is affected by
an index if its path schema is part of the index pattern. The algorithm traverses
the update fragment, matches the nodes against the index pattern and encodes
matching nodes into stacks. By keeping structural relationships between match-
ing nodes via pointers, the stacks encode embeddings of index patterns in update
fragments. In case that the update fragment misses nodes that are part of af-
fected embeddings, the algorithm executes source queries. If it detects that an
embedding is incomplete because not all required nodes exist in the document,
it deletes it from the stacks. Finally, the stacks encode all affected embeddings
and the algorithm generates index entries from the embeddings.

The main advantage compared to existing approaches is that the algorithm
exploits the structure of the update fragment instead of processing each update
node individually. It need not query relevant nodes that are contained in the
update fragment. As updates in XML usually refer to fragments instead of to
single nodes, the proposed algorithm minimizes the number of source queries,
resulting in an improved update performance. In case that the update frag-
ment contains all relevant nodes, the algorithm is completely self-maintainable.
The update of simple patterns that only consist of one pattern node is always

6.6. SUMMARY 133

self-maintainable as well. With the help of labeling schemes, it is possible to
update path patterns without querying the document by calculating the labels
of ancestors. Integrating schema information allows the algorithm for efficiently
determining whether a node is part of an index and affected by an update.

134 CHAPTER 6. INDEX MAINTENANCE

Part III

Evaluation

135

Chapter 7

Case Study: The XML
Database SemCrypt

Contents
7.1 Introduction . 138

7.2 Architecture . 139

7.3 Concepts . 140

7.3.1 Storage Structure . 141

7.3.2 Schema Processing 141

7.3.3 Document Processing 143

7.3.4 Query Processing . 145

7.3.5 Index Processing . 147

7.4 Indices in Action . 148

7.5 Summary . 151

This chapter presents the main concepts of SemCrypt in form of a case
study. SemCrypt is a native, secure XML database in whose context the
concepts of this thesis have been developed and implemented. Section 7.1 gives
a general introduction to SemCrypt and Section 7.2 describes its architecture.
The concepts of SemCrypt are explained in Section 7.3 based on the running
example of managing project resources. Section 7.4 further exemplifies how to
process queries with indices in SemCrypt. Finally, Section 7.5 summarizes the
main ideas of SemCrypt.

137

138 CHAPTER 7. CASE STUDY: THE XML DATABASE SEMCRYPT

7.1 Introduction

Outsourcing IT services to external service providers is an emerging and growing
market which represents a popular alternative to maintaining services in-house.
By specializing on particular services, service providers can increase the quality
and decrease the costs of their services. An important IT service is providing
and administrating a data store. In this “database as a service” model, indi-
viduals or companies store documents at an external server and then query and
update these documents without having to worry about, e.g., IT infrastructure,
availability of data stores or back-ups. When storing sensitive data at an ex-
ternal data store, the so-called storage provider needs to ensure that neither
intruders nor its own staff can access the data.

Service level agreements are insufficient to guarantee secure storage
(cf. e.g. [197]). Instead, technical solutions are required to provide data own-
ers with the necessary confidence that confidentiality and privacy of their data
are maintained as well as to unburden storage providers from costly security
measures. Secure processing models typically encrypt data to guarantee data
confidentiality. Efficiently querying and updating encrypted data is yet consid-
ered a significant open problem [99]. Previous solutions on querying encrypted
data either partition data [92, 108, 193], which raises security concerns [79],
delegate substantial query processing work to the client [34, 35, 61], or rely on
proprietary encryption techniques [41, 182] that cannot be replaced when they
are broken or better ones are available.

In contrast to existing approaches on querying outsourced, encrypted data,
the native XML database SemCrypt [176] neither relies on partitioning nor
on specific encryption techniques. Instead, it uses special storage and index
structures. The storage structures guarantee privacy of encrypted data and
prevent statistical attacks. The index structures reduce processing overhead on
the client by enabling the processing of queries and updates with only trans-
ferring a minimum amount of data from the storage provider to the client.
The developed processing model grounds on a client-server architecture, where
clients process data and servers act as storage providers in an untrustworthy
domain. At the external storage provider, SemCrypt exclusively processes en-
crypted documents. Documents or document fragments are only decrypted at
the client-side for authorized users.

As more and more data is semi-structured and consists of both structured
and unstructured parts, SemCrypt uses XML as data format. The developed
techniques to process queries and updates are based on a schema-aware labeling
scheme and utilize the schemas of XML documents and combine them with
special index structures. These techniques enable the direct access to encrypted
data without having to perform a time-consuming decryption of the whole data
store. Schemas, labeling and index structures, as described in this thesis, are
thus an integral part of SemCrypt. Although SemCrypt has been designed
as an encrypted database, the developed concepts can equally be applied to
unencrypted XML databases.

7.2. ARCHITECTURE 139

7.2 Architecture

The architecture of SemCrypt consists of two major components, the server,
which acts as the Storage Provider, and the SemCrypt Core, which incorpo-
rates specific techniques to process queries and updates.

The Storage Provider is responsible for storing, retrieving and updating
document fragments as well as for backup, recovery and basic transaction control
(cf. [71]). The SemCrypt Core, depicted in Figure 7.1, integrates the various
components and their data models and bridges the gap between the physical
storage of encrypted data and its representation to end users.

SemCrypt Service

Schema

Manager

Document

Manager

Query

Engine

Index

Manager

Schema

Engine

Document

Engine

Execution

Engine

Index

Engine

Storage Engine

Metadata

Manager

SEMCRYPT Core

e
x
te

rn
a

l
lo

g
ic

a
l

in
te

rn
a
l

p
h

y
s
ic

a
l

Storage Provider

Figure 7.1: Architecture of the SemCrypt Core.

SemCrypt processes four kinds of primary data, namely schemas, docu-
ments, indices and queries. Following database reference architectures [98, 140],
the processing of primary data occurs within different layers. The external layer
represents data in a way familiar to end users, who e.g. formulate queries in
terms of XPath. The SemCrypt Service takes user requests and data in their
external representation, parses and dispatches them. Various database tasks,
such as query optimization, cannot be efficiently performed on external primary
data. The logical layer abstracts from external representations, while the inter-
nal layer incorporates specific techniques to improve system performance, such
as labeling and indices. Within the logical and the internal layer, there is one
component for each kind of primary data. At the physical layer, the Storage
Engine provides access to the physical storage structures and is responsible for
data encryption/decryption. All components create metadata, like names of
available documents or available indices, and provide this metadata to other
components. To manage metadata, SemCrypt follows the approach of using a
separate (XML) database, encapsulated by the Metadata Manager.

The layered structure of this architecture allows for adapting SemCrypt
to diverse application scenarios, all of which rely on a potentially untrustwor-

140 CHAPTER 7. CASE STUDY: THE XML DATABASE SEMCRYPT

thy Storage Provider to store encrypted data. Dependent on the scenario, the
SemCrypt Core can run on a secure or an insecure client. The project focused
on single-user scenarios, but also investigated extensions to multi-user scenar-
ios. Further, it is possible to use SemCrypt as a native, unencrypted XML
database by transferring the SemCrypt Core to the Storage Provider. Thus,
the developed techniques enable efficient processing of encrypted or unencrypted
XML documents.

In the single-user scenario, each one of several single users has full access
to exactly one encrypted store, where one Storage Provider may host several
stores. Typical applications include storing e-mails as searchable, encrypted
XML documents at the Storage Provider, or providing an encrypted, searchable
private document store where users manage their documents using a special
purpose application. This application utilizes the SemCrypt Core for perform-
ing query and update processing as well as encryption/decryption within the
trusted domain of the client.

The multi-user scenario enables several users to access the same docu-
ments from different, potentially insecure clients. Access authorization and
encryption/decryption is delegated to a trusted security component which en-
crypts/decrypts document fragments for authorized users. Alternatively, this
security check could also be performed by specific secure devices, such as pow-
erful smart cards. Typical application scenarios are to outsource the storage of
records in e-government applications, of health records or of financial reports.

7.3 Concepts

Designing a secure XML database system poses several challenges. To ensure
data privacy and prevent security risks [62, 79, 138], the system must guaran-
tee both storage and communication security. The physical storage structure
must neither reveal the document content nor the document structure to the
Storage Provider. To be widely applicable, the database should not depend on
specific encryption techniques. Repeated encryption of the same plain text frag-
ments or markups needs to result in different cipher texts in order to prevent
statistic-based attacks. Regarding the client-server communication, repeated
transmission of the same data has to be avoided, again in order to prevent
statistic-based attacks. The database needs to support querying and updating
of both the content and structure of documents, i.e. navigating within docu-
ments and constraining values and types. Finally, regarding the system’s overall
performance, the data volume to be transferred from the Storage Provider for
query processing has to be minimized.

SemCrypt tackles these challenges as follows. The physical storage structure
guarantees data privacy and security through encryption. To identify encrypted
fragments, query and update processing techniques exploit the schema of XML
documents, which is captured by the document structure. Processing documents
is based on a schema-aware labeling scheme which not only enables SemCrypt
to identify each node of a document by a unique node label, but also to execute
many operations directly onto node labels without accessing encrypted data.
To efficiently process queries, SemCrypt provides extensible indexing on the

7.3. CONCEPTS 141

content and structure of arbitrary document fragments. Query processing is
based on a query algebra enabling query optimization and index selection.

Prior works on XML processing present isolated, incompatible solutions for
individual subproblems. Current XML databases widely ignore query optimiza-
tion and cannot easily be extended to integrate schemas and flexible, selective
indices. SemCrypt therefore also extends the state-of-the-art of unencrypted
XML processing by integrating schemas, labeling and extensible indexing into
a database system.

The following subsections give an overview of developed techniques. They
provide various examples to manage project resources, taking the sample
schema, document, queries and indices that have been used as running exam-
ples throughout the thesis. The examples are graphically represented by screen
shots taken from the SemCrypt prototype as far as graphical representations
are available. Subsection 7.3.1 starts with the storage structure. Schemas are
investigated in Subsection 7.3.2 and documents in Subsection 7.3.3. Subsection
7.3.4 and Subsection 7.3.5 look at processing queries and indices, respectively.

7.3.1 Storage Structure

To guarantee data confidentiality and privacy, the Storage Engine encrypts each
data fragment with a user defined standard encryption algorithm (E) and en-
cryption key (K), whereby arbitrary encryption techniques can be used. The
use of nonrecurring random numbers (nonce) prevents statistical analysis by
encrypting same fragments differently in each communication with the Storage
Provider. To identify encrypted fragments, each fragment has assigned a unique
id, which encodes structural information about the fragment and is encrypted
using a cryptographic hash function (H). The cryptographic hash function dis-
perses fragments in the encrypted store, which further complicates statistical
analysis. In order to prevent frequency analysis, the Storage Engine can cache
frequently requested fragments.

id fragment
1–18<12–1:1:1: ‘XML is becoming increasingly important...’

H(id) E(fragment, K) nonce
6253115564881552 kdfu983fadifow03kdkaksdfhdl3i4r3ve... 12481219

Table 7.1: Unencrypted and encrypted view on the storage structure.

Table 7.1 depicts a sample unencrypted data fragment and its encrypted
counterpart. When the SemCrypt Core requires a fragment, it assembles its
unique id based on metadata or partial query results and requests the fragment
from the Storage Provider.

7.3.2 Schema Processing

SemCrypt uses the schema of XML documents to identify encrypted docu-
ment fragments and optimize processing queries and updates. Each document

142 CHAPTER 7. CASE STUDY: THE XML DATABASE SEMCRYPT

stored in SemCrypt must have associated an XML Schema [187]. The Schema
Manager represents each XML Schema in the logical schema model (cf. Subsec-
tion 2.1.2). Internally, the schema is represented as a schema tree to which the
Schema Engine assigns schema labels (cf. Subsection 3.3.1, [88]). Logical and
internal schema models represent metadata and are thus stored and retrieved
by the Metadata Manager.

Figure 7.2: Labeled schema tree.

Example 7.1 (schema) Figure 7.2 depicts the schema of the running exam-
ple in form of a labeled schema tree. For example, path schema /projects/

project/ title has label 4. Note that the assignment of labels differs from the
labeling proposed in this thesis. SemCrypt currently assigns labels in ascending
order, which entails that access to the schema is necessary to compare structural
relationships between labels. Further, SemCrypt currently assigns type labels
dependent on path schema labels. For example, type <Documentation> has la-
bel 10 within path schema 9. The term ‘polymorphic’ denotes that a type has
subtypes, whereas a ‘monomorphic’ type does not have subtypes.

Schema labels are part of the internal representations of documents, queries
and indices. More precisely, they are used within node labels of documents,
within internal query plans and within the internal representation of indices as
index patterns. They are exploited for optimizing and processing queries and for
maintaining indices. Further, they are used as index keys in index structures.

7.3. CONCEPTS 143

7.3.3 Document Processing

Processing documents is based on a schema-aware, dynamic prefix labeling
scheme (cf. Chapter 3, [88]). Node labels serve as identifiers for data frag-
ments and are used to retrieve those encrypted fragments that are needed for
query processing. They further support query processing by enabling to deter-
mine structural relationships between nodes. Within index structures, they are
used as index keys as well as to represent the nodes returned by indices.

The Document Manager logically represents each document as a tree of
nodes (cf. Subsection 2.1.1). The Document Engine internally assigns node
labels to this document tree (cf. Subsection 3.3.2) and provides methods to
evaluate structural relationships between labels and to support navigation via
labels. The Document Manager identifies each document by a unique document
name. The Document Engine assigns a unique id to each document, which is
added to node labels to identify the document to which nodes belong. The
document name and its id represent metadata and are stored by the Metadata
Manager.

Figure 7.3: Document as a tree of nodes (left) and as a list of labels (right).

Example 7.2 (document) The screen shots of Figure 7.3, which are taken
from the SemCrypt prototype, depict a sample document as a tree of nodes and
a list of labels. The document is instance of the schema of Figure 7.2. Each label
identifies one node of the tree. Label 1–9<12–1:1:1, for example, identifies the
first resource. Thereby, the first number (1) identifies the document, the second
(9) the labelpath /projects/ project/ milestone/ resource and the third (12)
the type <TechnicalReport>. The labelpath and type labels are taken from the
labeled schema tree of Figure 7.2. The instance label (1:1:1) expresses that the
node belongs to the first project and the first milestone of this project and that
it is the first resource within this milestone. In the figure, an instance label
terminates with a double point if the node cannot have siblings with the same
name according to the schema.

144 CHAPTER 7. CASE STUDY: THE XML DATABASE SEMCRYPT

The Document Engine is responsible for storing, updating and retrieving the
content and structure of documents via the Storage Engine. For this purpose,
it uses two data structures as primary index structure, namely a hash table for
the document content and a B+-tree for the document structure.

The hash table1 associates each node label with its node value. Storing
each node individually may result in large communication overhead when re-
trieving document fragments. SemCrypt therefore supports storing document
fragments, whereby the fragmentation can be configured within the schema to
better reflect query processing needs. When storing a document fragment, the
hash table maps a node label of an element node to its descendant text and
attribute nodes that are represented as a list of label-value pairs.

8-1:1:

9-1:1:1

...

design

...

14-1:1:1:

16-1:1:1:

2007-10-31

xml

18-1:1:1: XML is beco...

Figure 7.4: Hash table on document content.

Example 7.3 (hash table on document content) Figure 7.4 depicts a
hash table on part of the content of the sample document of Figure 7.3. While it
stores the title of milestone nodes individually, it represents each resource as a
document fragment. The node label of the resource node (9–1:1:1) therefore maps
to a list of label-value pairs, representing the text and attribute node descendants
of the resource node. When outputting a resource, one access to the hash table
is sufficient to retrieve the values of its descendants.

To keep relationships between document fragments and evaluate queries on
the document structure, SemCrypt uses a B+-tree on node labels. By indexing
node labels in document order, the B+-tree can navigate through the document
structure, e.g. to retrieve all descendants or children of a node (cf. [49]). Note
that the Document Engine performs navigation with the help of labels as far
as possible, e.g. to navigate to parents and ancestors. The B+-tree uses the
same storage structure as the hash table by assigning a unique id to each page,
representing pointers between pages with the help of these ids and storing each
page as a fragment.

1 2-1 3-1: 4-1:

3-1: 5-1: 9<12-1:1:1 ...

7-1:1:

5-1: 6-1:1 7-1:1: 8-1:1: 9<12-1:1:1 ...

Figure 7.5: B+-tree on document structure.

1Alternatively, it would of course be possible to use e.g. a B+-tree.

7.3. CONCEPTS 145

Example 7.4 (B+-tree on document structure) Figure 7.5 depicts a B+-
tree on part of the document structure of the sample document (cf. Figure 7.3).
To retrieve all descendants of resource 9–1:1:1, the retrieval algorithm of the
B+-tree locates the data page of the resource node and traverses succeeding data
pages as long as the labels represent descendants of the requested resource.

7.3.4 Query Processing

The performance of SemCrypt largely depends on query optimization since the
most efficient way to process a query requires fewer data transferred and less
communication with the Storage Provider. SemCrypt supports a restricted
set of XPath 2.0, which basically corresponds to the subset presented in Section
2.2, but allows some more functions (e.g. count, position, matches).

Query processing occurs on two layers - the logical layer optimizes queries
based on a logical query algebra, whereas the internal layer represents queries
as execution plans and executes them. The Query Engine performs query opti-
mization based on a logical query algebra. Although several query algebras have
been proposed for XML (e.g. [37, 77, 80, 107, 145, 206]), there still does not
exist a standard XML algebra. SemCrypt uses a proprietary algebra, which
represents each query as a graph of logical operators. The algebra adapts exist-
ing algebras to support types and type hierarchies and basic function calls. We
omit details of the query algebra as it is out of scope of this thesis.

While the logical algebra does not specify how to process queries, the internal
algebra determines the necessary steps to execute queries. As the execution of
queries is guided by the use of labels and indices, SemCrypt uses a proprietary
internal algebra. The Execution Engine evaluates query plans compiled into
this internal query algebra. It communicates with the Document Engine and
the Index Engine to access and update documents and indices, respectively.

Example 7.5 Assume that we want to retrieve resources of the sample docu-
ment ‘projects.xml’ by their date and title. Figure 7.6 depicts screen shots
of the logical and internal query plans when executing the query evaluate

//resource [@date = ‘2007-10-31’] [title = ‘xml’] over projects.xml in
SemCrypt. In the logical query plan, the first operator specifies the document
to be queried. The second and third operators determine to navigate to all de-
scendants that are elements and have the name resource. Then the query plan
specifies two predicates, which are represented as branches in the query plan.
The left predicate navigates from resulting resources to their dates and selects
the dates with the requested value. The right predicate navigates to titles to select
titles according to their value. Each predicate terminates with a structural join
between resource nodes and the nodes returned by the predicate. It expresses to
retain only those resources that fulfill the predicate. The final operator is again
a structural join to only keep resources that fulfill both predicates. The internal
query plan is similar except for that it represents documents by their internal
id and navigational steps via schema labels. For example, the navigation to re-
sources is represented by schema label 9. Note that SemCrypt currently does
not rewrite query plans. For example, it may be more efficient to first determine
the resources which have the requested date and then only compare the titles of
these resources. Such query optimization techniques are out of scope of this
thesis as they are orthogonal to index processing.

146 CHAPTER 7. CASE STUDY: THE XML DATABASE SEMCRYPT

description superscript subscript
document operator document name
axis navigation axis
node selection node kind node name

value selection comparison operator node value
structural join join axis
axis navigation and
node selection

labels

Figure 7.6: Query on the date and title of resources in the logical (left) and
internal (right) query algebra.

7.3. CONCEPTS 147

7.3.5 Index Processing

SemCrypt provides flexible and selective indexing by integrating index struc-
tures (cf. Chapter 4), the index framework (cf. Chapter 5) and the index main-
tenance algorithm (cf. Chapter 6) as presented in this thesis. The master thesis
[125] also provides details on index structures and the index framework in Sem-
Crypt and their implementation.

To define indices, SemCrypt uses a proprietary index definition language,
which extends XPath by index variables. The Index Manager represents index
definitions as logical query plans, whereas the Index Engine internally uses index
patterns. These patterns represent metadata and are stored by the Metadata
Manager. The Index Engine is responsible for maintaining and accessing index
structures. These index structures communicate with the Storage Engine to
store and retrieve index pages, using the same storage structure as documents.

Figure 7.7: Value index on resource titles in the logical algebra (left) and as
an index pattern (right).

Example 7.6 In SemCrypt, a value index on resource titles can be defined by
create index titleIndex on projects.xml for /descendant::resource

[child::title = $V1]. Operator = denotes that the index only supports
exact comparisons. $V 1 represents an index variable on values with id 1. The
left side of Figure 7.7 depicts a screen shot of the logical index. It corresponds
to a logical query which uses an index variable instead of the value selection.
The right side of Figure 7.7 represents the index as a tree pattern that uses
schema labels taken from the labeled schema tree of Figure 7.2. The index
pattern consists of two pattern nodes. The root pattern node denotes that the
index returns (R) nodes with schema label 9. Its child pattern node defines
an index variable ($M1) on nodes with label 16. Thereby, the letter M stands
for indexing the value for exact comparisons. Based on this index variable,
SemCrypt implicitly configures the index to physically use a hash table.

148 CHAPTER 7. CASE STUDY: THE XML DATABASE SEMCRYPT

To select indices for queries, the index framework extends the Query En-
gine. Currently, SemCrypt uses a proprietary index selection algorithm which
compares query plans with index patterns. If an index pattern matches part
of a query, it replaces the corresponding operator chain with an index access
operator. The current selection algorithm does not find all possible indices for
a query. It cannot rewrite the query plan, but only replaces operator chains
by index access operators. Alternatively, it would be possible to use the in-
dex selection algorithm of Arion et al. [16], which is more powerful. To access
selected indices, the internal query algebra of the Execution Engine defines a
corresponding index access operator. When updating documents, the Execution
Engine forwards update fragments to the Index Engine for maintenance.

Figure 7.8: Querying the date and title of resources with an index on resource
titles.

Example 7.7 (index selection) Figure 7.8 depicts the internal query plan
when executing the query of Figure 7.6 with the index of Figure 7.7. Instead of
navigating to resource titles and selecting the resources with the requested title,
the query plan specifies to access the index on resource titles. Note that the
query plan could be optimized by specifying to first access the index and then
only navigate to the date of resources returned by the index.

7.4 Indices in Action

This section demonstrates how indices simplify the execution of queries by com-
paring query plans without and with indices.

Table 7.2 defines sample queries and indices using the SemCrypt syntax.
The queries correspond to queries Q7, Q8, Q13 and Q10 of Table 2.2. The
indices correspond to indices I2, I6, I15 and I9 of Table 4.4. The only exception
is that I1 only refers to resource titles instead of to all titles because SemCrypt
currently does not support wildcards before predicates. Implicitly, SemCrypt

7.4. INDICES IN ACTION 149

Q1 evaluate /descendant::resource [attribute::date = ‘2007-10-31’]
[child::title = ‘xml’] over projects.xml

Q2 evaluate /descendant::resource[attribute::date ≥ ‘2007-01-01’ and at-
tribute::date ≤ ‘2008-01-01’] over projects.xml

Q3 evaluate /descendant::element(resource, TechnicalReport)
[child::description/fn:matches(self::*, ‘\bdata.*’)] over projects.xml

Q4 evaluate /descendant::project [attribute::id = ‘26543’]/
descendant::milestone [child::title = ‘design’]/ descendant::resource
[attribute::date ≥ ‘2007-01-01’] over projects.xml

I1 create index titleIndex on projects.xml for /descendant::resource
[child::title = $V1]

I2 create index dateIndex on projects.xml for /descendant::resource
[attribute::date >< $V1]

I3 create index descriptionTypeIndex on projects.xml for /descen-
dant::element(resource, $V1) [child::description/ fn:matches(self::*,
$V2)]

I4 create index milestoneDateIndex on projects.xml for /descen-
dant::milestone [sc:label(self::*) = $V1] / descendant::resource
[attribute::date >< $V2] nest by $V1,$V2

Table 7.2: Queries and indices.

generates a hash table for I1 and a B+-tree for I2. I3 contains two index vari-
ables to support hierarchical comparisons on types and word and word prefix
queries on description values. As the extensible KDB-tree of SemCrypt can
support both variables, SemCrypt physically uses this index structure for I3.
I4 also contains two variables. The first variable indexes the path of milestones
for hierarchical comparisons (this is indicated by function ‘sc:label’). The sec-
ond variable defines to support range comparisons on date values. The index
definition includes the expression ‘nest by’. It indicates to nest the index on
dates beneath the index on milestone paths. SemCrypt therefore generates a
B+-tree on milestone paths and nests a B+-tree on date values beneath this
index structure.

Figure 7.9 depicts the internal query plans of queries Q1, Q2 and Q3 of Table
7.2 when no indices are available.

When defining indices I1, I2 and I3 of Table 7.2, SemCrypt generates the
internal query plans depicted in Figure 7.10 for queries Q1, Q2 and Q3, respec-
tively. Q1 is executed by accessing the index on titles and the index on dates
and then joining index results. Q2 and Q3 simply require accessing the index
on resource dates and on the type and description of resources, respectively.

Figure 7.11 demonstrates accessing a path index based on partial query
results. The internal query plan on the left executes Q4 without accessing
an index. In case that I2 is available, the query plan in the middle specifies to
query the requested milestones, access I2 to retrieve resources with the requested
date and the join resources and milestones. Note that I2 indexes all resources.
Although the query first selects milestones, it needs to traverse the entire index
on resource dates. I4 groups resource dates according to their milestone. The
query plan on the right accesses this index with the requested milestones as

150 CHAPTER 7. CASE STUDY: THE XML DATABASE SEMCRYPT

Figure 7.9: Queries Q1, Q2 and Q3 of Table 7.2 without indices.

Figure 7.10: Queries Q1, Q2 and Q3 of Figure 7.9 with indices I1, I2 and I3
of Table 7.2.

Figure 7.11: Query Q4 with no index (left), I2 (middle) and I4 (right) of Table
7.2.

7.5. SUMMARY 151

input. The search configuration for the index therefore does not only specify
a search condition on the date, but also includes the retrieved milestone paths
(labels). As the index nests dates beneath milestones, it first traverses the
index structure on milestone paths and then only needs to look within dates
that belong to the requested milestones. The query plan therefore no longer
requires a structural join between milestones and resources.

7.5 Summary

SemCrypt is a native, secure XML database that supports outsourcing sensi-
tive XML documents to potentially untrustworthy storage providers. To guar-
antee data confidentiality and privacy, it encrypts all data with a cryptographic
hash function and an encryption algorithm. To efficiently query and update
encrypted documents, it exploits the schemas of documents and uses labels and
indices. Labels enable SemCrypt to identify encrypted fragments and to per-
form certain query operations on labels instead of accessing encrypted data.
With the help of flexible and selective indices, SemCrypt provides indices on
frequently queried document fragments and can thus retrieve those encrypted
fragments that are required for query and update processing. SemCrypt does
not only use schema information within labels to optimize query processing, but
also to select and maintain indices as well as to represent structural informa-
tion within index structures. The concepts of this thesis are not restricted to
SemCrypt, but are applicable to any native XML database. SemCrypt itself
can be used as a standard, unencrypted XML database.

152 CHAPTER 7. CASE STUDY: THE XML DATABASE SEMCRYPT

Chapter 8

Performance Studies

Contents
8.1 Introduction . 154

8.1.1 Comparison Criteria 154

8.1.2 Test Data . 155

8.1.3 Implementation Notes 155

8.2 Index Structures . 157

8.2.1 Flexible Index Structures 158

8.2.2 Non-selective vs. Selective Index Structures 163

8.2.3 Scalability . 169

8.3 Index Maintenance 172

8.3.1 Index Patterns and Update Fragments 172

8.3.2 Index Update Time 173

8.3.3 Index Construction Time 177

8.4 Indexing in SemCrypt 178

8.5 Summary . 179

The indexing approach sciens provides flexible and selective indices and a
maintenance algorithm to keep indices consistent with document updates. This
chapter evaluates the performance of the proposed approach. Section 8.1 in-
troduces comparison criteria and the test data sets and gives some remarks on
the prototypical implementation of sciens. Section 8.2 studies index perfor-
mance by focusing on flexibility and selectivity in indexing. The performance of
the maintenance algorithm of sciens is investigated in Section 8.3. Section 8.4
looks at query and update processing with indices in the native XML database
SemCrypt. Finally, Section 8.5 concludes the performance studies.

153

154 CHAPTER 8. PERFORMANCE STUDIES

8.1 Introduction

The indexing approach sciens, which is presented in this thesis, proposes flexi-
ble and selective XML indexing. Flexibility enables a database to provide those
indices that best match a query workload, whereas selectivity reduces index size
and accelerates index traversal. Flexible and selective indices require a generic
maintenance algorithm to keep indices consistent with document updates. To
demonstrate the advantages of the proposed approach, this chapter evaluates
the performance of sciens and compares it with existing approaches. Thereby,
the focus is on the index structures, the index maintenance algorithm and the
integration of sciens into the native XML database SemCrypt. We do not
present performance studies on the labeling scheme. In our context, the labeling
scheme only serves auxiliary purposes to represent and compare index keys and
nodes. We therefore refer the reader to related work [40, 88, 97, 133], which
compares the performance of various labeling approaches.

8.1.1 Comparison Criteria

Zobel et al. [207] propose guidelines for the presentation and comparison of
indexing techniques. Based on these guidelines, we have chosen the following
set of comparison criteria:

• Query evaluation speed: Indices have the purpose to accelerate query pro-
cessing. This criteria refers to the time that an index requires to evaluate
a query in comparison to other indices.

• Disk traffic refers to the amount of data that an index requires to evaluate
a query, i.e. to the size of pages which it fetches from disk.

• Disk space: The amount of disk space that an index requires is measured
by the size that its pages consume on disk.

• Scalability: The size of documents stored in databases constantly grows
and the costs for storage space decreases. Index structures therefore need
not only be able to handle small amount of data, but need to scale up to
larger documents.

• Index update refers to the time which it takes to update an index when
updating a document. Thereby, updates subsume insertions, deletions and
modifications of documents.

• Index construction includes the time for constructing an index on an ex-
isting document.

As sciens reuses existing index structures (hash table, B+-tree, KDB-tree),
we do not regard concurrency, transactions and recoverability and perform the
tests in single-user mode.

All performance tests measure query evaluation speed and index update time
in milliseconds (ms) and disk traffic and disk space in KB.

8.1. INTRODUCTION 155

8.1.2 Test Data

The performance studies use two test data sets with varying document sizes.
The first one corresponds to the running example of managing project resources,
while the second is the XMark auction data set [173]. We have chosen the project
data set to resume our running example and the XMark data set for being a
public XML benchmark. Both test data sets use one large XML document.
One could argue that many XML applications manage a large number of small
documents. As the indices used in the performance tests refer to document
fragments instead of to the entire document, they are independent of whether
they index one large or several smaller documents.

As test data for the project example, we generated a 10 MB XML document
consisting of project resources that is instance of the sample schema (cf. Figures
2.3 and 7.2). The document consists of 11 projects. Each project has between 5
and 30 milestones and each milestone has between 5 and 200 resources. There
are 50 distinct milestone titles, 1000 distinct resource titles and 5 distinct re-
source types. To generate text, we used the text generator of XMach [5]. Each
generated description value has between 5 and 50 sentences and each sentence
has between 10 and 30 words. The generated titles have between 2 and 5 words
each.

The XMark data set manages items that are sold at auctions. Figure 8.1
depicts part of the schema as a labeled schema tree. The schema groups items
according to their region, i.e. each region consists of items that have the informa-
tion shown in the schema. In the original XMark schema, description and text
elements can contain mixed content and recursions. As the current implemen-
tation of sciens in SemCrypt neither supports mixed content nor recursion,
we modified the documents such that the description and text elements contain
text nodes with the entire content.

8.1.3 Implementation Notes

The basis for the performance studies is the prototypical implementation of the
indexing approach sciens in the native XML database SemCrypt (cf. Chapter
7). The implementation uses Java 1.5, and Berkeley DB Java 3.1 in its default
configuration [4] to store documents and indices. Data is stored locally with
encryption and caches turned off. The performance studies use the Java Exe-
cution Time Measurement Library (JETM) 1.2.2 [3] to determine the time for
executing queries. All experiments were carried out on a 3.2 GHz Pentium D
processor with 2 GB RAM.

The Berkeley database provides a hash-based storage of id-value pairs of
arbitrary sizes, which SemCrypt uses to store and retrieve pages. Each page
represents a value and has assigned a unique id. References between pages are
represented by their page ids. To store pages as values, SemCrypt serializes
and deserializes the object representation of pages as bytes and vice versa. Se-
rialization of a label in a page is based on the string representation of the label.
Note that this approach has been chosen for ease of implementation. However,
using a more efficient encoding for labels (cf. Section 3.2) would improve the
overall performance and reduce disk space. As Berkeley only provides for stor-
ing id-value pairs, it is not possible to directly navigate from one page to a

156 CHAPTER 8. PERFORMANCE STUDIES

Figure 8.1: Part of the schema of the XMark auction data set.

8.2. INDEX STRUCTURES 157

referenced page. Instead, it is necessary to retrieve the entire page, deserialize
it and find the id of the referenced page, which can then be fetched from the
store. The hash-based storage increases security in an encrypted store. As it
disperses related fragments, it can prevent statistical analysis. However, when
using SemCrypt as an unencrypted database, it introduces additional overhead
because related pages are not located next to each other. Further note that a
page has a logical size in our implementation, but it need not correspond to a
physical disk block. The master thesis of Dorninger [71] contains details on the
implementation of storing and retrieving id-value pairs.

The index structures are configured as follows. The hash table uses the
hashed-based storage of id-value pairs provided by the Berkeley database, which
resolves hash collisions. The hash table currently does not use overflow pages
when the size of a data page exceeds a maximum size. The KDB-tree and the
B+-tree both use a fanout of at most 20 index keys in index (branch) pages
and a maximum number of 70 node labels in data (leaf) pages. If there are
more than 70 node labels with the same index key in a data page, the page does
not further split. To split index pages, the KDB-tree basically employs a cyclic
splitting strategy [169]. However, it prefers splitting dimensions with more than
two distinct values. It uses this simple strategy to avoid that dimensions with
a low number of distinct values, such as labelpath or type dimensions, split
too often. When a dimension is chosen for a split, the KDB-tree selects the
median index key of the dimension as splitting line (in lexicographic, numeric
or document order). Details on the implementation of the index structures can
be found in the master thesis of Lasinger [125].

As primary index structure, SemCrypt uses a hash table on node values
and a B+-tree on node labels (cf. Section 7.3.3). The B+-tree uses a fanout
of 50 labels per index page, while a data page contains at most 200 labels.
To perform structural joins between partial query results, SemCrypt uses a
tree-merge join algorithm [12].

SemCrypt maintains indices based on the maintenance algorithm presented
in Chapter 6. As proposed in Subsection 6.4.1, the implementation pregenerates
a list of matching pattern nodes for a path schema to find embeddings of an
index pattern in an update fragment. If an update requires source queries, the
algorithm executes queries with the help of labels as far as possible (cf. Sub-
sections 3.5 and 6.4.2). Otherwise, the algorithm accesses the primary data
structure to navigate to missing nodes and to retrieve their values.

8.2 Index Structures

This section evaluates the performance of the indexing approach sciens. The
focus is on the comparison criteria query evaluation speed, disk traffic, disk
space and scalability. sciens provides flexible and selective indexing in XML
databases. Subsection 8.2.1 looks at the advantages of flexible index structures,
whereas Subsection 8.2.2 compares non-selective with selective index structures.
Both subsections evaluate the comparison criteria query evaluation speed, disk
traffic and disk space. Subsection 8.2.3 focuses on the criteria scalability.

As this section evaluates the performance of index structures, the results
only contain the time for accessing the indices. Some queries require access to

158 CHAPTER 8. PERFORMANCE STUDIES

the primary index structure or need to join index results. Section 8.4 contains
performance studies including all execution steps. As sample test data set, we
use the 10 MB project document to evaluate selectivity and flexibility. We then
demonstrate scalability of selective and flexible indices based on the auction test
data set.

8.2.1 Flexible Index Structures

sciens provides flexibility to adapt indices to various query workloads. This
subsection demonstrates flexibility by comparing query evaluation speed, disk
traffic and disk space of various index configurations.

Sample queries and indices

To show the effect of various index configurations, we execute three queries with
four different indices. As sample data set, we use the 10 MB project document.
The queries and indices are taken from the running example, which has been
used throughout the thesis.

(a) (b) (c)
Q1 //resource[@date ≥ ‘2007-01-01’ and @date <

‘2008-01-01’]
1993 63 3

Q2 //project[title = ‘semcrypt’]//resource[@date ≥
‘2008-01-01’]

217 63 1

Q3 //project[@id = ‘26543’]/milestone[title = ‘de-
sign’]/resource[@date ≥ ‘2008-01-01’]

4 63 1

Table 8.1: Queries on 10 MB project document and number of resources re-
turned for query executions (a-c) with varying date ranges.

The queries of Table 8.1 correspond to queries Q8, Q9 and Q10 of Table 2.2.
These queries reflect that XML queries typically restrict search to differently
sized subfragments of a document and contain value selections. While Q8 queries
the date of all resources, Q2 restricts search to the resources of one project and
Q3 only looks at the resources within one milestone of that project. Note that
the queried date ranges, which are depicted in bold in the table, do not exactly
correspond to the date ranges used in the performance tests. The tests use three
different query executions (a), (b) and (c) which refer to distinct date ranges.
The table lists the query result size, i.e. the number of resources returned, for
each execution. Query execution (a) uses the same date range for each query.
Q1 returns most resources for this execution as it does not restrict search to a
project or milestone. Execution (b) varies the date range such that each query
returns the same number of resources. It therefore uses a small date range for
Q1 and a large date range for Q3. Execution (c) asks for an exact date.

The queries of Table 8.1 refer to resources within different projects and
milestones and to various date ranges. sciens provides indices that support
hierarchical queries within subfragments and range queries on date values. It
can further adapt indices to either favor queries on the value or the hierarchy.
To reflect the queried milestone hierarchy in the index, we index the paths of

8.2. INDEX STRUCTURES 159

I1 B+-tree on date values
I2 B+-tree on date values, nested B+-tree on milestone paths
I3 B+-tree on milestone paths, nested B+-tree on date values
I4 KDB-tree on date values and milestone paths

Table 8.2: Indices on project document.

milestone nodes. Additionally, we index the values of resource dates. We use
the indices of Table 8.2, which correspond to indices I6, I8, I9 and I10 of Table
4.4.

Query evaluation speed

The time for executing the queries of Table 8.1 with the indices of Table 8.2
depends on the queried date range and the number of affected resources, i.e. on
whether the query refers to all projects, one project or one milestone.

0

500

1000

1500

m
s

I1 407 408 411

I2 656 455 406

I3 1290 203 42

I4 790 367 327

Q1 Q2 Q3

Figure 8.2: Query evaluation speed
(a) - same date range.

0

500

1000

1500

2000

2500

3000

m
s

I1 63 184 1610

I2 91 142 2467

I3 1123 203 49

I4 464 142 768

Q1 Q2 Q3

Figure 8.3: Query evaluation speed
(b) - same result size.

Figure 8.21 depicts the time in milliseconds for query execution (a), which
uses the same date range for each query. I1 performs equally for every query
as it cannot limit search to a project or milestone. I2, which first groups index
entries according to their date, is slightly less efficient than I1 for queries Q1
and Q2 because it also indexes milestone paths. However, with regard to Q3,
the nested index on milestone paths allows for discarding resources that are not
within the queried milestone. Index I3 has to traverse every nested date index.
It therefore shows poor performance for Q1 and best performance for Q3. The
KDB-tree I4 has average performance for each query.

Query execution (b) returns the same number of resources for each query by
varying the date range. Figure 8.3 depicts the resulting query evaluation time.
We can see that I1, I2 and I4 deteriorate when increasing the date range. I2
performs worse than I1 for queries Q1 and Q3 and I4 has average performance
for each query. Regarding Q2, we can observe that I2 and I4 are more efficient

1We use line instead of point diagrams for easier comparison.

160 CHAPTER 8. PERFORMANCE STUDIES

than I1. The reason is that I1 returns all resources with the requested date
range, which need to be filtered afterwards to restrict search to the queried
project. On the contrary, I2 and I4 can already filter the resources according to
their project when traversing the index. With regard to Q3, I2 performs worse
than I1 because it has to visit a large number of nested index structures. I3
improves when restricting search to certain subtrees as it only needs to look at
the dates of the queried project or milestone. Therefore, although the queried
date range remains unchanged, it can limit the date range by restricting index
traversal to the queried subtree.

0

500

1000

1500

m
s

I1 44 42 42

I2 59 29 29

I3 1160 190 43

I4 222 76 53

Q1 Q2 Q3

Figure 8.4: Query evaluation speed (c) - exact date.

Figure 8.4 compares the performance of the sample indices for query execu-
tion (c), which asks for an exact date. The overall picture corresponds to Figure
8.2 except for that the query evaluation time improves by limiting search to one
date. Especially I1, I2 and I4 profit from only having to look for one date.

0

500

1000

1500

m
s

I1 407 63 44

I2 656 91 59

I3 1290 1123 1160

I4 790 464 222

(a) (b) (c)

Figure 8.5: Q1 evaluation speed for
query executions (a-c).

0

100

200

300

400

500

m
s

I1 408 184 42

I2 455 142 29

I3 206 203 190

I4 367 142 76

(a) (b) (c)

Figure 8.6: Q2 evaluation speed for
query executions (a-c).

Figures 8.5 and 8.6 compare the time for evaluating Q1 and Q2 dependent
on the queried date range (query executions (a-c)). Regarding Q1, we can see
that I1 performs best as Q1 looks at all resources. I2 is slightly worse than I1 as

8.2. INDEX STRUCTURES 161

it nests an index on milestone paths beneath the date values. I3 performs worst
as it needs to visit one (nested) index structure on the date for every milestone
path. In contrast to I2 and I3, I4 circularly splits the indexed dimensions,
entailing that its performance is between I2 and I3.

Q2 looks at all resources of one project with a decreasing date range from
query execution (a) to (c). For every query execution, I3 has to visit the same
number of nested index structures on the date. However, as there is one nested
index structure on the date for every milestone, each nested index structure is
very small in size. Traversing this index structure hardly affects query evalua-
tion time. I3 therefore has equal performance for every query execution. The
performance of the remaining indices improves when decreasing the date range.
As I1 and I2 primarily build a B+-tree on the date, they profit from a lower
date range even more than I4.

The results show that solely indexing date values is only appropriate when
querying all resources (I1, Q1) as this index cannot limit index traversal to
certain milestones. The multidimensional index (I4) has average performance,
while nesting index structures either favors querying the entire hierarchy (I2,
Q2) or a specific part of the hierarchy (I3, Q3).

Disk traffic

Each index needs to fetch pages from disk to evaluate queries. The size and
number of pages fetched strongly influences query evaluation time.

0

100

200

300

400

K
B

I1 58 58 58

I2 140 140 140

I3 374 50 6

I4 190 97 77

Q1 Q2 Q3

Figure 8.7: Disk traffic (a).

0

200

400

600

800

1000

1200

K
B

I1 4 17 431

I2 8 40 1051

I3 372 50 6

I4 75 28 253

Q1 Q2 Q3

Figure 8.8: Disk traffic (b).

Figures 8.7, 8.8 and 8.9 compare the disk traffic, i.e. the size of pages fetched
in KB, to evaluate query executions (a-c) with the sample indices. We can
observe that the query evaluation speed is proportional to the disk traffic. I1
requires least disk traffic as it is one-dimensional. I2 requires more disk traffic
than I1. When querying the same date range (a), I1 and I2 require constant
disk traffic. The disk traffic of I3 decreases when adding a selection on the path
variable. The multidimensional index I4 always fetches an average size of data
from disk.

162 CHAPTER 8. PERFORMANCE STUDIES

0

100

200

300

400

K
B

I1 2 2 2

I2 4 4 4

I3 374 50 6

I4 25 13 7

Q1 Q2 Q3

Figure 8.9: Disk traffic (c).

Disk space

The entire disk space of an index depends on the number of indexed dimensions
and the kind of index structures used.

0

200

400

600

800

1000

1200

1400

K
B

space 444 1071 757 1306

I1 I2 I3 I4

Figure 8.10: Disk space of indices I1-I4.

Figure 8.10 shows the total size which is required by the sample indices on
disk in KB. I1 is the smallest index as it only indexes one dimension, i.e. date
values. I2 and I3 contain nested index structures. I3 builds one nested index on
dates for each milestone, while I2 nests the index structures the other way round.
As there are fewer distinct milestones than distinct dates, I3 has fewer nested
index structures than I2 and therefore requires smaller space than I2. I4 requires
most space as it needs to store splitting information for both dimensions.

Comparison

To index the document content and structure, sciens provides the flexibility to
adapt indices to various query workloads. It basically offers (i) an index on the

8.2. INDEX STRUCTURES 163

document content, (ii) an index on the document content with a nested index
on the document structure, (iii) an index on the document structure with a
nested index on the document content, and (iv) a multidimensional index on
the document content and structure.

With regard to query evaluation speed, alternative (i) performs best for
queries that do not restrict the hierarchical document structure. If queries only
rarely refer to a subhierarchy or query a large part of the document structure,
alternative (ii) is preferable. Alternative (iii) has best performance when queries
mostly limit search to a specific subhierarchy. The multidimensional index (iv)
is preferable when queries do not favor certain dimensions, i.e. are one time more
selective regarding the content, another time regarding the document structure.

The disk traffic is proportional to the query evaluation time. The faster
an index is, the fewer pages does it need to fetch from disk. Concerning the
overall disk space, we can observe that multidimensional indices need to store
splitting information and contain more index keys, resulting in an increased
storage overhead. When nesting index structures, the number of distinct index
keys in the superior index structure determines the number of nested index
structures. Therefore, the lower the number of distinct index keys is in the
superior index structure, the smaller is the size of the entire index.

8.2.2 Non-selective vs. Selective Index Structures

sciens provides selective indices to define indices on document fragments in-
stead of on entire documents only. Selective indices are smaller in size, which
accelerates index traversal, but they can only answer queries referring to the
indexed fragments. This subsection contrasts non-selective and selective indices
with regard to query evaluation speed, disk traffic and disk space. Non-selective
indices are comparable to existing index structures. This subsection can there-
fore also be seen as a comparison of sciens with related work. As sciens can
express existing non-selective index structures, we use the prototypical imple-
mentation of sciens for both non-selective and selective indices.

Sample queries and indices

To contrast non-selective and selective indices, we compare four queries and four
indices based on the sample project document of 10 MB. We create each index
(i) on the entire document and (ii) on the document fragment that is relevant
for executing the queries.

Q1 //title 15425
Q2 //milestone/title 157
Q3 //title[. = ‘design’] 57
Q4 //milestone/title[. = ‘design’] 3

Table 8.3: Queries on project document and result size.

Table 8.3 depicts sample queries on the project document. Q1 and Q2 are
structural queries, whereby Q1 selects all titles and Q2 limits search to milestone
titles. Q3 and Q4 contain a value selection. While Q3 selects all titles with a

164 CHAPTER 8. PERFORMANCE STUDIES

certain value, Q4 only selects milestone titles with that value. The right-most
column contains the number of nodes returned when executing the queries on
the sample 10 MB project document.

I1 B+-tree on labelpaths
I2 Hash table on node names, B+-tree on values
I3 B+-tree on labelpaths with nested B+-tree on values
I4 B+-tree on values with nested B+-tree on labelpaths

Table 8.4: Non-selective indices on project document.

To support the sample queries, we generated four indices, as depicted in
Table 8.4. I1 is a structural index, whereas I2-I4 index the document content
and structure. Each index returns the nodes whose properties it indexes, i.e. the
index patterns consist of a single pattern node. For example, I1 returns for
every labelpath all nodes that can be reached along the labelpath. The sample
indices correspond to existing XML index structures. I1 is comparable to the
DataGuide [85], I2 to XISS [135], I3 to the Index Fabric and the structure-
oriented CADG [59, 195] and I4 to the content-oriented CADG [195].

I1 B+-tree on title labelpaths
I2 Hash table on names of title nodes, B+-tree on values of title nodes
I3 B+-tree on title labelpaths with nested B+-tree on values of title nodes
I4 B+-tree on values of title nodes with nested B+-tree on title labelpaths

Table 8.5: Selective indices on project document.

The indices of Table 8.5 correspond to the indices of Table 8.4 except for
that they are selective. While I1 of Table 8.4 indexes all labelpaths, I1 of Table
8.5 only refers to labelpaths of title nodes. Similarly, the remaining indices of
Table 8.5 only index the names, labelpaths and/or values of title nodes.

Query evaluation speed

The time for executing the sample queries of Table 8.3 depends on whether the
accessed indices are not selective (cf. Table 8.4) or selective (cf. Table 8.5). I1
can only answer queries Q1 and Q2 as it does not index the document content.
The remaining indices contain all information required to answer the sample
queries.

I2 builds two separate indices, a hash table on node names and a B+-tree on
node values. The equivalent indexing approach XISS [135] proposes to access
the indices for each queried node name and value and then join index results.
For example, to evaluate Q2, the database can access the hash table on node
names twice, once to retrieve all milestone nodes and once to retrieve all title
nodes. To only return milestone titles, it is then necessary to join the results
of the index accesses. The indices of sciens return node labels that encode
structural information into schema labels (cf. Chapter 3). With the help of
these schema labels, it is possible to post-process the nodes returned by indices.
With regard to Q2, for example, it is possible to access the hash table on node

8.2. INDEX STRUCTURES 165

names to retrieve all titles and then extract the requested milestone titles based
on schema labels.

0%

20%

40%

60%

80%

100%

post-processing 916 916 112 112

structural join 916 924 956 966

Q1 Q2 Q3 Q4

Figure 8.11: Query evaluation speed with I2 in ms by post-processing and
structural joins.

Figure 8.11 contrasts executing the sample queries with the non-selective
index I2 by either performing structural joins or post-processing the index result.
In contrast to structural joins, post-processing requires one index access for each
query. The more node names are queried, the more efficient is this approach.
We therefore use post-processing in the following. Note that we generally only
show the time for accessing the indices and not for post-processing index results.

0%

20%

40%

60%

80%

100%

s 857 916 1295 2330

n 955 916 1527 46124

I1 I2 I3 I4

Figure 8.12: Q1 evaluation speed
with (non-)selective in-
dices.

0%

20%

40%

60%

80%

100%

s 49 916 69 2116

n 51 916 72 45767

I1 I2 I3 I4

Figure 8.13: Q2 evaluation speed
with (non-)selective in-
dices.

Figure 8.12 shows the time for executing query Q1 with selective (s) and
non-selective (n) indices in milliseconds. Concerning the structural query Q1,
indices I1 and I2 perform best. Note that in the selective case, I1 performs
better than I2 although I1 is a B+-tree and I2 a hash table. The reason is
that I2 returns a large number of titles, which are all contained in one page as
the hash table currently does not split its pages. On the contrary, I1 splits the
titles according to their labelpath. Accessing several smaller pages is slightly
more efficient than accessing one large page in the prototypical implementation.
In the non-selective case, I1 consists of more labelpaths, which slightly slows

166 CHAPTER 8. PERFORMANCE STUDIES

down index traversal. Indices I3 have to visit every nested value index although
the query only restricts the labelpath of nodes to be returned. They therefore
perform worse than I1 and I2. Indices I4 have the worst performance because
they need to traverse the entire index on values and then access every nested
index on labelpaths.

Because of the big differences in the query evaluation time, the figure con-
trasts selective and non-selective indices in percent. As the total number of
labelpaths is very small, the performance of the index structures on the la-
belpaths (I1 and I3) only varies slightly between selective and non-selective
indices. I2 requires one access to the hash table on node names to evaluate Q1
and therefore has equal performance in the non-selective and the selective case.
The performance of I4 greatly improves when building a selective index as this
index has to visit fewer nested index structures.

Executing Q2 with the sample indices shows similar results to the execution
of Q1, as depicted in Figure 8.13. Compared to Q1, Q2 restricts search to one
labelpath. The performance of indices I3 is nearly comparable to the ones of I1.
Compared to I1, indices I3 have to visit one nested index structure on the date
after having traversed the index on the labelpath.

0

20

40

60

80

100

120

140

m
s

n 112 97 123

s 45 81 65

I2 I3 I4

Figure 8.14: Q3 evaluation speed
with (non-)selective in-
dices.

0

20

40

60

80

100

120

m
s

n 112 51 64

s 45 48 61

I2 I3 I4

Figure 8.15: Q4 evaluation speed
with (non-)selective in-
dices.

Queries Q3 and Q4 contain a value selection and are therefore not supported
by I1. Figures 8.14 and 8.15 contrast the time for executing Q3 and Q4 with
the sample indices I2-I4.

Regarding Q3, we can observe that the performance of I3 is least dependent
on whether the index is selective or not. As the number of indexed labelpaths
is small in the sample project document, also the non-selective variant can
quickly restrict search to the queried titles. I2 has to retrieve all nodes with
the queried value and then post-process the returned nodes. Q3 returns 57
title nodes, but the sample document contains 311 more nodes with the queried
value. These nodes are returned by the non-selective index and need to be
filtered. In contrast, the selective index variant of I2 only requires to access the
value index to retrieve all queried titles. I4 performs similarly to I2. The non-
selective variant needs to traverse a greater number of nested index structures
and therefore performs worse than the selective counterpart.

8.2. INDEX STRUCTURES 167

Query Q4 restricts search to one labelpath and one value. Indices I3 and
I4 can quickly limit search to the queried labelpath and value, respectively.
Therefore, the performance of the selective and non-selective index variant does
not greatly differ. Indices I2 have the same performance for Q4 as for Q3. The
reason is that they have to evaluate the same search condition on the value
index. Note that the time for post-processing the index result, i.e. to filter
relevant titles, is not included. Compared to Q3, Q4 has to filter 54 resource
titles which have the same title as the requested milestone.

Disk traffic

The number of pages which an index needs to fetch from disk influences query
evaluation speed. Non-selective indices need to retrieve and filter more data
from disk, which deteriorates their query performance.

0%

20%

40%

60%

80%

100%

s 388 388 459 528

n 390 388 463 10136

I1 I2 I3 I4

Figure 8.16: Disk traffic Q1.

0%

20%

40%

60%

80%

100%

s 3 388 5 527

n 3 388 6 10134

I1 I2 I3 I4

Figure 8.17: Disk traffic Q2.

Figures 8.16 and 8.17 contrast the disk traffic in KB for the various indices
when executing query Q1 and Q2, respectively. The results are comparable to
the query evaluation speed (cf. Figures 8.12 and 8.13). The reason is that the
more data is accessed, the poorer is the query performance.

0%

20%

40%

60%

80%

100%

s 2 4 4

n 9 7 133

I2 I3 I4

Figure 8.18: Disk traffic Q3.

0%

20%

40%

60%

80%

100%

s 2 2 4

n 9 2 44

I2 I3 I4

Figure 8.19: Disk traffic Q4.

Figures 8.18 and 8.19 contrast the disk traffic for evaluating queries Q3 and
Q4 with selective and non-selective indices. The disk traffic is proportional to

168 CHAPTER 8. PERFORMANCE STUDIES

the query evaluation speed except for query Q4 with index I4. In this case, the
non-selective index requires larger disk traffic than the selective one although
the query evaluation speed is nearly the same. However, as both indices require
small amount of data to evaluate Q4, the disk traffic has less impact on query
evaluation speed.

Disk space

While non-selective indices refer to the entire document, selective indices are
only defined on certain fragments of a document. Dependent on the size of the
indexed fragments, selective indices occupy less disk space than non-selective
indices.

0%

20%

40%

60%

80%

100%

s 38 104 67 125

n 141 1134 1029 1254

1 2 3 4

Figure 8.20: Disk space of non-selective and selective indices on a 1 MB doc-
ument in KB.

Figure 8.20 contrasts the disk space occupied by non-selective and selective
indices. Note that we used a 1 MB document, consisting of only one project, to
calculate disk space. Non-selective indices clearly need more space than selective
ones. I2-I4 approximately have the same size as the document as they represent
the entire document.

Comparison

Selective indices only index the queried fragment and can answer queries more
efficiently than non-selective indices. Content-oriented indices show better per-
formance improvements than structure-oriented indices because the document
content is generally larger than the document structure.

As selective indices only refer to certain fragments of a document, they are
smaller in size and require less disk traffic to evaluate queries. However, it
needs to be added that selective indices can only answer the queries that refer
to the indexed fragments. sciens offers the possibility to create non-selective
and selective indices. It can therefore provide indices on those fragments that
are accessed by queries.

8.2. INDEX STRUCTURES 169

8.2.3 Scalability

This subsection studies the performance of indices when increasing the docu-
ment size. More precisely, we compare the query evaluation speed of various
queries and indices. We omit disk traffic and disk space because the results for
these criteria do not differ from those of the previous subsection.

Sample queries and indices

As sample document, we use the XMark auction data set and execute four
queries with five different indices.

10 MB 50 MB 100 MB
Q1 //item 1882 9410 18820
Q2 //europe//item 540 2700 5400
Q3 //item[fn:matches(name, ‘\bho.*’)] 52 260 520
Q4 //europe//item[fn:matches(name,

‘\bho.*’)]
12 60 120

Table 8.6: Queries on auction data set and result size (number of items re-
turned).

Table 8.6 lists sample queries on the auction data set. Q1 and Q2 are struc-
tural queries that retrieve all items (Q1) and items sold in Europe (Q2). Q3 and
Q4 similarly query all items and European items, respectively. They addition-
ally contain a value selection on the item name to only return those items whose
name contains the word prefix ‘ho’. The table also includes the number of items
returned when varying the document size. Note that we actually generated a 10
MB document and reinserted this document several times, which explains the
constant increase in the result size.

I1 B+-tree on the labelpath of items
I2 Prefix B+-tree on the value of item names
I3 Prefix B+-tree on the value of item names, nested B+-tree on the la-

belpath of items
I4 B+-tree on the labelpath of items, nested prefix B+-tree on the value

of item names
I5 KDB-tree on the value of item names and the labelpath of items

Table 8.7: Indices on auction data set.

We use the indices of Table 8.7 to execute the sample queries of Table 8.6. I1
is a structural index on the labelpath of items and I2 indexes the value of item
names. I3-I5 index both the labelpath of items and the value of item names.
Thereby, I3 and I4 nest the labelpath beneath the value and vice versa, while
I5 uses a multidimensional index.

170 CHAPTER 8. PERFORMANCE STUDIES

Query evaluation speed

In the following, we compare the time for evaluating the sample queries of Table
8.6 with the indices of Table 8.7 by increasing the document size from 10 to 100
MB. We first look at evaluating queries Q1 and Q2 with the structural index
I1. We then use the remaining indices to execute queries Q3 and Q4.

0

200

400

600

800

1000

MB

m
s

Q1 268 350 391 447 503 603 653 705 757 804

Q2 93 151 206 268 307 317 340 357 368 383

10 20 30 40 50 60 70 80 90 100

Figure 8.21: Time for evaluating Q1 and Q2 with index I1.

Considering Figure 8.21, the time for evaluating queries Q1 and Q2 with
index I1 constantly increases. As Q2 only refers to one labelpath, the index can
evaluate this query more efficiently than Q1.

0

50

100

150

200

250

MB

m
s

I2 62 69 76 91 103 111 122 129 136 143

I3 88 84 94 108 118 130 141 149 152 155

I4 173 154 163 173 176 180 193 202 212 215

I5 158 137 143 158 163 169 173 181 188 197

10 20 30 40 50 60 70 80 90 100

Figure 8.22: Time for evaluating Q3 with indices I2-I5.

Figure 8.22 depicts the time for executing query Q3 with indices I2-I5. Index
I2, which only indexes node values, is most efficient as the query refers to all
item labelpaths. I3 is slightly less efficient than I2. Index I4 has to traverse all
value index structures which are nested beneath the B+-tree on item labelpaths
and thus performs worst. The performance of the KDB-tree I5 is between

8.2. INDEX STRUCTURES 171

the nested indices I3 and I4. The figure also shows that the performance of
the multidimensional indices I3-I5 first decreases when increasing the document
size. The reason it that the indices only refer to a small part of the document.
As long as the number of index entries is small, there are only few page splits.
Data pages then contain more nodes than are requested, but need to be entirely
retrieved.

0

50

100

150

200

MB

m
s

I2 62 69 76 91 103 111 122 129 136 143

I3 79 83 96 110 118 133 141 147 150 153

I4 60 68 72 76 78 84 86 86 87 87

I5 120 93 79 85 88 89 91 98 99 100

10 20 30 40 50 60 70 80 90 100

Figure 8.23: Time for evaluating Q4 with indices I2-I5.

In contrast to Q3, query Q4 only looks at European items. Figure 8.23
contrasts the query evaluation speed of indices I2-I5 for this query. Note that
index I2 returns all items, which would have to be filtered after accessing the
index. We still included I2 for better comparison. Index I3 is similar to I2,
but can filter the requested items after evaluating the search condition on the
item name. As it has to traverse one B+-tree on item labelpaths for every
distinct word of item names, it performs worse than I2. In total, index I4,
which builds one B+-tree on item names for each distinct labelpath, performs
best. The performance of the KDB-tree I5 is between the performance of the
nested indices I3 and I4. However, I5 performs worst when the document size
is very small. The reason is that in case of a low index size and few page splits,
the data pages, which are accessed, contain more nodes than are requested.

Comparison

In this subsection, we have shown that the indices scale well when increasing
the document size. The overall results correspond to Subsection 8.2.1 in that
each index better supports different kinds of queries. In case of a low index size,
the performance of multidimensional indices may be worse than for a larger
document. The reason is that few page splits entail that data pages contain
more nodes than are requested. If an index only contains a small number of
index entries, it is advisable to decrease the maximum number of labels in a
data page.

172 CHAPTER 8. PERFORMANCE STUDIES

8.3 Index Maintenance

This section evaluates the index maintenance algorithm of sciens by focusing
on the comparison criteria index update and index construction. The mainte-
nance algorithm propagates updates on documents to affected indices. Updates
comprise the insertion, deletion and modification of document fragments. The
algorithm receives as input index patterns and update fragments and generates
index entries by performing the following steps: (1) find embeddings of index
patterns in update fragments, (2) execute queries to retrieve nodes missing in the
update fragments, (3) generate index entries and forward these index entries to
the index structures for maintenance. Each index structure provides algorithms
to insert or delete index entries. As sciens uses well-known index structures,
we do not evaluate the time for updating the index structures as such. Instead,
we focus on the performance of the maintenance algorithm, i.e. on extracting
index entries from update fragments.

In the following, we present sample index patterns and update fragments in
Subsection 8.3.1, study the time for updating indices in Subsection 8.3.2 and
the time for constructing indices in Subsection 8.3.3.

8.3.1 Index Patterns and Update Fragments

The maintenance algorithm receives as input index patterns, which define the
indexed fragments, and update fragments, which are inserted, deleted or modi-
fied. The performance of the maintenance algorithm depends on what the index
is defined on and thus on the shape of the index pattern. Further, the size of
the update fragment influences performance. We therefore compare the effect
of different index patterns and update fragments on index maintenance.

[pt]

resource

@date

resource

[pt]

[pv]
@date title

resource

[pv] [= pv]

Figure 8.24: Index patterns on project document.

Figure 8.24 depicts three index patterns on the sample project document.
The left-most pattern defines an index on resource types and only consists of
one pattern node. The index pattern in the middle is a path index pattern and
indexes resource types and date values. The right-most pattern defines an index
on the values of resource dates and titles and has the form of a twig pattern.

U1 1 date 10 B
U2 1 resource 0.5 KB
U3 1 milestone with 100 resources 70 KB
U4 1 project with 10 milestones and 100 resources each 694 KB

Table 8.8: Update fragments and their size.

8.3. INDEX MAINTENANCE 173

We update the indices with the fragments of Table 8.8. By varying the size
of the update fragments, we take into account that updates in XML typically
do not refer to single nodes, but to document fragments.

8.3.2 Index Update Time

This subsection studies the performance of the maintenance algorithm of sci-
ens when inserting, deleting or modifying document fragments in a document.
To keep indices defined on that document consistent with updates, the main-
tenance algorithm extracts index entries from the update fragments. Thereby,
the algorithm performs the same steps regardless of whether the update is an
insertion, a deletion or a modification. We therefore simply consider updates
and do not specify the kind of update operation.

In the performance tests, we use a document containing one resource as
base document. We then successively insert the four update fragments into the
document and update each index. As the maintenance algorithm is independent
of specific index structures, we do not include the time for updating the index
structures with the generated index entries.

Step 2 of the algorithm executes queries to retrieve nodes that are missing in
the update fragments. The performance of this step depends on the document
size and the kind of index structures which a database uses. In the tests, queries
to ancestors are executed via labels, whereas queries to descendants access the
primary data structure of SemCrypt (cf. Subsection 7.3.3).

Existing XML index maintenance algorithms (cf. Subsection 6.2.3) have in
common that they process each node of an update fragment individually. To
compare the sciens maintenance algorithm with existing approaches, we first
update indices with document fragments and then with single nodes.

Updating Indices with Document Fragments

When updating an index with a document fragment, the maintenance algorithm
finds embeddings of the index pattern in the fragment (S1), executes queries to
nodes that are not part of the update fragment (S2) and generates index entries
(S3). In the following, we show the time required for performing steps S1-S3 of
the maintenance algorithm when updating indices I1-I3 with the sample update
fragments U1-U4.

Figure 8.25 depicts the time required to update fragment U1 subdivided
according to each maintenance step and each index. Update fragment U1 only
consists of one date node. Index I1 is not affected by this update. When
updating index I2, the algorithm has to determine the resource type to which
the date belongs. It can efficiently perform this navigation with the help of the
label of the date node. To update index I3, the algorithm has to query the title
of the resource.

Update fragment U2 contains an entire resource. As each index entry of
the sample indices refers to one resource, the algorithm does not need to query
missing nodes. In Figure 8.26, we can observe that the maintenance algorithm
requires the same update time for each index when updating U2.

174 CHAPTER 8. PERFORMANCE STUDIES

0

1

2

3

4

5

6

7

m
s

I3 0 4 3

I2 0 0 3

I1 0 0 0

S1 S2 S3

Figure 8.25: Updating fragment U1.

0

2

4

6

8

10

m
s

I3 1 0 3

I2 1 0 3

I1 1 0 3

S1 S2 S3

Figure 8.26: Updating fragment U2.

0

20

40

60

80

100

120

m
s

I3 50 0 15

I2 34 0 12

I1 17 0 8

S1 S2 S3

Figure 8.27: Updating fragment U3.

0

200

400

600

800

1000

1200

m
s

I3 590 0 81

I2 354 0 73

I1 144 0 38

S1 S2 S3

Figure 8.28: Updating fragment U4.

8.3. INDEX MAINTENANCE 175

Figures 8.27 and 8.28 show the time for updating fragments U3 and U4. The
time for finding embeddings increases with the size of the update fragment and
the number of affected index entries. Each update fragment contains all nodes
that are required for index maintenance, entailing that the algorithm does not
have to execute step 2.

Updating Indices with Single Nodes

Existing maintenance algorithms do not consider update fragments as a whole
but process each node of the fragment individually (cf. [94] and Subsection
6.2.3). For each node, they first determine whether the node affects the index,
then query missing nodes and finally generate an index entry. As such, the
basic steps required correspond to the maintenance algorithm of sciens. The
main difference is that they also have to query nodes that are contained in
the update fragment. In the following, we reuse the maintenance algorithm of
sciens, but this time we split the fragment into single nodes and process each
node individually.

0

1

2

3

4

5

6

7

m
s

I3 0 4 3

I2 0 0 3

I1 0 0 0

S1 S2 S3

Figure 8.29: Updating nodes of
fragment U1.

0

2

4

6

8

10

12

m
s

I3 1 11 3

I2 0 1 3

I1 0 0 3

S1 S2 S3

Figure 8.30: Updating nodes of
fragment U2.

As update fragment U1 contains a single node, its update time, which is
depicted in Figure 8.29, is the same as when processing update fragments as
a whole. When updating U2 (cf. Figure 8.30), the maintenance algorithm first
processes the date of the resource and then the title of the resource. With regard
to index I3, it therefore has to execute two source queries, once to retrieve the
title belonging to the date and once to retrieve the date that belongs to the
updated title.

Looking at Figures 8.31 and 8.32, we can observe that the time required for
executing queries heavily increases for update fragments U3 and U4. When pro-
cessing single nodes, the maintenance algorithm executes source queries instead
of extracting nodes from the update fragment.

Comparison

The time required for updating indices depends on the size of the update frag-
ment and the kind of index pattern. If an index pattern only consists of one

176 CHAPTER 8. PERFORMANCE STUDIES

0

200

400

600

800

1000

1200
m

s

I3 13 1121 32

I2 7 8 12

I1 4 1 9

S1 S2 S3

Figure 8.31: Updating nodes of
fragment U3.

0

5000

10000

15000

20000

m
s

I3 96 15553 141

I2 67 52 71

I1 39 10 44

S1 S2 S3

Figure 8.32: Updating nodes of
fragment U4.

pattern node, it is only necessary to find the nodes in the fragment that match
the pattern node. In case of a path index pattern, it may be necessary to query
missing ancestors. In sciens, such queries can be performed with the help of
the labeling scheme. When updating a twig index pattern, it may be necessary
to query missing descendants that are not contained in the update fragment.
As such queries are expensive, it is more efficient to extract nodes from update
fragments instead of querying them from base data.

The performance of steps 1-3 of the maintenance algorithm depends on
whether the algorithm processes update fragments as a whole or each update
node individually. In the following, we compare these approaches by summing
up the time for updating the sample indices.

0%

20%

40%

60%

80%

100%

nodes 256 17751 373

fragments 1244 8 284

S1 S2 S3

Figure 8.33: Time for performing steps S1-S3 when processing update frag-
ments and single nodes.

Figure 8.33 shows the total time (ms) which is required for each step of the
algorithm dependent on whether the algorithm considers fragments or single
nodes. Step 2 clearly requires more time when processing single nodes instead
of fragments. Considering step 1, the algorithm traverses the entire update
fragment to find embeddings. The larger the update fragment is, the more
embeddings does the algorithm find and encode into stacks. As the current
implementation uses a data structure with logarithmic access cost for the stack

8.3. INDEX MAINTENANCE 177

encoding, the time for finding embeddings increases with the size of the update
fragment. Therefore, step 1 requires more time when processing entire frag-
ments. Note that the performance of this step could be improved by directly
generating an index entry as soon as an embedding has been found instead of
keeping it in the stack encoding.

0%

20%

40%

60%

80%

100%

nodes 11 22 1206 16073

fragments 11 12 136 1280

U1 U2 U3 U4

Figure 8.34: Time for updating fragments U1-U4 when processing update
fragments and single nodes.

The size of the update fragment influences the time required for maintaining
the sample indices. Figure 8.34 depicts the total time (ms) required for updat-
ing the sample indices with each fragment dependent on whether the algorithm
processes update fragments or single nodes. As update fragment U1 only con-
sists of one node, both approaches perform equally. However, the larger the
update fragment is, the more nodes need to be queried when processing single
nodes.

8.3.3 Index Construction Time

When constructing an index on an existing document, the database has to de-
termine its index entries and insert them into the index structure. To determine
index entries, it can use the maintenance algorithm, which queries relevant nodes
in step 2 and generates index entries in step 3. The performance of step 2 de-
pends on how efficiently the database can query indexed nodes, i.e. on available
index structures. We therefore do not include detailed performance studies for
this step.

The time required to insert index entries into an index structure depends on
the kind of index structure and the number of index entries. As sciens reuses
existing index structures, we do not compare the index structures in detail.
Basically, we can say that constructing an index using a hash table is more
efficient than an index using a B+-tree. In case of a multidimensional index,
sciens proposes to nest index structures or to use a KDB-tree. The nesting
variant that has fewer distinct index keys in the superior index structure is most
efficient, while the KDB-tree requires most time for inserting index entries.

178 CHAPTER 8. PERFORMANCE STUDIES

8.4 Indexing in SemCrypt

The native XML database SemCrypt (cf. Chapter 7) uses the indexing ap-
proach sciens to process queries and updates on XML documents. As primary
index structure, SemCrypt uses a hash table on node values and a B+-tree on
node labels (cf. Subsection 7.3.3). As long as no secondary indices are defined,
SemCrypt has to evaluate queries based on the primary index structure. In this
section, we show how secondary indices improve query and update processing
in SemCrypt.

I1 KDB-tree on title values and title labelpaths
I2 B+-tree on milestone paths, nested B+-tree on date values
I3 B+-tree on resource types
I4 B+-tree on description texts

Table 8.9: Indices on project document.

As sample data set, we use the 10 MB project document and execute the
queries of Table 2.2, which have been used as running example throughout the
thesis. As sample indices, we have chosen a KDB-tree, a nested index and
two separate B+-trees. Table 8.9 lists the sample indices, which correspond to
indices I4, I8, I11 and I12 of Table 4.4.

0%

20%

40%

60%

80%

100%

index 965 2867 2888 3569 144 217 236 1248 1286 1950 1075 290 681

wo index 3796 3881 3912 4196 4031 127651017110167 5946 4555 4065 4982611046

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13

Figure 8.35: Time for evaluating sample queries with and without indices.

When using indices, SemCrypt accesses I1 to evaluate Q1-Q6 and index
I2 to evaluate Q8. Q7, Q9 and Q102 are supported by accessing indices I1
and I2. Query Q11 accesses index I3 and queries Q12-Q13 access index I4.
Figure 8.35 contrasts the time (ms) which SemCrypt requires to evaluate the
sample queries with and without the sample indices. We can see that the query
evaluation time strongly improves when indices are available.

Indices do not only influence query but also update processing. To show
the effect of indices on updates, we execute the updates of Table 8.10 on the
sample 10 MB project document. U1 selects one resource by specifying its

2In the performance tests, we queried the project by its title instead of by its id.

8.5. SUMMARY 179

U1 modify date of resource //project[title = ‘semcrypt’]/milestone[title =
‘design’]/resource[title = ‘xml’]

U2 delete resource //project[title = ‘semcrypt’]/milestone[title = ‘design’]/
resource[title = ‘xml’]

U3 insert 1 milestone with 10 resources into project //project[title = ‘sem-
crypt’]

Table 8.10: Updates on project document.

project, milestone and resource title and changes the date of this resource. U2
deletes a resource of a certain milestone, which it determines via the project
and milestone title. Finally, U3 selects a project via its title and inserts a new
milestone with ten resources into this project.

0%

20%

40%

60%

80%

100%

index 591 644 15558

wo index 3996 4035 4078

U1 U2 U3

Figure 8.36: Time for evaluating sample updates with and without indices.

Figure 8.36 depicts the time (ms) for executing the updates with and without
indices. Each update first has to evaluate a query on one or more title values
to determine the context of the update. In the example, index I1 can accelerate
these queries. Therefore, indices even positively influence updates U1 and U2.
However, the performance of update U3 decreases with indices. The reason is
that the update affects several index entries, which need to be inserted into the
corresponding index structures.

8.5 Summary

In this chapter, we studied the performance of the indexing approach sciens
based on its prototypical implementation in the native XML database Sem-
Crypt. As comparison criteria, the performance tests evaluated query evalua-
tion speed, disk traffic, disk space, scalability, index update and index construc-
tion time.

sciens provides flexible and selective indices. Flexible indices enable the
adaptation of indices to specific query workloads by choosing between various

180 CHAPTER 8. PERFORMANCE STUDIES

underlying index structures. In contrast to non-selective indices, selective in-
dices improve query evaluation speed and reduce disk traffic and storage space.
However, as they only index part of documents, they can only evaluate queries
that refer to the indexed fragments. sciens offers the possibility to either define
default secondary indices, similar to existing approaches, or to adapt indices to
the query workload. As sciens uses balanced index structures, the indices scale
well to larger documents.

The maintenance algorithm of sciens extracts index entries from update
fragments based on index patterns. It exploits the structure of the update
fragment to find all nodes that are part of index entries. In contrast to existing
maintenance approaches, it need not execute source queries to retrieve the nodes
that are contained in the update fragment. As source queries are expensive, the
algorithm of sciens has better update performance, especially when updating
document fragments instead of single nodes. The time for constructing an index
on an existing document depends on how efficiently the database can execute
queries to determine index entries as well on the specific index structure used.

The indexing approach sciens greatly improves query processing in Sem-
Crypt. With regard to updates, the performance studies revealed that indices
can accelerate the query which determines the context nodes for the update.
However, when the update affects many index entries, updating the index struc-
tures with these index entries deteriorates update performance.

Chapter 9

Conclusion

XML databases require indices to efficiently process queries on the content and
structure of documents. In addition to indices on node values, XML databases
need to provide indices on names, labelpaths, paths and types of the nodes in
XML documents. Indices have to be able to perform various operations on these
properties to support exact, hierarchical, range and full-text queries.

Indices of (object-)relational and object-oriented databases are not ade-
quate for the hierarchical, semi-structured data model of XML. Current XML
databases only offer limited support for indexing. XML index structures pre-
sented in literature mostly index entire documents and can only support some
queries. They use proprietary data structures and algorithms, which compli-
cates providing indices for various queries.

The indexing approach sciens (Structure and Content Indexing with
Extensible, Nestable Structures), which is presented in this thesis, provides
flexible and selective indexing for XML databases. Flexibility refers to index-
ing structure- and/or content-oriented properties (values, names, labelpaths,
paths and types) and to supporting various operations on these properties (ex-
act, range, full-text and hierarchical comparisons). Selectivity refers to indexing
frequently queried document fragments instead of entire documents only.

To represent and process indexed properties, sciens assigns labels to paths,
labelpaths and types based on existing labeling approaches. Integrating path,
labelpath and type labels into node labels improves query and update process-
ing. With regard to processing indices, these enhanced node labels facilitate
selecting appropriate indices for queries and determining which updates on doc-
uments need to be propagated to which indices.

To index arbitrary properties and support various operations on these prop-
erties, sciens provides extensible, nestable index structures. sciens proposes
to index values and structural properties based on the hash table, the B+-tree
and the KDB-tree. As queries on the hierarchical structure of XML documents
correspond to range queries, the B+-tree and the KDB-tree only need to bind
comparison operators to indexed properties. No further modification of their
data structures or algorithms is necessary to support indexing content- and
structure-oriented properties. Nesting index structures enables sciens to adapt
indices to different query workloads. Compared to existing approaches, sciens

181

182 CHAPTER 9. CONCLUSION

provides indices on path and type hierarchies as well as indices that support
any combination of content- and structure-oriented properties.

An XML database needs to process various indices which are defined on
arbitrary properties and document fragments. The index model of sciens rep-
resents each index as a tree pattern. The nodes of a tree pattern have associated
index variables defining indexed properties and supported operations. Physi-
cally, the index model represents each index by one - or in case of index nesting
- several index structures. Based on index patterns, sciens presents an in-
dex framework that can process arbitrary indices of the index model without
depending on their physical index structures. The framework enables sciens
to define new indices or to implement new index structures. Index processing
comprises selecting indices during query optimization, accessing indices during
query execution and maintaining indices when updating documents.

To keep indices consistent with document updates, sciens proposes an in-
dex maintenance algorithm. As the algorithm is based on the index model, it
can determine relevant updates for arbitrary indices. Basically, it consists of
the following steps: (i) find embeddings of index patterns in update fragments
and encode them into stacks, (ii) execute queries if nodes are required for main-
tenance that are not part of the update fragment, (iii) generate index entries
from the embeddings and forward them to affected index structures. In contrast
to existing approaches, the maintenance algorithm of sciens exploits schema
information and node labels to determine which update nodes affect which in-
dices. Further, it considers update fragments as a whole instead of processing
each update node individually. It therefore need not query nodes that are con-
tained in the update fragment. As updates usually refer to fragments and not
to single nodes in XML, the efficiency of the proposed algorithm outperforms
existing approaches.

To evaluate sciens, the proposed concepts have been implemented and inte-
grated into the native, secure XML database SemCrypt. Integral parts of
SemCrypt are the labeling scheme and flexible, selective indexing. While
these concepts enable SemCrypt to process encrypted documents, they can
be equally applied to unencrypted XML databases. The performance analy-
sis demonstrate that flexibility enables sciens to define those indices that best
match the query workload. Selectivity reduces index size and accelerates index
traversal. By exploiting the structure of update fragments, the maintenance al-
gorithm requires fewer source queries than existing approaches and can therefore
process updates more efficiently.

To summarize, sciens can define those indices that best match the query
workload and guarantees that querying and updating documents remains unaf-
fected by specific indices used. The proposed concepts can be extended in several
ways. Automatically suggesting indices for query workloads would unburden the
database administrator from defining appropriate indices during database de-
sign. When optimizing queries, the index selection algorithm currently chooses
the query plan with the minimum number of operators. Integrating a cost model
would enable the query optimizer to choose the query plan with minimum ac-
cess costs. When an update affects a large number of indices, the maintenance
algorithm matches each node of the update fragment against each index pat-
tern. Sharing commonalities between index patterns could further improve the
efficiency of the maintenance algorithm.

List of Figures

1.1 XML document representing project resources. 3

1.2 Document fragment with labels. 8

1.3 Hash table on title values (left) and hash table on title labelpaths
(right). 8

1.4 Index model for defining an index on resource titles (left) and an
index on types, dates and descriptions of resources (right). 9

1.5 Updating an index on resource titles with the document fragment
of Figure 1.2. 9

2.1 XML document. 14

2.2 Document as a tree of nodes. 16

2.3 Schema model for the document of Figure 2.2. 20

3.1 Containment, prefix and k-ary complete-tree labeling schemes. . 34

3.2 Dynamic labeling schemes. 35

3.3 Labeling the path schemas of the schema in Figure 2.3. 39

3.4 Labeling the document of Figure 2.2 with schema labels from
Figure 3.3. 41

3.5 Labeling the type hierarchies of the schema in Figure 2.3. 43

4.1 KDB-tree on the values of resource dates and titles. 52

4.2 Nested index mapping title values to milestone nodes. 53

4.3 Type and value dimension of an index on resource types and date
values. 54

4.4 Content-aware path index. 57

4.5 Index on node names (left) and values (right). 58

4.6 Prefix B+-tree on the values of resource descriptions. 64

4.7 Hash table on the labelpaths of titles. 66

4.8 B+-tree on the path hierarchy of resources. 67

4.9 KDB-tree on values of resource dates and paths of milestones. . . 69

4.10 Nesting a text index on descriptions beneath an index on resource
types. 71

183

184 LIST OF FIGURES

4.11 Nesting an index on resource types beneath a text index on de-
scriptions. 71

5.1 XAM defining a value index on resource dates and titles. 82
5.2 Index patterns defining a value index on titles (left), a multidi-

mensional index on description values and resource types (mid-
dle) and a multidimensional value index on resource dates and
titles (right). 87

5.3 Query pattern on title and date values. 91
5.4 Index patterns for the query of Figure 5.3. 91
5.5 Index patterns to retrieve resources by their milestone path and

date value (left) and projects by the value of their title (right). . 92
5.6 Index pattern on labelpaths of titles and its canonical patterns. . 93
5.7 Query patterns Q3, Q1, Q2, retrieving titles by their labelpath. . 93
5.8 Architecture of the index engine. 94

6.1 Update fragments to update the entire document (a), a milestone
(b) and a date (c). 104

6.2 Simple index pattern on project ids (left), path index pattern
on resource dates (middle) and twig index pattern on milestone
titles and resource dates (right). 105

6.3 Embeddings of an index pattern (right) in a document (left). . . 107
6.4 Stack encoding of the embeddings in Figure 6.3. 108
6.5 Schema-aware index pattern on milestone and resource titles. . . 109
6.6 Non-minimal (left) and minimal (right) index pattern on mile-

stone titles and resource dates. 111
6.7 Maintenance algorithm. 115
6.8 Find embeddings of index pattern (right) in update fragment (left).115
6.9 Embeddings of fragment (b) of Figure 6.1 encoded into stacks. . 118
6.10 Detect and delete false positives when updating fragment (b) of

Figure 6.1. 120
6.11 Query missing nodes (left) for an index pattern (right). 122
6.12 Initiate querying missing nodes when updating fragment (c) of

Figure 6.1. 124
6.13 Query missing ancestors when updating fragment (c) of Figure 6.1.126
6.14 Stack encoding when ancestor queries start from several stacks. . 126
6.15 Query missing descendants when updating fragment (c) of Figure

6.1. 128
6.16 Stack encoding when several descendant queries start from the

same ancestor. 129
6.17 Index pattern with wildcard (left) and with required pattern

nodes beneath optional pattern nodes (right). 131

7.1 Architecture of the SemCrypt Core. 139

LIST OF FIGURES 185

7.2 Labeled schema tree. 142
7.3 Document as a tree of nodes (left) and as a list of labels (right). 143
7.4 Hash table on document content. 144
7.5 B+-tree on document structure. 144
7.6 Query on the date and title of resources in the logical (left) and

internal (right) query algebra. 146
7.7 Value index on resource titles in the logical algebra (left) and as

an index pattern (right). 147
7.8 Querying the date and title of resources with an index on resource

titles. 148
7.9 Queries Q1, Q2 and Q3 of Table 7.2 without indices. 150
7.10 Queries Q1, Q2 and Q3 of Figure 7.9 with indices I1, I2 and I3

of Table 7.2. 150
7.11 Query Q4 with no index (left), I2 (middle) and I4 (right) of Table

7.2. 150

8.1 Part of the schema of the XMark auction data set. 156
8.2 Query evaluation speed (a) - same date range. 159
8.3 Query evaluation speed (b) - same result size. 159
8.4 Query evaluation speed (c) - exact date. 160
8.5 Q1 evaluation speed for query executions (a-c). 160
8.6 Q2 evaluation speed for query executions (a-c). 160
8.7 Disk traffic (a). 161
8.8 Disk traffic (b). 161
8.9 Disk traffic (c). 162
8.10 Disk space of indices I1-I4. 162
8.11 Query evaluation speed with I2 in ms by post-processing and

structural joins. 165
8.12 Q1 evaluation speed with (non-)selective indices. 165
8.13 Q2 evaluation speed with (non-)selective indices. 165
8.14 Q3 evaluation speed with (non-)selective indices. 166
8.15 Q4 evaluation speed with (non-)selective indices. 166
8.16 Disk traffic Q1. 167
8.17 Disk traffic Q2. 167
8.18 Disk traffic Q3. 167
8.19 Disk traffic Q4. 167
8.20 Disk space of non-selective and selective indices on a 1 MB doc-

ument in KB. 168
8.21 Time for evaluating Q1 and Q2 with index I1. 170
8.22 Time for evaluating Q3 with indices I2-I5. 170
8.23 Time for evaluating Q4 with indices I2-I5. 171
8.24 Index patterns on project document. 172

186 LIST OF FIGURES

8.25 Updating fragment U1. 174
8.26 Updating fragment U2. 174
8.27 Updating fragment U3. 174
8.28 Updating fragment U4. 174
8.29 Updating nodes of fragment U1. 175
8.30 Updating nodes of fragment U2. 175
8.31 Updating nodes of fragment U3. 176
8.32 Updating nodes of fragment U4. 176
8.33 Time for performing steps S1-S3 when processing update frag-

ments and single nodes. 176
8.34 Time for updating fragments U1-U4 when processing update frag-

ments and single nodes. 177
8.35 Time for evaluating sample queries with and without indices. . . 178
8.36 Time for evaluating sample updates with and without indices. . . 179

List of Tables

2.1 Simplified EBNF for queries on XML documents. 23
2.2 Queries on the document of Figure 2.2. 25

4.1 Support for queries of Table 2.2 offered by existing index structures. 60
4.2 Simple and range operators on structure- and content-oriented

properties. 62
4.3 Operators required by index structures. 63
4.4 Indexing alternatives for queries of Table 2.2. 74
4.5 Support for queries of Table 2.2 offered by indices of Table 4.4. . 75
4.6 Representing existing indexing approaches with sciens. 76

5.1 Index variables defining the property being indexed and sup-
ported operators. 84

5.2 Search operators supported by operators of index variables. . . . 88

7.1 Unencrypted and encrypted view on the storage structure. 141
7.2 Queries and indices. 149

8.1 Queries on 10 MB project document and number of resources
returned for query executions (a-c) with varying date ranges. . . 158

8.2 Indices on project document. 159
8.3 Queries on project document and result size. 163
8.4 Non-selective indices on project document. 164
8.5 Selective indices on project document. 164
8.6 Queries on auction data set and result size (number of items

returned). 169
8.7 Indices on auction data set. 169
8.8 Update fragments and their size. 172
8.9 Indices on project document. 178
8.10 Updates on project document. 179

187

188 LIST OF TABLES

Bibliography

[1] Configuring Database Indexes. eXist Open Source Native XML Database
Documentation. http://exist.sourceforge.net/indexing.html.

[2] eXist Open Source Native XML Database. http://exist.sourceforge.
net/.

[3] Java Execution Time Measurement Library. http://jetm.void.fm/.

[4] Oracle Berkeley DB. http://www.oracle.com/technology/products/
berkeley-db/index.html.

[5] XMach-1: A Benchmark for XML Data Management. http://dbs.
uni-leipzig.de/en/projekte/XML/XmlBenchmarking.html.

[6] Serge Abiteboul. Querying Semi-Structured Data. In Proceedings of the
6th International Conference on Database Theory (ICDT), Lecture Notes
in Computer Science, pages 1–18. Springer, 1997.

[7] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web: From
Relations to Semistructured Data and XML. Morgan Kaufmann, 2000.

[8] Serge Abiteboul, Haim Kaplan, and Tova Milo. Compact Labeling
Schemes for Ancestor Queries. In Proceedings of the 12th Annual Sympo-
sium on Discrete Algorithms (SODA), pages 547–556. ACM/SIAM, 2001.

[9] Serge Abiteboul, Jason McHugh, Michael Rys, Vasilis Vassalos, and
Janet L. Wiener. Incremental Maintenance for Materialized Views over
Semistructured Data. In Proceedings of the 24rd International Confer-
ence on Very Large Data Bases (VLDB), pages 38–49. Morgan Kaufmann,
1998.

[10] Rakesh Agrawal, Alexander Borgida, and H. V. Jagadish. Efficient Man-
agement of Transitive Relationships in Large Data and Knowledge Bases.
In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, pages 253–262. ACM Press, 1989.

[11] Jung-Ho Ahn, Ha-Joo Song, and Hyoung-Joo Kim. Index Set: A Prac-
tical Indexing Scheme for Object Database Systems. Data & Knowledge
Engineering, 33(3):199–217, 2000.

[12] Shurug Al-Khalifa, H. V. Jagadish, Jignesh M. Patel, Yuqing Wu, Nick
Koudas, and Divesh Srivastava. Structural Joins: A Primitive for Efficient

189

http://exist.sourceforge.net/indexing.html
http://exist.sourceforge.net/
http://exist.sourceforge.net/
http://jetm.void.fm/
http://www.oracle.com/technology/products/berkeley-db/index.html
http://www.oracle.com/technology/products/berkeley-db/index.html
http://dbs.uni-leipzig.de/en/projekte/XML/XmlBenchmarking.html
http://dbs.uni-leipzig.de/en/projekte/XML/XmlBenchmarking.html

190 BIBLIOGRAPHY

XML Query Pattern Matching. In Proceedings of the 18th International
Conference on Data Engineering (ICDE), pages 141–152. IEEE Computer
Society, 2002.

[13] Toshiyuki Amagasa, Masatoshi Yoshikawa, and Shunsuke Uemura. QRS:
A Robust Numbering Scheme for XML Documents. In Proceedings of the
19th International Conference on Data Engineering (ICDE), pages 705–
707. IEEE Computer Society, 2003.

[14] Sihem Amer-Yahia, SungRan Cho, Laks V. S. Lakshmanan, and Divesh
Srivastava. Tree Pattern Query Minimization. International Journal on
Very Large Data Bases (VLDB Journal), 11(4):315–331, 2002.

[15] Sihem Amer-Yahia, Laks V. S. Lakshmanan, and Shashank Pandit. FleX-
Path: Flexible Structure and Full-text Querying for XML. In Proceedings
of the ACM SIGMOD International Conference on Management of Data,
pages 83–94. ACM Press, 2004.

[16] Andrei Arion. XML Access Modules: Towards Physical Data Independence
in XML Databases. PhD thesis, Université Paris Sud, 2007.

[17] Andrei Arion, Véronique Benzaken, and Ioana Manolescu. XML Access
Modules: Towards Physical Data Independence in XML Databases. In
Proceedings of the 2nd International Workshop on XQuery Implementa-
tion, Experience and Perspectives (XIME-P), 2005.

[18] Andrei Arion, Véronique Benzaken, Ioana Manolescu, and Yannis Pa-
pakonstantinou. Structured Materialized Views for XML Queries. In Pro-
ceedings of the 33rd International Conference on Very Large Data Bases
(VLDB), pages 87–98. ACM, 2007.

[19] Andrei Arion, Véronique Benzaken, Ioana Manolescu, Yannis Papakon-
stantinou, and Ravi Vijay. Algebra-based Identification of Tree Patterns
in XQuery. In Proceedings of the 7th International Conference on Flexible
Query Answering Systems (FQAS), Lecture Notes in Computer Science,
pages 13–25. Springer, 2006.

[20] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern Informa-
tion Retrieval. Addison-Wesley, 1999.

[21] Michael Barg and Raymond K. Wong. A Fast and Versatile Path Index for
Querying Semi-structured Data. In Proceedings of the 8th International
Conference on Database Systems for Advanced Applications (DASFAA),
pages 249–256. IEEE Computer Society, 2003.

[22] Michael G. Bauer, Frank Ramsak, and Rudolf Bayer. Multidimensional
Mapping and Indexing of XML. In Datenbanksysteme für Business, Tech-
nologie und Web, Tagungsband der 10. BTW-Konferenz (BTW), pages
305–323, 2003.

[23] Rudolf Bayer. The Universal B-Tree for Multidimensional Indexing: Gen-
eral Concepts. In Proceedings of the International Conference on World-
wide Computing and Its Applications (WWCA), Lecture Notes in Com-
puter Science, pages 198–209. Springer, 1997.

BIBLIOGRAPHY 191

[24] Rudolf Bayer and Edward M. McCreight. Organization and Maintenance
of Large Ordered Indexes. Acta Informatica, 1(3):173–189, 1972.

[25] Rudolf Bayer and Karl Unterauer. Prefix B-trees. ACM Transactions on
Database Systems (TODS), 2(1):11–26, 1977.

[26] Jon Louis Bentley. Multidimensional Binary Search Trees Used for Asso-
ciative Searching. Communications of the ACM, 18(9):509–517, 1975.

[27] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernández,
Michael Kay, Jonathan Robie, and Jerome Siméon. XML Path Lan-
guage (XPath) 2.0. W3C Recommendation 23 January 2007. http:
//www.w3.org/TR/2007/REC-xpath20-20070123/.

[28] Elisa Bertino and Paola Foscoli. Index Organizations for Object-oriented
Database Systems. IEEE Transactions on Knowledge and Data Engineer-
ing, 7(2):193–209, 1995.

[29] Elisa Bertino and Won Kim. Indexing Techniques for Queries on
Nested Objects. IEEE Transactions on Knowledge and Data Engineering,
1(2):196–214, 1989.

[30] Elisa Bertino, Beng Chin Ooi, Ron Sacks-Davis, Kian-Lee Tan, Justin
Zobel, Boris Shidlovsky, and Barbara Catania. Indexing Techniques for
Advanced Database Systems. Kluwer Academic Publishers, 1997.

[31] Philip Bille and Inge Li Gørtz. The Tree Inclusion Problem: In Optimal
Space and Faster. In Proceedings of the 32nd International Colloquium
on Automata, Languages and Programming (ICALP), Lecture Notes in
Computer Science, pages 66–77. Springer, 2005.

[32] Rasa Bliujute, Simonas Saltenis, Giedrius Slivinskas, and Christian S.
Jensen. Developing a DataBlade for a New Index. In Proceedings of the
15th International Conference on Data Engineering (ICDE), pages 314–
323. IEEE Computer Society, 1999.

[33] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu,
Jonathan Robie, and Jérome Siméon. XQuery 1.0: An XML Query Lan-
guage. W3C Recommendation 23 January 2007. http://www.w3.org/
TR/2007/REC-xquery-20070123.

[34] Luc Bouganim, François Dang Ngoc, Philippe Pucheral, and Lilan Wu.
Chip-Secured Data Access: Reconciling Access Rights with Data Encryp-
tion. In Proceedings of the 33rd International Conference on Very Large
Data Bases (VLDB), pages 1133–1136. Morgan Kaufmann, 2003.

[35] Luc Bouganim and Philippe Pucheral. Chip-Secured Data Access: Con-
fidential Data on Untrusted Servers. In Proceedings of 28th International
Conference on Very Large Data Bases (VLDB), pages 131–142. Morgan
Kaufmann, 2002.

[36] Ronald Bourret. XML Database Products: XML-Enabled Databases,
2007. http://www.rpbourret.com/xml/ProdsXMLEnabled.htm.

http://www.w3.org/TR/2007/REC-xpath20-20070123/
http://www.w3.org/TR/2007/REC-xpath20-20070123/
http://www.w3.org/TR/2007/REC-xquery-20070123
http://www.w3.org/TR/2007/REC-xquery-20070123
http://www.rpbourret.com/xml/ProdsXMLEnabled.htm

192 BIBLIOGRAPHY

[37] Matthias Brantner, Sven Helmer, Carl-Christian Kanne, and Guido Mo-
erkotte. Full-fledged Algebraic XPath Processing in Natix. In Proceedings
of the 21st International Conference on Data Engineering (ICDE), pages
705–716. IEEE Computer Society, 2005.

[38] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Fran-
cois Yergeau. Extensible Markup Language (XML) 1.0 (Fourth Edition).
W3C Recommendation 16 August 2006. http://www.w3.org/TR/2006/
REC-xml-20060816.

[39] Jan-Marco Bremer and Michael Gertz. An Efficient XML Node Identifi-
cation and Indexing Scheme. Technical Report CSE-2003-04, Department
of Computer Science, University of California, Davis, 2003.

[40] Jan-Marco Bremer and Michael Gertz. Integrating Document and Data
Retrieval Based on XML. International Journal on Very Large Data Bases
(VLDB Journal), 15(1):53–83, 2006.

[41] Richard Brinkman, Ling Feng, Jeroen Doumen, Pieter H. Hartel, and
Willem Jonker. Efficient Tree Search in Encrypted Data. In Proceedings
of the 2nd International Workshop on Security In Information Systems
(WOSIS), pages 126–135. INSTICC Press, 2004.

[42] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic Twig Joins:
Optimal XML Pattern Matching. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 310–321. ACM
Press, 2002.

[43] Barbara Catania, Anna Maddalena, and Athena Vakali. XML Document
Indexes: A Classification. IEEE Internet Computing, 9(5):64–71, 2005.

[44] Don Chamberlin, Peter Fankhauser, Daniela Florescu, Massimo Mar-
chiori, and Jonathan Robie. XML Query Use Cases. W3C Work-
ing Group Note 23 March 2007. http://www.w3.org/TR/2007/
NOTE-xquery-use-cases-20070323.

[45] Chee Yong Chan, Pascal Felber, Minos N. Garofalakis, and Rajeev
Rastogi. Efficient Filtering of XML Documents with XPath Expres-
sions. International Journal on Very Large Data Bases (VLDB Journal),
11(4):354–379, 2002.

[46] Chee Yong Chan, Cheng Hian Goh, and Beng Chin Ooi. Indexing OODB
Instances Based on Access Proximity. In Proceedings of the 13th Internal
Conference on Data Engineering (ICDE), pages 14–21. IEEE Computer
Society, 1997.

[47] Akmal B. Chaudhri, Roberto Zicari, and Awais Rashid. XML Data Man-
agement: Native XML and XML-Enabled Database Systems. Addison-
Wesley Longman Publishing, 2003.

[48] Li Chen and Elke A. Rundensteiner. Aggregate Path Index for Incremental
Web View Maintenance. In Proceedings of the 2nd International Workshop
on Advanced Issues of E-Commerce and Web-Based Information Systems
(WECWIS), pages 231–238, 2000.

http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/2007/NOTE-xquery-use-cases-20070323
http://www.w3.org/TR/2007/NOTE-xquery-use-cases-20070323

BIBLIOGRAPHY 193

[49] Qun Chen, Andrew Lim, Kian Win Ong, and Jiqing Tang. Indexing XML
Documents for XPath Query Processing in External Memory. Data &
Knowledge Engineering, 59(3):681–699, 2006.

[50] Ting Chen, Jiaheng Lu, and Tok Wang Ling. On Boosting Holism in XML
Twig Pattern Matching Using Structural Indexing Techniques. In Proceed-
ings of the ACM SIGMOD International Conference on Management of
Data, pages 455–466. ACM, 2005.

[51] Yan Chen, Sanjay Kumar Madria, Kalpdrum Passi, and Sourav S.
Bhowmick. Efficient Processing of XPath Queries Using Indexes. In
Proceedings of the 13th International Conference on Database and Ex-
pert Systems Applications (DEXA), Lecture Notes in Computer Science,
pages 721–730. Springer, 2002.

[52] Yangjun Chen and Karl Aberer. Layered Index Structures in Document
Database Systems. In Proceedings of the 7th International ACM Confer-
ence on Information and Knowledge Management (CIKM), pages 406–
413. ACM, 1998.

[53] Yangjun Chen and Yibin Chen. A New Tree Inclusion Algorithm. Infor-
mation Processing Letters, 98(6):253–262, 2006.

[54] Zhimin Chen, H. V. Jagadish, Laks V. S. Lakshmanan, and Stelios Pa-
parizos. From Tree Patterns to Generalized Tree Patterns: On Efficient
Evaluation of XQuery. In Proceedings of the 29th International Conference
on Very Large Data Bases (VLDB), pages 237–248. Morgan Kaufmann,
2003.

[55] Shu-Yao Chien, Zografoula Vagena, Donghui Zhang, Vassilis J. Tsotras,
and Carlo Zaniolo. Efficient Structural Joins on Indexed XML Documents.
In Proceedings of 28th International Conference on Very Large Data Bases
(VLDB), pages 263–274. Morgan Kaufmann, 2002.

[56] Chin-Wan Chung, Jun-Ki Min, and Kyuseok Shim. APEX: An Adap-
tive Path Index for XML Data. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 121–132. ACM,
2002.

[57] Edith Cohen, Haim Kaplan, and Tova Milo. Labeling Dynamic XML
Trees. In Proceedings of the 21st ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems (PODS), pages 271–281. ACM,
2002.

[58] Douglas Comer. The Ubiquitous B-Tree. ACM Computing Surveys,
11(2):121–137, 1979.

[59] Brian F. Cooper, Neal Sample, Michael J. Franklin, Gı́sli R. Hjaltason,
and Moshe Shadmon. A Fast Index for Semistructured Data. In Proceed-
ings of 27th International Conference on Very Large Data Bases (VLDB),
pages 341–350. Morgan Kaufmann, 2001.

194 BIBLIOGRAPHY

[60] John Cowan and Richard Tobin. XML Information Set (Second Edition).
W3C Recommendation 4 February 2004. http://www.w3.org/TR/2004/
REC-xml-infoset-20040204.

[61] Ernesto Damiani, Sabrina De Capitani di Vimercati, Sushil Jajodia, Ste-
fano Paraboschi, and Pierangela Samarati. Balancing Confidentiality and
Efficiency in Untrusted Relational DBMSs. In Proceedings of the 10th
ACM Conference on Computer and Communications Security (CCS),
pages 93–102. ACM, 2003.

[62] Tran Khanh Dang. Extreme Security Protocols for Outsourcing Database
Services. In Proceedings of the 6th International Conference on Informa-
tion Integration and Web-based Applications Services (iiWAS). Austrian
Computer Society, 2004.

[63] Bruno H. M. Denuit and Stefano Stefani. Secondary Index and Indexed
View Maintenance for Updates to Complex Types. United States Patent
20060015490, 2006.

[64] Stefan Deßloch, Weidong Chen, Jyh-Herng Chow, You-Chin Fuh, Jean
Grandbois, Michelle Jou, Nelson Mendonça Mattos, Raiko Nitzsche,
Brian T. Tran, and Yun Wang. Extensible Indexing Support in DB2
Universal Database. In Component Database Systems, pages 105–138.
Morgan Kaufmann, 2001.

[65] Melvil Dewey. A Classification and Subject Index for Cataloguing and
Arranging the Books and Pamphlets of a Library, 1876.

[66] Yanlei Diao, Mehmet Altinel, Michael J. Franklin, Hao Zhang, and
Peter M. Fischer. Path Sharing and Predicate Evaluation for High-
Performance XML Filtering. ACM Transactions on Database Systems
(TODS), 28(4):467–516, 2003.

[67] Paul F. Dietz. Maintaining Order in a Linked List. In Proceedings of the
14th Annual ACM Symposium on Theory of Computing (STOC), pages
122–127. ACM Press, 1982.

[68] Katica Dimitrova, Maged El-Sayed, and Elke A. Rundensteiner. Order-
Sensitive View Maintenance of Materialized XQuery Views. In Proceedings
of the 22nd International Conference on Conceptual Modeling, Lecture
Notes in Computer Science, pages 144–157. Springer, 2003.

[69] Klaus R. Dittrich and Andreas Geppert. Component Database Systems.
Morgan Kaufmann, 2001.

[70] Xin Dong and Alon Y. Halevy. Indexing Dataspaces. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages
43–54. ACM Press, 2007.

[71] Walter Dorninger. Securing Remote Data Stores - Design and Imple-
mentation of an Encrypted Data Store. Master’s thesis, Johannes Kepler
University Linz, Department of Business Informatics - Data & Knowledge
Engineering, 2005.

http://www.w3.org/TR/2004/REC-xml-infoset-20040204
http://www.w3.org/TR/2004/REC-xml-infoset-20040204

BIBLIOGRAPHY 195

[72] Maggie Duong and Yanchun Zhang. LSDX: A New Labelling Scheme
for Dynamically Updating XML Data. In Proceedings of the 16th Aus-
tralasian Database Conference (ADC), CRPIT, pages 185–193. Australian
Computer Society, 2005.

[73] Takeharu Eda, Yasushi Sakurai, Toshiyuki Amagasa, Masatoshi
Yoshikawa, Shunsuke Uemura, and Takashi Honishi. Dynamic Range La-
beling for XML Trees. In Current Trends in Database Technology - EDBT
Workshops, Lecture Notes in Computer Science, pages 230–239, 2004.

[74] Maged El-Sayed, Ling Wang, Luping Ding, and Elke Rundensteiner. An
Algebraic Approach for Incremental Maintenance of Materialized XQuery
Views. In Proceedings of the 4th ACM CIKM International Workshop on
Web Information and Data Management (WIDM), pages 88–91. ACM,
2002.

[75] Ronald Fagin, Jürg Nievergelt, Nicholas Pippenger, and H. Raymond
Strong. Extendible Hashing - A Fast Access Method for Dynamic Files.
ACM Transactions on Database Systems (TODS), 4(3):315–344, 1979.

[76] Mary Fernández, Ashok Malhotra, Jonathan Marsh, Marton Nagy, and
Norman Walsh. XQuery 1.0 and XPath 2.0 Data Model (XDM).
W3C Recommendation 23 Januaray 2007. http://www.w3.org/TR/2007/
REC-xpath-datamodel-20070123.

[77] Mary F. Fernández, Jérôme Siméon, and Philip Wadler. An Algebra
for XML Query. In Proceedings of the 20th Conference Conference on
Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), Lecture Notes in Computer Science, pages 11–45. Springer,
2000.

[78] Sergio Flesca, Filippo Furfaro, and Elio Masciari. On the Minimization
of XPath Queries. In Proceedings of the 29th International Conference
on Very Large Data Bases (VLDB), pages 153–164. Morgan Kaufmann,
2003.

[79] Kenny C.K. Fong. Potential Security Holes in Hacigümüs’ Scheme of
Executing SQL over Encrypted Data. http://www.cs.siu.edu/~kfong/
research/database.pdf.

[80] Flavius Frasincar, Geert-Jan Houben, and Cristian Pau. XAL: An Alge-
bra for XML Query Optimization. In Proceedings of the 13th Australasian
Conference on Database Technologies (ADC), CRPIT, pages 49–56. Aus-
tralian Computer Society, 2002.

[81] Kei Fujimoto, Dao Dinh Kha, Masatoshi Yoshikawa, and Toshiyuki Am-
agasa. A Mapping Scheme of XML Documents into Relational Databases
Using Schema-based Path Identifiers. In Proceedings of the International
Workshop on Challenges in Web Information Retrieval and Integration
(WIRI), pages 82–90. IEEE Computer Society, 2005.

[82] Volker Gaede and Oliver Günther. Multidimensional Access Methods.
ACM Computing Surveys, 30(2):170–231, 1998.

http://www.w3.org/TR/2007/REC-xpath-datamodel-20070123
http://www.w3.org/TR/2007/REC-xpath-datamodel-20070123
http://www.cs.siu.edu/~kfong/research/database.pdf
http://www.cs.siu.edu/~kfong/research/database.pdf

196 BIBLIOGRAPHY

[83] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database
Systems: The Complete Book. Prentice Hall, 2002.

[84] Charles F. Goldfarb and Paul Prescod. Charles F. Goldfarb’s XML Hand-
book. Prentice Hall, 2003.

[85] Roy Goldman and Jennifer Widom. DataGuides: Enabling Query Formu-
lation and Optimization in Semistructured Databases. In Proceedings of
23rd International Conference on Very Large Data Bases (VLDB), pages
436–445. Morgan Kaufmann, 1997.

[86] Georg Gottlob, Christoph Koch, and Reinhard Pichler. Efficient Algo-
rithms for Processing XPath Queries. ACM Transactions on Database
Systems (TODS), 30(2):444–491, 2005.

[87] Katharina Grün. A Generic Framework for Querying and Updating
Secondary XML Index Structures. In Proceedings of the SIGMOD
Ph.D. Workshop on Innovative Database Research (IDAR), pages 27–32,
2007.

[88] Katharina Grün, Michael Karlinger, and Michael Schrefl. Schema-aware
Labelling of XML Documents for Efficient Query and Update Processing
in SemCrypt. Computer Systems Science and Engineering, 21(1):65–82,
2006.

[89] Katharina Grün and Michael Schrefl. Exploiting the Structure of Update
Fragments for Efficient XML Index Maintenance. In Proceedings of the
Joint 9th Asia-Pacific Web Conference and the 8th International Con-
ference on Web-Age Information Management (APWeb/WAIM), Lecture
Notes in Computer Science, pages 471–478. Springer, 2007.

[90] Torsten Grust, Maurice van Keulen, and Jens Teubner. Accelerating
XPath Evaluation in any RDBMS. ACM Transactions on Database Sys-
tems (TODS), 29(1):91–131, 2004.

[91] Ashish Gupta and Inderpal Singh Mumick. Maintenance of Materialized
Views: Problems, Techniques, and Applications. IEEE Data(base) Engi-
neering Bulletin, 18(2):3–18, 1995.

[92] Hakan Hacigümüs, Balakrishna R. Iyer, Chen Li, and Sharad Mehrotra.
Executing SQL over Encrypted Data in the Database-Service-Provider
Model. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 216–227. ACM Press, 2002.

[93] Alan Halverson, Josef Burger, Leonidas Galanis, Ameet Kini, Rajasekar
Krishnamurthy, Ajith Nagaraja Rao, Feng Tian, Stratis Viglas, Yuan
Wang, Jeffrey F. Naughton, and David J. DeWitt. Mixed Mode XML
Query Processing. In Proceedings of 29th International Conference on
Very Large Data Bases (VLDB), pages 225–236. Morgan Kaufmann, 2003.

[94] Beda Christoph Hammerschmidt. KeyX: Selective Key-Oriented Indexing
in Native XML-Databases. PhD thesis, University of Lübeck, 2005.

BIBLIOGRAPHY 197

[95] Beda Christoph Hammerschmidt, Martin Kempa, and Volker Linnemann.
The Index Update Problem for XML Data in XDBMS. In Proceedings
of the 7th International Conference on Enterprise Information Systems
(ICEIS), pages 27–34, 2005.

[96] Zhongming Han, Congting Xi, and Jiajin Le. Efficiently Coding and In-
dexing XML Document. In Proceedings of the 10th International Confer-
ence on Database Systems for Advanced Applications (DASFAA), Lecture
Notes in Computer Science, pages 138–150. Springer, 2005.

[97] Theo Härder, Michael Haustein, Christian Mathis, and Markus Wagner.
Node Labeling Schemes for Dynamic XML Documents Reconsidered. Data
& Knowledge Engineering, 60(1):126–149, 2007.

[98] Theo Härder and Erhard Rahm. Datenbanksysteme: Konzepte und Tech-
niken der Implementierung. Springer, 2001.

[99] Ragib Hasan, Marianne Winslett, and Radu Sion. Requirements of Se-
cure Storage Systems for Healthcare Records. In Proceedings of the 4th
VLDB Workshop on Secure Data Management (SDM), Lecture Notes in
Computer Science, pages 174–180. Springer, 2007.

[100] Hao He and Jun Yang. Multiresolution Indexing of XML for Frequent
Queries. In Proceedings of the 20th International Conference on Data
Engineering (VLDB), pages 683–694. IEEE Computer Society, 2004.

[101] Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pfeffer. Generalized
Search Trees for Database Systems. In Proceedings of 21th International
Conference on Very Large Data Bases (VLDB), pages 562–573. Morgan
Kaufmann, 1995.

[102] Andreas Henrich. The Update of Index Structures in Object-oriented
DBMS. In Proceedings of the 6th International Conference on Information
and Knowledge Management (CIKM), pages 136–143. ACM, 1997.

[103] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design
Science in Information Systems Research. MIS Quarterly, 28(1):75–105,
2004.

[104] Arnaud Le Hors, Philippe Le Hegaret, Lauren Wood, Gavin Nicol,
Jonathan Robie, Mike Champion, and Steve Byrne. Document Object
Model (DOM) Level 3 Core Specification. W3C Recommendation 7 April
2004. http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407.

[105] Walter L. Hürsch. Should Superclasses be Abstract? In Proceedings of
the 8th European Conference on Object-Oriented Programming (ECOOP),
Lecture Notes in Computer Science, pages 12–31. Springer, 1994.

[106] H. V. Jagadish, Shurug Al-Khalifa, Adriane Chapman, Laks V. S. Lak-
shmanan, Andrew Nierman, Stelios Paparizos, Jignesh M. Patel, Divesh
Srivastava, Nuwee Wiwatwattana, Yuqing Wu, and Cong Yu. TIMBER: A
Native XML Database. International Journal on Very Large Data Bases
(VLDB Journal), 11(4):274–291, 2002.

http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407

198 BIBLIOGRAPHY

[107] H. V. Jagadish, Laks V. S. Lakshmanan, Divesh Srivastava, and Keith
Thompson. TAX: A Tree Algebra for XML. In Proceedings of the 8th
International Workshop on Database Programming Languages (DBPL),
Lecture Notes in Computer Science, pages 149–164. Springer, 2002.

[108] Ravi Chandra Jammalamadaka and Sharad Mehrotra. Querying En-
crypted XML Documents. In Proceedings of the 10th International
Database Engineering and Applications Symposium (IDEAS), pages 129–
136. IEEE Computer Society, 2006.

[109] Haifeng Jiang, Hongjun Lu, Wei Wang, and Beng Chin Ooi. XR-tree:
Indexing XML Data for Efficient Structural Joins. In Proceedings of the
19th International Conference on Data Engineering (ICDE), pages 253–
264. IEEE Computer Society, 2003.

[110] Haim Kaplan, Tova Milo, and Ronen Shabo. A Comparison of Label-
ing Schemes for Ancestor Queries. In Proceedings of the 13th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 954–963.
ACM/SIAM, 2002.

[111] Raghav Kaushik, Philip Bohannon, Jeffrey F. Naughton, and Henry F.
Korth. Covering Indexes for Branching Path Queries. In Proceedings of
the ACM SIGMOD International Conference on Management of Data,
pages 133–144. ACM Press, 2002.

[112] Raghav Kaushik, Philip Bohannon, Jeffrey F. Naughton, and Pradeep
Shenoy. Updates for Structure Indexes. Proceedings of the 28th Inter-
national Conference on Very Large Data Bases (VLDB), pages 239–250,
2002.

[113] Raghav Kaushik, Pradeep Shenoy, Philip Bohannon, and Ehud Gudes.
Exploiting Local Similarity for Indexing Paths in Graph-structured Data.
In Proceedings of the 18th International Conference on Data Engineering
(ICDE), pages 129–140. IEEE Computer Society, 2002.

[114] Dao Dinh Kha and Masatoshi Yoshikawa. XML Query Processing Using a
Schema-Based Numbering Scheme. In Proceedings of the 2nd International
XML Database Symposium on Database and XML Technologies (XSym),
Lecture Notes in Computer Science, pages 21–34. Springer, 2004.

[115] Dao Dinh Kha, Masatoshi Yoshikawa, and Shunsuke Uemura. A Struc-
tural Numbering Scheme for XML Data. In XML-Based Data Manage-
ment and Multimedia Engineering - EDBT Workshops, Lecture Notes in
Computer Science, pages 91–108. Springer, 2002.

[116] Aye Aye Khaing and Ni Lar Thein. A Persistent Labeling Scheme for Dy-
namic Ordered XML Trees. In Proceedings of the 2006 IEEE/WIC/ACM
International Conference on Web Intelligence (WI), pages 498–501. IEEE
Computer Society Washington, DC, USA, 2006.

[117] Christoph Kilger and Guido Moerkotte. Indexing Multiple Sets. In
Proceedings of 20th International Conference on Very Large Data Bases
(VLDB), pages 180–191. Morgan Kaufmann, 1994.

BIBLIOGRAPHY 199

[118] Won Kim, Kyung-Chang Kim, and Alfred G. Dale. Indexing Techniques
for Object-oriented Databases. ACM Press, 1989.

[119] Lau Hoi Kit and Vincent Ng. Enumerating XML Data for Dynamic
Updating. In Proceedings of the 16th Australasian Database Conference
(ADC), CRPIT, pages 75–84. Australian Computer Society, 2005.

[120] Hye-Kyeong Ko and SangKeun Lee. An Efficient Scheme to Completely
Avoid Re-labeling in XML Updates. In Proceedings of the 7th Interna-
tional Conference on Web Information Systems Engineering (WISE), Lec-
ture Notes in Computer Science, pages 259–264. Springer, 2006.

[121] Evangelos Kotsakis. Structured Information Retrieval in XML Docu-
ments. In Proceedings of the 2002 ACM Symposium on Applied Computing
(SAC), pages 663–667. ACM Press, 2002.

[122] Michal Kratky and Radim Baca. A Cost-based Join Selection for XML
Twig Content-based Queries. In Proceedings of the 3rd International
Workshop on Database Technologies for Handling XML Information on
the Web (DataX) - EDBT Workshops. ACM Press, 2008.

[123] April Kwong and Michael Gertz. Schema-based Optimization of XPath
Expressions. Technical report, University of California, 2002.

[124] Wilburt Labio, Dallan Quass, and Brad Adelberg. Physical Database
Design for Data Warehouses. In Proceedings of the 13th International
Conference on Data Engineering (ICDE), pages 277–288. IEEE Computer
Society, 1997.

[125] Peter Lasinger. Indexing Encrypted XML Documents in the SemCrypt
Database Management System. Master’s thesis, Johannes Kepler Uni-
versity Linz, Department of Business Informatics - Data & Knowledge
Engineering, 2006.

[126] Jong-Hak Lee, Kyu-Young Whang, Wook-Shin Han, Wan-Sup Cho, and
Il-Yeol Song. 2D-CHI: A Tunable Two-Dimensional Class Hierarchy In-
dex for Object-Oriented Databases. In Proceedings of the 24th Inter-
national Computer Software and Applications Conference (COMPSAC),
pages 598–607. IEEE Computer Society, 2000.

[127] Yong Kyu Lee, Seong-Joon Yoo, Kyoungro Yoon, and P. Bruce Berra.
Index Structures for Structured Documents. In Proceedings of the 1st
ACM International Conference on Digital Libraries, pages 91–99. ACM,
1996.

[128] Krishna P. Leela and Jayant R. Haritsa. Schema-conscious XML Indexing.
Information Systems, 32(2):344–364, 2007.

[129] Yves Lépouchard, John L. Pfaltz, and Ratko Orlandic. Performance
of KDB-trees with Query-based Splitting. In Proceedings of the Inter-
national Symposium on Information Technology (ITCC), pages 218–223.
IEEE Computer Society, 2002.

200 BIBLIOGRAPHY

[130] Changqing Li and Tok Wang Ling. An Improved Prefix Labeling Scheme:
A Binary String Approach for Dynamic Ordered XML. In Proceedings
of the 10th International Conference on Database Systems for Advanced
Applications (DASFAA), Lecture Notes in Computer Science, pages 125–
137. Springer, 2005.

[131] Changqing Li and Tok Wang Ling. QED: A Novel Quaternary Encoding
to Completely Avoid Re-labeling in XML Updates. In Proceedings of the
14th ACM CIKM International Conference on Information and Knowl-
edge Management (CIKM), pages 501–508. ACM Press, 2005.

[132] Changqing Li, Tok Wang Ling, and Min Hu. Efficient Processing of Up-
dates in Dynamic XML Data. In Proceedings of the 22nd International
Conference on Data Engineering (ICDE), page 13. IEEE Computer Soci-
ety, 2006.

[133] Changqing Li, Tok Wang Ling, and Min Hu. Efficient Updates in Dynamic
XML Data: From Binary String to Quaternary String. International
Journal on Very Large Data Bases (VLDB Journal), 17(3):573–601, 2008.

[134] Hanyu Li, Mong-Li Lee, and Wynne Hsu. A Path-Based Labeling Scheme
for Efficient Structural Join. In Proceedings of the 3rd International XML
Database Symposium on Database and XML Technologies (XSym), Lec-
ture Notes in Computer Science, pages 34–48. Springer, 2005.

[135] Quanzhong Li and Bongki Moon. Indexing and Querying XML Data for
Regular Path Expressions. In Proceedings of 27th International Confer-
ence on Very Large Data Bases (VLDB), pages 361–370. Morgan Kauf-
mann, 2001.

[136] Hartmut Liefke and Susan B. Davidson. View Maintenance for Hierarchi-
cal Semistructured Data. In Proceedings of the 2nd International Confer-
ence on Data Warehousing and Knowledge Discovery (DaWaK), Lecture
Notes in Computer Science, pages 114–125. Springer, 2000.

[137] Hung-Yi Lin and Po-Whei Huang. Perfect KDB-Tree: A Compact KDB-
Tree Structure for Indexing Multidimensional Data. In Proceedings of the
3rd International Conference on Information Technology and Applications
(ICITA), pages 411–414. IEEE Computer Society, 2005.

[138] Ping Lin and K. Selçuk Candan. Secure and Privacy Preserving Out-
sourcing of Tree Structured Data. In Proceedings of the VLDB Workshop
on Secure Data Management (SDM), Lecture Notes in Computer Science,
pages 1–17. Springer, 2004.

[139] Witold Litwin. Linear Hashing: A New Tool for File and Table Address-
ing. In Proceedings of the 6th International Conference on Very Large
Databases (VLDB), pages 212–223. IEEE Computer Society, 1980.

[140] Peter C. Lockemann and Klaus R. Dittrich. Architektur von Datenbanksys-
temen. dpunkt, 2004.

BIBLIOGRAPHY 201

[141] David B. Lomet and Betty Salzberg. The hB-tree: A Multiattribute In-
dexing Method with Good Guaranteed Performance. ACM Transactions
on Database Systems (TODS), 15(4):625–658, 1990.

[142] Jiaheng Lu, Tok Wang Ling, Chee Yong Chan, and Ting Chen. From Re-
gion Encoding to Extended Dewey: On Efficient Processing of XML Twig
Pattern Matching. In Proceedings of the 31st International Conference on
Very Large Data Bases (VLDB), pages 193–204. ACM, 2005.

[143] Bertram Ludäscher, Ilkay Altintas, and Amarnath Gupta. Time to Leave
the Trees: From Syntactic to Conceptual Querying of XML. In XML-
Based Data Management and Multimedia Engineering - EDBT Work-
shops, Lecture Notes in Computer Science, pages 148–168. Springer, 2002.

[144] David Maier and Jacob Stein. Indexing in an Object-oriented Database.
In Proceedings of the IEEE Workshop on Object-Oriented DBMSs, 1986.

[145] Ioana Manolescu and Yannis Papakonstantinou. A Unified Tuple-based
Algebra for XQuery. Technical report, Gemo, 2005. ftp://ftp.inria.
fr/INRIA/Projects/gemo/gemo/GemoReport-434.pdf.

[146] Norman May, Matthias Brantner, Alexander Böhm 0002, Carl-Christian
Kanne, and Guido Moerkotte. Index vs. Navigation in XPath Evalua-
tion. In Proceedings of the 4th International XML Database Symposium
on Database and XML Technologies (XSym), Lecture Notes in Computer
Science, pages 16–30. Springer, 2006.

[147] Jason McHugh, Serge Abiteboul, Roy Goldman, Dallas Quass, and Jen-
nifer Widom. Lore: A Database Management System for Semistructured
Data. SIGMOD Record, 26(3):54–66, 1997.

[148] Wolfgang Meier. eXist: An Open Source Native XML Database. In Web,
Web-Services, and Database Systems, Lecture Notes in Computer Science,
pages 169–183. Springer, 2002.

[149] Gerome Miklau and Dan Suciu. Containment and Equivalence for an
XPath Fragment. In Proceedings of the 21st ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS), pages
65–76. ACM, 2002.

[150] Tova Milo and Dan Suciu. Index Structures for Path Expressions. In Pro-
ceedings of the 7th International Conference on Database Theory (ICDT),
Lecture Notes in Computer Science, pages 277–295. Springer, 1999.

[151] Priti Mishra and Margaret H. Eich. Join Processing in Relational
Databases. ACM Computing Surveys, 24(1):63–113, 1992.

[152] Donald R. Morrison. PATRICIA - Practical Algorithm To Retrieve In-
formation Coded in Alphanumeric. Journal of the ACM, 15(4):514–534,
1968.

[153] Thomas A. Mueck and Martin L. Polaschek. A Configurable Type Hier-
archy Index for OODB. International Journal on Very Large Data Bases
(VLDB Journal), 6(4):312–332, 1997.

ftp://ftp.inria.fr/INRIA/Projects/gemo/gemo/GemoReport-434.pdf
ftp://ftp.inria.fr/INRIA/Projects/gemo/gemo/GemoReport-434.pdf

202 BIBLIOGRAPHY

[154] Frank Neven and Thomas Schwentick. XPath Containment in the Pres-
ence of Disjunction, DTDs, and Variables. In Proceedings of the 9th Inter-
national Conference on Database Theory (ICDT), Lecture Notes in Com-
puter Science, pages 312–326. Springer, 2003.

[155] Jürg Nievergelt, Hans Hinterberger, and Kenneth C. Sevcik. The Grid
File: An Adaptable, Symmetric Multikey File Structure. ACM Transac-
tions on Database Systems (TODS), 9(1):38–71, 1984.

[156] Shirish K. Nilekar. Self Maintenance of Materialized XQuery Views via
Query Containment and Re-writing. Master’s thesis, Worcester Polytech-
nic Institute, 2006.

[157] Patrick E. O’Neil. Model 204 Architecture and Performance. In Proceed-
ings of the 2nd International Workshop on High Performance Transaction
Systems, pages 40–59. Springer, 1989.

[158] Patrick E. O’Neil, Elizabeth J. O’Neil, Shankar Pal, Istvan Cseri, Gideon
Schaller, and Nigel Westbury. ORDPATHs: Insert-Friendly XML Node
Labels. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 903–908. ACM, 2004.

[159] ongjian Fu, Jui-Che Teng, and S. R. Subramanya. Node Splitting Algo-
rithms in Tree-structured High-dimensional Indexes for Similarity Search.
In Proceedings of the ACM Symposium on Applied Computing, pages 766–
770. ACM Press, 2002.

[160] Beng Chin Ooi, Jiawei Han, Hongjun Lu, and Kian-Lee Tan. Index Nest-
ing - An Efficient Approach to Indexing in Object-oriented Databases. In-
ternational Journal on Very Large Data Bases (VLDB Journal), 5(3):215–
228, 1996.

[161] Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom.
Object Exchange Across Heterogeneous Information Sources. In Proceed-
ings of the 11th International Conference on Data Engineering (ICDE),
pages 251–260. IEEE Computer Society, 1995.

[162] Chen Qun, Andrew Lim, and Kian Win Ong. D(k)-index: An Adaptive
Structural Summary for Graph-structured Data. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages
134–144. ACM, 2003.

[163] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.01 Specifica-
tion. W3C Recommendation 24 December 1999. http://www.w3.org/
TR/1999/REC-html401-19991224.

[164] Raghu Ramakrishnan and Raghu Ramakrishnan. Database Management
Systems. McGraw-Hill, 2003.

[165] Prakash Ramanan. Efficient Algorithms for Minimizing Tree Pattern
Queries. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 299–309. ACM Press, 2002.

http://www.w3.org/TR/1999/REC-html401-19991224
http://www.w3.org/TR/1999/REC-html401-19991224

BIBLIOGRAPHY 203

[166] Sridhar Ramaswamy and Paris C. Kanellakis. OODB indexing by Class-
Division. ACM SIGMOD Record, 24(2):139–150, 1995.

[167] Praveen Rao and Bongki Moon. PRIX: Indexing and Querying XML Using
Prüfer Sequences. In Proceedings of the 20th International Conference on
Data Engineering (ICDE), pages 288–300. IEEE Computer Society, 2004.

[168] Flavio Rizzolo and Alberto O. Mendelzon. Indexing XML Data with
ToXin. In Proceedings of the 4th International Workshop on the Web and
Databases (WebDB), pages 49–54, 2001.

[169] John T. Robinson. The KDB-Tree: A Search Structure for Large Mul-
tidimensional Dynamic Indexes. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 10–18. ACM
Press, 1981.

[170] Ron Sacks-Davis, Tuong Dao, James A. Thom, and Justin Zobel. Indexing
Documents for Queries on Structure, Content and Attributes. In Proceed-
ings of the International Symposium on Digital Media Information Base
(DMIB), pages 236–245, 1997.

[171] Daniel Sanders. System and Method for Efficient Maintenance of Indexes
for XML Files. United States Patent 20070220420.

[172] Mario Schkolnick and Paolo Tiberio. Estimating the Cost of Updates in a
Relational Database. ACM Transactions on Database Systems, 10(2):163–
179, 1985.

[173] Albrecht Schmidt, Florian Waas, Martin L. Kersten, Michael J. Carey,
Ioana Manolescu, and Ralph Busse. XMark: A Benchmark for XML
Data Management. In Proceedings of the International Conference on
Very Large Data Bases (VLDB), pages 974–985. Morgan Kaufmann, 2002.

[174] Karsten Schmidt and Theo Härder. An Adaptive Storage Manager for
XML Documents. In Datenbanksysteme in Business, Technologie und
Web, BTW Workshop Proceedings, pages 317–328. Verlagshaus Mainz,
2007.

[175] Harald Schöning. Tamino - A DBMS Designed for XML. In Proceedings
of the 17th International Conference on Data Engineering (ICDE), pages
149–154. IEEE Computer Society, 2001.

[176] Michael Schrefl, Jürgen Dorn, and Katharina Grün. SemCrypt - Ensur-
ing Privacy of Electronic Documents through Semantic-based Encrypted
Query Processing. In Proceedings of the International Workshop on Pri-
vacy Data Management (PDM), ICDE Workshops, page 1191. IEEE Com-
puter Society Press, 2005.

[177] Thomas Schwentick. XPath Query Containment. ACM SIGMOD Record,
33(1):101–109, 2004.

[178] Bernhard Seeger and Hans-Peter Kriegel. The Buddy-Tree: An Efficient
and Robust Access Method for Spatial Data Base Systems. In Proceedings
of the 16th International Conference on Very Large Data Bases (VLDB),
pages 590–601. Morgan Kaufmann, 1990.

204 BIBLIOGRAPHY

[179] Toshiyuki Shimizu and Masatoshi Yoshikawa. Full-Text and Structural
Indexing of XML Documents on B+-Tree. IEICE Transactions on Infor-
mation and Systems, (1):237–247, 2006.

[180] Dongwook Shin, Hyuncheol Jang, and Honglan Jin. BUS: An Effective
Indexing and Retrieval Scheme in Structured Documents. In Proceedings
of the 3rd ACM Conference on Digital Libraries, pages 235–243. ACM,
1998.

[181] Adam Silberstein, Hao He, Ke Yi, and Jun Yang. BOXes: Efficient Main-
tenance of Order-Based Labeling for Dynamic XML Data. In Proceedings
of the 21st International Conference on Data Engineering, (ICDE), pages
285–296. IEEE Computer Society, 2005.

[182] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical Tech-
niques for Searches on Encrypted Data. In Proceedings of the IEEE Sym-
posium on Security and Privacy, pages 44–55, 2000.

[183] B. Sreenath and S. Seshadri. The hcC-tree: An Efficient Index Structure
for Object Oriented Databases. In Proceedings of the 20th International
Conference on Very Large Data Bases (VLDB), pages 203–213. Morgan
Kaufmann, 1994.

[184] Jagannathan Srinivasan, Ravi Murthy, Seema Sundara, Nipun Agarwal,
and Samuel DeFazio. Extensible Indexing: A Framework for Integrating
Domain-Specific Indexing Schemes into Oracle8i. In Proceedings of the
16th International Conference on Data Engineering (ICDE), pages 91–
100. IEEE Computer Society, 2000.

[185] Michael Stonebraker. Inclusion of New Types in Relational Data Base
Systems. In Proceedings of the 2nd International Conference on Data
Engineering (ICDE), pages 262–269. IEEE Computer Society, 1986.

[186] Igor Tatarinov, Stratis Viglas, Kevin S. Beyer, Jayavel Shanmugasun-
daram, Eugene J. Shekita, and Chun Zhang. Storing and Querying Or-
dered XML Using a Relational Database System. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages
204–215. ACM, 2002.

[187] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendel-
sohn. XML Schema Part 1: Structures Second Edition. W3C
Recommendation 28 October 2004. http://www.w3.org/TR/2004/
REC-xmlschema-1-20041028.

[188] Ashish Thusoo, Sivasankaran Chandrasekar, Ravi Murthy, Nipun Agar-
wal, Eric Sedlar, Sreedhar Mukkamall, and Reema Koo. Efficient Queri-
bility and Manageability of an XML Index with Path Subsetting. United
States Patent 20050228791, 2005.

[189] Vijay Vaishnavi and Bill Kuechler. Design Research in Information Sys-
tems, 2004. http://www.isworld.org/Researchdesign/drisISworld.
htm.

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028
http://www.isworld.org/Researchdesign/drisISworld.htm
http://www.isworld.org/Researchdesign/drisISworld.htm

BIBLIOGRAPHY 205

[190] Athena Vakali, Barbara Catania, and Anna Maddalena. XML Data
Stores: Emerging Practices. IEEE Internet Computing, 9(2):62–69, 2005.

[191] Patrick Valduriez. Join Indices. ACM Transactions on Database Systems,
12(2):218–246, 1987.

[192] Haixun Wang, Sanghyun Park, Wei Fan, and Philip S. Yu. ViST: A Dy-
namic Index Method for Querying XML Data by Tree Structures. In Pro-
ceedings of the ACM SIGMOD international conference on Management
of data, pages 110–121. ACM Press, 2003.

[193] Hui Wang and Laks V. S. Lakshmanan. Efficient Secure Query Evaluation
over Encrypted XML Databases. Proceedings of the 32nd International
Conference on Very Large Data Bases (VLDB), pages 127–138, 2006.

[194] J. Wang, X. Meng, and S. Wang. Integrating Path Index with Value Index
for XML Data. In Proceedings of the 5th Asian-Pacific Web Conference on
Web Technologies and Applications (APWeb), Lecture Notes in Computer
Science, pages 95–100. Springer, 2003.

[195] Felix Weigel, Holger Meuss, François Bry, and Klaus U. Schulz. Content-
Aware DataGuides: Interleaving IR and DB Indexing Techniques for Effi-
cient Retrieval of Textual XML Data. In Proceedings of the 26th European
Conference on IR Research, Advances in Information Retrieval (ECIR),
Lecture Notes in Computer Science, pages 378–393. Springer, 2004.

[196] Felix Weigel, Holger Meuss, Klaus U. Schulz, and François Bry. Content
and Structure in Indexing and Ranking XML. In Proceedings of the 7th
International Workshop on the Web and Databases (WebDB), pages 67–
72. ACM Press, 2004.

[197] Lauren Weinstein. Inside Risks 164. Communications of the ACM
(CACM), 47(2), 2004.

[198] Xiaodong Wu, Mong-Li Lee, and Wynne Hsu. A Prime Number Labeling
Scheme for Dynamic Ordered XML Trees. In Proceedings of the 20th In-
ternational Conference on Data Engineering (ICDE), pages 66–78. IEEE
Computer Society, 2004.

[199] Benjamin Bin Yao, M. Tamer Özsu, and Nitin Khandelwal. XBench
Benchmark and Performance Testing of XML DBMSs. In Proceedings of
20th International Conference on Data Engineering (ICDE), pages 621–
632. IEEE Computer Society, 2004.

[200] Jingtao Yao and Ming Zhang. A Fast Tree Pattern Matching Algorithm
for XML Query. In Proceedings of the IEEE/WIC/ACM International
Conference on Web Intelligence (WI), pages 235–241. IEEE Computer
Society, 2004.

[201] Ke Yi, Hao He, Ioana Stanoi, and Jun Yang. Incremental Maintenance
of XML Structural Indexes. In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, pages 491–502. ACM,
2004.

206 BIBLIOGRAPHY

[202] Jong P. Yoon, Vijay Raghavan, Venu Chakilam, and Larry Kerschberg.
BitCube: A Three-Dimensional Bitmap Indexing for XML Documents.
Journal of Intelligent Information Systems, 17(2):241–254, 2001.

[203] Byunggu Yu, Ratko Orlandic, Thomas Bailey, and Jothi Somavaram.
KDBKD-Tree: A Compact KDB-Tree Structure for Indexing Multidi-
mensional Data. In Proceedings of the International Symposium on In-
formation Technology (ITCC), pages 676–680. IEEE Computer Society,
2003.

[204] Jeffrey Xu Yu, Daofeng Luo, Xiaofeng Meng, and Hongjun Lu. Dynam-
ically Updating XML Data: Numbering Scheme Revisited. World Wide
Web, 8(1):5–26, 2005.

[205] Ning Zhang, Peter J. Haas, Vanja Josifovski, Guy M. Lohman, and Chun
Zhang. Statistical Learning Techniques for Costing XML Queries. In Pro-
ceedings of the 31st International Conference on Very Large Data Bases
(VLDB), pages 289–300. ACM, 2005.

[206] Xin Zhang and Elke A. Rundensteiner. XAT: XML Algebra for the Rain-
bow System. Technical Report WPI-CS-TR-02-24, Worcester Polytechnic
Institute, 2002.

[207] Justin Zobel, Alistair Moffat, and Kotagiri Ramamohanarao. Guidelines
for Presentation and Comparison of Indexing Techniques. ACM SIGMOD
Record, 25(3):10–15, 1996.

	Introduction
	Motivation
	Challenges
	State of the Art
	Objectives
	Approach
	Outline

	I Labeling and Indexing XML Documents
	Preliminaries
	XML Documents and Schemas
	Processing Queries
	Indexing Requirements

	Labeling Scheme
	Introduction
	Related Work
	Basic Approach
	Including Type Hierarchies
	Processing Labels
	Summary

	Index Structures
	Introduction
	Related Work
	Concepts
	Extending Index Structures
	Nesting Index Structures
	Summary

	II Processing Secondary Indices
	Index Framework
	Introduction
	Related Work
	Index Model
	Components
	Summary

	Index Maintenance
	Introduction
	Related Work
	Concepts
	Maintenance Algorithm
	Evaluation and Extensions
	Summary

	III Evaluation
	Case Study: The XML Database SemCrypt
	Introduction
	Architecture
	Concepts
	Indices in Action
	Summary

	Performance Studies
	Introduction
	Index Structures
	Index Maintenance
	Indexing in SemCrypt
	Summary

	Conclusion
	List of Figures
	List of Tables
	References
	Curriculum Vitae

