!ﬁ
U JOHANNES KEPLER
UNIVERSITAT LINZ

Netzwerk fir Forschung, Lehre und Praxis
Theory and Implementation of
Anticipatory Data Mining

Dissertation zur Erlangung des akademischen Grades

Doctor rerum socialium
oeconomicarumaque

angefertigt am

Institut fur Wirtschattsinformatik —
Data & Knowledge Engineering

Eingereicht von

Dipl.-Wirtsch.-Inf. Mathias Goller

Betreuung

o. Univ.-Prof. Dr. Michael Schrefl
a. Univ.-Prof. Dr. Joset Kiing

Linz, Juli 2006

ii

Eidesstattliche Erklarung

Ich erklare hiermit an Eides statt, dass ich die vorliegende Dissertation
selbstandig verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht
benutzt und die aus anderen Quellen entnommenen Stellen als solche gekennze-
ichnet habe. Diese Dissertation habe ich weder im Inland noch im Ausland in
irgendeiner Form als Priifungsarbeit vorgelegt.

Linz, den 10.7.2006

(Mathias Goller)

iii

iv

Acknowledgements

Thank you very much! Thank you for being interested in the results of my
research. As there exist several persons that helped me to bring my ideas into
existence, I want to use this page to thank them for their guidance and their
support.

First of all, I want to thank my supervisor Michael Schrefl for lots of valuable
discussions concerning my approach and alternative approaches. His detailed
knowledge about existing work and supervising PhD students helped me to
avoid traps. Additionally, a special thank goes to Josef Kiing for reviewing my
work.

I also want to thank my colleagues at Johannes-Kepler-University Linz for
valuable discussions concerning the concepts of my dissertation. Although I
could rely on all of them, I want give a special thank to Stefan Berger and
Stephan Lechner—Stefan Berger for proof-reading my dissertation and Stephan
Lechner for encouraging me when deadlines approached.

I am grateful to my parents for encouraging me in my decision to write a
doctoral thesis and to do so in Linz.

Special thanks go to all students which implemented parts of my concept in
their master’s theses, namely Klaus Stéttinger, Markus Humer, Dominik Fiirst,
Stefan Schaubschéger, and Julia Messerklinger. I want to thank Dominik Fiirst
for implementing the kc-method of CHAD and for giving me the clue for a
simpler computation of the distance to the bisecting hyperplane. I also want to
thank Markus Humer with whom I wrote a paper.

I want to thank the participants of the ECIS doctoral consortium supervised
by Virpi Tuunainen and Karl-Heinz Kautz for their valuable feedback. I could
benefit of the hints given by Xiaofeng Wang and Jeffrey Gortmaker.

I also want to thank the experts at NCR/Teradata Center of Expertise in
Vienna, and in special Karl Krycha, for various valuable discussions concerning
data mining in general and my dissertation in special.

(Mathias Goller)

vi

Zusammenfassung

Das Analysieren von Daten mit Hilfe von Data Mining-Methoden ist ein sehr
zeitaufwandiger Prozess, besonders dann, wenn die untersuchte Datenmenge
sehr grof} ist.

Data Mining ist eine wichtige Phase des Knowledge Discovery in Databases-
Prozesses (KDD -Prozess), jedoch nur ein Teil des Prozesses. Verbesserun-
gen der Data Mining-Phase tragen nur teilweise zur Verbesserung des Gesamt-
prozesses bei, da beispielsweise die Vorbereitungsphase nach wie vor zu langen
Prozesslaufzeiten fithrt. Haufig miissen Vorbereitungsphase und Data Mining-
Phase wiederholt werden bis die Ergebnisse der Data Mining-Phase zufrieden-
stellend sind, was sich wiederum negativ auf die Durchlaufzeit auswirkt.

In dieser Dissertation wird ein neues Verfahren zur Steigerung der Perfor-
manz und Qualitdat des KDD -Prozesses vorgestellt. Die Verbesserung beruht
auf das Vorbereiten von Zwischenergebnissen, die von keiner konkreten Auf-
gabenstellung abhéngen. Liegt spéter eine konkrete Aufgabenstellung vor, kann
das Ergebnis dieser Aufgabenstellung aus diesen Zwischenergebnissen berechnet
werden.

vii

viii

Abstract

Analysing data with data mining techniques needs much time—especially, if the
data set that is analysed is very large.

Data mining is an important phase in the knowledge discovery in databases
process (KDD process). Yet, it is only a part of the KDD process. Improv-
ing data mining also improve the KDD process but the improvement can be
minor because improving data mining affects only a single phase of a set of
phases. Other phases such as the pre-processing phase contribute much to the
total time of a KDD project. Commonly, it is necessary to iterate the phases
pre-preprocessing and data mining before the result of the data mining phase
satisfy the analyst’s requirements. Again, repeating phases also worsens the
performance of total project time.

This dissertation presents a new method to improve performance and quality
of the KDD process. The idea is to pre-compute intermediate results which
depend on no specific setting of any analysis. When the specific setting of an
analysis becomes clear, the data mining system can compute the final result of
that analysis using the intermediate results.

ix

Contents

Introduction

1.1 Introductiono
1.2 Running Example: Sales in a Data Warehouse
1.3 Chosen Research Paradigm and Methodology
1.4 Organisation of this Dissertation

KDD Process and Existing Algorithms

2.1 Knowledge Discovery in Databases and Data Mining
2.2 The Clustering Problem
2.3 Classification Lo
2.4 Association Rule Mining

Discussing Existing Solutions

3.1 Imtroduction Lo
3.2 Sampling
3.3 Analogous Solutions for OLAP
3.4 Data Compression o
3.5 Related Clustering Approaches
3.6 Related Classification Approaches
3.7 Related Approaches of Association Rule Mining

Concept of Anticipatory Data Mining

4.1 Things to Improve oo
4.2 Splitting the KDD process o oo
4.3 General Pre-Process
4.4 Specific KDD Processo

Anticipatory Clustering Using CHAD

5.1 Architecture of CHAD
52 CHAD Phase 1
53 CHAD Phase 2
5.4 Selecting General Cluster Features
5.5 Projecting a General Cluster Feature Tree
5.6 Transforming General Cluster Features

xi

10
14
17

19
20
25
44
57

73
74
74
)
76
7
84
85

xii

CONTENTS

5.7 Deriving New Attributes
58 CHAD Phase 3
5.9 Bounding Rectangle Condition
5.10 Initialising the Third Phase of CHAD

Anticipatory Classification and ARA

6.1 Introduction L oo
6.2 Buffering Auxiliary Tuples and Auxiliary Statistics
6.3 Deriving Probability Density Function from cf9-tree
6.4 Using Cluster Features to Find Split Points
6.5 Intermediate Results & Auxiliary Data for Naive Bayes
6.6 Accelerating Algorithms Finding Association Rules

Experimental Results

7.1 Overview of Evaluation and Test Series
7.2 Results of Tests Demonstrating Scalability of CHAD
7.3 Effects of Clustering Features and Samples on Cluster Quality . .
7.4 Comparing Effects on Quality
7.5 Using Pre-computed Items for KDD Instances.
7.6 Summary of Evaluation 0000

Description of Tests

Al datasets.
A2 testseries
A3 resultsindetail Lo

List of Figures

1.1
1.2
1.3
1.4

1.5
1.6
1.7

2.1

2.2
2.3

24
2.5
2.6
2.7
2.8
2.9
2.10
4.1
4.2
4.3
4.4
4.5

5.1

KDD process 2
Issue A: Insufficient results inflict additional iterations 3
Issue B: Multiple isolated KDD instances use the same data . . . 4
Improving the KDD process by using pre-computed intermediate

results and auxiliary data instead of tuples 8
network of a globally operating company 10
schema of cube sales in Golfarelli notation 11
Design Cycle o 15
Euclidian distance ||Z — 7]| and Manhattan dj; distance of two

vectors Zand ¢ 30
Manhattan distance of ordinal attributes 31
Using a trained and verified classifier to predict tuples’ class

where class is unknown L0000 44
Decision tree that predicts whether a customer is about to churn

Or NOt . . . oL 53
Frequencies of an association rule example where only B — A

satisfies minimum confidence 59
Frequencies of a set of infrequent itemsets where lift is at maxi-

mum but supportistoolow, 61
Combinatorial explosion due to low minimum support 63
Growth of FP-tree when scanning transactions one by one 69
Creating conditional subtree 70
Creating conditional subtree with a single identical sub-path . . 70
Splitting the phases of the KDD process into a set of operations

illustrated by Naive Bayes and Apriori 96
Pre-clustering of data returns a dendrogram of sub-clusters with

auxiliary statistics L Lo 105
Auxiliary tuples a-h in an excerpt of the data set of Figure A.7 . 106
Probability density of one dimension of of figure 4.3 106
Taxonomy of product groups 113
CHAD compared with traditional way of analysis 125

xiii

Xiv

5.2
5.3
5.4

5.5
5.6
5.7

5.8

5.9

5.10
5.11
5.12
5.13

5.14

5.15
5.16

7.1
7.2

7.3
74
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24

LIST OF FIGURES

Phases of CHAD 126
Taxonomy of cluster features 130
selection predicate in DNF describes a set of hypercubes in d-

dimensional space 137
pruned version of selection criteria of figure 5.4 138
selection criteria and general cluster feature tree entries 139
hypercube and bounding rectangle intersect although all tuples

fulfill term 141
Probability density of a single attribute at macro-level (bottom)

and at micro-level (top) oL 143
Approximating density functions with Gaussian distribution . . . 143
selection predicate includes condition zfa] <wv 146
selection predicate includes condition A < zfa] <v 147
selection predicate includes condition zfa] > A 148
updating a bounding rectangle of a general cluster feature with

the bounding rectangle of the selection predicate 153
Testing if all points in a bounding rectangle are closer to a mean

than to the mean of another cluster 170
finding the optimal clustering for two one-dimensional clusters . 173
El Nino test series with three clusters 174
Scaling of CHAD’s first phase in the number of tuples 201
Logarithmic scaling of CHAD'’s first phase in the max number of

Nodes 202
Decrease of performance if main memory is insufficient 203
leveling-off during first reorganisation 204
correlation of threshold and tree capacity in tuples 204
El Nino test series with three clusters 208
El Nino test series with four clusters 209
El Nino test series with five clusters 209
El Nino test series with six clusters 209
El Nino test series with seven clusters 210
El Nino test series with eight clusters. 210
El Nino test series with nine clusters 210
El Nino test series with ten clusters. 211
El Nino test series with two clusters 212
El Nino test series with three clusters without the best initialisation212
El Nino test series with four clusters and high sampling ratios . . 213
El Nino test series with five clusters and high sampling ratios . . 213
El Nino test series with six clusters and high sampling ratios . . 213

El Nino test series with seven clusters and high sampling ratios . 214
El Nino test series with eight clusters and high sampling ratios . 214

El Nino test series with nine clusters and high sampling ratios . . 214
El Nino test series with ten clusters and high sampling ratios . . 215
Height of decision tree 216

Accuracy of decision tree classifier 217

LIST OF FIGURES

Al
A2
A3
A4
A5
A6
AT

A8

first 1000 tuples of test set D, shown in the first two dimensions
first 1000 tuples of test set Dg shown in the first two dimensions
first 1000 tuples of test set D. shown in the first two dimensions
first 1000 tuples of test set Ds shown in the first two dimensions
first 1000 tuples of test set D, shown in the first two dimensions
first 1000 tuples of test set D shown in the first two dimensions
first 1000 tuples of test set SHF shown in the most-discriminating
dimensions e
air temperature and position of buoy of one day in the El Nino
dataset

XV

223
224
225
226
227
228

xvi LIST OF FIGURES

List of Tables

1.1
1.2
1.3
1.4

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10

2.11

3.1

4.1
4.2
4.3
4.4
4.5

4.6

5.1

7.1

relational schema of the running example 12
Sample Entries of Table product 12
Sample Entries of Table productgroup 13
Sample Entries of Table sales 13
Clip of the pre-processed data for a churn analysis 46
confusion matrix of binary classes 47
confusion matrix with five classeso 47

Confusion matrices of the first classifier of the running example . 49
Confusion matrices of the second classifier of the running example 49
Confusion matrices of the third classifier of the running example 50

Clip of the training set for a churn analysis 52
Clip of the test set for a churn analysis 52
Training set 1" to construct a decision tree for a churn analysis . 56
Clip of the tuples of the table that an analyst has pre-processed

for a market basket analysis, 58
Frequency table of items of FP-growth after initial scan (a) before

pruning and (b) after pruningo 67
Clip of the tuples of the table that an analyst has pre-processed

for a market basket analysis with constraints 88
Overview of intermediate results 100
Pre-mining a fact tableo o000 104
Excerpt of tuples of fact table sales 109
Excerpt of tuples of pre-processed fact table sales 111
Excerpt of tuples of pre-processed fact table sales grouped by

customer and time Lo Lo 112
Excerpt of tuples of pre-processed fact table sales grouped by

CUStOIMETSo e 112
types of conditions in a term of a selection predicate 145

Names of tests with number of nodes resp. tuples of test series
scaling 199

xviii LIST OF TABLES

7.2 description of synthetic datasets 199
7.3 description of synthetic datasets 200
7.4 Runtime of test series with (a) very large clustering feature tree

and (b) medium-sized clustering feature tree 205
7.5 Total deviation from optimal solution of CHAD and sampled k-

TNEANS « v v v e e e e e e e e e e e e e 207
7.6 Results of Naive Bayes Classification in detail 217
7.7 Classification accuracy of Bayes classifier with pre-computed fre-

QUENCIES . .« v v v vt e e e 218
A.1 parameters of synthetical data set D, 221
A.2 parameters of synthetical dataset Dg 222
A.3 parameters of synthetical data set D,, 222
A.4 parameters of synthetical data set Ds 229
A.5 parameters of synthetical data set D, 230
A.6 parameters of synthetical dataset D¢ 231
A.7 schema of the El Nino dataset 231
AR testseriesC 232
A.9 allocation of test series C on available machines 233
A.10 schedule of machines 233
A.11 runtime of tests of block C1 in seconds 234
A.12 runtime of tests of block C2 in seconds 234
A.13 runtime of tests of block C3 in seconds 234
A.14 runtime of tests of block C4 in seconds 235
A.15 runtime of tests of block C5 inseconds 235

A .16 runtime of tests of block C6 inseconds 235

Chapter 1

Introduction

Contents
1.1 Introduction 1
1.1.1 A First Introduction into the KDD Process 2
1.1.2 Open Issues of the KDD Process 3
1.1.3 Basic Idea of Approach and Research Questions. . . 6
1.2 Running Example: Sales in a Data Warehouse . . 10
1.3 Chosen Research Paradigm and Methodology . . 14
1.4 Organisation of this Dissertation 17

1.1 Introduction

Knowledge discovery in databases (KDD) and data mining offer enterprises
and other large organisations a set of methods to discover previously unknown
relations among data—which are often called patterns, e.g. [36][73][16]. With
these patterns enterprises gain deeper insight into their context and are able to
use them for better decision-making.

Frawley, Piatesky-Shapiro and Matheus define knowledge discovery as fol-
lows: “Knowledge discovery is the nontrivial extraction of implicit, previously
unknown, and potentially useful information from data”[73, p. 3]. It is common
practise to use the term knowledge discovery in databases or short KDD instead
to stress the most commonly used use case. Yet, it is convenience to use the
term KDD also for knowledge discovery in data that are not kept in databases
but in texts or data streams.

The term data mining denotes the step of the KDD process in which sophis-
ticated methods analyse the data for patterns of interest [36][16]. The herein
used techniques are further called data mining techniques. The techniques clus-
tering, classification, and association rule mining are the most-commonly used
data mining techniques.

2 CHAPTER 1. INTRODUCTION

Procegsed Data . .
Segllggéed Mining || —| Evaluating|— —| Using

’ Pattern Evaluated

Pattern

Iterating

Figure 1.1: KDD process

Quality of patterns found by data mining algorithms and the time needed to
find them are the measures of interest in KDD projects. The quality of a found
pattern determines its usability—for instance, to guide a decision. Additionally,
when mining data in large databases, time is an issue, too.

This dissertation focusses on the problem of pattern quality and time of KDD
projects. Recently, many approaches have been introduced to improve specific
KDD analyses. However, these approaches try to optimise a single analysis.

In contrast to existing work, this dissertation presents a novel way to improve
KDD projects in terms of shorter project time and higher quality of results by
optimising a set of analyses instead of optimising each analysis individually.

Therefore, the remainder of this section is organised as follows: To be able to
show open issues of past work, it first introduces the KDD process as is. Later,
this section shows where there are open issues of the KDD process. Last but
not least, this section gives the basic idea of how to improve the KDD process
in terms of runtime or quality of results.

1.1.1 A First Introduction into the KDD Process

This subsection gives a short introduction into the KDD process. It gives the
information that is necessary to show open issues which is topic of the next
subsection. A more detailed discussion of the KDD process will follow in Section
2.1.2.

Figure 1.1 shows the KDD process with all its phases. The KDD process
consists of the phases pre-processing, data mining, and evaluating resulting
patterns. Using evaluated patterns for decision-making is not part of the KDD
process but Figure 1.1 contains this item to denote that the KDD process does
not exist per se but is embedded in a broader economic context.

The first step in a KDD process is selecting data that might contain patterns
one is interested in. Some data mining algorithms require data as an input that
are consistent with a specific data schema. The pre-processing phase consists
of all activities that intend to select or transform data according the needs of a
data mining analysis.

In the data mining phase a data mining expert—further referenced as
analyst—analyses the data using sophisticated data mining algorithms. The
outcome of these algorithms is a set of patterns that contain potential new
knowledge.

1.1. INTRODUCTION 3

Data
Warehouse

T
N

select/ relevant| Data

problem analyse | task prepare data | Mining reggt

~_
M
N

select/ relevant Data

prepare data Mining result
~_

Figure 1.2: Issue A: Insufficient results inflict additional iterations

The resulting patterns must be evaluated before they can be used. This
happens during the ewvaluating phase in which an analyst tests whether the
patterns are new, valid and interesting or not.

If there are no patterns that fulfill all the above conditions, the KDD process
or a part of it has to be repeated once more. The reason why a KDD process
has to be iterated can be a bad choice of parameter values or a bad selection of
data.

1.1.2 Open Issues of the KDD Process

Although there exist approaches that improve the runtime of instances of the
KDD process, time is still an open issue of the KDD process—quality of results
is the other one. Hence, we will discuss open issues concerning the runtime of
instances of the KDD process first before discussing issues related with quality.

Algorithms with long runtime and many iterations during an instance of the
KDD process increase the runtime of this instance. If the data set which an
algorithm is analysing is very large then even the runtime of algorithm of well-
scaling algorithms is high. The consequence of a long runtime of an algorithm
is that the analyst who started it is slowed down in ones work by the system
until the algorithm terminates.

Iterating steps in an instance of the KDD process is necessary because the
best values of the used algorithm’s parameters and the best set of data for a
specific analysis are initially unknown. Assuming the opposite would mean that
an analyst performs an analysis the result he/she already knows. Yet, that
would conflict with the definition of KDD that patterns must be new.

Consequentially, it is common practise to run data mining algorithms several
times—each time with a different combination of parameter values and data.
More precisely, the analyst chooses the data and values that will most likely
bring the best results best to one’s current knowledge. Even an unsuccessful

4 CHAPTER 1. INTRODUCTION

. o optimal
sub-optimal re-distribute .
distribution | analyse | warehouses srelect/e Ioczzt;ons
of warehouses with clsutering PP

warehouses

Data
Warehouse

advertising clustering chsrtsg:ﬁ;
is inspecific & select/ Data gments,
.analyse . L purchasing
to customersg association | prepare Mining behaviour par
needs rules segmen![)

Figure 1.3: Issue B: Multiple isolated KDD instances use the same data

attempt commonly gives the analyst a better insight into the relations among
the analysed data. Future analyses will be more likely successful. Figure 1.2
depicts an instance of the KDD process that requires two iterations.

When an analyst re-does an analysis with different settings, these analyses
are not identical but several tasks are very similar. More specifically, both
analysts share several intermediate results as later chapters of this dissertation
will show. Obviously, processing the same intermediate results more than once
means to waste time. Yet, previous work introduces techniques which are able
to re-use results of a previous analysis when parameters change. If an analyst
uses a different subset of the data he/she must compute all results of this new
analysis from scratch.

Two analyses that share the computation of some intermediate results is
not limited to analyses of the same instance of the KDD process. Moreover,
a set of analyses can also share several tasks or parts of them. Especially if
these analyses use the same data set and also share the same type of analysis,
several intermediate results can be identical. Figure 1.3 shows two instances of
the KDD process that use the same data set to analyse. Although the goals
of both instances are different, both instances need to cluster the same table.
Yet, parameter values and used attributes differ. Later chapter will show that
is possible to pre-compute common intermediate results for analyses when only
attributes and parameters vary.

Re-doing the same steps of analyses would be tolerable if the time needed
to compute an analysis is negligible—which is not the case, as illustrated in the
next paragraphs.

Pre-processing and most data mining methods require accessing all data—
which is very time-consuming in large databases exceeding 1GB in size. Hence,
algorithms that fail to scale linearly or better in the number of tuples are inap-
plicable to large data sets.

Although some data mining algorithms like the clustering algorithms BIRCH

1.1. INTRODUCTION S

[81] and CLARANS [53] are very efficient and scale better in the number of
tuples, the minimum time needed for pre-processing and data mining is still too
long for interactively analysing the data. During the tests for this dissertation
the Oracle 9i database required few minutes to answer a simple query counting
the number of tuples in a table when the size of the table exceeded half a
gigabyte—each time the query required accessing values of a specific attribute
response time increased significantly to up to ten minutes.

The databases of mail order companies or large warehouses exceed one giga-
byte by far. For instance, think of a company operating supermarkets. When
there are only 300 small supermarkets in which there are only 600 customers
buying 5 items per day and the database requires only 256 byte to store a sold
item, the data set that is daily stored requires more than 0.25 GB disc space.

A long runtime of an algorithm or a pre-processing task means that an
analyst has to wait longer for a computer to finish its job than he/she can
analyse the resulting patterns.

Zhang et alii state that the most time-consuming part of data-mining al-
gorithms is scanning the data while operations in main memory are negligible
[81]. This statement is consistent with the test results of this dissertation. As
a consequence, approaches of improving data mining algorithms must focus on
minimising the number of required database scans.

Avoiding scanning the database at least once is impossible. Even taking a
sample requires at least one scan of the data—otherwise, the so-taken sample
would not be representative.

Some data mining algorithms already require only the minimum number of
one database scan. BIRCH is a hierarchical clustering algorithm requiring only
one scan, Bradley et alii have proposed in [59] an EM (expectation maximisa-
tion) clustering algorithm, or Kanungo et alii have presented in [40] a k-means-
like algorithm, to name only few examples of clustering approaches that require
only one scan of the data.

If existing data mining algorithms are nearly as fast as the theoretical limit
but even this minimal time is too long for interactive working, the source of
major improvements in runtime must be elsewhere. The next subsection gives
the basic idea of the approach of this dissertation that is capable to reduce the
needed runtime below the current limit. The research question of this disserta-
tion are a direct consequence of this approach.

In many approaches which we will discuss later, one can decrease runtime
on behalf of quality of the results of the KDD process. Hence, quality is always
an additional issue when discussing improvements of runtime. Yet, improving
quality and runtime do not exclude each other. Thus, the effect on quality is an
additional research question of any approach changing the KDD process. Yet,
the benefit of improving quality of results depends on the specific instance of
the KDD process. For instance, if a company can improve the classification of
customers who are about to cancel their contracts with the company then each
increase in quality, i.e. the accuracy of classification, is beneficial.

6 CHAPTER 1. INTRODUCTION

1.1.3 Basic Idea of Approach and Research Questions

The KDD process as it is shown in Figure 1.1 describes the sequence of steps of
a single analysis. Especially, the KDD process does not take into account that
analysts do several analyses—not necessarily all of them at the same time but
many analyses within a year. The discussion of the last subsection indicated that
further improvement of analyses is necessary to enable working continuously on
data analyses. However, improving a single analysis is improper because the
theoretical limit of one scan is not fast enough. Changing this isolated point of
view can be a source of major improvement which will be shown later.

The core idea of this dissertation is to re-think the knowledge discovery in
databases process. Instances of the KDD process should no longer be regarded
as single independent process instances but should be regarded as dependent in-
stances that can profit from each other.

Further, if the specific setting of a future KDD process instance is unknown
but several tasks of the instance are known, these known tasks should be done
m anticipation.

If two or more KDD process instances share the same time-consuming tasks
or parts of them then it is reasonable to do those tasks only in the first occurring
instance—it would be wasted time to re-do such a task in the second and future
instances.

The underlying basic assumption is that there are process instances that have
time-consuming tasks in common.

The research questions this dissertation intends to answer are consequents
of the above-mentioned basic idea and basic assumption. To be specific, the
research questions of this dissertation are as follows:

1. How do KDD analyses differ from each other?
2. Are there intermediate results shared by multiple analyses?

3. Can (intermediate) results of an analysis affect the quality of the result of
another analysis?

If the variability of analyses is known, it is possible to identify items that
are common in all analyses of a specific type of analysis. Additionally, one
can identify the range of some parameters. If there are only a few values for a
specific parameter the analyst can choose of, one can pre-compute the results
for all of these potential values. When the analyst finally chooses the actual
value for an analysis, the result has already been computed by the system.

If there are intermediate results of an analysis that other analyses might need
than these other analyses can profit of these intermediate results. Hence, the
answer to the second research question is needed to improve the KDD process:

1.1. INTRODUCTION 7

If common intermediate results are identified, one can pre-compute them in
anticipation to save time in succeeding analyses.

Yet, a data set is subject to change, i.e. there will be new, deleted, or
updated tuples. Hence, it is necessary to continuously correct pre-computed
intermediate results to keep them up-to-date.

The third research question focusses on the aspect of quality of analyses.
Taking several analyses into account can also affect the quality of the results of
each analysis. For instance, knowledge gained in an analysis can help getting
better results in another analysis by biasing the succeeding analysis.

A specific type of analysis needs to perform tasks of a specific type. Some
of these tasks depend on parameters of the analyst, others do not. It is possible
to pre-compute the results of tasks which are independent of analyst’s input.

The data set which the system processes in a specific task is the only differing
factor of the same independent tasks of analysis of the same type. As the number
of tables in a database is limited, it is possible to pre-compute intermediate
results of commonly used types of analyses of all large tables.

However, there still remain tasks depending on parameters which cannot
be pre-computed. Thus, it is necessary to split analyses into parts that can
be processed anticipatory and tasks that cannot, as illustrated in Figure 1.4.
A single instance of a supporting process pre-computes intermediate results
for two instances of an altered KDD process that consists only of parameter-
specific tasks. Later sections will introduce the supported process as parameter-
specific KDD process and the supporting process as parameter-independent
KDD process.

The instance of the parameter-independent KDD process pre-computes in-
termediate results and keeps them up-to-date when a table which has been used
to pre-process has changed, i.e. there are new, removed, or altered tuples in the
table.

The instances of the parameter-specific KDD process use the pre-computed
intermediate results either to process the final result for higher performance or
to bias the computation to receive better results. Improving speed with pre-
computed intermediate results corresponds with the second research question,
while improving quality by biasing corresponds with the third research question.

The above-mentioned concept of anticipatory pre-computing ideally support
analysing data warehouses containing few but very large fact tables. As the com-
bination of data warehouses and KDD is a common combination in companies
having mass data, this concept offers much potential for many companies.

Some approaches of related work already arise from the same idea of pre-
processing but are limited to complete tasks—most of them are tasks of the
pre-processing phase. This dissertation introduces an approach that splits tasks
into smaller junks and is able to increase the number of pre-computable tasks
that way. Additionally, this approach extends the idea of pre-computing to the
data mining phase. Hence, it is more broadly applicable than existing work.

This dissertation will present a technique to increase the performance of
instance-specific pre-processing tasks to make them so fast that analysts can
work on analyses without being slowed down by the data mining system.

8 CHAPTER 1. INTRODUCTION

Data
Warehouse

~

independently
pre-processed

Figure 1.4: Improving the KDD process by using pre-computed intermediate
results and auxiliary data instead of tuples

1.1. INTRODUCTION 9

In addition to the pre-processing phase, the data mining phase also has got
high potential for improvement.

This dissertation presents techniques to enhance the performance of data
mining techniques and intends to improve the KDD process in terms of quality
and speed that way. For being more specific, it is useful to distinguish the dif-
ferent data mining techniques association rule mining, classification, clustering,
and regression at this point.

Association rule mining requires finding frequently occurring sets of items
before finding association rules among them. If the frequent item sets that are
valid in the set of all transactions are once determined it is possible to determine
the frequent item sets that are valid in subsets of all transactions. This has been
sufficiently shown in other work. This work will discuss those works for reasons
of completeness but will contribute only a minor new idea.

Classification algorithms use a set of data to train a function that is called a
classifier which is able to predict the class of a tuple using the tuples’ attribute
values. The set of data that is used for training typically contains only few
tuples—consequentially, scaling algorithms is not a problem. The quality of the
resulting classifier is the most concerning issue of classification. This work will
discuss quality-improving classification approaches and contribute some new
ideas how to improve the quality of a classifier by using auxiliary data gained
as by-products of other KDD process instances.

Clustering algorithms produce a set of clusters. All clustering algorithms but
density-based clustering algorithms represent clusters with describing attributes
which vary from algorithm to algorithm. For instance, EM clustering algorithms
generate a probabilistic model consisting of k£ random variables and store mean
and deviation of each variable, while k-means and related algorithms represent
cluster by their euclidian mean. It is easy to compute mean and standard
deviation of a cluster, when the number of the cluster’s tuples, the linear sum of
its tuples and their sum of squares is known, which will be demonstrated later.

If the tuples within a subset of the data are very similar to each other, they
will be part of the same cluster in most times. Thus, it is possible to build a
subtotal of all of these tuples.

Determining the mean by summing up all tuples or summing up subtotals
will produce the same result as long as there are no tuples included that are
part of a different cluster. If there are such tuples then the result might become
erroneous if specific conditions are met—we will discuss these conditions later.
The experimental results have shown that the so-generated error only rarely
influences the result of a data mining analysis.

This dissertation discusses approaches improving clustering by aggregating
tuples to sub-clusters in detail and enhances techniques to re-use results of a
cluster analysis for other cluster analyses such that it is possible to find sub-
clusters in anticipation.

Additionally, this dissertation will also discuss other popular approaches
improving the performance of analyses such as sampling.

A running example shall illustrate the concepts of this dissertation. There-
fore, the next section introduces a running example which is used to demonstrate

10 CHAPTER 1. INTRODUCTION

Figure 1.5: network of a globally operating company

more complex parts of this dissertation’s concepts.

1.2 Running Example: Sales in a Data Ware-
house

For the purpose of illustration this dissertation contains a running example.
It is used to demonstrate all concepts presented in this document where it is
applicable. Concepts where applying this example does not make sense will be
illustrated with their own example—such as the necessary changes for applying
the ideas of this dissertation to data streams.

Assume there is a large publishing company maintaining a data warehouse
for both strategic and operational decision making. The data warehouse con-
tains a vast set of data mainly concerning the sales of the company’s products—
books, magazines, journals and on-line articles. Data about transactions with
printing companies form another large part of the data warehouse.

The company has optimised its data warehouse for OLAP but not yet for
data mining. Later sections of this dissertation will present ways the company
can use to improve its performance of KDD analyses in terms of quality and
speed.

The publishing company is operating globally. Therefore, there are six major
locations that administrate the operations of smaller units. Each of these six
administration centres operates a data warehouse that contains the data of those
units that report to that centre of administration.

The location of the company’s headquarter coincides with one of the centres

1.2. RUNNING EXAMPLE: SALES IN A DATA WAREHOUSE 11

sales
quantity
unitprice

unit major location

productgroup product

customer
type city
quarter
country

Figure 1.6: schema of cube sales in Golfarelli notation

of administration.

Figure 1.5 shows the distribution of the six major locations, which are sym-
bolised by rectangles with crosses, and their affiliated units, which are repre-
sented by circles, around the globe. Arrows and lines denote the amount of
traffic of data exchange between locations. We will discuss how to handle dis-
tributed data with anticipatory data mining in Subsection 5.2.2.

The global data warchouse and all local data warehouses share the same
schema. Each data warehouse contains several cubes but the ‘sales’ cube is by
far the cube having the highest number of tuples—its size exceeds the sum of
the sizes of all other cubes. Table 1.1 shows the relational schema of the tables
that store the data of the ‘sales’ cube.

The schema of the ‘sales’ cube is a starflake schema as it is shown in Figure
1.6. Figure 1.6 uses the notation of data warehouse schemas introduced by
Golfarelli in [24]. The ‘sales’ cube has two measurements, namely the quantity
of items sold and the price per sold unit. The cube has the four dimensions
product, customer, time, and unit.

Products are assigned to product groups which themselves are hierarchically
ordered in groups and sub-groups—the number of levels in this hierarchy is po-
tentially unlimited. Hence, dimension product has a hierarchy with a recursion.

Dimension customer is structured by the location of the customer and alter-
natively by the type of customer. There are the two types individual and corpo-
rate customer, where the group of corporate customers includes all kind of or-
ganisations such as companies but also incorporated societies or non-government
organisations. The company delivers books and other printed material only by
mail. On-line purchases require a previous registration in which a valid address
is required. Thus, there are no anonymous sales.

12 CHAPTER 1. INTRODUCTION

Relations sales(units, priceperunit, timestamp, prid, shopid, cid)
product (prid, name)
productgroup(groupid, groupname)
isproductofgroup(prid, groupid)
unit(shopid, name, citycode, statecode)

customer(cid, name, customertype, citycode,
statecode)

Inclusion sales(prid) C product(prid)

Dependencies isproductofgroup(prid) C product(prid)
isproductofgroup(groupid) C productgroup(groupid)
productgroup(ispartof) C productgroup(groupid)
sales(cid) C customer(cid)

Legend relations are shown in the form
<relation name>(<attribute list>)
attributes of the primary key are underlined, attributes of for-
eign keys are written in italics

Table 1.1: relational schema of the running example

prid name
1 Theory and Implementation of Anticipatory Data Mining
2 Annual Subscription of KDD Journal

Table 1.2: Sample Entries of Table product

Dimension time is organised conventionally except years are omitted for
simplicity.

A roll-up operation in any dimension causes the quantity measurement being
summed-up while an average price per unit is determined.

The data warehouse schema is realised in a set of relations of a relational
database. Table 1.1 contains the schema of these relations.

Smaller units daily send their data about sales of that day to the centre of
administration they report to. There, a large ETL (Extract-Transform-Load)
process inserts these data into the local data warehouse.

The amount of daily arriving data each centre of administration exceeds
1GB.

Beside OLAP-queries the company regularly performs data mining analyses
using the data that is kept in the data warehouse. The types of these analyses
are two-fold: A lot of these analyses are re-runs of former analyses with updated
data to validate their results while others are completely new.

Both analysts residing in the headquarter and local analysts use the contents
of the data warehouses for data mining analyses regularly. The analyses of local
analysts might require all data stored in all data warehouses or specific parts of

1.2. RUNNING EXAMPLE: SALES IN A DATA WAREHOUSE 13

groupid groupname
1 book
belletristic
scientificmonography
article
webarticle
online journal

ST W N

Table 1.3: Sample Entries of Table productgroup

units | priceperunit timestamp prid | shopid | cid
1 350 2004-01-01 12:00:00 2 1 4711
1 355 2005-01-01 12:00:00 2 1 4711

Table 1.4: Sample Entries of Table sales

it. Especially, an analysis is not limited to the content of a local data warehouse.
To be more specific, suppose the following analyses are about to be performed
on the current date:

e The number of sale transactions of a specific publication is varying tem-
porally. Many factors such as publication type or reputation of the author
influence the demand for a specific publication.

The publishing company uses multi-variate linear regression method to
estimate the current demand of their publications. The resulting regres-
sion model predicts the number of purchases for each publication. It is a
model of the life-cycle of a given type of publication. As the preferences of
customers might change, the company regularly re-constructs the linear
regression model to cope with changes in customer purchase behaviour.

e Customers can buy online articles individually or as part of an annual
subscription of an online journal. An annual subscription is implemented
as a separate product, as shown in Table 1.2.

The publishing company wants to find a model to predict which subscriber
will not extend one’s subscription by analysing personal of customers and
their purchasing behaviour—stored in relations customer and sales, re-
spectively. The company pays much attention to those customers because
the regular turnover from subscriptions offers high margins. Additionally,
retaining unsatisfied customers is known to be generally cheaper than ac-
quiring new customers.

e The marketing division compiles catalogues and hand-outs for specific
customer segments that have not been identified, yet.

An analyst of the company shall find a suitable segmentation of customers.
Clustering is his preferred method to complete this task.

14 CHAPTER 1. INTRODUCTION

1.3 Chosen Research Paradigm and Methodol-
ogy

The herein-presented approach follows design science as research paradigm. It
instantiates the methodology that is suggested in design science literature such
as [47], [32], or [43]. This section characterises the paradigm of design research
and shows that the pre-requisites for a design research are given. It surveys
vital elements of design science and their instantiation in this dissertation.

The focus of design science is on creating artefacts which solve specific prob-
lems of users. Hence, a problem and an appropriate solution are vital elements
of each approach of design science. Thereby, analysing the problem is necessary
but not as essential as it is in other sciences such as natural science or behav-
ioural science where understanding the problem with its phenomena is the main
focus.

In order to construct an artefact that solves a problem or represents a better
solution than existing solutions, the problem to solve must be well-understood
or it must be clear what indicates a good solution. In other words, there must
exist specific metrics to measure how much an artefact contributes to the im-
provement of the underlying problem.

The pre-requisites for performing a design science are given for the prob-
lem mentioned in the previous section: The KDD process is in the scope of
research. Section 2.1.2 shows that there is a common conceptualisation of the
KDD process in literature. The quality of its results and the time needed to
run an instance of the KDD process represent the problem which are measured
by existing quality measures of KDD results and runtime, respectively. Hence,
solutions of different approaches solving the same problem are comparable with
each other.

March and Smith identify four types of artifacts, namely constructs, models,
methods, and instantiation [47]. Constructs are artefacts that form a conceptu-
alisation of the domain of a problem. According to March and Smith “a model‘is
a set of propositions or statements expressing relationships among constructs”
[47, p. 256]. Hence, models and constructs express the way we believe or know
how things are. Or in other words, they explain the mechanics of a problem
and why a solution works. Contrary, methods are artifacts that indicate how to
solve a given problem by applying a set of steps. An algorithm is a typical rep-
resentative of a method, as March and Smith define it. Finally, instantiations
are artefacts that utilise the concepts of a design approach. They show that it
is possible to solve a problem with a given solution.

All four types of artifacts as defined by March and Smith appear in this
dissertation—yet not all of them are stressed equally. Defining constructs prop-
erly is needed before constructing a model or a method. Hence, this dissertation
includes a chapter to present existing constructs of the KDD process. New con-
structs will be introduced in separate sections when presenting a model or a
method, respectively. Finally, an instantiation of the methods is an essential
part of this dissertation to show that the herein presented methods work.

1.3. CHOSEN RESEARCH PARADIGM AND METHODOLOGY 15

A

Become Aware of Problem

'

Suggest a Solution

'

Construct a Solution

'

Evaluate Solution

adapted from [43, figure 3]

Figure 1.7: Design Cycle

March and Smith mention that conceptualisation are necessary but also can
be harmful because it might blind researchers and practitioners to critical issues
[47, p. 256].

The basic idea to improve existing methods to analyse data founds on the
current model of the KDD process. The model of the KDD process describes
how analysts analyse data in a single project. Yet, the aspect that there are
several projects concerning the same source of data is blinded out. Hence, the
model of our conceptualisation of KDD needs an update to also consider sources
of improvement which arise when giving up the isolated view of instances of the
KDD process.

Hence, the prime resulting artefacts of this dissertation are a set of methods
and an updated model of the KDD process. As mentioned earlier, the instan-
tiations of these methods aim to proof the effectiveness of the methods. They
also justify the update of the model of the KDD process.

There exist several presentations of the methodology of design research in
literature which differ in detail but share a common structure. For instance,
Hevner et al. consider design research as a cyclic search process which consists
of the two phases generate alternatives and test alternatives. Other authors
such as Kuechler add several phases to be more detailed. This dissertation uses
the design cycle as presented by Kuechler [43]. For a comprehensive survey of
research methodology of design research the interested reader is referred to [43].

Figure 1.7 depicts the research methodology of design research which is also
the methodology this dissertation uses.

Becoming aware of a problem is necessary for designing any solution to it.
This phase includes understanding the problem with all its facettes including

16 CHAPTER 1. INTRODUCTION

the strengths and weaknesses of solutions that are already available. For design
research that is intending to present new models or methods it is necessary to
understand the affiliated constructs and the existing model of that problem.

Extensive study of literature and various discussions with data mining prac-
titioners and researchers were the used methods to become aware of the problem
of this dissertation. The next chapter surveys the current model of the problem
and related constructs.

Suggesting a solution is the phase in which the researcher abductively gen-
erates the idea to a new solution. Although experience with previous designs
and techniques supporting creativity might help the researcher, this is a very
creative task.

In the phase suggest a solution of this dissertation intensive study of the
model of the KDD process and re-thinking all its elements, as well as several
discussions with other researchers, and the interaction with an experimental
prototype assisted the author of this dissertation to find a good solution.

Constructing a solution once it is suggested is an essential part of design
research. This phase includes the creation of all artefacts which are part of
a solution. Engineering techniques assist this process. As in this dissertation
the resulting artefact is a model of a process and an algorithm, this phase is
very similar to a project of business process modeling or a software project—
including the techniques to assist specific phases. Yet, evaluation of solution is
different in design research and and a software project, for instance.

Evaluating the result of the construction phase is primarily necessary to
prove that the suggested solution indeed solves the problem. If there exist
other solutions to the same problem, the new solution should solve the problem
better according to at least a specific metric. Yet, metrics can be multi-fold: For
instance, a solution could be better because it is more broadly applicable than
another solution. However, a third solution could be better because it solves a
special case of the problem better than a more general solution.

Additionally, constructing and evaluating a solution gives valuable insight
into the problem and ways to solve it. Hence, both phases are viable sources of
gaining knowledge.

This dissertation utilises several methods of design evaluation which are
listed in [32, table 2]. If it is possible to show a property of an artefact analyti-
cally, then static analysis is the method of choice. For instance, upper bounds
for potential errors are shown analytically. If otherwise it is impossible to show
a property of an artefact analytically, then this dissertation uses a controlled
experiment.

As seen in the figure 1.7, research design is a process which goes in cycles. As
mentioned above, constructing and evaluating a solution gives insight into the
problem and ways to solve it—which means in other words that one becomes
aware of other aspects of the problem or the solution, respectively. Modifications
of the suggested solution and re-constructing parts of artefacts might be the
consequence.

1.4. ORGANISATION OF THIS DISSERTATION 17

1.4 Organisation of this Dissertation

The remainder of this document is organised as follows:

Chapter 2 gives an introduction into the KDD process and the most com-
monly used data mining methods. To be more specific, it sketches the general
principles of these methods. Knowing these principles is necessary for under-
standing how anticipatory data mining can improve these methods. The in-
tended reader of this chapter is novice or intermediate in knowledge discovery
in databases and data mining, respectively.

Chapter 3 shows previous work trying to improve the KDD process by mak-
ing existing algorithms scalable or using any kind of re-use.

Chapter 4 introduces a novel method to improve the KDD process by split-
ting the KDD process in two processes: a process that performs user-defined
analyses and a supportive process that does most of the preparatory and mining
tasks in anticipation.

Chapter 5 describes the concepts of CHAD—a new framework for partition-
ing clustering. CHAD is short for Clustering Hierarchically Aggregated Data
and gives a clue to the main reason why it is so efficient as it is shown in the
test chapter. CHAD also implements the majority of concepts shown in the
previous chapter.

Chapter 6 shows how to implement the concepts that CHAD has left out
such as using pre-computed statistics and pre-selected tuples for association rule
analysis or classification.

Chapter 7 contains the results of the test series that tested each feature of
CHAD and the other concepts presented in chapter 6. For clarity of description
the chapter only summarises the most important results. The interested reader
can find all details of each test in the appendix.

18

CHAPTER 1.

INTRODUCTION

Chapter 2

Analysing the KDD
Process and Existing
Algorithms

Contents

2.1 Knowledge Discovery in Databases and Data Mining 20
2.1.1 Definition of Knowledge Discovery in Databases . . 20
2.1.2 The KDD process 22
KDD process according to Han and Kamber 22
KDD process according to Ester and Sander 23
KDD process used in this work 24
2.2 The Clustering Problem 25
2.2.1 Purposes of Clustering 26
Clustering for Data Reduction 26
Clustering for Hypothesis Generation 27
Clustering to Improve Quality of Other Techniques . 28

2.2.2 Expressing Dissimilarity with Distance Function or
Distance Matrix00 29
Popular Distance Functions 29
Distance Matrix 31

Using Normalisation When Attributes Vary Signifi-
cantly in Range 32
2.2.3 Partitioning Clustering Algorithms 32
Available Types of Partitioning Clustering Algorithms 33

General Functioning of Partitioning Clustering Al-
gorithms 34
The k-means algorithm 36
2.2.4 Hierarchical Clustering Algorithms 37

19

20 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS

Divisive Clustering Algorithms 39
Agglomerative Clustering Algorithms 39

BIRCH 40

2.2.5 Measuring Clustering Quality 42

2.3 Classification, . 44
2.3.1 Measuring Classification Quality 47
2.3.2 Bayes Classifier 50
2.3.3 Decision Trees 53

2.4 Association Rule Mining 57
2.4.1 Association Rules. 58
2.4.2 Determining Association Rules from Frequent Itemsets 61
2.4.3 Apriori Algorithm 62
2.4.4 FP-growth Algorithm 64

2.1 Knowledge Discovery in Databases and
Data Mining

Before presenting a solution that is capable to solve a specific problem, it is
necessary to become aware of that problem. Moreover, one needs to understand
the context of the problem and must know existing solutions.

Hence, this chapter gives an overview of knowledge discovery in databases or
KDD in short. Thereby, this section introduces the general process of projects
that analyse data for interesting patterns. Subsequent sections survey specific
techniques used in this process.

To be more specific, this section defines the vocabulary used in the KDD
community and sketches the KDD process.

Due to KDD being an interdisciplinary field of research, there exist items of
interest denoted by more than one term. Research disciplines such as statistics,
machine learning, and databases have their own terms for the same object of
interest. For instance, what the database community considers as a tuple is an
observation in statistics and an instance in the machine learning community,
respectively.

For a high level of understandability, all chapters use the terminology of
the database community. Especially, there is no mix of terms originating from
different research disciplines. However, if a term of another discipline which is
not databases is the only common term, then chapters use this term to comply
with the terminology of the KDD research community.

2.1.1 Definition of Knowledge Discovery in Databases

Frawley, Piatesky-Shapiro and Matheus define knowledge discovery as follows:
“Knowledge discovery is the nontrivial extraction of implicit, previously un-
known, and potentially useful information from data”[73, p. 3].

2.1. KNOWLEDGE DISCOVERY IN DATABASES AND DATA MINING 21

Han presents the following definition for data mining in the slides to his
textbook [36]: “Data mining is the nontrivial extraction of implicit, previously
unknown, and potentially useful information from data”. The textbook is free
of this definition. According to Han and Kamber in [36], data mining is part the
KDD process. Yet, several authors cite that textbook with the above-mentioned
definition of Han causing conceptual confusion.

This dissertation follows the definition of Frawley, Piatetsky-Shapiro and
Matheus because it describes the concepts of knowledge discovery in a clear
way and is consistent with the conception of the KDD and data mining re-
search community. However, Piatetsky-Shapiro et al. use the term information
without differentiating data, information, and knowledge. Especially, it is com-
mon understanding within the school of which the author of this dissertation is
member of that machines process data but humans are able to understand in-
formation. Therefore, we discuss each item of the definition and indicate where
this dissertation differs from the definition of Piatetsky-Shapiro et al.

nontrivial extraction The criterion mnontrivial extraction excludes other
methods of data analysis such as descriptive statistics methods or OLAP,
respectively, which require a human user sophistically using these methods
while methods themselves are rather simple.

implicit information The criterion implicit information means that the
methods of KDD use implicit information to derive patterns. Hence, this
criterion excludes some sophisticated methods of artificial intelligence that
use an explicit knowledge base to derive new knowledge in the form of new
facts, e.g. by logical deduction.

previously unknown information It is self-evident that discovering knowl-
edge means to seek unknown patterns in data. Yet, distinguishing auto-
matically between known and unknown information is a very hard prob-
lem. Making all the user’s knowledge explicit is impractical due to sheer
hugeness of individual and organisational knowledge.

Previously unknown but obvious information is a closely-related issue in
KDD . 1t is obvious that a typical user calling a company’s help desk for
installation instructions has previously bought a product although poten-
tially none of that company might ever have thought about this before.

Usually a human expert determines whether a result of a KDD process
instance is a new piece of information or not. For some KDD applica-
tions that commonly return many results such as association rule analysis
there exist criteria to determine interestingness or triviality of a result.
This issue will be discussed later when presenting the specific data mining
techniques.

potentially useful information The criterion potentially useful information
requires a human user that must be interested in the outcome of a KDD
process instance. Consequentially there must be a user that is able to
judge the interestingness of the outcome of the KDD process.

22 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS

2.1.2 The KDD process

The KDD process is presented in different ways in the literature but there are
many things in common. Thus, this subsection presents the most-cited models
of the KDD process in literature first and discusses common elements later.

We choose to present the models of the KDD process of most-cited text-
books due to their high influence on the common sense of the KDD research
community.

As the introductory section has sufficiently discussed the aspect of iterating
the KDD process, the subsequent subsections present only the typical sequen-
tial path of tasks—where each subsection presents a single model of the KDD
process.

Note that the model used in this dissertation is the model that expresses the
relations of the constructs of knowledge discovery in databases as is, as described
in Section 1.3. This model needs an update to reflect the additional aspects on
which the approach of this dissertation founds on, as also mentioned in Section
1.3. To be more specific, it focusses only on independent instances. It is the
model that the author of this dissertation had in mind when he became aware of
the problem and analysed existing solutions. Adding dependency of instances
to the model of the KDD process offers designing a new improved artefact—a
method that performs analyses significantly better in terms of speed or quality.

KDD process according to Han and Kamber

Han and Kamber present a process schema of the KDD process consisting of
seven phases which are data cleaning, data integration, data selection, data trans-
formation, data mining, pattern evaluation, and knowledge presentation[36, p
6f].

Data cleaning is required to handle erroneous data to receive valid results,
i.e. to correct inconsistencies in data, to fill missing values with correct
values, or simply to remove erroneous data that cannot be corrected.

Data integration is necessary if the analysed data is stored in different data
sources such as tables in a distributed database.

It is common practise to do data cleaning and data integration
separately[36, p 7] because data cleaning and data integration is required
by many different KDD instances. The approach presented in this dis-
sertation extends the idea of performing cleaning and integration once for
multiple instances by far because this dissertation’s approach also includes
later phases of the KDD process.

Data selection means to select the subset of data that is relevant in respect to
the purpose of the current instance of the KDD process. This implicitly
requires the existence of a purpose or a goal of the process such as “Finding
the reasons for canceling contracts to prevent customer churn”.

2.1. KNOWLEDGE DISCOVERY IN DATABASES AND DATA MINING 23

Data transformation is the phase of transforming the selected data to the
needs of the KDD instance. For instance, algorithms that are intended to
be used in the data mining phase might require ordinal attributes instead
of continuous ones—making the construction of intervals necessary. Ag-
gregating data is also necessary when data is needed at a different level of
aggregation than the data stored in a table, e.g. an analysis needs total
sales per customer but sales are stored per individual purchasing event.

Data mining is the phase in which sophisticated algorithms scan the selected
and transformed data for patterns. The algorithm influences the type of
patterns that are found. Thus, the succeeding sections of this chapter
show the different types of algorithms and their types of pattern.

Pattern evaluation and knowledge presentation. Analysing the results
happens in the phases pattern evaluation and knowledge presentation. Ac-
cording to Han and Kamber evaluating patterns happens automatically
by determining interestingness according some quality measures. Con-
trary, knowledge presentation is the process of presenting the so-found
interesting patterns to the user. Other authors disagree with Han and
Kamber that pattern evaluation is an automatic process, as is shown in
the following subsections.

KDD process according to Ester and Sander

Ester and Sander presented a textbook [16] with great influence on the German-
speaking KDD research community. As this book is written in German its
accessibility is limited. When presenting the KDD process of Ester and Sander
this section uses translated versions of the terms they use. The original German
terms are postponed in brackets to enable the reader that also is capable to
understand German to reproduce the translation.

Focussing [Fokussieren | is the initial phase of the KDD process according
Ester and Sander. In this phase the analyst becomes aware of the problem
he/she wants to analyse in a KDD project. The analyst defines goals of
the instance of the KDD process. This phase also includes the choice of
data sets the analysis of which might contribute to fulfill the goals of this
instance of the KDD process.

Pre-Processing [Vorverarbeitung | Once the data sets are selected that the
analysts wants to analyse, he/she must pre-process the data to remove or
correct inconsistencies.

Transformation [Transformation | Ester and Sander distinguish in pre-
processing data due to erroneous data and pre-processing data due to
requirements of the chosen data mining algorithm. They call the first
type of pre-processing pre-processing while they call the latter type trans-
formation. Data mining algorithm typically require data having a specific

24 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS

scale. For instance, several clustering algorithms need data having ordi-
nal or rational scale. Algorithms mining association rules need categorical
data to search for interesting rules. If the scale of the data has the wrong
scale for a specific type of analysis, then specific operations can transform
the data to change scale.

The description of the KDD process of Ester and Sander also contains the
phases data mining [Data Mining] and evaluation [Evaluation]. As Ester and
Sander’s definitions of these phases are equivalent in their meaning to the ac-
cording definitions of Han and Kamber, we omit to discuss them here once
more.

KDD process used in this work

This subsection summarises the different aspects of the KDD process in order
to find a model of the KDD process that represents the common understanding
concerning the KDD process. This common understanding is necessary for
finding improved solution which are broadly accepted.

Although the above-presented variations of the KDD process have different
number of phases, the sequences of tasks that we receive when we split each
phase in its sets of tasks are very similar. Han and Kamber present a KDD
process that consists of more phases than the KDD process as Ester and Sander
present it.

In both descriptions of the KDD process the phases data mining and evalua-
tion are common elements. They also agree about the necessity of pre-processing
the data before analysis. Hence, the model of the KDD process used in this dis-
sertation contains the phases data mining and evaluation which have the same
meaning as presented by Han and Kamber, and Ester and Sander, respectively.

Yet, the first phases of both descriptions of the KDD process focus on dif-
ferent aspects of the KDD process. Han and Kamber stress the common usage
of data warehousing and data mining, i.e. several tasks of data warehousing
such as data cleaning pre-process the data before selecting them for analysis.
Contrary, Ester and Sander emphasise the need to plan the analysis as a project
including defining goals and selecting appropriate methods.

As both aspects, defining goals of the process and using a data warehouse,
are relevant aspects, the model of the KDD process used in this dissertation
includes both aspects.

Becoming aware of a problem and defining goals is necessary to be able to
evaluate the results properly, as shown in section 1.3.

Using a data warehouse for analysis has many positive aspects on knowledge
discovery. Analysing data is time-consuming. As a consequence, if the database
system is fully utilised because it scans a huge part of the database for a specific
analysis, then this analysis hinders other users to work interactively with the
database system. Hence, separating data for analysis and data for accessing
them due to regular business processes is necessary due to efficiency reasons.
The Extract, Transform, Load-cycle of a data warehouse loads data from other

2.2. THE CLUSTERING PROBLEM 25

databases into a data warehouse. Thereby, it performs several tasks which oth-
erwise one would have to do during an instance of the KDD process. Correcting
errors is the most-relevant example of these tasks.

Using a data warehouse means to pre-process data in anticipation. There-
fore, it is an analogous approach to the approach of this dissertation. How-
ever, the approach of this dissertation includes much more tasks that can be
prepared in anticipation. Especially, it also includes parts of the data mining
phase—which is the reason we call the approach anticipatory data mining.

Thus, we summarise the model of the KDD process as listed below. Note
that this model comprises the common understanding of the KDD process as is.
Especially, it is not the model of the KDD process of anticipatory data mining
as there is no aspect of anticipation in it. Yet, it is the model that we want to
improve with the concept of anticipatory data mining.

Integrating data in a data warehouse loads the data from various data
sources into a data warehouse to analyse them later. This task also in-
cludes operations cleaning the data on loading.

Focussing on a problem means that an analyst plans an analysis. Thereby,
one analyses the problem that is about to solve. Additionally, one chooses
data sources that contain potential answers to questions related with that
problem. Finally, the analyst chooses data mining techniques that are
capable to deliver that kind of answers.

Pre-processing includes all tasks that are necessary to bring the data that
should be analysed in a state in which a data mining algorithm is able to
analyse them. These tasks include data cleaning—if this has not happened
when integrating the data—and re-scaling data.

Data mining and pattern evaluating are again identical with the accord-
ing phases of Han and Kamber, and Ester and Sander, respectively.

The remaining sections of this chapter survey data mining techniques. There
exist few basic types of data mining techniques and a large set of techniques
for special applications. This chapter presents basic types only as they are
the most commonly used techniques. Using the approach of this dissertation
improves all basic types of data mining techniques either in terms of speed or
quality. Additionally, many techniques for special applications are derived from
a basic technique or a combination of basic techniques.

2.2 The Clustering Problem

Clustering is a process that groups a set of objects into several subsets which
are called clusters. The goal of the clustering process is to define the clusters in
a way that each object and the object that is not more similar to another object
are member of the same cluster. In other words, objects within a cluster should

26 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS

be most similar while objects of different clusters should be most different to
each other.

There are many purposes for performing clustering such as data reduction
or hypothesis generation. Subsection 2.2.1 describes the different purposes of
clustering.

There are several categories of clustering algorithms including partitioning
clustering algorithms, hierarchical clustering algorithms, density-based cluster-
ing algorithms, or grid-based clustering algorithms. This dissertation sketches
partitioning clustering algorithms and hierarchical clustering algorithms in the
succeeding subsections because the clustering algorithm presented in chapter 5
is a combined algorithm consisting of a partitioning clustering algorithm and a
hierarchical clustering algorithm.

This section concludes with a subsection discussing quality measure of clus-
tering. Especially, that subsection focusses on the quality measures used in the
experiments of of the approach of this dissertation.

2.2.1 Purposes of Clustering
Clustering for Data Reduction

Clustering algorithms scan a set of data and return a set of clusters. The set of
data is typically very large in size while the number of clusters is small. Using the
circumstance that most clustering algorithms do not store the data that are part
of a cluster but a small set of describing features of each cluster, it is possible
to use the set of features of a cluster instead of the cluster’s data. In other
words, the features that characterise a cluster are a condensed representation of
a subset of data. The features of all clusters form a compact representation of
all data.

Several typical applications profit of the data reducing effect of clustering.
Customer segmentation is only one of them. The aim of customer segmentation
is to group the set of all customers of a company into few sets of customers that
are represented by characteristic features—e.g. by an “average customer”.

Data reduction is a necessary pre-processing step whenever there is a large
set of unique but similar objects that shall be used for data mining. Data
mining techniques try to find frequently occurring patterns within the data,
Yet, it is impossible to find frequently occurring patterns if each instance is
unique because unique items can never be frequent. The usage of clustering can
solve this problem. Before being clustered a specific tuple cannot be used for
data mining because it is unique but after being clustered the same tuple can
be used for data mining when it is treated as a an element of a cluster—there
might be many tuples being element of the the same cluster while each tuple is
unique. Hence, it is possible to find frequent patterns.

A simple example shall illustrate the necessity of clustering for pre-processing
mentioned above:

Suppose a mail order company wants to analyse which costumers buy which
kind of products. The company stores sales data and customer data in the two

2.2. THE CLUSTERING PROBLEM 27

tables “sales” and “customer”, respectively, of a relational database system.
If the company performs an association rule analysis on the “sales” table it
receives rules of the form “If a customer buys the set of products ‘A’ he/she
will probably buy the set of products ‘B’, too”. Yet, it is impossible to tell
what kind of products a potential customer that has never bought anything is
interested in. The customer must have bought at least a single item to guess
what other good he/she might be interested in.

Assuming that two customers that are in a similar living condition—i.e. they
have the same sex, similar age and similar educational and cultural background,
also share some of their interests concerning specific type of products. Yet, the
tuples representing customers in the “customer” table are unique combinations
of attribute values in most times—i.e. usually, no two customers have same
name, sex, birthday and address. But when clustering the data in the “cus-
tomer” table, the company receives a set of typical customers, e.g. the female
teenager. The resulting clusters can be combined with the result of the asso-
ciation rule analysis. By doing so, the company is now able to predict the set
of products a potential customer is interested in. The company might use this
knowledge for several purposes such as marketing events customised to the in-
terests of specific customer segments, e.g. enclosing a catalogue with books that
are primarily read by female teenagers into a girls’ magazine.

Clustering for Hypothesis Generation

Some features describing a cluster are suited for being interpreted as a statistical
hypothesis. Assume that the application of a partitioning clustering algorithm,
see Section 2.2.3 for details, such as k-means has returned three clusters with
means fi1, ji2, and ji3. k-means is a partitioning clustering algorithm that parti-
tions a set of data in k disjoint subsets and returns the mean of each subset—=k
is a user-given parameter. When the best value of parameter %k is unknown,
k-means is iterated several times to determine the best value of parameter k.
A potential hypothesis is that there are three independent statistical variables
X17 Xg, and X3 with means i1, jio, and fi3. Frequent co-occurrences of attribute
values can be source of hypothesis, too. For instance, if the mean vector fi; has
the dimensions “income” and “total sales per month”, then a small value of the
mean in dimension “income” and a high value of the mean in dimension “total
sales per month” means that persons with low own income buy a lot of things.

It is common practise in statistics to generate a hypothesis before testing
whether data supports it or not. Otherwise, the hypotheses would be trimmed
to fit a specific data set that might cause the so-called overfitting problem.
Overfitting occurs when the underlying statistical model of a hypothesis fits
almost exactly to the data that has been used to generate that model but only
poorly fits to other data having the same schema.

When clustering is used for hypothesis generation, it returns those hypothe-
ses that best fit the given data—which might cause overfitting. Hence, it is
necessary to validate the resulting hypotheses by testing each hypothesis with
a set of data that has not been used for clustering. For instance, when one has

28 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS

used the data of the past to determine a set of hypotheses, one can use current
data in order to try to falsify those hypotheses.

Clustering to Improve Quality of Other Techniques

A basic assumption of clustering is that objects in a cluster are similar in struc-
ture and behaviour—or, if not, then the behaviour and structure of objects in
a cluster are at least more similar to each other than an object of that cluster
is to an object of another cluster.

According to this basic assumption it is valid to assume the same distribution
of objects in a cluster.

Partitioning a data set in several subsets with similar distribution reduces
the expected error of classification. Assume that attribute Y represents the
affinity to a specific class. Further, let X denote an attribute that is used to
predict the class attribute Y. The ranges of both attributes are arbitrary—
they might be discrete or continuous, limited or unlimited. Then, a classifier
is a deterministic function f : X — Y that assigns each value of attribute X
an according value of attribute Y. Thus, a classifier assumes a deterministic
association between the classifying attribute X and the class attribute Y.

Yet, the association between classifying attribute and class attribute is rarely
deterministic but uncertain in most times. One can use a stochastic model to
express the degree of this uncertainty. Assume that the statistical variable ©
represents external influences on the association between attributes X and Y.
Thus, it summarises all non-observable influences that determine the class of a
tuple.

The probability function of of the triple (X,Y, ©) represents the association
between class, classifying attributes, and unknown parameters. The outcome of
this function denotes how likely it is to have a tuple (z,y) € X x Y in a data
set. Thus, one can determine the likelihood that a tuple with attribute value x
is part of class y using the probability function.

Yet, the distribution of the probability function can be very complex. More-
over, the distribution can be an arbitrary function and no known function such
as binomial or normal distribution. Thus, a classifier can only approximate it.

If one partitions the data set into several clusters which are very similar, then
approximating is more promising because one can assume the same distribution
for all tuples of a cluster. Or, one can search approximations for each cluster
individually—for instance, the best approximation for a the probability function
of a cluster might be binomial distribution while the best one of another cluster
might be uniform distribution. As these clusters have only a small deviation
compared with the total data set, the deviation of a classifier is also smaller.
Yet, the lower the deviation of a classifier is the lower is the error. For instance,
assume that the deviation of a class y is 0. As clustering decreases the deviation
of attributes in clusters because it groups those tuples into the same cluster
which are similar to each other, the deviation o’ of class y is typically smaller,
too. Decreasing deviation is no necessary condition but a commonly-observed
phenomenon.

2.2. THE CLUSTERING PROBLEM 29

A classification algorithm that has a smaller deviation of error than another
classification algorithm is superior to this other classification algorithm in terms
of quality.

If there is a clustering of a data set that significantly reduces the distances
within a cluster, then clustering can improve quality of classification algorithms
classifying the data set cluster by cluster.

2.2.2 Expressing Dissimilarity with Distance Function or
Distance Matrix

A clustering algorithm must be able to determine the similarity of tuples to
determine the cluster a tuple is most similar with. Therefore, some kind of
measure is required that indicates similarity or dissimilarity of tuples.

Hence, this section introduces distances, distance functions, and distance
matrices as measures to express dissimilarity of tuples.

It is common practise to express dissimilarity of tuples with the so-called
distance of tuples. The distance between two tuples can be a distance having
a meaning but can also be only a fictive measurement. For instance, if two
persons earn €10 and €30 per hour, one person earns €20 more than the other.
But if three persons have the values 1.2, 1.4, and 2.0 as values of an artificial
index, we can only determine that the first two persons are more similar to each
other than to the last one.

For clustering tuples, there must exist a measurement of distances for each
attribute and a way to combine distances of different attributes. Distance func-
tions fulfill the function of combining distances of several continuously and in-
terval scaled attributes to a common distance. Distance matrices are used in
cases where it is impossible to find a suitable distance function. See below for
details.

Popular Distance Functions

A distance function is a function that takes two tuples as its input and returns
a float variable—the distance—that indicates the dissimilarity of both tuples.

The Euclidian distance, the Manhattan distance, and the Minkowski dis-
tance are popular distance functions for interval-scaled attributes.

The Euclidian distance dg of two tuples is the length of the distance vector
of the vectors representing both tuples in a Euclidian vector space, i.e. if two
tuples are represented by the vectors & and y the Euclidian distance is the length
of the vector & — ¢/ which is

The Manhattan distance dM is the sum of the absolute values of the differences

30 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS

8|
|
<y

dng

Figure 2.1: Euclidian distance [|Z — || and Manhattan dj; distance of two
vectors ¥ and ¥/

of the tuples in each attribute, i.e.

d

dar(Z,5) = > | — yil-

i=1

The name Manhattan distance originates from the way roads in Manhattan
are organised: Streets follow East-West direction while avenues run from North
to South. In analogy to that, to get from point & to point i one has to pass
several blocks in one direction before changing the direction orthogonally. The
Euclidian distance is the distance taking the straight way from point & to point
, as shown in figure 2.1.

The Minkowski distance is the generalised distance function of Manhattan
distance and Euclidian distance. The Minkowski distance has a parameter p
that determines the exponent of the difference of the attribute values of the
tuples, i.e.

d
Z |z — 3P
i=1

The Manhattan distance is a Minkowski distance with parameter p = 1. The
Euclidian distance is a Minkowski distance with parameter p = 2.

The specific requirements of the KDD process instance determines which
distance function is the one to prefer. The Euclidian distance will be the
most-appropriate distance function when analysing geographical data because
it represents the real geographical distance between two points. The Euclidian
distance is also chosen for many other technical applications with metric data
only.

The Manhattan distance is applicable when the Euclidian distance is ap-
plicable but the Manhattan distance favours changes in only a single attribute.
Let vector & assume (0,0) and vector ¢ assume (2,2). Further let vector 2" as-
sume (0,3). According to the Manhattan distance, vector 2 is nearer to vector
Z than vector ¥/ is to vector Z, i.e. a distance of 3 compared to a distance of 4.
According to the Euclidian distance, vector g is the nearest vector to vector &
because the distances are dg(Z,7) = 2v2 ~ 2.8 and dg (7, Z) = 3, respectively.

The Manhattan distance is also applicable to data sets with ordinal at-
tributes. In such a case, the Manhattan distance of two tuples x and y is the

2.2. THE CLUSTERING PROBLEM 31

attribute value | a1 | as | a3
by
b Yy

tuples = (a1, b3), y = (a3, b2)
Manhattan distance dps(z,y) = 3

Figure 2.2: Manhattan distance of ordinal attributes

minimal number of steps to take to get from the attribute value combination of
x to the attribute value combination of y in the matrix of all potential attribute
value combinations, as shown in Figure 2.2.

For comparing objects that include a non-empty set of objects, there exists
a distance function that is computed as the number of different items in relation
to the number of items in both sets, i.e.

XUY)—(XNnY)|
X uY|

ds(X,Y) = [I(

Distance function dg can be used to cluster transactions of arbitrary length—
what is needed when pre-clustering or post-clustering of an association rule
analysis is required.

The distance dg is also an appropriate distance function for data sets with
categorical attributes because a tuple of a data set with categorical attributes
can be interpreted as a set of attribute values with a fixed size of items. If we
omit the ordering of attribute values in Figure 2.2 we receive a relation with
two categorical attributes. Assuming that tuple X assumes (aq,b2) and tuple

Y assumes (ag, b2), the distance dg equals dg = % =2/3.
The range of distance dg is [0, 1] where 0 is the resulting value if and only
if both compared sets are identical. Contrary, 1 is the resulting distance if and

only if no element of one set is element of the other set.

Distance Matrix

A distance matrix can replace a distance function in cases where there is no
appropriate distance function available or computing the result of a distance
function would be too expensive. For instance, let the attribute “job” be an
attribute of interest in table “person”. It is impossible to find a distance function
that determines the distance of two different jobs because similarity of jobs is
subjective. Omne person might think that “nurse” and “doctor” are closely-
related jobs because nurses and a lot of doctors work together in hospitals.
Contrary, another person might think that “advocate” and “doctor” are more
closely-related jobs because both jobs require a university degree.

Although it is impossible to give a distance function that represents the
similarity a user associates with some pair of objects—e.g. the similarity of

32 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS

jobs—it is possible to express the user’s association of similarity of objects with
a distance matrix.

A distance matrix is a matrix that includes the distances of all combinations
of tuples, i.e. in the “jobs”-example a distance matrix has an element for each
combination of two jobs that indicates how much related the user assumes that
these jobs are.

Note that the resulting distance matrix expresses a subjective opinion of a
user or a group of users—if they agree with the distance values stored in the
distance matrix. Consequentially, the result of a clustering using such a distance
matrix would be a subjective result. too. Thus, it is important to present the
distance matrix together with the results to prevent users from taking those
results for granted.

Using a distance matrix is limited to finite sets of tuples because it must
include all combinations of tuples—infinite sets of tuples would require a dis-
tance matrix with infinite space. Hence, continuously scaled attributes and
ordinal-scaled attributes with unbounded domain prevent the usage of distance
matrices.

Using Normalisation When Attributes Vary Significantly in Range

Especially in cases with one attribute having a much broader range than the
other ones, the attribute with the broader range dominates the result of the
clustering because its distances are higher than the distances of other attributes.

Normalisation of attributes is used to prevent that the attribute with the
broadest range dominates the clustering. Normalisation of attributes is a trans-
formation of an attribute so that the ranges of all transformed attributes are
approximately identical.

Z-normalisation or z-scoring is a popular way of attribute normalisation.
The z-score z of an attribute value is the transformed value we receive by sub-
tracting the mean p of the attribute of the attribute value first and divide the
result of the substraction by the standard deviation o of that attribute.

z = (2.1)

The succeeding subsections introduce partitioning clustering algorithms and
hierarchical clustering algorithms which both are used in CHAD, a clustering
algorithm that uses two types of clustering algorithms to receive a higher overall
performance.

2.2.3 Partitioning Clustering Algorithms

This section gives a brief overview of the characteristics of partitioning clustering
algorithms. Yet as the following paragraphs will show, the process of conceptual
clarification is still unfinished. The following survey of partitioning clustering
algorithms will point out unclear concepts.

2.2. THE CLUSTERING PROBLEM 33

Partitioning clustering algorithms partition a set of tuples in several subsets
of tuples, i.e. clusters. The number of clusters to be found typically is a user-
given parameter—although there exist approaches to determine the optimal
number of clusters automatically such as [75]. Typical partitioning clustering
algorithms are k-means [46], CLARANS [53], and k-modes [34].

Partitioning clustering algorithm try to find partitions according to a given
criterion of optimality. Minimising the sum of squares distances to the clusters’
centre is a popular criterion that partitioning clustering algorithms use. k-means
is one of them, see Section 2.2.3.

Each partition of the clustered data set must contain at least one tuple.
Hence, an empty cluster would be an illegal partition.

Ester and Sander additionally demand that a tuple must be contained in ex-
actly one cluster [16, p. 51]. Yet, according to this demand the EM (Expectation
Maximisation) clustering algorithm [12] would be no partitioning clustering al-
gorithm because tuples in an EM cluster can belong to several clusters, although
Ester and Sander categorise EM as a partitioning clustering algorithm [16, p.
59f]. According to Han’s definition of model-based clustering algorithms [36,
p. 348], EM would be a model-based clustering algorithm. However, several
authors consider k-means and EM as closely related algorithms such as [62],
[67], and [16, p. 59f]. The description of both, k-means and EM, can be found
in the following subsections.

Due to the similarity of EM with partitioning clustering algorithms, we cat-
egorise EM as a partitioning clustering algorithm and weaken the condition of
Ester and Sander by omitting the necessity of one tuple having exactly one
associated cluster.

According to the argumentation above, a partitioning clustering algorithm
assigns each tuple to at least one cluster. This requirement excludes tuples
remaining unassigned. Some non-partitioning clustering algorithms such as
density-based clustering algorithms consider only a subset of the data set as
relevant. The un-considered data is called noise [15]. Omitting clustering tuples
is tolerable if the purpose of a given cluster analysis is only to find concentra-
tions in data. Yet, if the purpose of a cluster analysis is to partition a data set
for finding better classifiers it is not.

Partitioning clustering algorithms present the result of the clustering as a
set of features of the clusters they found. Yet, the type of feature depends on
the algorithm that was used. Therefore, the following subsection surveys the
different types of partitioning clustering algorithms which are available at the
moment.

Available Types of Partitioning Clustering Algorithms

The type of feature a partitioning clustering algorithm is returning is the most-
discriminating factor of partitioning clustering algorithms.

For instance k-means returns the centroids of all clusters—the centroid of
a cluster is a vector that is the arithmetic mean of the vectors that represent
the tuples of that cluster. As k-means assigns each tuple to its nearest mean,

34 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS

the set of means is sufficient to determine the affiliation of a tuple to a specific
cluster.

In analogous way, k-median algorithms such as PAM and CLARANS return
the clusters’” medoids that can be used to determine the cluster affiliation of
a tuple. A medoid of a cluster is a tuple of that cluster that minimises the
total distances of all non-medoid tuples to the medoid tuple. In contrast to a
centroid, a medoid is an existing tuple.

k-modes is a partitioning clustering algorithm using the modus of a cluster
as feature of the cluster. The modus of a cluster is the tuple that has the
most-frequent combination of attribute values of all tuples in a cluster.

The FEzpectation Mazimisation (EM) [12] algorithm returns a statistical
model consisting of k statistical variables with mean and standard deviation.
Typically, these variables are assumed to be normally distributed but other dis-
tributions could be used alternatively. EM is very similar to k-means but EM
also takes the deviation of a cluster into account. Where k-means assigns a
tuple to the cluster with the nearest mean, EM assigns a tuple to the cluster
having the greatest prior probability. If one would assume that the deviation of
all clusters would be identical, k-means and EM would return the same means—
given, that both algorithms use the same initialisation. If deviation is identical
for all clusters, the condition “greatest probability” and “nearest cluster” are
equal.

The scale of attributes typically determines the type of partitioning cluster-
ing algorithm to use. As an arithmetic mean of a cluster is only available for
continuously scaled attributes, k-means is limited to data sets with continuously
scaled attributes. Due to EM’s similarity with k-means the same argumentation
is true for EM. Again, determining the distances to a medoid requires attributes
being scaled at least ordinal. Thus, k-medoid algorithms are limited to ordinally
or continuously scaled attributes. k-modes is applicable to data sets having any
type of scale but the expressiveness of the modus of a cluster is too low for many
applications.

General Functioning of Partitioning Clustering Algorithms

Although partitioning clustering algorithms differ in the type of result they
return, they share a common pattern how they compute results. This section
presents the common functioning of partitioning clustering algorithms.
Partitioning clustering algorithms improve an initial solution in several iter-
ations. Algorithm 1 shows the pseudo code of a generalised prototype of a parti-
tioning clustering algorithm. A set of features represents the current solution of
a partitioning clustering algorithm. Depending on the type of algorithm as pre-
sented in the previous subsection, these features are either centroids, medoids,
modes, or statistical variables of clusters. In each iteration, the algorithm as-
signs tuple to clusters and re-computes the features of the current solution.
The way a partitioning algorithm finds an initial solution (line 2 of Algorithm
1) is not fixed. Hence, there exist several heuristics to find good initial solutions.
Applying the algorithm on a small sample is a very common technique to find

2.2. THE CLUSTERING PROBLEM 35

an initial solution [69]. Here, the resulting solution of the run with the sample
becomes the initial solution of the second run with the original data set.

Some algorithms re-order the steps shown in Algorithm 1 to enhance the
algorithm’s performance. For instance, the MacQueen variant of k-means per-
forms the update of features (line 20) right after re-assigning a tuple to a different
cluster (line 16).

Algorithm 1 Generalised pseudo code of a partitioning clustering algorithm

Require: set of tuples represented by a set of points X = {#,2s,..., %},
number of clusters k
Ensure: set of k features © = {0y,...,0;}

1: © « determine_initial solution(X, k)

2: Xp — {X1,..., X4} /* create d initially empty partitions */
3: for all ¥ € X do

4: i+« determine_index most_similar feature(Z,©)
5: X, — X, U {f}

6: end for

7: for all 0; € © do

8 0; < update_solution(X;)

9: end for

10: repeat

11: for all X; € Xp do

12: for all ¥ € X; do

13: i < determine_index most_similar_feature(Z, O)
14: if 7 # j then

15: X, — X; U {f}

16: X; — X;\{7}

17: end if

18: end for

19: for all ; € © do
20: 6; «— update_solution(Xj;)
21: end for

22: end for
23: until stop criterion is met
24: return ©

Partitioning clustering algorithms iterate until a stop criterion is met. Typ-
ical stop criteria of partitioning clustering algorithms are

e a given number of iterations is complete—CLARANS has this type of stop
criterion; additionally, several implementations of algorithms in commer-
cial systems use a maximum number of iterations to guarantee termination
in a reasonable amount of time

e the quality of the current iteration and the former iteration does not
improve—~k-means, k-modes, and EM have this type of stop criterion

36 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS

e the estimated cost of a further iteration exceeds the estimated benefit of
a further iteration.

k-means and EM are part of many commercial data mining tools such as SAS
Enterprise Miner, SPSS Clementine, or Teradata Warehouse Miner. Addition-
ally, both algorithms are broadly discussed in literature. As both algorithms
require an Euclidian vector space to operate within, many improvements ex-
ploiting conditions given in an Fuclidean vector space are applicable to both
algorithms. Thus, it is sufficient to discuss only one of them in detail.

Due to the usage of k-means in commercial products and the large set of
articles discussing improvements of k-means, we will focus on k-means to show
how to implement the concepts presented in this dissertation for k-means ap-
plication.

The significant contribution of this dissertation is to pre-process more tasks
than in the conventional way for potential future applications such as k-means
clustering applications. k-means fulfills the function of a running example
demonstrating the concepts presented in this dissertation. It is left to the reader
to traduce the herein shown way of implementing these concepts to other clus-
tering algorithms.

The k-means algorithm

The k-means clustering algorithm is a partitioning clustering algorithm that
partitions a set of data into k subsets and returns the centroid of each subset.
Each tuple is represented by a vector in a Euclidean vector space. Consequen-
tially, only attributes with continuous, numerical scale are available for k-means
clustering because other attributes are improper to span an Euclidean vector
space. The centroid of a cluster is the arithmetic mean of all vectors of a cluster.

Parameter k, which denotes the number of clusters to be found, is the only
parameter of k-means. It is also the parameter that gives k-means its name.

The general proceeding of k-means is like the proceeding of partitioning
clustering algorithms as presented in the previous subsection. The following
paragraphs describe how k-means implements the generic pattern of a parti-
tioning clustering algorithm.

Like other partitioning clustering algorithms, k-means starts with an initial
solution which it improves in several iterations. Hereby, the initial solution
consists of a set of k centroids.

The distance of a tuple to a cluster’s centroid determines the affiliation to a
specific cluster: k-means assigns each tuple to that cluster that minimises the
distance between tuple and centroid.

k-means terminates when there were no re-assignments of tuples from one
cluster to another cluster within an iteration. Hence, the minimum number of
iterations is two: One iteration to assign tuples to clusters and a second iteration
to detect that the initial assignment was optimal.

There are two major variants of k-means, namely Forgy’s variant of k-means
[17] and MacQueen’s variant of k-means [46]. Both are identical except for the
time of updating a cluster’s centroid.

2.2. THE CLUSTERING PROBLEM 37

Forgy’s variant of k-means updates centroids at the end of each iteration.
In other words, the location of a centroid is constant during an iteration. Not
so MacQueen’s variant of k-means.

MacQueen’s variant of k-means updates a centroid each time the cluster of
that centroid either gains or looses a tuple, i.e. the location of a centroid can
change during an iteration. Consequentially, updating centroids at the end of
an iteration is unnecessary. The continuous update of centroids has a single
exception.

During the first iteration there is no update of a cluster’s initial centroid
when that cluster gains tuples. This exception is necessary to avoid that the
tuple that is read first biases the result of the clustering. If the algorithm would
perform the first iteration in the same way as it does in succeeding iterations,
after reading the first tuple it would update the centroid of that tuple in a
way that the centroid and the location of the first tuple coincide in the same
point—making any initialisation obsolete.

MacQueen’s variant of k-means is said to require only a few iterations, which
are typically five up to ten iterations, confer [16, p. 54]. However, some of our
tests contradict this observation when the number of tuples exceeds a million
and there is no significant concentration of tuples, i.e. the concentration of
tuples is only somewhat higher in the vicinity of a centroid than in the rest of
the data set. In such a case we observed few tuples that permanently changed
their affiliation to clusters from iteration to iteration. As their contribution to
the resulting clusters was minor we terminated k-means after a fixed number of
iterations when k-means did not terminate otherwise.

The number of iterations needed by MacQueen’s variant of k-means is less or
equal the number of iterations needed by Forgy’s variant of k-means because the
centroids move faster to their position. However, updating a centroid at the end
of an iteration can also be beneficial under some circumstances. Schaubschléger
has demonstrated in his master’s thesis that Forgy’s variant of k-means is easier
to compute in a distributed environment because it needs less messages between
participating computers for communicating intermediate results [63].

2.2.4 Hierarchical Clustering Algorithms

All clustering algorithms that produce clusters that themselves consist of clus-
ters are hierarchical clustering algorithms. Hence, their result is a tree of clus-
ters, or as it is also called, a dendrogram.

Unlike partitioning clustering algorithms, hierarchical clustering algorithm
do not optimise their clusters according to a specific measure. Hence, comparing
the quality of two dendrograms is difficult.

Although many hierarchical clustering algorithm have a parameter indicating
the maximal number of clusters to keep the resulting dendrogram small, the
actual number of clusters a hierarchical clustering algorithm finds depends only
on the data.

As hierarchical clustering algorithm operate independently of user-chosen
parameters fixing number of clusters and/or criterion indicating optimality, the

38 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS

approach of this dissertation uses a hierarchical clustering algorithm to pre-
cluster data sets. As many applications need some kind of criterion of optimality,
the approach of this dissertation also uses partitioning clustering on top of the
results of the hierarchical clustering. Therefore, this section presents the basics
of hierarchical clustering algorithms.

There exist two ways to construct a tree of clusters: top-down or bottom-
up. An algorithm following the top-down strategy initially assigns all tuples to
a single cluster which it recursively tries to split in sub-clusters. Contrary, an
algorithm using the bottom-up strategy handles each tuple as its own cluster
and tries to add the nearest clusters to a higher-level cluster over and over again
until there is only a single cluster left.

Algorithms following the top-down strategy are called divisive clustering al-
gorithm as they divide a single cluster in smaller sub-clusters. Analogously,
algorithms of the bottom-up strategy are called agglomerative clustering algo-
rithm because they agglomerate sub-clusters to higher-level clusters.

Both, divisive and agglomerative clustering algorithms, need to determine
the distance between a pair of clusters. A divisive clustering algorithm needs
this distance to determine the best candidates to split a cluster into a set of
sub-clusters, while an agglomerative clustering algorithm needs this distance to
detect the nearest clusters to determine candidates to group them into clusters.

For expressing the distance between two clusters there exist several distances,
namely

minimum distance The minimum distance between two clusters is the min-
imum of of the distances of all pairs of tuples where one tuple is part of
one cluster and the other tuple part of the other cluster. Single-link [16,
p. 77] is an alternative name of the minimum distance that indicates that
there exists a single link of two points between two clusters having the
minimum distance.

average distance The average distance between two clusters is the arithmetic
mean of the distances of all pairs of tuples where one tuple is part of one
cluster and the other tuple part of the other cluster. Average-link [16, p.
77] is an alternative name of average distance.

maximum distance The maximum distance between two clusters is the max-
imum of the distances of all pairs of tuples where one tuple is part of one
cluster and the other tuple part of the other cluster. Complete-link [16, p.
77] is an alternative name of the minimum distance that indicates that all
pairs of tuples are linked together by a link having the maximum distance.

For comparing the above-mentioned distances, assume there are three clus-
ters the distances of their centroids are identical but which differ in deviation.
Hence, average distance is identical for all distances between clusters. Yet, min-
imum distance favours clusters with high deviation because there more likely
exist tuples far away of the clusters’ centroid which are closer together. Hence,
a clustering algorithm using minimum distance would merge clusters with high

2.2. THE CLUSTERING PROBLEM 39

deviation more often than clusters with low deviation. For the same reason,
the opposite is true for maximum distance. As deviation is higher there more
likely exist tuples of different clusters which are far away from each other. Thus,
maximum distance favours small clusters.

Divisive and agglomerative clustering algorithms differ in the way they com-
pute results. Hence, the following sections describe common characteristics and
popular representatives of divisive clustering algorithms and agglomerative clus-
tering algorithms. Section 2.2.4 presents the agglomerative clustering BIRCH
in more details than the other algorithms because the major contribution of
this dissertation uses an extension of BIRCH for data compression due to its
superior performance.

Divisive Clustering Algorithms

Divisive clustering algorithms generate a dendrogram top down. Thus, they
start with a single cluster that has all tuples assigned and try to split it into
several sub-clusters. The algorithm adds these sub-clusters as child nodes of the
original cluster such that a dendrogram emerges. Thereby, the original cluster
forms the root of the cluster tree. Then it recursively splits the so-created sub-
clusters until each sub-cluster of the current leaf node level of the cluster tree
fulfills a stop criterion. The way a cluster is split and the stop criterion depend
on the specific divisive clustering algorithm that an analyst uses.

DIANA is a divisive clustering algorithm which is presented in [41]. DIANA
is short for DIvisive ANAlysis. DIANA generates a binary tree of clusters by
recursively splitting a set of tuples in two disjoint subsets. For each cluster that
is about to be split DTANA starts with a subset containing all the cluster’s tuples
and an initially empty subset. Then it moves tuple by tuple from to the initially
full subset to the initially empty subset—beginning with the tuple that is most
dissimilar to the others. This process lasts as long as the dissimilarity within
both subsets decreases. When moving tuples is finished, DIANA recursively
splits the so-generated subsets.

The recursive splitting of clusters ends if each cluster at leaf level has only
a single tuple associated with.

As DIANA needs to scan the data each time it generates a new level in the
cluster tree, it is an algorithm that scales ill in the number of tuples [36, p. 356].
With respect to their ill performance we consider divisive clustering algorithms
no further.

Agglomerative Clustering Algorithms

Agglomerative clustering algorithm start with each tuple representing its own
cluster. They group similar clusters together to receive a super-ordinate cluster
of each group of similar clusters. This process recursively continues until there
is only a single cluster left. Hence, the construction of a dendrogram using an
agglomerative clustering algorithm happens bottom up.

40 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS

For determining similar clusters, an agglomerative clustering algorithm uses
one of the distance measures for clusters as described in the introduction of
section 2.2.4. Minimum distance is a commonly used distance between clusters
[5].

There exist several strategies to group clusters to a super-ordinate cluster,
namely merging clusters if their distance is lower than a given threshold and
merging the k nearest clusters. By inserting tuples in a BT-like tree where each
node has the capacity k is a simple solution to group k clusters together—yet,
there might be nodes having less than k entries. Some algorithms like BIRCH
use a mixture of both strategies, confer the next subsection.

The merging strategy using a threshold merges clusters as follows: There
exists a threshold for all clusters of the same level of the dendrogram. The
algorithm determines to each cluster the most similar cluster of the same level.
If the distance of this pair of clusters is below the threshold, the algorithm
merges both clusters by adding them to the same super-ordinate cluster.

The merging strategy using the nearest neighbours of a cluster detects the
nearest neighbours of a cluster and adds them to the same super-ordinate clus-
ter. The clustering algorithm CURE [28], for instance, initially creates several
partitions of the data set to keep the resulting dendrogram small. Yet, after
initial partitioning CURE iteratively merges pairs of nearest clusters.

BIRCH is a very efficient agglomerative clustering algorithm because it needs
a single scan of the data to build a dendrogram. It is also the algorithm on which
the algorithm presented in this dissertation founds on. For both reasons, the

following section exclusively introduces the agglomerative clustering algorithm
BIRCH.

BIRCH

The clustering algorithm CHAD [81][80] uses a modified version of the first
phase of the hierarchical clustering algorithm BIRCH as its first phase. Hence,
this section presents the unmodified version of BIRCH before presenting the
modifications in Section 5.2.

Zhang created BIRCH as vital part of his dissertation [80]. BIRCH is short
for Balanced Iterative Reducing and Clustering using Hierarchies. It consists of
four phases as described below.

Building a clustering feature tree (CF-tree) With a single scan of the
data, BIRCH builds a dendrogram. The inner nodes of the dendrogram
are organised in the same way as the inner nodes of a Bt-tree. They
build up the tree in the same way except that BIRCH has no key values
but uses so-called clustering features (C'F') as entries of a node. We will
discuss clustering features separately in the subsequent paragraphs.

As mentioned in the previous section, BIRCH uses a threshold to merge
clusters. However, there is only a single threshold which it applies on
entries of leaf nodes. For inner nodes, BIRCH uses the insertion operation

2.2. THE CLUSTERING PROBLEM 41

of BT-tree which always groups at least k& and at maximum 2k — 1 sub-
nodes to a super-ordinate node. The capacity k of inner nodes is chosen
so that a node fits a page of the machine which performs the clustering.

The dendrogram of BIRCH is memory-optimised which means that
BIRCH automatically chooses the threshold that the resulting dendro-
gram fits in the main memory that is available on the machine which is
used for clustering.

Pruning the CF-tree As the resulting clustering feature tree can be very
large—too large for analysing it—, BIRCH can prune the clustering fea-
ture tree optionally to receive a smaller tree.

Global clustering In phase global clustering BIRCH applies another cluster-
ing algorithm on the clustering features of the leaf nodes of the CF-tree.
In doing so, the used algorithm interprets a clustering feature as an n-
ary point in a multi-dimensional vector space. Therefore, the clustering
algorithm used in this phase must operate in a vector space.

Refining of clusters Due to the aggregation of tuples in the C'F-tree, the
result of the global clustering might be imprecise. To circumvent this
problem, one can optionally re-scan critical sections of the data, i.e. sec-
tions in which tuples are located that the global clustering failed to assign
them clearly to a single cluster.

The dissertation of Zhang [80] focusses primarily on the first phase of CHAD.
Additionally, the source code of Zhang to test BIRCH includes the functions for
the global clustering methods such as k-means only as dummy functions.

Therefore, we refer only to phase 1 of BIRCH when we consider BIRCH
although the concept of BIRCH includes also pruning, global clustering, and
re-fining.

Several approaches use the C'F-tree of BIRCH’s phase 1 for another type of
clustering such as a k-means clustering. In other words, they implement phase
3, the global clustering. These approaches show that the quality of results
is only a little worse than using all tuples but their results are better than
other techniques using sampling, e.g. [6]—given, both techniques use the same
amount of main memory. They can be found in the related work section of this
dissertation.

This dissertation introduces in chapter 5 a similar algorithm to BIRCH but
uses a different second phase. While BIRCH focusses on compressing the data,
the algorithm presented in chapter 5, CHAD, focusses on making the dendro-
gram of the first phase applicable to different analyses. Additionally, chapter 5
goes more into the problems concerned with global clustering—such as initial-
ising clustering without scanning the data—as BIRCH does.

As the first phase of BIRCH is very similar to the first phase of CHAD, the
remainder of this section describes BIRCH’s first phase in detail. To be more
specific, it surveys structure and elements of a C'F-tree and its construction.

42 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS

When surveying the construction of a C'F-tree, it focusses on BIRCH’s auto-
matic adaption of parameters such that the resulting tree always fits into the
main memory of the machine that is running BIRCH.

Definition 2.1 A clustering feature c¢f = (N, LTS’,SS) of a set of tuples is a
triple containing number N, linear sum LS, and sum of squares SS of all tuples
represented by this clustering feature.

Cluster feature is an alternative name for clustering feature—e.g. Bradley
et al. [59] use the term cluster feature. Both terms denote the same triple as
defined above. We will use the term clustering feature to denote an element
of BIRCH’s C'F-tree. In contrast to that, we will use the term general cluster
feature to denote an element of CHAD’s C'FG-tree. General cluster feature
and C' F'G-tree are both terms that we will introduce when presenting CHAD in
chapter 5.

We will extend Definition 2.1 in chapter 5 to stress the difference between
BIRCH and CHAD. Yet, the definition above is sufficient to present BIRCH
and approaches using BIRCH.

The elements of a clustering feature are sufficient to compute many other
statistics of the data set which the clustering feature represents. For instance,
one can determine the location of the centroid of the data set by dividing the
linear sum of a clustering feature by the number of tuples in that clustering
feature. The sum of squares is needed to determine some common quality
measures of clustering such as the total distance to the cluster’s centroid.

The additivity of clustering features is a characteristic of clustering features
that is important for BIRCH. Additivity of clustering features means that one
can determine the clustering feature of a data set that is the union of two
disjoint data sets by adding the according elements of the clustering features of
the disjoint data sets.

2.2.5 Measuring Clustering Quality

Quality is an interesting feature of clustering when the purpose of an analysis
is any other purpose than data reduction, i.e. the purpose of a cluster analysis
is either clustering for hypothesis generation or clustering to improve quality of
other techniques.

This section gives a brief overview of quality measures of clustering in general
and the measures used in the experiments in special. Vazirgiannis et al. give a
comprehensive overview of quality measures of clustering [72, pp. 93-121].

As clustering groups similar objects together, it is obvious to express quality
of clustering in terms of similarity, i.e. a measure indicating the quality of a
clustering must indicate higher quality the more similar the tuples of a clus-
ter are. As distances express similarity and dissimilarity, respectively, quality
measures of clustering are functions of distances.

As the experiments of this dissertation testing clustering include only ex-
periments with partitioning clustering algorithms, we focus our discussion of
quality measures on quality measures for partitioning clustering.

2.2. THE CLUSTERING PROBLEM 43

Quality measures of partitioning clustering use the distances of tuples in a
cluster to a central point of the cluster to compute a measure for all clusters.
Depending on the type of algorithm, the central point is centroid or medoid of
a cluster. Hence, this point is a tuple in the data set if it is a medoid. It is a
virtual point in a vector space if it is a centroid. Yet, it any case it is a point in
a vector space. Thus, we denote this point as M.

Partitioning clustering algorithms searching for medoids try to minimise the
sum of differences between tuples and the medoid of their cluster. Hence, this
sum is a quality measure for medoid-based clustering algorithms, which we
further reference as total distance.

Definition 2.2 The total distance T'D of a clustering C consisting of k clusters
C={C1,...,Cj,...,Cy} and a distance function dist is the sum of all sums of
the distance of each tuple ¥ and a central point Mj of the cluster C; in which
the tuple is part of, i.e.

TD= > > dist(3,M,).

VC]’EC VI; ECj

Partitioning clustering algorithms searching for centroids try to minimise the
sum of squared distances. Analogously, we refer this quality measure as total
distance of squares TD?.

Definition 2.3 The total distance of squares TD? of a clustering C' consisting
of k clusters C = {Ch,...,Cj,...,Cy} and a distance function dist is the sum
of all sums of the distance of each tuple ¥ and a central point Mj of the cluster
C; in which the tuple is part of, i.e.

™= Y Y (dist(fi,l_jj))2

VC]‘EC VfiGCj

The smaller the total distance or the total distance of squares, respectively,
of a clustering are the higher is the quality of the clustering. Yet, total distance
and total distance of squares depend significantly on the number of clusters in a
clustering. If the number of clusters increases, total distance and total distance
of squares decrease accordingly. If the number of tuples equals the number of
clusters then optimal total distance and total distance of squares. Hence, one can
use total distance and total distance of squares for comparing cluster analyses
only if the number of clusters is fixed. If the number of clusters is variable, i.e.
the analyst or the data mining system tries a partitioning clustering algorithm
several times to find the optimal number of clusters, then quality measures that
are independent of the number of clusters are needed.

The experiments in the experiments chapter of this dissertation testing clus-
tering use total distance of squares as quality measure. This is a valid option
because the number of clusters is fixed for a given series of tests. For a com-
prehensive overview of other quality measures of clustering that are capable
to determine the quality of clusterings with differing number of clusters, the
interested reader is referred to Vazirgiannis et al. [72].

44 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS

Legend

e class
unknown

the universe %

predict

training set test set

train verify

Figure 2.3: Using a trained and verified classifier to predict tuples’ class where
class is unknown

2.3 Classification

This section gives a brief overview of the data mining method of classification.
It first introduces the major concepts and terms of classification. Second, it
surveys how to measure the quality of the result of a classification. Finally, it
presents the major types of classification algorithms in short.

Knowing quality measures and classification algorithms is necessary to un-
derstand how the concepts of this dissertation improve classification.

Classification is one of the main data mining methods. The aim of classifi-
cation is to train the so-called classifier which is a function that is capable to
determine the affiliation of an object to one class out of a pre-defined set of
classes. The classifier uses the attribute values of the object that has to be clas-
sified to determine the according class. In the context of classification attributes
are also called features. In the following the term “feature” will be used because
it is the more common term.

Classification consists of two phases: training a classifier with a set of data
where class affiliation is known for all of its tuples and using the classifier to
determine the class affiliation of tuples where class affiliation is unknown.

The set of data that is used for training the classifier is called training set.
It consists of one subset for each class.

In the common case that a classifier is required to determine whether a
tuple is part of a specific class or not, the subsets of the training sets are called
positive set and negative set. The positive set contains only those tuples that

2.3. CLASSIFICATION 45

are affiliated with the only interesting class while the negative class contains
only tuples that are not affiliated with that class.

The sizes of positive and negative set influence the quality of the resulting
classifier. Usually, the larger a training set is the better is the classifier. Some-
times it is more tolerable having false positives than having false negatives. If
that is the case an analyst would use a positive set which is larger in size com-
pared to the negative set. Tests for early diagnosis of different types of cancer
are good examples where it is more tolerated to send a healthy person to further
examination than overlooking an ill person. Subsection 2.3.1 discusses quality
criteria that are able to distinguish between tolerable and intolerable errors.

Several classification algorithms are capable to train only classifiers that have
a single class of interest. Yet, if there are more than two classes it is still possible
to use these algorithms by training iteratively a set of classifiers—one classifier
for each class. In such a case the positive set of each class is the subset of those
tuples affiliated with that class while the negative set is a subset of the union
set of all other subsets.

For determining the quality of a classifier, an additional set of data where
class affiliation is known is required—this set of data is called test set. Subsec-
tion 2.3.1 describes available methods for determining classification quality in
detail.

The classification problem can be formally written as follows:

Assume there is a set consisting of objects that have to be classified according
the classes {c1,...,cx} = C. Each object is represented by a d-dimensional
feature vector z; € X, X = X; x --- x Xg. Let X; denote a single feature and
x;; denote the value of this feature of the object that is represented by ;.

Definition 2.4 A classifier f is a function f : X — C that assigns a class to
each object that is represented by a feature vector x; € X.

Definition 2.5 A training set T C X x C is a set of pairs (x;,y;) € T that
consists of a feature vector x; and a class assignment y; € C. The value of
y; denotes the real class of the object represented by x; and is known before
classification.

If the set of classes C' consists only of the classes ¢; and ¢y it is common
to call one of these classes positive and the other one negative. Let ¢; denote
the positive class in the following two paragraphs. Accordingly, co denotes the
negative class.

Definition 2.6 A positive set P C T is a subset of the training set T that
consists of all feature vectors that are affiliated with the positive class ¢, i.e.

P={(zi,yi) € Tlyi = c1}.

Definition 2.7 A negative set N C T is a subset of the training set T that
consists of all feature vectors that are affiliated with the negative class co, i.e.

N ={(zi,y;) € Tly; = c2}.

46 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS

cid | average sales | sales current quarter | customer type | churn flag
1 130 0 0 1

2 500 250 1 1

3 350 360 1 0

4 1’000 700 1 0

5 170 40 0 0

Table 2.1: Clip of the pre-processed data for a churn analysis

Definition 2.8 A test set T'C X x C is a set of pairs (z;,1;) € T that consist
of a feature vector and a class assignment y; € C'. The value of y; is the real
class of the object represented by x; and is known before classification.

The remainder of this section is organised as follows: Subsection 2.3.1 intro-
duces quality measures of classification and describes how to use them to test
the quality of a classifier. Each of the following subsections focusses on a specific
category of classification algorithms which are Bayes classification algorithms,
decision tree algorithms, and support vector machines—in this order.

For illustrative purposes each subsection is exemplified with a sub-problem
of the running example. To be more specific, the succeeding subsections use the
analysis with the aim to find the reasons “why customers cancel their standing
orders of journals” to exemplify the concepts presented within them. Such an
analysis is called a churn analysis in literature [78] as customers that cancel
their contracts are often called churners.

The sales data set is a potential data source for churn analyses but it needs
some pre-processing. As the trained classifier of a churn analysis shall be used
several times—e.g. once per quarter—the classifier must not be restricted to a
static time frame. This means that the resulting classifier may use attributes
such as the current year’s sales and last year’s sales but must not use attributes
such as sales in 2005. Hence, one must derive new features relative to the cur-
rent date. Additionally, all relevant features must be determined per customer.
Hence, aggregation of sales grouped by each customer is needed.

Assume that after pre-processing the resulting training set looks like as de-
picted in Table 2.1. Attribute cid stores a unique customer number. Attribute
average sales represents the average sale per quarter in monetary units of the
current customer over all quarters since beginning storing data about that cus-
tomer. Contrary, attribute sales current quarter is the sum of all sales of this
customer in the current quarter. Attribute customer type has either value 0
or value 1, where value 0 indicates that the current customer is an individual,
while value 1 indicates that the customer is a corporate customer. Finally, if
the churn flag assumes value 1 then the current customer is a churner.

2.3. CLASSIFICATION 47

estimate
positive negative
positive | true positives | false negatives
negative | false positives | true negatives

real class

Table 2.2: confusion matrix of binary classes

estimate
C1 C2 C3 Cyq Cs
c1 | f11 | fiz | f13 | fua | f15
ca | for | foz | fo3 | foa | fos
real class c3 | f31 | fa2 | f33 | f34 | f35
cq | far | faz | fa3 | faa | fus
Cs f51 f52 f53 f54 fss5

Table 2.3: confusion matrix with five classes

2.3.1 Measuring Classification Quality

Quality is the most interesting feature of classification because it influences the
potential benefit of the resulting classifier. Hence, this subsection surveys how
to test the quality of a classifier and presents quality measures of classification.

Measuring the quality of a classifier needs a set of data in which the real
class affiliation of all of its tuples is known—which is called the test set. When
comparing the class of a tuple that the classifier estimates for that tuple with
the tuple’s real class, one is able to detect misclassification.

The test set and the training set should be disjoint if possible. Otherwise, a
classification algorithm can train a classifier that exactly predicts all tuples of
the training set but is unable to correctly predict other tuples. The phenomenon
that a classifier predicts the training set very well but is unable to do so for the
rest of the universe is called over-fitting. If major parts of training set and test
set overlap, then it is impossible to detect over-fitting.

Analogously, the phenomenon that a classifier correctly predicts only a mi-
nority of tuples is called under-fitting. A good classifier is free of both phenom-
ena.

As mentioned in the previous subsection, there exist applications of classifi-
cation where one is interested in the correct classification of one or only a few
classes. In such a case, misclassification of other classes is uninteresting. Early
diagnostics of hazardous diseases is an example where users are more interested
in finding all ill persons and take the risk of erroneously diagnosing healthy indi-
viduals as ill. More intensive diagnostics can correct a wrong positive diagnosis
but omitting to treat a wrongfully negatively classified individual in time might
complicate medical treatment when diagnosed later—or medical treatment even
might be too late.

As the interest in correct classification of specific classes may vary from
analysis to analysis, there exist different quality measures of classification such

48 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS

as accuracy, specificity and sensitivity, as defined below.

The so-called confusion matrix contains all information that is needed to
compute quality measures of classification. It is a matrix in which the classes
are positioned in horizontal and vertical dimension. One dimension denotes
the class the classifier has estimated, while the other dimension denotes the
real class of the classified tuples. Each element m,;; of the matrix contains the
number of tuples that are classified as class ¢; and have real class ¢;—where the
indices ¢ and j may but need not be identical. Tables 2.2 and 2.3 depict two
confusion matrices. The matrix in Table 2.2 is a matrix of a classifier with only
a single class of interest. Contrary, table 2.3 shows a matrix of a classifier with
some classes.

Obviously, the diagonal of the confusion matrix contains the numbers of
those tuples that are classified as the class they really are. Hence, the sum
of the numbers in the diagonal is the number of correctly classified tuples.
Consequentially, all other elements of the confusion matrix denote misclassified
tuples. The next paragraphs show how to compute quality measures using a
confusion matrix.

Definition 2.9 The accuracy of a classifier determines the estimated ratio of
correctly classified tuples with regard to all tuples classified by a given classifier.
It is the quotient

number of correctly classified

accuracy =
4 number of tuples

According to its definition, accuracy is the quotient of the sum of the diagonal
of the confusion matrix and the number of tuples of the test set. One can
determine the number of tuples by adding all row sums or by adding all column
sums of the confusion matrix.

There exist analyses in which the accuracy of classification is unsuitable
to express the quality of a classifier. If a test set consists predominantly of
tuples of a single class and only a few tuples of other classes, a classifier that
predicts all tuples as member of the predominant class has a very high accuracy
although the analyst might be interested more in the other classes. Analysing
patients with a rare but severe disease is such an analysis where the analyst is
interested in correctly classifying this rare class. Predicting customers that are
likely to quit their contract within the next weeks is another example where the
interesting class is rare compared to the uninteresting class of non-quitters.

Definition 2.10 The sensitivity of a classifier denotes the portion of a specific
class which the classifier detects as member of this class. It is the quotient

number of correctly classified tuples of a specific class

sensitivity =
v number of tuples of a specific class
In other words, the sensitivity of a classifier with respect to a specific class
only examines correctly classified tuples of that class. For instance, the sensi-
tivity of the classifier shown in confusion matrix of Table 2.3 with respect to
. o fa3
class c3 is ST T

2.3. CLASSIFICATION 49

training set (a)

estimate
churn | no churn
roal class churn 215 35
no churn 3 247
test set (a)
estimate
churn | no churn
roal class churn 15 113
no churn 55 237

Table 2.4: Confusion matrices of the first classifier of the running example

training set (b)

estimate
churn | no churn
roal class churn 198 52
no churn 15 235
test set (b)
estimate
churn | no churn
roal class churn 75 43
no churn 25 267

Table 2.5: Confusion matrices of the second classifier of the running example

If there is only a single class the sensitivity is the quotient of true positives
and positives in total. If the negative class is the class of interest, the term
specificity denotes the quotient of true negatives and negatives in total.

Assume that an analyst of the fictive company of the running example has
completed the training of three classifiers. Each time he scored the classifier
against the training set and the test set. The tables 2.4, 2.5, and 2.6 contain
the confusion matrices he received that way.

The accuracy of the classifier shown figure in 2.4 is very high in the train-
ing set but very low in the test set, namely 23247 — 92.4% compared to
% = 60%. When we only know the frequency of churners and non-
churners we would have a similar accuracy by only guessing the class of a tuple
randomly. Thus, the classifier performs poorly in the test set. As mentioned
above, the phenomenon where a classifier performs significantly better in the
training set but only poorly in the test set is called over-fitting. The sensitivity
of attribute churn indicates over-fitting even more significantly with a sensitivity
of % in the training set versus a sensitivity of 11—258 in the test set.

Contrary, the second classifier the confusion matrices of which is depicted

in Table 2.5 has a somewhat worse accuracy in the training set than the first

50 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS

training set (c)

estimate
churn | no churn
roal class churn 245 5
no churn 80 170
test set (c)
estimate
churn | no churn
roal class churn 113 5
no churn 65 227

Table 2.6: Confusion matrices of the third classifier of the running example

classifier but its accuracy in the test set with approximately 81% is much better
than the first classifier’s accuracy of 60% in the test set. Hence, the second
classifier is superior to the first classifier because it is less specialised to a given
training set. Therefore, its estimated accuracy in an additional, yet unknown
data set is higher than the first classifier’s expected accuracy in the same data
set.

However, if we assume that the company is interested in loosing as few
customers as possible, then the sensitivity of the second classifier which is ap-
proximately 64% should be better—even if the accuracy decreases that way.
Yet, if misclassification of non-churners as churners is tolerable then a decreas-
ing accuracy is also tolerable as long as sensitivity increases. Table 2.6 includes
a set of confusion matrices of a classifier that is worse in accuracy than the sec-
ond classifier but outperforms the second classifier in terms of sensitivity. To be
specific, the accuracy of the third classifier in the test set is only approximately
68% but its sensitivity of almost 98% is the highest one of all classifiers.

Summarising, due to the highest sensitivity value the third classifier is the
best classifier when assuming that detecting churners is more important than
misclassification of non-churners as churner. However, if this assumption does
not apply then the second classifier is the best one because it is the classifier
with the highest accuracy in the test set. The accuracy in the training set is
irrelevant for the quality of a classifier. Yet, it is a good for indicating over-
fitting, as exemplified with the first classifier.

The remaining subsections of this section focus on how to construct such a
classifier.

2.3.2 Bayes Classifier

Bayes classification is a category of classification algorithms that assigns that
class to an object that maximises expectation. They use the theorem of Bayes to
compute the probability that a class c; is the real class of an object represented
by a specific feature vector that has been observed—which is also called the

2.3. CLASSIFICATION 51

posterior probability. In other words, a Bayesian classifier determines the class
that is the most likely class for an observed feature vector.

According to the theorem of Bayes, the posterior probability of class ¢; being
the right class of an object X is determined by

P(cj|X) = P(X|c;)P(cy) (2.2)

The term P(X|c;) is called the prior probability. The prior probability deter-
mines how likely it is that a specific feature vector occurs if ¢; is the current
class.

The probability of a class ¢; (P(c;)) can be estimated by its frequency in
the training set.

Yet, Bayesian classifiers differ in the way the prior probability P(X|c¢;) is
computed. Naive Bayes classifiers assume independency between each pair of
attributes to simplify the computation of the prior probability. Contrary, opti-
mal Bayes classifiers use a Bayesian network to express conditional dependencies
among attributes.

A naive Bayesian classifier assumes that features are independent in pairs.
According to this assumption, the prior probability of an object X can be de-
termined by multiplication of the prior probabilities of each feature, i.e.

d
P(Xle) = H P(zjles) (2.3)

Hence, a naive Bayesian classifier is fully defined if there exists a P(z;|c;) for
each combination of a value of an attribute and a class.

The prior probability of an individual feature can be estimated by the ac-
cording frequency in the training set.

If a dimension has numerical scale, the number of combinations of classes
and potential values of this dimension is unlimited. Thus, the probability that
a tuple is of any class is zero because the probability to receive a specific point
is zero. In such a case, the value of a density function at point x; replaces the
prior probability, where z; is the value in dimension with numerical scale. The
naive Bayes classifier then assigns a tuple to that class where the probability
density is highest.

In contrast to naive Bayesian classifiers, Bayesian Networks take the condi-
tional dependencies of features into account. A Bayesian Network is a directed
acyclic graph where each vertex denotes a value of a feature and each edge be-
tween two vertices denotes the conditional probability that the feature value
of the succeeding vertex occurs given the feature value of preceding vertex has
occurred.

As continuous attributes would mean having a graph with unlimited vertices
and edges, Bayesian Networks are unable to handle continuous attributes.

Again, the running example shall illustrate the construction of a naive Bayes
classifier. For classification we need to split the pre-processed data into a train-
ing set and a test set. The tables 2.7 and 2.8 show samples of training set and
test set, respectively.

52 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS
cid | average sales | sales current quarter | customer type | churn flag
2 500 250 1 1
4 1’000 700 1 0
5 170 40 0 0

Table 2.7: Clip of the training set for a churn analysis

cid | average sales | sales current quarter | customer type | churn flag
1 130 0 0 1
3 350 360 1 0

Table 2.8: Clip of the test set for a churn analysis

To train a naive Bayes classifier we must determine the conditional probabil-
ities of the classes churn and no churn given that any attribute value of one of
the other attributes has occurred. Additionally, the probabilities of each class
without any condition must be known. We can use the according frequencies in
the training set to estimate these probabilities. A single scan of the training set
is sufficient to determine those frequencies. Once these frequencies are known,
the naive Bayes classifier is fully trained.

When scoring a tuple, i.e. when we assign a class to a tuple where the
class is initially unknown, we have to compute the probability of each class by
multiplying the according probabilities. If we consider the tuple of the training
set with identifier cid assuming 3, we can easily determine the probability of
churn given customer type is 1 (corporate customer). However, the attribute
value of attribute average sales might be unique. Hence, the probability that
would be necessary to determine the combined probability of all attributes would
be missing as there is no such tuple in the training set.

If a value of an attribute we need for scoring is missing in the training set,
we can either determine the class of that tuple without this attribute or we can
determine the probability density function of that attribute. In order to deter-
mine the probability density function we need to analyse the joint distribution
of the attribute and the class attribute.

As form and all parameters of the probability density function are unknown
we can only estimate it. Estimating includes choosing a type of distribution and
determining the optimal parameters according to the chosen type of distribution.
We can use a McNemar test for testing if a specific type of distribution is
appropriate to approximate the probability density function’s distribution. If
the type of distribution is known we can perform a least square estimate to
determine its optimal parameters.

Section 6.3 will show a way of constructing a joint probability density func-
tion as a by-product of other tasks. The there-presented algorithm uses the

2.3. CLASSIFICATION 93

Legend
inner node with
decision attribute

attribute value or range of values

leaf node with
affiliated class

@les last quarte} chum @les last quart@

chumn no churn churn no churn

Figure 2.4: Decision tree that predicts whether a customer is about to churn or
not

observation that an arbitrary shaped probability density function can be ap-
proximated by a set of normal distributions.

2.3.3 Decision Trees

A decision tree is a tree in which each leaf node is associated with one of a
set of classes. Each inner node of a decision tree has a decision criterion which
is a single attribute that is used for decision. Each edge between two nodes—
regardless if inner node or leaf node—represents a decision of the anteceding
inner node. Hence, each path within the decision tree is a sequence of decisions.

Classification algorithms generating decision trees take the training set to
derive a decision tree. A decision tree algorithm iteratively identifies a split
criterion using a single attribute and splits the training set in disjoint subsets
according to the split criterion. For doing this, the algorithm tries to split
the training set according to each attribute. Finally, it uses that attribute for
splitting that partitions the training set best to some kind of metric such as
entropy loss.

A split criterion shatters the training set into several subsets. Depending on
the type of decision tree algorithm, the split is binary or n-ary. If the attribute
that is used for splitting is a continuous or ordinal attribute, algorithms typi-
cally use a binary split at a specific attribute value. Tuples with a smaller or
equal value in the split attribute are assigned to one branch of the tree, greater
values are assigned to the other branch. However, if the split attribute is cate-
gorical, it is possible to create a branch for each distinct attribute value of the
split attribute. Alternatively, it is also possible to do a binary split by parti-
tioning the distinct attribute values in two disjoint subsets. However, the type
classification algorithm determines the type of split that is used. The Rainforest
algorithm [21] which is used as sample classification algorithm in this disserta-
tion is a generic algorithm that might use any of the above-mentioned strategies
for splitting. As it can use several strategies instead of a single strategy, Rain-
forest is ideally suited to be used as sample algorithm.

54 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS

Regardless which split strategy a classification algorithm uses, the algorithm
scores potential splits according to a given metric. Entropy loss, information
gain, and the Gini index are metrics for choosing the best split.

According to Ester and Sander [16, p.129], the entropy of a set of tuples
T of the training set is the minimal number of bits that are necessary to code
a message to indicate the class of a random tuple, or according to Shannon’s
theory of communication

entropy(T) = = pilog, pi,

where p; is the probability of a tuple being an element of the i-th class of a set
of k classes.

The entropy loss is the difference in entropy before and after a split. Yet
after a split the training set is scattered into multiple sets of tuples. Therefore,
the entropy after a split consists of the entropies of each subset. The total
entropy after split is the sum of the weighted entropies of each subset. Thus,
the loss in entropy according the split attribute a and the partitioning in subsets
{T¢,... T, ... Tf} the split attribute induces is

t
entropy_loss(T,a) = entropy(T Z

(l

entropy(T“)

Information gain is an alternative name of entropy loss. Hence, both metrics
are computed identically. The partitioning in subsets which has the highest
information gain is used for splitting.

The Gini index or Gini coefficient [22] is a metric that indicates the inequality
of objects within a set. It is the area between the Laurenz curve and the bisecting
line of the first quadrant divided by the total area under the bisecting line. The
Laurenz curve typically determines which percentage of persons owns which
percentage of resources but it can also be used to measure concentrations of
attribute values.

Among a set of objects and a set of k classes, the Gini index is

k
gini(T) =1 p? [16,p.129],
i=1
where p; is the probability of a tuple being an element of the i-th class. Again,
as the training set is shattered in multiple subsets, the Gini index of the set of
subsets is the weighted sum of the Gini indices of all subsets, i.e.

gini(Ty, ..., T; ..., Ty) Z ||T| gini(T;) [16,p.129].

The Gini index is zero if all tuples have the same attribute value. Hence, the
smaller the Gini index after a potential split is the better is that split. Thus,
finding the best split with the Gini index means to minimise the Gini index.

2.3. CLASSIFICATION 95

A sample decision tree is shown in figure 2.4. For instance, the root node is
an inner node that uses the attribute customer type for decision. Customer type
has two potential attribute values, corporate and individual, respectively. Thus,
when classifying a tuple of corporate customers the scoring algorithm follows
the left branch of the sample decision tree. Otherwise, it would choose the right
branch.

It is easy to derive classification rules from a decision tree as each path
within the tree represents a sequence of decisions. Hence, by joining the criteria
of all visited inner nodes of a path in the tree with conjunctions one receives a
logical rule that indicates when a tuple is part of that path. As all paths must
be disjoint in pairs, one can join the rules of paths that share the same assigned
class with disjoints to receive a rule that determines when a tuple is member
of that class. For instance, in the decision tree which is depicted in figure 2.4
all tuples of class no churn fulfill the rule customer type = corporate N\ average
sales > 300 A sales last quarter > 150 V customer type = individual A sales last
quarter > 40 — no churn.

Although the sequential alignment of decisions allows to derive rules is an
advantage of decision trees, this sequential alignment is also a major drawback of
decision trees—especially if there is at least one pair of attributes that is strongly
correlated. If attributes are correlated then the algorithm would have to consider
correlated attributes simultaneously to find an optimal decision tree. As it is
impossible to do so, the resulting tree tends to have several additional layers
with alternating order of correlated attributes—yet, always with different split
points. If an analyst detects alternating sequences of the same set of attributes
he or she can re-run the classification but replaces the set of correlated attributes
with a single computed attribute.

Assume that in our example there is a strong correlation between sales last
quarter and average sales. As might be seen in Figure 2.4, there are many
nodes needed to express that if the sales of the latest quarter significantly de-
crease below the average level of sales, then the customer is about to churn.
Contrary, if we use an attribute that we compose by dividing both correlated
attribute, then we can simplify the decision tree to a single decision which is
% < constant — churn. However, due to considering attributes
sequentially, a decision tree algorithm is unable to find such rules.

The running example shall illustrate the construction of a decision tree.
Table 2.9 shows the training set to construct a decision tree.

In order to determine the entropy of the training set T, we estimate the
probability of classes churn and no churn by the according frequencies of these
classes in the training set. That way we receive the entropy of the training set
as follows:

2 2 4 4
entropy(T) = —— — —log, i 0.918.

6°%26 "5

In order to determine the attribute which splits the training set best to
reduce entropy we test to split the training set according to each attribute.
Attribute cid is unsuitable to be a decision criterion of a decision tree because
its values are unique. Using a unique attribute would make a decision tree prone

56 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS

cid | average sales | sales current quarter | customer type | churn flag
2 500 250 1 1

4 1’000 700 1 0

5 170 40 0 0

6 440 220 1 1

7 1’100 650 1 0

9 175 24 0 0

Table 2.9: Training set T" to construct a decision tree for a churn analysis

to over-fitting because it can only classify known tuples. Hence, we omit testing
attribute cid.

By splitting the training set according to attribute customer type we receive
two subsets: one subset storing all tuples in the training set where customer
type is individual and another subset storing all tuples of corporate customers.
The entropy of the subset of individual customers is

0 0 2 2

—_——

lim; .o x log, =0
, while the entropy of the subset of corporate customers is

2 2 2 2
_ZIng Yl ZlogQ 1= 1.
Weighted by the size of both subsets, the entropy after a split according to
customer type is % Thus, the reduction in entropy is approximately 0.918 —
0.667 = 0.215.

Statement 2.4 needs further discussion. In the training set there are no indi-
vidual customers which are also churners. Thus, our estimate for the probability
of individual customer being churners is zero. Yet, the logarithmus dualis is un-
defined for this value. Hence, we have to use the limit of the term lim,_.¢ x log,
to find the appropriate entropy.

Trying to split according to one of the remaining attributes is more compli-
cated than splitting according customer type as the number of distinct values
of these attributes is much greater. Hence, there are many potential splits for
each attribute. Using an automatically generated histogram is a solution to
determine potential split points. Then, the borders of each interval of the his-
togram is a potential split point. When considering attribute average sales we
might have built a histogram consisting of the intervals [0; 200), [200;600), and
[600; +00)—with the potential split points 200 and 600. If we determine the
entropy loss for these potential split points, we receive the same entropy loss as
the entropy loss according to customer type. Other split points either have less
or the same entropy loss. Hence, there are multiple potential split points having
the same entropy loss. Depending on the classification algorithm it chooses ei-
ther the one or the other candidate of potential splits. In the example decision

2.4. ASSOCIATION RULE MINING o7

tree depicted in Figure 2.4 the algorithm has chosen customer type as initial
split.

The approach of anticipatory data mining can improve the construction of
decision trees in two ways: On the one hand, it can assist the selection of
the training set by selecting only tuples that are typical representatives of the
data set. This results in better classification accuracy because the training set
contains less noise, as shown in Section 7.5. On the other hand, it can simplify
finding good split points for numerical attributes as shown in Section 7.5.

2.4 Association Rule Mining

Association rules determine the statistical relation of specific events. They are
used to measure the co-occurrence of events such as customers buying several
items in common or users looking at the same set of web pages during a session.

This section surveys association rule analysis as far as its concepts are needed
to understand approaches that pre-compute intermediate results for various as-
sociation rule analyses. Chapter 3 includes previous work focussing on re-using
results of an association rule analysis in another association rule analysis. Sec-
tion 6.6 also shows how to apply the general principle of this dissertation to
pre-compute results of an association rule analysis in anticipation.

This section first introduces the general concept of association rules before
it presents algorithms for association rule analysis.

Analogous to previous sections, the running example shall illustrate the con-
cepts of association rule mining. Assume that the publishing company wants to
know which products sell well together and which do not. In order to achieve
this goal, an analyst of the company performs a so-called market basket analysis
that finds patterns of events that frequently occur together such as products
that are shopped together in a single sales transaction—or more literally, that
lie together in a market basket.

For a market basket analysis, the company needs only those data that in-
dicate which products are purchased together with other products. Hence, the
product identifier and an identifier of the sales transaction are sufficient at-
tributes for a market basket analysis. In the running example attribute prid
identifies the sold product. The combination of timestamp and identifier of the
customer cid identify the individual sales transaction of a specific customer.

Assume that the analyst has pre-processed the data of the sales-cube ac-
cording to the new schema

salespruned(cid, timestamp, prid),

which is just a sub-cube of the sales-cube. Table 2.10 shows a sample of the fact
table of this cube. The right side of this table shows the according transactions
in the fact table and places the items of a transaction in horizontal order.

58 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS

cid timestamp prid
4711 | 2005-01-05 16:15 1

1704 | 2005-05-05 13:13
1704 | 2005-06-05 10:30
1704 | 2005-06-05 10:30

4711 | 2005-01-05 16:15 2
4711 | 2005-01-05 16:15 3 ransactions
4711 | 2005-04-01 09:23 1 123
4711 | 2005-04-01 09:23 3 ’1 ’3
0815 | 2005-04-01 09:27 1 1’ 4
0815 | 2005-04-01 09:27 4 1 ’3 4
1704 | 2005-05-05 13:13 1 ’3 ’4
1704 | 2005-05-05 13:13 3 :

4

3

4

Table 2.10: Clip of the tuples of the table that an analyst has pre-processed for
a market basket analysis

2.4.1 Association Rules

An Association rule is a logical implication that consists of a condition and
a consequence. Both, condition and consequence, consist of sets of statistical
events. These events are called items in literature, c.f. [36, p. 228][2]. Anal-
ogously, an itemset is a set of items. Association rules are often-presented as
logical implications of the form condition = consequence.

An association rule indicates a frequent co-occurrence of events or items
in a set of transactions. A transaction is an atomic process in which several
events or items might occur. For instance, when analysing market baskets, each
individual sale is a relevant transaction. The sold goods are the items to be
analysed.

For indicating strength and relevance of a rule, there exist several measures
such as support and confidence.

The support of a rule indicates how often the events mentioned in that rule
occur together with respect to a total number of observations. In other words,
support measures the frequency that all items in a rule occur together.

Analogously, the support of an itemset s(itemset) measures the frequency
that all items of an itemset occur together. Thus, the support of a rule is
identical with the support of the itemset of the union set of condition and
consequence.

s(condition = consequence) = s(condition U consequence)

Contrary, the confidence of a rule measures how often the events of the con-
sequence occur when the events of the condition occur. Thus, confidence is the
conditional frequency that the consequence occurs provided that the condition
has occurred.

It is possible to determine the confidence of a rule c(condition =

2.4. ASSOCIATION RULE MINING 99

Figure 2.5: Frequencies of an association rule example where only B — A
satisfies minimum confidence

consequence) using only the frequencies of the itemsets of that rule, as indi-
cated below.

c(condition = consequence) = s(consequence|condition)
s(condition U consequence)

s(condition)

For instance, “customer buys product A” and “customer buys product B”
would be relevant events when analysing market baskets of customers. If a com-
pany sells product A in 40 different transactions in a set of 100 sales transactions
and among these 30 times in combination with product B, then the rule “if cus-
tomer buys product A, this customer will also buy product B” has a support of
40 % and a confidence of 23 = 75%.

The higher the values of support and confidence of a given association rule
are, the more relevant is that rule because the association between condition
and consequence is stronger when both values are high. However, support and
confidence are concurring items in most times. If the support of a rule is small,
the confidence of the rule is typically high. If there is only one transaction that
fulfills the rule then the rule’s confidence is 1 because in one of one transac-
tions the consequence is true for the given condition. Yet, such a rule lacks of
generality. Hence, the rule should be true for at least a reasonable number of
times.

For being valid for large sets of data, we consider an association rule only
valid if its support and confidence exceed user-given thresholds for support and
confidence, further denoted as minimum support and minimum confidence, re-
spectively.

Choosing the right value of minimum support is crucial for an association
rule analysis: Choosing a too small value means that there might be association

60 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS

rules that originate by pure chance and not as a result of statistical correla-
tion. Contrary, choosing a too high value means that potentially interesting
association rules remain unconsidered.

Thus, the minimum support should be at least as high as needed to avoid
association rules that represent results of pure chance. Additionally, the min-
imum support should be as small as possible. Ideally, the minimum support
should be only somewhat higher as needed for being statistically relevant.

Yet, there can be associations that are statistically relevant but uninterest-
ing. Consider a association rule between two items each of which is very likely.
Then, if there is no correlation the probability that both items occur together is
also very high. In the extreme case in which items A and B always occur, both
items also occur always together. Thus, support and confidence assume their
maximum value of 1. However, one cannot tell whether both items are associ-
ated or not because the estimated probability is 1, too. Interesting measures
exist to solve this problem.

Interesting measures indicate how much stronger the association of condition
and consequence of an association rule is than the expected strength of their
association.

Interesting measures take the expectation or the belief of how items are cor-
related into account. One can distinguish interesting measures into objective
and subjective measures. Objective measures base on the statistical expectation
of the correlation of items. Accordingly, a rule is interesting if the association
of its items exceeds the statistically expected value of association. Contrary,
subjective interesting measures take the belief of the analyst into account by
trying to formalise what an analyst expects to be the relation of items. Hence,
a rule is subjectively interesting if it contradicts the analyst’s belief. The re-
mainder of this section only surveys objective interesting measures. For a good
overview of subjective interesting measures the interested reader is referred to
[68]. Further, for a comprehensive discussion when to favour which interesting
measure consider the reader is referred to [71].

The lift of a rule is an interesting measure that is defined as the quotient
of the actual frequency of condition and consequence occurring together and
the estimated probability of both occurring together under the assumption of
statistical independence. In other words, lift indicates how many times measured
probability exceeds estimated probability. Thus, the range of lift is the interval
[0;00). As the conditional probability cannot be measured it is approximated
by its frequency.

Again, the support values of all concerned itemsets is sufficient to determine
the lift of a rule I(condition = consequence).

» s(condition U consequence)
l(condition = consequence) =

s(condition)s(consequence)
c(condition = consequence)

s(consequence)

Lift and support are contradictory in most cases. As all probabilities have

2.4. ASSOCIATION RULE MINING 61

A=AnB=B

Q

Figure 2.6: Frequencies of a set of infrequent itemsets where lift is at maximum
but support is too low

1 as upper limit, the quotient that determines the lift has a maximum value
that is lower the higher the probabilities of condition and consequence are. As
probability of consequence or condition correlates with the support of a rule,
support of a rule indirectly influences the maximum value of the lift of that
rule. For instance, let the probability of condition assume 0.5 as is the prob-
ability of consequence. Consequentially, the expected probability of condition
and consequence occurring together assumes 0.25. Due to the upper limit of the
actual probability the lift of the according association rule may range from 0 to
4. Would the probabilities of condition and consequence be smaller, e.g. 0.25,
one could receive higher lift values. Therefore, when considering lift one must
also consider the value of support.

Alternatively, one can use other correlation measures such as the correlation
coefficient to indicate interestingness of an association rule.

2.4.2 Determining Association Rules from Frequent Item-
sets

As mentioned in the previous subsection, the support of an association rule must
exceed a user-given minimum support to be considered statistically valid. As
the support of an association rule equals the support of itemset that includes
all items of a rule, the support of this itemset must also satisfy the minimum
support—rfor shortness we will use the term itemset of a rule for this itemset.

According to Han and Kamber an itemset that satisfies the minimum support
is referred to as frequent [36, p. 228|.

If the itemset of a rule is frequent then the itemsets of condition and con-
sequence must be frequent, too. If condition and consequence occur n times
together, then each itemset must occur at least n times. Therefore, determin-

62 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS

ing all frequent itemsets is necessary to find all association rules that fulfill the
minimum support.

Once the frequent itemsets are determined, one can find association rules
by trying to split a frequent itemset into two subsets: a subset of items for the
condition and the rest of items for the consequence. As all subsets of a frequent
itemset must also be frequent, all relevant elements to compute the association
rule’s confidence are available.

2.4.3 Apriori Algorithm

Agrawal and Srikant introduced the Apriori algorithm in [2]. As shown in
algorithm 2, the Apriori algorithm determines the frequent itemsets in a set of
transactions. Until FP-growth ([30] or see section 2.4.4) was introduced, Apriori
was known as very efficient algorithm to find frequent itemsets because it avoids
the generation of unnecessary candidates of itemsets.

For clarity of description, we denote an itemset consisting of k items a k-
itemset. The smallest subset of a frequent itemset is an itemset with a single
element, i.e. an 1-itemset.

Apriori consists of two steps that it iterates several times. The join step takes
the frequent (k — 1)-itemsets as an input and generates potential candidates of
k-itemsets. The prune step scans the data once and determines the frequency
of each candidate. Candidates that satisfy the minimum support remain in the
set of frequent k-itemsets. The algorithm continues to perform join and prune
steps until either the prune step finds no frequent candidates or the join step
fails to generate candidates.

When combining two frequent (k — 1)-itemsets to a candidate k-itemset, the
join step takes those (k — 1)-itemsets into account that differ only in a single
item. That way, two new k-itemsets emerge: The one itemset has the item that
has no pendant in the other k& — 1-itemset of the first k — 1-itemset, while the
other one has the according item of the second (k — 1)-itemset.

In order to avoid combinatorial explosion of candidates, the join step uses
the condition that each subset of a frequent itemset must be frequent, too.
Thus, each subset of a candidate itemset must be frequent. Otherwise, creating
that candidate is invalid. It is sufficient to test only if the subsets with & — 1
elements are frequent because subsets of these subsets have already been tested
in previous iterations.

Determining the 1-itemsets needs special treatment because it is impossible
to derive candidates of l-itemsets using O-itemsets. Therefore, Apriori deter-
mines the 1-itemsets in an initial scan of the data set and counts the frequency of
each item. It keeps those items as 1-itemsets that satisfy the minimum support.

Measuring the quality of Apriori result is irrelevant because Apriori always
finds all frequent itemsets that satisfy the minimum support. Hence, runtime
and space required memory are the only remaining measures of interest.

The runtime of Apriori depends on the number of transactions in the data
set, the number of different items, and the minimum support. The number of
iterations and the number of tuples influence the runtime of Apriori. Yet, the

2.4. ASSOCIATION RULE MINING 63

700,00
o 600,00 - schemes
§ 500,00 200
§ 400,00 400
c 0600
‘o 300,00 - 1000
é 200,00 W 2000
> 100,00 B 3000

514000

0,00 -«

90 80 70 60 50 40 30 20 10 5

minumum support in percent

Figure 2.7: Combinatorial explosion due to low minimum support

number of iterations significantly depends on the chosen minimum support. The
number of items causes as many iterations as the transaction with the largest
number of items has when the worst case that minimum support is zero occurs.

However, choosing such a small minimum support means to choose a mini-
mum support that might produce invalid and uninteresting results, as discussed
in Section 2.4.1. Hence, one should avoid choosing a too low minimum support.

The combination of candidate itemsets can result in combinatorial explosion
when the chosen minimum support is too low. In such a case, the condition that
each subset must be frequent is true for too many candidates. If in addition to
that the number of items is also reasonable then the main memory might be
insufficient to store the candidate itemsets. Extensive swapping is the result.
The runtime of a series of tests with a hundred different items shows exponential
runtime with minimum support decreasing below 10 %, as shown in Figure 2.7.
The tests analysed the associations of re-occurring items in process schemes.
Therefore, the number of transactions, i.e. schemes, is small compared to other
applications such as market basket analysis.

As presented in the experimental results, the basic principles of this disser-
tation are applicable to improve the runtime of Apriori by pre-computing the
1-itemsets. By doing this, Apriori saves exactly one scan. As discussed above,
if the minimum support is sufficiently high, then this saving causes a significant
reduction of runtime.

However, there is no general threshold that indicates when support is suffi-
ciently high. Moreover, the data set influences whether a chosen support value
is sufficiently high or not. A support of one of thousand can be high if there are
millions of transactions. To be more specific, only the frequent itemset with the
largest number of items determines the maximum number of scans. It typically
increases with decreasing support. Yet, this happens gradually and depends on

64 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS

the correlation of items. Thus, it is possible to have a support of 10 percent and
higher and one still faces combinatorial explosion as depicted in Figure 2.7. Yet,
it is also possible to have support that is more than a hundred times smaller
and Apriori needs only a few scans.

When applying Apriori on the data set of the market basket analysis of the
running example, Apriori would perform the analysis as follows. Assume that
the minimum support is 40 %. Further assume the minimum confidence is 100
%.

After a first scan, Apriori would return the set of candidate 1-itemsets C

which is

Cr = {13425 {3} {4}}
in the running example. All itemsets but itemset {2} are frequent according to
the minimum support of 40 %. Hence, the set of frequent 1-itemsets Lq is

L, = Ci1\{2}.

Before starting the second scan of the data, Apriori determines the candidates
of 2-itemsets the frequency of which it will test during the second scan. By
combining all possible combinations of frequent 1-itemsets to 1+ 1-itemsets, we
receive the candidates of 2-itemsets Cy which is

Cy = {{173}7 {174}a {354}}

By counting the frequency of 2-itemsets we observe that all candidates are fre-
quent, i.e.
L2 = Cg.

Combing the 2-itemsets to 3-itemsets we can find only one candidate itemset
which is

Cs ={{1,3,4}}.

As this itemset is not frequent, there are no 3-itemsets. Hence, Apriori is ready
with finding frequent itemsets.

As there are only frequent 1-itemsets and 2-itemsets finding association rules
is easy. The only itemsets that can be split into subsets are the 2-itemsets {1, 3},
{1,4}, and {3,4}. By doing so, we receive the rule candidates 1 — 3, 3 — 1,
1 —4,4 — 1,3 — 4, and 4 — 3. However, as the minimum confidence
is 100 % none of the candidates satisfies minimum confidence. Hence, there
are no association rules in the data of the running example according to the
analyst-given parameters.

2.4.4 FP-growth Algorithm

FP-growth [30] is an algorithm that generates association rules. It works more
efficiently than Apriori does because it needs no candidate generation. Accord-
ing to Han candidate generation is the bottleneck of Apriori and Apriori-like
algorithms because the number of potential candidates might be subject to com-
binatorial explosion. Our tests with Apriori support his statement, as shown in

2.4. ASSOCIATION RULE MINING 65

Algorithm 2 Pseudo code of Apriori algorithm

Apriori

Require: items I = {iy,...,iq}, set of transactions D = {t1,...,t,} with
te D :te I*, minimum support s
Ensure: frequent itemsets L = {L;,..., Ly} with L; € L: L; C I7 :Vl,, €

. [{teD|LnCt j ; [teglect
Lj.%zs,vcelmc%%-%“

1 Ly — {zmell‘% zs};
2: k23
3: while L;_1 7é {} do
4: /* join step */

Cy = Join(Lg—_1);
5: if O}y # {} then
6: /* prune step */

Ly — {zm €Ch ‘7'“6’3“13""9}' > s};

7: else
8: Ly — {},
9: end if

10: k< k+1;
11: end while
12: return |J, Ly

Join (translated from [16, p. 162])

Require: items I = {iy,...,iq}, frequent itemsets L =
{Ll,...,Lk_l},Lj e L: Lj - Vg
Ensure: candidates C, C I*:Vee Oy : Vs Cc: dLjeL:secL;

1: insert into C} select p.itemy, p.itemo, ..., p.itemy_o, p.itemy_1, q.itemy_1
from Ly_1p, Ly—1q where (pitem; = q.itemy),(p.itemas =
q.items), ..., (pitemg_o = q.itemg_s), (p-itemp_1 # q.itemy_1);

2: for all itemset c €), do

3: for all subset s of ¢ with k£ — 1 elements do

4: if s¢ L1 then

5: remove ¢ from Cj

6: end if

7: end for

8: end for

9: return Cj

66 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS

Figure 2.7. Additionally, FP-growth always needs exactly two scans of the data
which is less than Apriori typically needs.

Finding association rules with FP-growth is two-fold: Initially, the algo-
rithms constructs a Frequent Pattern tree (FP-tree). Finally, it searches the
FP-tree for frequent itemsets.

An FP-tree is a tree where each node has an associated item and a frequency.
The frequency of a node determines how often the combination of the item of
this node and the items of all ancestor nodes up to the root node occurs in a
given data set.

The initial construction of the FP-tree first scans the data once to find
all items that are frequent according to a user-given minimum support. This
proceeding avoids that the FP-tree becomes too large due to too many infrequent
items.

In addition to that, the algorithm also orders the items according their fre-
quency with the most-frequent item first. The algorithm needs this ordering
when it scans the data for the second time.

During the second scan the algorithm constructs an FP-tree as follows: The
algorithm inserts a path into the FP-tree consisting of a sequence of frequent
items for each tuple containing frequent items. If a path that is about to being
inserted is already part of the FP-tree, the algorithm adds 1 to the frequency of
occurrence of each node of that path. If a path does not exist in the FP-tree but
a front part of the path is identical with another path, the algorithm inserts the
non-overlapping part of the new path as a new branch of the last overlapping
node into the tree. Additionally, it increases the frequency of overlapping nodes
by 1. Hereby, the sequence of frequent items is in the order of the frequency
of the items as determined in the initial scan. The ordering of items avoids
that the same combination of frequent items is inserted more than once into the
FP-tree.

The second phase of FP-growth finds all frequent itemsets as follows. It
recursively scans the tree for frequent itemsets beginning at the root node of
the FP-tree using depth-first traversal method.

For each visited node it performs the following steps: If the node has only a
single path® then the algorithm tests the frequency of each combination of the
items of that path for being greater than the minimum support. If so, it inserts
the combination into a list of frequent itemsets. If the current node has more
than a single path, the algorithm calls itself on a conditional subtree for each
child node of the current node.

When constructing a conditional subtree of the FP-tree, FP-growth takes
a subtree of the FP-tree but updates the frequencies of nodes where there are
identical sub-paths in other parts of the FP-tree. This is necessary to find
all frequent itemsets. When we exemplarily calculate frequent itemsets of the

LA path in a FP-tree is a sequence of nodes from a leaf node to the root node by iteratively
ascending the parent axis of nodes. If a currently visited node is only part of only one path,
we say that this node has only a single path. In Figure 2.8 all nodes but the root node and
and the node labeled with item 1 have a single path.

2.4. ASSOCIATION RULE MINING 67

ltim freqléllency item | frequency
(| 3 4 b)| b
3 4
4 3 4 3
2 1

Table 2.11: Frequency table of items of FP-growth after initial scan (a) before
pruning and (b) after pruning

running example with FP-growth, we will see where updating frequencies is
necessary.

Each time a step of recursion finishes, FP-growth adds the item of the root
node of the currently traversed subtree to the frequent itemsets found in that
subtree. This is necessary because all items in a subtree are occurring under
the condition that the item of the root node of the subtree and all items of
ancestor nodes of the root node in the FP-tree have occurred. In other words,
as subtrees of the FP-tree are conditional, the frequent itemsets must include
the condition of the subtree. If for instance the itemset {A, B} is frequent in
a subtree where the root node of this tree has item C associated with it, then
the unconditioned itemset would be {A, B, C'} as long as the node of C' has no
ancestors. Otherwise, all items of ancestor node would have to be included in
this frequent itemset additionally. FP-growth does this by adding the items of
ancestor by ancestor to an itemset each time a recursion ends.

When applying FP-growth to the data set of the running example we should
receive the same result as Apriori returned. For showing this, we compute the
frequent itemsets with FP-growth. Minimum support is 40 % again.

After FP-growth has scanned the data once to determine the frequency of
each item, it orders them according their frequency and removes non-frequent
items, as depicted in table 2.11.

Let us consider the insertion of paths into FP-tree when scanning the data
for the second time, as depicted in figure 2.8. When the first transaction {1, 2, 3}
is read, FP-growth eliminates the non-frequent item {2} first before sorting the
remaining items according to their frequency. As they are already in descending
order of frequency, the sequence (1,3) is the result of this step. For the FP-tree
being initially empty, there is no such path in the FP-tree. Hence, FP-growth
inserts a node with item 1 and a node with item 3 into the tree and links the node
with item 1 with the root node and inserts the other node as child of the node
with item 1. When scanning the second transaction, we observe that the pruned
version of the second transaction is identical with the first transaction. Hence,
we would insert the same path (1,3) once again which is forbidden. Hence, we
increase the frequency of each node in path (1,3) by 1. When reading the third
transaction we receive a path (1,4) where the beginning of which is identical
with a path already existing in the FP-tree. Consequentially, we add only the
non-identical part of the path to the FP-tree. In other words, we add a new
node for item 4 as a child node of the node of item 1. We update the frequency

68 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS

of the common nodes of the existing path and the new path by 1 and set the
frequency of the new node to 1. Inserting the path of the forth transaction needs
to insert a new node to the existing path (1,3). Finally, the last transaction is
a sequence (3,4) which is already part of the FP-tree. However, the paths (3,4)
and (1,3,4) are not identical in their initial elements. Hence, we must insert
the path (3,4) as a new path in the tree because it is not yet part of it.

When traversing the root node of the FP-tree of the running example, we
observe there are more than a single path in the tree. Hence, we create a subtree
for each of the two child nodes of the root node and call the FP-growth algorithm
on both of them.

When we construct the conditional subtree for the right branch of the un-
conditioned FP-tree, we have to correct the frequencies of the nodes in that
branch because the same path also exists in the left branch of the uncondi-
tioned FP-tree, as illustrated in Figure 2.9. Otherwise, we would consider a too
small frequency when determining the frequency of an itemset. Probably, we
might exclude a frequent itemset when its frequency in a single branch is too
small. By doing so, the frequency of the node of item 3 is now 4, while the
frequency of the node of item 4 is 2. We see there is only a single path in this
subtree. Hence, we can detect frequent itemsets in this subtree.

The itemsets {3}, {4}, and {3,4} are the only potential frequent itemsets in
the conditional subtree of the right branch of the FP-tree. They are all frequent
because their frequencies of % and %, respectively, are greater than or equal the
given minimum support.

Note that if we would have omitted updating the frequencies of items in the
conditional subtree appropriately, we would have lost the frequent itemsets {4}
and {3,4}.

In our example, constructing the conditional sub-tree is simple. Therefore,
Figure 2.10 illustrates the construction of a bit more complex conditional subtree
by adding an additional node into the left-most branch of the FP-tree. By doing
so, the path of nodes 3-5-4 is no longer identical with the path 3-4 although path
3-5-4 contains path 3-4. As item 5 might be part of a frequent itemset, we must
not omit it. Hence, we merge paths 3-4 and 3-5-4 as shown in Figure 2.10.

Analogously, we create a conditional subtree of the left branch of the FP-
tree. Here, we need a second recursion because the subtree of the left branch has
two paths. Determining of frequent itemsets happens analogously to the subtree
of the right branch. We must update the frequency of item 4 in the right sub-
subtree because the sequence “item 1 followed by item 4” exists transitively in
the left sub-subtree. Contrary, we must not update items of the left branch
because there is no “item 1 followed by item 3 followed by item 4”7 in another
branch. FP-growth finds the frequent itemset {3} in the left sub-subtree and
frequent itemset {4} in the right sub-subtree.

When considering the end of the second recursion of the left branch of
the FP-tree, we can add the item of the node that is the root node of both
sub-subtrees to the frequent itemsets the algorithm has found in each subtree.
Hence, we receive the frequent itemsets {1,3} and {1,4} in addition to the
already-found itemsets {3} and {4}. Obviously, the root element {1} is a fre-

2.4. ASSOCIATION RULE MINING

first transaction second transaction third transaction

forth transaction fifth transaction

Legend

item:frequency

Figure 2.8: Growth of FP-tree when scanning transactions one by one

69

70 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS

conditional sub-tree with updated
frequencies

4:1 ‘identical sub-paths

Figure 2.9: Creating conditional subtree

b-paths

|

conditional sub-tree with updated
frequencies

OROOSOS0

Figure 2.10: Creating conditional subtree with a single identical sub-path

2.4. ASSOCIATION RULE MINING 71

quent itemset on its own.

When the recursion that was started first finally ends, the algorithm termi-
nates. It needs not to add any item to the itemsets found in the subsets because
the root node of the FP-tree has no item assigned with it.

Hence, FP-growth has found the frequent itemsets

(3 3% {45, {1, 3}, {1, 4}, {3, 4}},

which is the identical set of frequent itemsets as found by Apriori.

72 CHAPTER 2. KDD PROCESS AND EXISTING ALGORITHMS

Chapter 3

Discussing Existing
Solutions

Contents

3.1 Introduction 74
3.2 Sampling oo ee . 74
3.3 Analogous Solutions for OLAP 75
3.4 Data Compression, 76
3.5 Related Clustering Approaches 77
3.5.1 Using Sampling for Clustering 78
3.5.2 Using kd-trees for Clustering 79
Using S S-trees for Clustering 80

3.5.3 Using Sufficient Statistics to Improve k-means or
EM clustering oo 80
3.5.4 Applying Partitioning Clustering to Data Streams 82
Applying k-means to Streams 82
Using Sufficient Statistics for Clustering Streams . . 83
3.6 Related Classification Approaches 84
3.6.1 Bayes Classifier 84
3.6.2 Decision Trees 84
3.7 Related Approaches of Association Rule Mining . 85

3.7.1 Updating Association Rules According to Changing
Constraints Lo 85
3.7.2 Replacing the Minimum Support Condition 89
3.7.3 Approaches avoiding limits of Apriori 89
3.7.4 Reducing the Need of Pre-Processing 90

73

74 CHAPTER 3. DISCUSSING EXISTING SOLUTIONS

3.1 Introduction

The following sections give an overview of the state of the art of approaches
trying to improve the performance of the KDD process or parts of it.

As mentioned in the introductory chapter, this dissertation presents tech-
niques that are similar to techniques used for data warehousing.

Thus, Section 3.3 discusses the state of the art of data warehousing tech-
niques that focus on improving OLAP sessions to demonstrate the differences as
well as the analogous elements between the concepts used for data warehousing
and the concepts presented in this dissertation, respectively.

As techniques such as sampling and data compression are applicable to speed
up any kind of analysis, the description of these techniques can be found in
separate sections, namely sections 3.2 and 3.4.

The other sections of this chapter describe previous work on improving data
mining techniques—whereas each section presents approaching concerning the
same data mining technique. To be more specific, Section 3.5 surveys related
clustering approaches, Section 3.6 surveys related classification approaches, and
last but not least Section 3.7 surveys related approaches of association rule
mining.

3.2 Sampling

Sampling is the most-commonly used technique in data analyses when the
amount of data is so large that performing an analysis would be too expen-
sive otherwise.

Many KDD approaches use sampling in any kind of way to scale algorithms
to large databases. For instance, CLARANS [53] iteratively takes samples from
a data set to test the tuples of each sample if one of them is a medoid of the
data set. Hence, this section discusses sampling method in general including its
benefits and potential drawbacks.

The idea of using sampling is to take a small excerpt of a data set that is
significantly smaller but has the same characteristics as the data set of which the
sample is taken from. We will use the term population to denote the original data
set. Hence, finding significant patterns in samples means that these patterns
also exist in the population if the sample is representative for the population,
i.e. sample and population share the same characteristics.

A sample can be biased or unbiased. In the average case, the distribution of
tuples in an unbiased sample and in the population are identical—except some
minor differences due to sampling error. Contrary, a biased sample favours
specific subsets of the population, i.e. the biased sampling process selects them
more likely than others. Favouring tuples with specific features can be beneficial
for some analyses. For instance, when in a classification analysis a specific
class is more interesting than another class, then favouring the interesting class
can increase the prediction accuracy of the interesting class on behalf of the
uninteresting class.

3.3. ANALOGOUS SOLUTIONS FOR OLAP 75

Yet, unintended biased sampling can worsen the quality of analyses using
so-taken samples because the samples no longer share the same distribution of
tuples with the population.

Uniform sampling method creates unbiased samples by selecting each tuple
of a data set with the same uniform likelihood. Depending on the size of the
sample, scanning the database or accessing tuples using point queries is more
efficient. If a sample is very small compared to the population, it is better to
retrieve the tuples of a sample tuple by tuple using point access. To do this,
scanning the index is necessary. Yet, if the number of tuples in the sample is
high scanning the database as a whole might be more beneficial than accessing
tuples individually because efficient bulk accesses can decrease the total time
needed for disk accesses.

When not further specified, we refer to uniform sampling when using the
term sampling.

3.3 Analogous Solutions for OLAP

Data warehouses are designed for efficient querying them with OLAP. Ideally,
the execution time for queries is so fast that analysts can interactively perform
OLAP queries without being hampered by slow answering time of the OLAP
system. However, the execution time of a query might be too long for interactive
querying when the data warehouse is very large.

This section presents approaches that efficiently pre-compute data structure
for interactive OLAP processing. Some of these techniques are very similar to
approaches used for scaling of data mining algorithms.

Lakshmanan et al. present a data structure that stores aggregates of facts
for efficient drill-down and roll-up operations in a data cubes which they call
Quotient Cube tree [44], or QC-tree in short.

Other approaches such as the approach of Cuzzocrea [10] use a subset of the
data to estimate the result of OLAP queries. The aim of these approaches is to
give answers to queries early when only a part of tuples is scanned. Cuzzocrea’s
approach gives a probabilistic boundary for the approximated answers [10]. Yet,
these approaches have to face the problem of representativeness of the subset of
data they use, as we discussed in the previous section concerning samples. If an
OLAP processer approximates a distributed query due to some processors have
not answered the query yet, then the subset used for estimation is only repre-
sentative if the distribution of tuples is the same for all processors—especially,
there must not exist an ordering of tuples, i.e. a processor stores the tuples with
a specific feature while another processor stores the tuples with another feature.

In contrast to that, the approach of this dissertation is always representative
because it uses all tuples to derive statistics, i.e. it uses the entire population.
Moreover, some of its statistics allow deterministic boundaries for approximated
answers. Yet, we will discuss these statistics later in chapters 4 and 5.

76 CHAPTER 3. DISCUSSING EXISTING SOLUTIONS

3.4 Data Compression

While data analyses using samples use a small but representative subset of the
data of which the samples are taken from, data analyses using any kind of
data compression technique use another representation of the data but with
redundant elements of the data removed.

For many KDD analyses it is sufficient to know some characteristics of the
analysed data but not the tuples itself. For instance, to determine the k£ means
of a run of the k-means clustering algorithm it is sufficient to know linear sum
and number of tuples of each of the k clusters. In order to derive a linear
regression model it is sufficient to know the correlation between each pair of
attributes the analyst has selected for analysis.

Deligiannakis et al. present in [11] a data compression technique for data
streams that approximates a data stream with a set of signals. Unlike to wavelet
transformations there exists a dominant signal called base signal that functions
in analogous way as the carrier way of a radio transmission does for the signals
carrying the transferred information. The base signal stores the long-term trend
while other statistics represent short-term deviations of that trend.

When compressing a data set, the compressed data represents the state of
the database at the moment of compression. Hence, the compressed version of
a data set is only a valid replacement of a data set for a given analysis, when
the state of the database does not change in the interval between the moment
of compression and the moment of doing the analysis.

If a compressed data set shall serve as replacement of a data set which might
be subject to change then it is necessary to keep the compressed data up-to-date,
too.

Algorithms that analyse data streams also require a mechanism that continu-
ously updates either a solution or a compressed data set. Algorithms analysing
streams using a compressed data set are capable to re-compute results when
parameters change. Hence, they are superior to algorithms that incrementally
update a single solution. Thus, all stream analysing algorithms using com-
pressed data sets must be able to incrementally update a compressed data set.
Moreover, one can use these algorithms to compress a database—instead of a
data stream which is the type of data source they were designed for,

Clustering features, which we have discussed when introducing BIRCH,
are common statistics to represent a compressed set of tuples. For keeping
a clustering feature (NN, l_é,ss of a set of tuples up-to-date that has gained a
tuple Z, one needs to add the clustering feature (1,7, #?) which represents tu-
ple & to the clustering feature, i.e. we receive the updated clustering feature
(N+1, l§+f, ss+a?). BIRCH automatically updates the most similar clustering
features when inserting new tuples [81].

Data bubbles are quadruples of summarising statistics that represent a set
of compressed tuples. A data bubble consists of a representative of a set of
tuples, the number of tuples in the data set represented by the data bubble, the
radius of a sphere around the representative in which the majority tuples are
located, and the estimated distance between any tuple of the data set and its

3.5. RELATED CLUSTERING APPROACHES 7

k nearest neighbours—¥% is a parameter the user has to specify when construct-
ing data bubbles. Moreover, the representative is the centroid of the tuples
represented by a data bubble. Nassar et al. show how to keep data bubbles up-
to-date [52]. Updating data bubbles is similar as updating clustering features.
Yet, the update of the estimated average distance is different. By assuming
normal distribution of tuples around the centroid, Nassar et al. estimate the
average nearest neighbour distance. If the estimated quality of compression of
an updated data bubble is low, the algorithm of their approach re-builds a data
bubble by re-scanning the tuples of that data bubble.

Data bubbles and clustering features represent the same type of information
in two different ways because data bubbles can be transformed to clustering
features and vice versa. The representative of a data bubble is the quotient
of linear sum and count of tuples of a clustering feature. Additionally, the
estimate of Nassar et al. uses the sum of squares to estimate the average nearest
neighbour distance. By inverting the formulae of representative and average
nearest neighbour distance, we receive the formulae to compute linear sum and
sum of squares of the clustering feature that corresponds with a given data
bubble. Hence, all algorithms using clustering features can use data bubbles that
have been converted to clustering features. We will discuss several approaches
using clustering features in the following sections.

3.5 Related Clustering Approaches

This section discusses related approaches focussing on improving clustering al-
gorithms in terms of runtime and quality. Most of these approaches use some
kind of index structure, compression technique, and/or sampling technique to
increase the speed of algorithms.

Quality of clustering depends significantly on the used clustering algorithm.
For instance, Hamerly and Elkan discuss the influence of chosen clustering al-
gorithm on the quality of results [29].

Yet, the focus of this dissertation is on presenting a strategy that improves
existing algorithms and not to argue in favour of a specific clustering algorithm.

The experimental results chapter of this dissertation shows that initial solu-
tions have the most significant influence on quality of clustering results. Thus,
we will discuss approaches to initialise clustering in a separate section, namely
Section 5.10.

In the remainder of this section, we will discuss approaches that try to sig-
nificantly improve runtime of a specific clustering algorithm without decreasing
its quality—or with an insignificant reduction of quality. As the effect of ini-
tialisation on quality outweighs the other effects on quality, this reduction is
tolerable.

Using index structures is a good way to improve the runtime of clustering.
Depending on the type of chosen index structure, one can use it to access relevant
tuples more easily. Some index structures are suited to be used as replacements
of the tuples. Thus, accessing tuples is no longer needed. Hence, the following

78 CHAPTER 3. DISCUSSING EXISTING SOLUTIONS

subsections introduce index structures which are commonly used to improve
clustering algorithms.

Another category of approaches uses sufficient statistics of the analysed data
set to increase the speed of clustering algorithms. A statistic of a data set
is sufficient when it contains the same information to determine a feature of
interest as the tuples do. Hence, one can keep only summarising statistics and
can neglect the summarised tuples. As many index structures use sufficient
statistics, we distinguish in approaches using some kind of index structures
which might use summarising statistics and approaches that use summarising
statistics without index structures.

Finally, algorithms clustering streams must be able to consider tuples only
once. Hence, they must be very fast and efficient. Therefore, algorithms cluster-
ing streams use only a single scan of the data set and are consequentially faster
than partitioning clustering algorithms which usually take several scans of the
data set. As a consequence of this, this section concludes with a discussion of
algorithms clustering streams.

3.5.1 Using Sampling for Clustering

We discussed sampling as general technique to scale data mining algorithms for
large data sets in Section 3.2, i.e. an analysts uses a sample as a replacement of
the data set of which the sample is taken from. Additionally, several partitioning
clustering algorithms use samples for finding an initial solution. As this is a
very common method of initialisation, we will discuss initialisation separately
in Section 5.10.

In contrast to these ways of using samples for clustering, this subsection
discusses approaches where sampling is essential part of presented algorithms.

CLARANS [53] and CLARA are medoid-based partitioning clustering al-
gorithms which use sampling. They return a set of £ medoids of a data set.
Hence, they produce the same type of result as the medoid-based partitioning
clustering algorithm PAM [41] does without using sampling. Yet, CLARANS
and CLARA perform significantly better than PAM.

PAM initially generates a candidate set of £ medoids and determines the to-
tal distance of each tuple to its nearest medoid. In several iterations, it replaces
a single medoid by a tuple which has not been a medoid, yet. If total distance
decreases, this replacement becomes permanent. It repeats this replacement
strategy until there is no improvement possible. Due to this working, PAM has
to scan all tuples many times—making it an ill-scaling algorithm.

Contrary, CLARANS independently takes a fixed number of samples from
the data set which it searches for medoids. Like PAM, CLARANS generates
candidates of medoids and tests the total distance. For computing the total
distance, it uses all tuples. Yet for selecting medoids, it uses only the sampled
data. For limiting the maximum number of replacing medoids, it additionally
uses a maximum number of tries of replacements that do not improve the quality
of the result. CLARA also works with samples. Yet, CLARA iteratively takes
samples and applies PAM on the sample.

3.5. RELATED CLUSTERING APPROACHES 79

3.5.2 Using kd-trees for Clustering

A kd-tree is a binary tree each node of which represents a choice in a single
dimension of k£ dimensions, i.e. the left branch of that node represents a subspace
that contains tuples with an attribute value lower than a given threshold value
while the right branch of that node represents a subspace with tuples with higher
attribute values than the the threshold value. Hence, the kd-tree iteratively
splits a vector space into several disjoint and exhaustive subspaces.

The ‘filtering algorithm’ of Kanungo et al. [40] is an adaption of the k-means
algorithm of Forgy that uses a kd-tree to improve the runtime of k-means.

First, the algorithm constructs a binary tree upon the data. It recursively
divides the vector space that is spanned by a set of tuples into two subspaces
that have approximately the same number of tuples in them. The result is a
binary tree in which each node represents a subspace of the vector space that is
spanned by all tuples. A k-means-like function uses this tree to compute a set
of means more efficient than k-means does.

The k-means-like function of the filtering algorithm scans the tree several
times and determines the means of k clusters—which is similar to the k-means
version of Forgy [17]. Yet, k-means scans tuples, not a tree.

Additionally, the assignment of nodes to clusters is different, too. Initially,
each node of the tree is assigned to all clusters.

When scanning the tree, the filtering algorithm tests if it can exclude one or
more clusters as nearest cluster of all tuples in a node. If a mean of a cluster is
always farer away from the tuples in a node than another cluster’s mean, then
the filtering algorithm can exclude the cluster that is farer away. As long as
there is still more than a cluster left as potential nearest cluster of a node, the
filtering algorithm also examines the children of that node.

If there is only one candidate cluster left in a specific node, the filtering
algorithm assigns that node and all sub-nodes to that cluster.

The filtering algorithm is very efficient to reduce the cost of assigning tuples
to means because it tests a complete subspace at a time instead of testing each
tuple individually.

Alsabti et al. present almost the same approach in [4].

As the filtering algorithm uses the Forgy variant of k-means instead of the
McQueen variant, the number of iterations which the filtering algorithm needs
is typically higher than approaches that use the McQueen variant.

Additionally, the time needed for constructing the tree might exceed the run-
time needed for the k-means application. The runtime complexity of construct-
ing a kd-tree is O(nlogn) [3]. Thus, if logn exceeds the number of iterations
needed by k-means, the filtering algorithm becomes insufficient.

For the reasons given above, the approach of this dissertation uses other
index structures than kd-trees for clustering, namely extended versions of clus-
tering feature trees.

80 CHAPTER 3. DISCUSSING EXISTING SOLUTIONS

Using SS-trees for Clustering

A Similarity Search-tree or short SS-tree [76] is a multidimensional hierarchical
index structure where each tuple is assigned to the leaf node the centroid of
which is nearest to the tuple. Thus, the space in which all tuples of a node are
located is a sphere in a multidimensional vector space. Inserting tuples into an
SS-tree is analogous to RT-tree. RT-trees and SS-tree are very similar but all
tuples of a node of an RT-tree are in a cube in a multidimensional vector space
while all tuples of a node of an SS-tree are in a sphere.

Trees of data bubbles, as approaches such as [52] produce them, are SS-
trees enriched with additional elements. The representative of a data bubble is
the centre of a sphere. Additionally, a data bubble includes the radius of that
sphere.

3.5.3 Using Sufficient Statistics to Improve k-means or
EM clustering

As mentioned above, a statistic of a data set is sufficient when it contains the
same information to determine a feature of interest as the tuples do. Hence, one
can keep only summarising statistics and can neglect the summarised tuples.
Clustering features are sufficient statistics to determine Gaussian clusters.

This subsection presents approaches that use sufficient statistics in general
or clustering features in special to compute the result of an EM clustering algo-
rithm. Yet, one can also use clustering features as index structure in the form of
a clustering feature tree. Hence, this subsection also discusses approaches that
use trees of clustering features.

Using clustering features for EM clustering is subject to results with low
quality when the variance of a clustering feature is zero. If the variance of a
clustering feature is zero, i.e. all tuples share the same attribute values, then
several calculations necessary for EM such as the probability density at a specific
point become undefined because the variance is included in the nominator of a
fraction.

FREM is an EM like clustering algorithm which uses clustering features to
increase its speed [58]. It solves the problem of undefined variances by adding
a small constant to the variance of a clustering feature. The constant is small
enough such that it does not influence the assignment of tuples to clusters.
Yet, it is high enough to prevent computational instability due to zero-valued
variance.

Approaches using sufficient statistics for EM clustering have in common
that they construct sets of sufficient statistics in a first step before using them
as replacement of tuples in a second step.

The approach of Bradley et al. [6] scans the data set of an analysis only
once and tests each tuple if it can compress the tuple. The approach packs
tuples which are very similar to each other in a subset of data and computes
a clustering feature for each package. It maintains several lists of clustering
features that vary in the rate of compression. It inserts tuples that are unlikely

3.5. RELATED CLUSTERING APPROACHES 81

to be tuples that significantly influence the result of an EM clustering into a
list of clustering features with high compression rate. Contrary, it inserts tuples
that are likely significant tuples into a list of uncompressed tuples.

Jin et al. compare several approaches using sufficient statistics or sampling
for EM clustering in their paper [37]. The set of sufficient statistics used by
Jin et al. is a triple consisting of count, centroid and average sum of squares
of the tuples summarised by this triple. Obviously, this triple contains the
same information as a clustering feature—yet, a clustering feature contains no
averaged values but the total sums. A method of the approach of Jin et al. lays
a multi-dimensional grid over the vector space in which the tuples of a data set
are located and determine the above-mentioned triple of sufficient statistics for
each non-empty cell of the grid. The other method of determining the sufficient
statistics is to use BIRCH. Yet, many approaches use BIRCH to compute a tree
of clustering features. Due to the amount of approaches, we will discuss this
option separately in the next subsection.

Bradley et al. and Jin et al. gain independently the insight that compressing
tuples inflicts results superior in terms of quality to results of clustering samples
but is as fast as sampling [6][37]. Therefore, the approach of this dissertation
focusses on compressing tuples using extended clustering features instead of
taking samples. To be more specific, this dissertation includes an approach
that extends clustering features to use them for multiple analyses with varying
settings. It also includes techniques to derive specific representations of a data
set to fit a set of analyses from a general representation of a data set. The
specific representations of data are trees of clustering features which one might
use to apply the approaches of Bradley et al. or Jin et al. on them. Thus, the
benchmark results of both approaches apply in the same way for the approach
of this dissertation.

Bin Zhang et al. present a clustering algorithm using a local search heuris-
tic to re-compute centroids of clusters [79]. For improving runtime they split
the data set into several small partitions which they represent by summarising
statistics that contain the same information as clustering features.

Trees enable retrieving summarised statistics at different levels of granularity
on demand. For this reason the approach of this dissertation stores summarising
statistics in a tree.

Tian Zhang introduces an improved clustering algorithm called BIRCH [81]
which consists of a hierarchical clustering that generates a tree of clustering
features followed by partitioning clustering of leaf node entries in his dissertation
[80] but implements only hierarchical clustering !. However, several authors
have implemented his initial idea.

O’Callaghan et al.[55] use BIRCH to maintain a tree of summarising statis-
tics to use it in a modified version of k-means. They extended their approach
to k-medoids in [27]. Due to the above-mentioned properties of BIRCH, this
approach is limited to analyses in a single vector space.

1We examined the source code of Tian Zhang’s prototype which he used for testing which
we obtained from Tian Zhang’s web site.

82 CHAPTER 3. DISCUSSING EXISTING SOLUTIONS

The drawback of using BIRCH for partitioning clustering is that it is neces-
sary to re-run the first phase of BIRCH when only a subset of data or attributes
is relevant for a given cluster analysis. Yet, the first phase of BIRCH is the most
time-consuming phase of all its phases because it is the only phase that accesses
data from persistent storage—all other phases use several scans of data that is
already loaded in the main memory.

Chiu et al. [9] present an expectation maximisation (EM) algorithm using
summarised statistics organised as a cluster feature tree. A drawback of their
method is that the dendrogram has to be constructed for each different set of
selected attributes.

The algorithm presented in this dissertation is very similar to BIRCH but
uses different summarising statistics to make it generally applicable. Hence, this
set of summarising statistics is a called a general cluster feature. To be more
specific, the approach of this dissertation supplies methods to adapt a tree of
general cluster features to fit the needs of an analysis that needs only subsets
of this tree. Moreover, these method allow the construction of new attributes
and also give deterministic thresholds of quality measures.

3.5.4 Applying Partitioning Clustering to Data Streams

Clustering algorithms must be able to generate their result in a single scan to be
applicable to data streams. As partitioning clustering algorithms typically scan
the data multiple times, they need adaption to become applicable to streams.

Such an adaption also inflicts a significant improve in runtime because only
one scan is needed after adaption. Thus, approaches adapting partitioning clus-
tering algorithm to data streams are related work of this dissertation.

There has been much work recently on clustering data streams. Among this
work, there are approaches modifying clustering algorithms like k-means to be
applicable to streams. Similar to that, other approaches try to represent data
streams with summarising statistics to use them for all kind of analyses.

Applying k-means to Streams

One of the most popular partitioning clustering algorithms is k-means which
has been first introduced in two versions in 1965 by Forgy [17] and in 1967
by McQueen [46]. Yet, as k-means requires several scans of the data, it is
inapplicable to data streams. Several approaches try to modify k-means to
break this limitation.

Scanning the data only once and tolerating the so-induced error is a potential
way to apply k-means on data streams.

Incremental kmeans [56] is a variant of k-means that scans the data only
once. This approach utilises the observation that major improvements occur
during the first iteration while further iterations only slightly modify the result
of the first iteration. This approach has several drawbacks, namely the lack of
re-doing analyses with different parameters, the induced error, and the way the
algorithm is initialised.

3.5. RELATED CLUSTERING APPROACHES 83

First, re-doing analyses with different parameters is impossible but necessary
to tell apart whether the difference between two analyses is caused by different
parameters or different data—the latter would be an indicator for a trend while
the first is an indicator for an ill-performed analysis. Yet, without storing the
data stream’s content, the tuples that are required for a re-scan are no longer
present. However, storing the stream’s content is omitted because it is very
expensive.

Second, the error caused by scanning the data only once, is not negligible in
general. Thus, Ordonez suggests applying incremental kmeans only to binary
data streams. According to his paper [56] the resulting error is tolerable when
the used attributes are binary. Yet, this condition is too restrictive for generally
using incremental kmeans.

Finally, the way incremental kmeans is initialised might cause bad results
because it depends on the order the data is scanned. Incremental kmeans buffers
a part of the data stream which it uses to find a suitable initialisation. Once
the algorithm is initialised with a set of £ means, it scans the remaining stream
and updates the means in regular intervals. Thus, the tuples that incremental
kmeans reads first influence the algorithm more than tuples that the algorithm
reads later on. If there are trends in the data such as that a cluster is changing
over time then incremental kmeans might fail to find a suitable result because
the old location of a cluster’s mean influences the result too much.

Nasraoui et al. introduce in [51] an immune system learning model for
clustering noisy streams. Yet, their approach is also incapable to re-do analyses
because data is no longer present. Hence, it shares the same drawbacks with
incremental kmeans.

As scanning once and tolerating error is only applicable to a very restricted
number of applications, the concept of this dissertation takes no use of this idea.

Reducing the number of tuples by taking a sample is a common solution
when a data set is too big for being clustered in a given time frame.

As sampling is very common, the test series in the experiments chapter
benchmark against sampling. The test results show that under certain circum-
stances sampling can deliver better results than the approach shown in this
dissertation does. However, there are several advantages of this dissertation’s
approach compared with sampling which are guaranteed error, re-usability?,
and runtime.

When using a sample of a data set for clustering, the result of this clustering
might differ from the result using the total data set. We call the error that a
percentage of tuples are assigned to clusters erroneously sampling error when
other sources of error such as initialisation can be excluded.

Using Sufficient Statistics for Clustering Streams

Several approaches use aggregated representations of the data instead of the
data self. A common method is maintaining a set of summarising statistics of

20ne can re-use samples, too. Yet, re-using samples negatively affects the quality of results.
We will discuss re-using samples in detail in Subsection 5.10.2.

84 CHAPTER 3. DISCUSSING EXISTING SOLUTIONS

the data. As long as such a representation can be updated incrementally, it is
possible to use it as a surrogate of the data in a stream.

Algorithms using incrementally updated trees of clustering features are able
to cluster data streams. In order to avoid duplicated presentation of algorithms,
this subsection presents only those approaches that are specially designed for
being applied on data streams.

The approach of Aggarwal et al.[1] maintains a set of summarising statistics
representing a data stream. The authors demonstrate a temporal selection func-
tion that might be used to compare cluster models in different time intervals.

The approach of this dissertation generalises their approach by defining a
selection function for any set of attributes—time is just another attribute for
selection. In addition to that, the approach of this dissertation is able to project
attributes and derive new attributes from existing attributes.

3.6 Related Classification Approaches

3.6.1 Bayes Classifier

There exist several approaches using a set of statistics as sufficient statistics
for naive Bayes classification. Yet, these statistics are frequencies of attribute
values, commonly organised in a tree.

Moore and Lee cache sufficient statistics for classes of classification algo-
rithms such as naive Bayes and decision trees in a data structure they call
ADtree [49], which is a kd-tree the inner nodes of which are annotated with fre-
quencies of attribute values. An ADtree is able to reduce the need of space to
store frequencies of attribute values but it is only applicable to non-continuous
attributes. An ADtree uses loss-less compression of tuples. The experiments
in Section 7.5 have shown that one can compress tuples in a tree of clustering
features with potential losses without decrease in accuracy when the number
of nodes exceeds some hundreds of nodes. Obviously, some hundred nodes are
sufficient to store as many top-frequent pairs of attribute values as needed such
that only rarely the frequency of a missing pair is needed. Additionally, the ap-
proach of this dissertation is capable to handle continuous attributes and offers
a selection operation to re-use frequencies for analyses needing only a subset of
the original data set. Caragea uses also only frequencies of pairs of attribute
values as sufficient statistics [8].

3.6.2 Decision Trees

Jordan suggests in [39] to combine decision tree algorithms with approaches
generating statistical models such as hidden Markov chains or EM clustering
to improve the quality of resulting decision trees. Jordan’s approach is sim-
ilar to the approach mentioned in chapter 6 because it also uses a sequence
of algorithms to improve the quality of classification. Yet, the herein-presented
approach can also decrease the time needed to compute the combination of both

3.7. RELATED APPROACHES OF ASSOCIATION RULE MINING 85

algorithms. Hence, one can use the approach we will introduce in chapter 6 to
accelerate Jordan’s approach because the general principles of both approaches
do not contradict each other. Dobra and Gehrke present SECRET which which
is also a combination of EM clustering algorithm and decision tree construction
[13].

The approach of Ganti et al. [20] trains a decision tree from data in a stream
and updates it regularly. For doing so, it divides a stream in blocks of fixed sizes
and stores summarising statistics for each block. In regular intervals new blocks
arrive and old blocks become deleted, i.e. if the main memory is full, their
algorithm discards the oldest blocks.

The approach of this dissertation includes the same type of summarising
statistics. Hence, one could use these statistics to produce the same result as
Ganti et al.’s approach would do. In contrast to the approach of Ganti et al.,
the approach of this dissertation is able to re-analyse decision trees of past data
because it is able to re-construct the database state of the past.

3.7 Related Approaches of Association Rule
Mining

The intention of the approach in this dissertation is to perform tasks or subsets
of them now that might be used later to reduce the time an analyst needs to
perform an analysis. Hereby, the type of succeeding analysis is irrelevant—which
is the discriminating factor of this approach with related approaches.

This section presents approaches to improve the time an analysts needs to
perform an association rule analysis. Some of these algorithms focus on re-use
of previous results such as [50] but none of them uses a previous result for an
analysis of another type of analysis than association rule mining.

Algorithms mining association rules such as Apriori and FP-growth perform
a complete search for association rules, i.e. they find all association rules that
satisfy minimum support and minimum confidence. Hence, there is no quality
improvement of the found result possible.

However, minimum support and minimum confidence depend on the analyst
and might be small. If an analyst has chosen very small values for minimum
support or minimum confidence, there can be more found association rules the
analyst can handle [42]. Additionally, in cases where there are many rules the
performance of algorithms is also low, as indicated in section 2.4.1.

Consequentially, approaches improving association rule mining either try to
reduce the number of found rules to find only the most interesting rules or try
to improve the performance of algorithms.

3.7.1 Updating Association Rules According to Changing
Constraints

Mining association rules with constraints is a common use case of association
rule mining. Constraints, conditions that transactions must fulfill to be relevant

86 CHAPTER 3. DISCUSSING EXISTING SOLUTIONS

for an association rule analysis, give the analyst the opportunity to focus an
analysis on specific aspects of the analysed data [54]. There exist several types
of constraints such as row-level constraints. A row-level constraint is a predicate
that is either true or false for a tuple when applied on a data set. Hereby,
the logical value of the predicate depends only on the values of the currently
considered tuple. For instance, if an analyst performs a market basket analysis
of only those transactions that customers with a specific feature have committed,
he applies a row-level constraint to the set of transactions because it is possible
to evaluate this constraint for a tuple without considering another tuple.

When a company analyses market baskets, the data source is always a table
storing sales data. However, the relevant subset of that data source might
differ from analysis to analysis. In other words, there might be several different
constraints concerning the same data set.

For reducing the average time necessary to compute the result of an asso-
ciation rule analysis there exist several approaches to re-use the results of an
association rule analysis for determining the result of another association rule
analysis with different constraints.

The approach of Nag et al. uses a cache of frequent itemsets to speed up
association rule mining with different constraints [50]. Whenever a constraint
is changing, Nag et al. use Apriori to re-compute an association rule analysis.
Hereby, the cached itemsets can reduce time needed for candidate generation.
Additionally, in some cases Apriori can save scans as the cache might already
contain all relevant itemsets. However, the occurrence of such events is sto-
chastic. They test several replacement strategies of the cache, i.e. strategies
that decide which itemsets shall remain in the cache when the number of found
itemsets exceeds the capacity of the cache.

According to Nag et al.’s tests the benefit replacement is the most beneficial
strategy to replace itemsets of the cache storing itemsets. It uses a BT-tree to
index itemsets according their support value. Hence, a simple range query can
do the accessing of itemsets satisfying a specific minimum support.

The approach of this dissertation also utilises caching of frequent combi-
nations of attribute values to improve the average response time of the KDD
system. However, the approach of this dissertation is more general than Nag
et al.’s approach because it is not limited to itemsets, only. Itemsets are com-
binations of attribute values of the same attribute in a transaction while the
approach of this dissertation uses attribute value combinations of arbitrary at-
tributes, as demonstrated in section 6.5.

Hipp and Giintzer show in [33] that it is possible to construct the result of
an association rule analysis with row-level constraints using only the result of an
unconstrained association rule analysis. According to their experience row-level
constraints commonly consist only of conditions of items such as analysing only
products of a specific product group in a market basket analyses. That way
there exists an unconstrained itemset corresponding to each constrained item-
set which means that constrained itemset and unconstrained itemset reference
to the same type of event. For instance, the itemset “customer buys shoes and
socks” under the condition that this customer also buys jeans references to the

3.7. RELATED APPROACHES OF ASSOCIATION RULE MINING 87

same event as itemset “customer buys shoes, socks, and jeans” does. In general,
the constrained itemset condition U consequence under an itemset constraint,
which represents a constraint, corresponds to the unconstrained itemset condi-
tion U consequence U constraint. In other words, as constraint, condition, and
consequence are itemsets, the itemset that fulfills condition and consequence
under the given constraint, is the itemset that includes all items of constraint,
condition, and consequence.

If the itemset representing the constraint is frequent then performing a single
unconstrained association rule analysis is sufficient to compute the results of
constrained association rules analyses with row-level constraints consisting only
of items.

If an analyst wants to use features that are no items as part of a constraint,
then the analyst can circumvent this problem by introducing those features as
items into the data set storing the transactions.

The approach of Hipp and Gilintzer is able to reduce the time an analyst
needs for an association rule analysis because a KDD system can perform the
time-consuming task of determining of frequent itemsets once before the ana-
lysts interacts with the system: The analyst needs not to wait for the system
performing time-consuming computations but can concentrate on choosing con-
straints and evaluating patterns.

However, determining the unconstrained frequent itemsets is more likely
subject to combinatorial explosion because the same frequent itemsets typically
have less support when they are unconstrained than when they are constrained.

If the constrained itemset condition U consequence shall be frequent under the
s(conditionUconsequenceUconstraint)
s(constraint)
minimum support. If the support of the constraint is less than 1, then the

according limit that determines whether an unconstrained itemset is frequent
or not is lower than the minimum support of an association rule analysis with
constraints. Hence, if one wants to make a constrained analysis with a specific
minimum support, he or she must have done the unconstrained analysis with
an accordingly lower minimum support because it is possible to increase the
minimum support afterwards but impossible to decrease it.

constraint constraint, the fraction must satisfy

Summarising, the approach of Hipp and Giintzer needs a tradeoff of pros
and cons, i.e. a tradeoff between a cost saving due to pre-computed results
and potential combinatorial explosion due to too low minimum support and too
many different items. However, it is always possible to try if an unconstrained
analysis with an appropriately small minimum support is subject to combina-
torial explosion. If not, one can use the results for constrained analyses in the
future. Otherwise, one has to consider other approaches.

The approach of Hipp and Gilintzer represents an idea for constrained asso-
ciation rules that is very similar to the approach CHAD presented in chapter 5
which is a clustering algorithm. Due to the similarity of both approaches, we
illustrate the approach of Hipp and Giintzer using the running example.

To exemplify this approach, consider the market basket analysis we have
discussed in Section 2.4 once more—yet, now with focus on re-using constraints.

88 CHAPTER 3. DISCUSSING EXISTING SOLUTIONS

cid timestamp prid
4711 | 2005-01-05 16:15 1
4711 | 2005-01-05 16:15 2
4711 | 2005-01-05 16:15 3
4711 | 2005-01-05 16:15 | -1
4711 | 2005-04-01 09:23 1

4711 | 2005-04-01 09:23 3 transactions
4711 | 2005-04-01 09:23 -1 1, 2, 3, corporate
0815 | 2005-04-01 09:27 1 1, 3, corporate
0815 | 2005-04-01 09:27 4 1, 4, corporate
0815 | 2005-04-01 09:27 | -1 1, 3, 4, individual
1704 | 2005-05-05 13:13 1 3, 4, individual

1704 | 2005-05-05 13:13 3
1704 | 2005-05-05 13:13 4
1704 | 2005-05-05 13:13 | -2
1704 | 2005-06-05 10:30 3
1704 | 2005-06-05 10:30 4
1704 | 2005-06-05 10:30 | -2

Table 3.1: Clip of the tuples of the table that an analyst has pre-processed for
a market basket analysis with constraints

Assume that an analyst of the publishing company of the running example wants
to perform a set market basket analyses of customers having a specific type or
ordering a specific group of products. The attribute customer type has two
values corporate and individual which both are no items. Adding these values
as additional items means to insert a new tuple that indicates the sale of a
virtual product corporate to each transaction that is initiated by a corporate
customer. A simple SQL insert statement can do this:

INSERT INTO marketbasketdata (cid, timestamp, prid)
(SELECT DISTINCT (marketbasketdata.cid, timestamp), -1
FROM marketbasketdata, customer
WHERE customer.cid = marketbasketdata.cid
AND customertype = ’corporate’);

After inserting all values as items we receive a modified table of transactions
as depicted in table 3.1. Determining the frequent itemsets of the table with
additionally inserted items happens in conventional way as demonstrated in
Section 2.4.

If we want to check if the rule product 1 — product 3 is valid according
minimum support 40 % and minimum confidence 70 % under the constraint
that the customer must be a corporate customer, we have to determine con-
strained support and confidence first. The constrained support of a rule is the
unconstrained support of that rule divided by the support of the constraint [33].
The constrained itemset {1,3} under constraint {corporate} corresponds with

3.7. RELATED APPROACHES OF ASSOCIATION RULE MINING 89

the unconstrained itemset {1, 3, corporate}. Hence, the constrained support is

sUl3.corporate}) 2 = Apalogously, we determine the confidence of that rule

s({corporate}) 3
as % = 2. Therefore, the rule product 1 — product 3 fulfills

minimum support but not minimum confidence. Hence, the rule is no valid
association rule.

3.7.2 Replacing the Minimum Support Condition

Using the minimum support for restricting the number of frequent itemsets is
two-edged: On the one hand, a high support can significantly reduce the number
of frequent itemsets. However, there might be many interesting rules that lack
sufficient frequency. On the other hand, if minimum support is small, many
itemsets become frequent regardless they are interesting or not. Zijian Zheng et
al. tested the performance of association rule algorithms on various real world
data sets and found exponential growth of number of association rules when
lowering minimum support, confidence, or lift [82].

Hence, there exist approaches that try to circumvent the above-mentioned
problem by relaxing the strict minimum support condition.

The approach of Liu et al. uses different levels of minimum support where
rare but interesting itemsets have a lower minimum support value [45]. The
height of minimum support which an itemset must satisfy depends on the inter-
estingness of its items. In other words, the less the frequency of a combination
of items can be explained by chance the lower is the more interesting is that
combination and the lower is the minimum support it must satisfy.

Wu et al. use statistical modeling to find association rules [77]. Therefore,
they significantly differ from other approaches aiming to find association rules
such as Apriori [2]. Each combination of items the frequency of which in a
given data set is unable to be explained by a log-liner model of that items is an
interesting itemset in that data set.

3.7.3 Approaches avoiding limits of Apriori

Sung et al. use sampling to forecast association rules in a data set that has not
yet been analysed for association rules [70]. DuMouchel and Pregibon present
a similar approach [14]. Yet, DuMouchel and Pregibon use Bayes statistics.
Therefore, these approaches significantly reduce the time needed for scanning
the data set for frequent itemsets. Hence, it is faster than Apriori algorithm.
Yet, as fp-growth needs only two scans to determine all frequent itemsets of a
data set without sampling error, the approach of Sung et al. offers only a slight
improvement in speed when compared with fp-growth. However, the approach of
Sung et al. remains beneficial because it enables analysts to compare association
rules of a data set with those rules that one should observe due to experience
made when analysing similar data sets.

Webb suggests to search association rules directly instead of using the two-
folded process of finding frequent itemsets and association rules [74]. His ap-

90 CHAPTER 3. DISCUSSING EXISTING SOLUTIONS

proach applies support, confidence, and interesting measures when scanning the
database. This process avoids combinatorial explosion as the interesting mea-
sures significantly limit the number of association rules. Yet, re-scanning is
necessary each time the analyst changes any parameter.

3.7.4 Reducing the Need of Pre-Processing

Apriori and FP-growth use items which are stored in a single attribute, i.e.
they interpret the attribute values of a single attribute as items. Perng et al.’s
approach is able to find association rules between items which might be attribute
values of a set of attributes [60]. Hence, their approach extends association rule
analyses to data sets without pre-processing them to fit a pre-defined form—
in an association rule analysis with Apriori or FP-growth, an attribute has
to function as identifier of attributes while another attribute identifies items.
The techniques proposed in this dissertation are able to offer pre-computed
intermediate results for association rule analyses following the approach of Perng
et al. as one can see in chapter 6.

Chapter 4

Concept of Anticipatory
Data Mining for Improving

the KDD Process

Contents

4.1 ThingstoImprove 92
4.2 Splitting the KDD process 94
4.2.1 Splitting Saves Time 94
4.2.2 Additional Anticipatory Analyses Improve Quality . 95
4.3 General Pre-Process. 97
4.3.1 Pre-Processing Phase 98
4.3.2 Pre-Mining Phase 99

Intermediate Results and Auxiliary Data for Clus-
tering Algorithms 100

Intermediate Results and Auxiliary Data for Classi-
fication Algorithms 101

Intermediate Results and Auxiliary Data for Asso-
ciation Rule Analyses 102
Efficient Computation of Auxiliary Statistics 102
Efficient Selection of Auxiliary Tuples 105
Special Handling for the Specific KDD Process . . . 106
4.3.3 General Pre-Process of the Running Example 107
Pre-Computing Auxiliary Statistics 107
Pre-Selecting Auxiliary Tuples 111
4.4 Specific KDD Process « v v v v v v v v v o 114
4.4.1 Specific Pre-processing 114

Selecting Data Using Pre-Processed Intermediate
Results and Auxiliary Data 115

91

92 CHAPTER 4. CONCEPT OF ANTICIPATORY DATA MINING

Transforming Data Using Pre-Processed Intermedi-

ate Results and Auxiliary Data 118

4.4.2 Specific Data Mining 119
Specific Clustering 119
Specific Classifying 120
Specific Association Rule Mining 121

4.4.3 Specific KDD Process of the Running Example . . . 121

4.1 Things to Improve

Improving the KDD process means that the modifications of the KDD process
result in a new KDD process which either is quicker or has results of higher
quality in the average of its process instances. As improving runtime is possi-
ble by tolerating results having low quality and vice versa, we demand that a
modification improving either time or quality only worsens the other dimension
of improvement in an insignificant way, which means that a significant runtime
improvement should not reduce quality in the optimal case—or only marginally.
Before improving the KDD process the drawbacks of the KDD process as
is must be known. As mentioned in the introductory chapter, viewing the
instances of the KDD process as isolated instances is the main drawback of the
KDD process. However, this drawback causes several subproblems which are
described together with the idea of their solution in the latter of this section:

doing the same things multiple times Viewing the KDD process as a
process with single isolated instances is bad because different instances
of that process require similar tasks with the same data. In an instance
of such a process, the minimum number of scans needed is one. Lowering
this bound is impossible.

If the isolated view of instances is given up, the minimum number of scans
is still one—but the new limit is one scan for a set of instances.

neglecting experience of previous KDD instances Almost every in-
stance of the KDD process increases the analyst’s knowledge of the
relations in the analysed data. The analyst chooses data mining tech-
niques for further examination of data more efficiently with increasing
knowledge.

However, most data mining algorithms operate as if nothing is known
about the data to be analysed. However, results of previous KDD process
instances can improve the quality of further instances. For instance, if the
type of distribution of an attribute and the distribution’s parameters are
known, classifying algorithms can use this piece of information to train a
classifier that is more accurate than the classifier that the algorithm would
produce without the additional information concerning distribution of that
attribute.

4.1. THINGS TO IMPROVE 93

Previous work has presented several approaches to improve the results of
data mining algorithms with additional knowledge.

This dissertation examines the cost of determining and storing additional
information about the data being analysed and their potential effect on
future KDD instances. In other words, it provides the answers to the
questions “What kind of (intermediate) result should be stored to be used
in future applications?” and “Is there an efficient determination of this
type of information?”. If a specific type of additional information is cheap
to determine and potentially very useful, it should be determined when
scanning a set of data—even it is not needed in the current KDD instance.

neglecting typical sequences of data mining techniques There is a
small set of different types of data mining techniques such as classi-
fication, clustering, and association rule analysis—to name only the
most-commonly used ones. Yet, complex analyses use a combination
of several techniques to determine a suitable result. For instance, web
usage mining uses association rule analysis of access log files to determine
rules of navigation of users within a web site as its major data mining
technique. Yet, classification can be used to filter page accesses of web
crawlers of search engines that are indexing web sites. Accesses of web
crawlers do not represent navigation rules of users but would influence
the resulting association rules. Hence, they must be eliminated before
beginning an association rule analysis.

This dissertation shows how to enhance popular complex analyses by de-
termining additional information in the early phases of the KDD instance
of such an analysis and using this information in later phases.

By giving up the isolated view on instances of the KDD process there is much
room for improvement, as the above-mentioned items indicate.

If it is known that there will be other data mining algorithms doing some kind
of analysis on the data, a currently running task can do more than computing its
own result. For instance, it can prepare intermediate results for future analyses.
As there are no additional disk accesses needed this is a good option to save
time for succeeding algorithms with low cost for the anteceding algorithm.

The tests in the experiments’ chapter show that the cost for computing
additional results are low and the benefit of pre-computed items is high.

Thus, it is a good idea to compute intermediate results as early as possible—
even in anticipation of a instance of the KDD process. In other words, it can
be beneficial to compute intermediate results of a currently unknown process
instance.

The next section focusses on the general idea of pre-computing parts of
potential instances of the KDD process.

94 CHAPTER 4. CONCEPT OF ANTICIPATORY DATA MINING

4.2 Splitting the KDD process in Parameter-
Independent and Parameter-Dependent
Parts

As mentioned in the last section, one should bring tasks forward that can be
brought forward to save scanning the data multiple times. For the same reason,
one should also bring forward the computation of all items such as intermedi-
ate results of potential future analyses and auxiliary data. Auxiliary data are
unessential for computing an analysis but are helpful items that improve either
performance or quality of an analysis. Therefore, we define intermediate results
and auxiliary data as follows.

Definition 4.1 An intermediate result is an item if there is at least one type
of potential future analysis that needs the presence of that item.

Definition 4.2 An auziliary date is an item if there is at least one type of
potential future analysis that benefits of the presence of that item.

Obviously, an item can be intermediate result as well as auxiliary data—the
succeeding analyses determine whether an item is an intermediate result or an
auxiliary date.

Yet, discrimination makes sense because intermediate results and auxiliary
data have different effects on the KDD process. While pre-computing interme-
diate results saves time in a succeeding instance of the specific KDD process,
computing auxiliary data can improve the quality of a succeeding instance of
the specific KDD process.

Therefore, Subsection 4.2.1 discusses the requirements for splitting the KDD
process in two distinct processes to save time. Analogously, Subsection 4.2.2
discusses analyses which produce results that might be beneficial for succeeding
analyses in an instance of the specific KDD process. In other words, it examines
analyses that compute auxiliary data.

4.2.1 Splitting Saves Time

If items that can be brought forward are independent of any specific parameter
of an instance of the KDD process, it is possible to source out these items in
a separate process. The separate process processes all parameter-independent
items. A second process processes the remaining parameter-dependent items.

Splitting the KDD process saves time because multiple instances of the
parameter-dependent process share the same instance of the parameter-
independent process.

It is common practise to use data in a data warehouse for analysis because
some pre-processing tasks such as data cleaning are already done when using
data of data warehouses. The intention of using data warehouses is the same as
splitting the KDD process in parameter-independent and parameter-dependent
parts. Maintaining the data warehouse is a parameter-independent task while

4.2. SPLITTING THE KDD PROCESS 95

data mining is a parameter-dependent task. However, splitting into parameter-
independent and parameter-dependent parts considers more tasks than prepar-
ing data in a separate process, only.

In particular, splitting the KDD process considers the tasks of the KDD
process as sequences of operations on data. An operation is a very low-level
item of computation such as performing a specific select-statement on the data.

By splitting tasks in operations, there are more potential operations to source
out than viewing tasks as atomic items.

Operations must be parameter-independent to source them out. For in-
stance, the sequential computations of a data mining algorithm are a sequence
of operations on data. Several operations of a mining algorithm are parameter-
independent. For instance, any run of the Apriori algorithm must count the
frequencies of attribute values in a table. Counting the frequency of attribute
values is an operation that can be part of the parameter-independent process.
Section 6.2 discusses how to pre-count the frequency of attribute values, while
Section 7.5.2 discusses how classification analyses can benefit of pre-counted
frequencies.

Figure 4.1 shows the phases of the KDD process split into operations. As the
operations of the data mining phase depend on the type of analysis the analysts
is intending to do, there are various operations of the data mining phase. Hence,
Figure 4.1 only shows the operations of association rule analysis and naive Bayes
classification as examples of operations of data mining techniques.

As an operation is only a part of a task, the result of an operation is only
an intermediate result of the result of that task.

As the experiments of this dissertation show, the amount of tasks that
can be pre-computed increases by splitting them in parameter-dependent and
parameter-independent parts.

4.2.2 Additional Anticipatory Analyses Improve Quality

Prior knowledge that is gained in a previous analysis can improve the quality
of the results of another analysis.

Both, intermediate results and auxiliary data, are either tuples fulfilling
some special condition or some statistics of the data. For instance, tuples that
are modus, medoid, or outliers of the data set are tuples fulfilling a special
condition—modus and medoid represent typical items of the data set, while
outliers represent atypical items. Furthermore, all kind of statistics such as mean
and deviation parameter are potential characteristics of the data. Therefore, we
define auxiliary statistics and auxiliary tuples as follows.

Definition 4.3 An auxiliary statistic is a statistic of a data set where there is
at least one type of potential analysis of that data set that might use this statistic
as auzxiliary date.

Definition 4.4 An auziliary tuple is a tuple of a data set where there is at
least one type of potential analysis of that data set that might use this tuple as
auxiliary date.

96 CHAPTER 4. CONCEPT OF ANTICIPATORY DATA MINING

a) Data Mining Algorithm is Naive Bayes Classification

determine
posterior

determine
. score
prior

tuples

b) Data Mining Analysis is Association Rule Analysis

determi ne,\ determine determine
COMPULe Y - didates | ComPUte candidetes PP asenciation
1-itemsets . 2-itemsets . d-itemsets
- of d-itemsets rules

N _/
N

select/ Data
prepare Mining

AN

clear transform select transform

Legend

system performs this | system can perform
task/operation this task/operation
with analyst'sinput ~without analyst' s input

mixed task/operation

Figure 4.1: Splitting the phases of theKDD process into a set of operations
illustrated by Naive Bayes and Apriori

4.3. GENERAL PRE-PROCESS 97

Definition 4.4 implies that there must be at least one type of analysis where
choosing a set of pre-selected tuples is more beneficial than selecting tuples
at random—i.e., the expectation of using pre-selected tuples must exceed the
expectation of using a random sample of tuples.

Statistics that indicate the correlation of attributes or the distribution of
attribute values are potentially beneficial for instances of the specific KDD
process. For instance, succeeding classification algorithms can bias classifiers
to better fit the prior probabilities. Additionally, EM-clustering algorithm can
improve the quality of its clusters when the covariance matrix is known a-priori.

Tuples also differ in their relevance for future analyses. The presence of
outliers in the data set can cause classification algorithms and clustering al-
gorithms to produce results with minor quality. Classification algorithms are
prone to over-fit if there are outliers in the training set. Analogously, outliers in-
fluence tend to influence the result of a clustering algorithm that uses centroids
above average. Hence, tuples that are non-outliers are better candidates than
outliers for being part of a training set. Additionally, using only non-outliers for
clustering with centroids tends to deliver better results than using outliers and
non-outliers. Contrary, the analyst might be interested in outliers because they
represent atypical behaviour. For instance, fraud detection is an application
where one is more interested in patterns of atypical behaviour than patterns of
typical behaviour.

Therefore, selecting a set of tuples that represent typical or atypical tuples
in a data set is a good choice to improve the result of analyses.

Yet again, determining auxiliary tuples as well as auxiliary statistics must
be efficient such that it is possible to pre-compute them in an anteceding pre-
processing or pre-mining step, as is discussed in the following.

4.3 General Pre-Process

The general pre-process includes all tasks and operations of the original KDD
process that are independent of any parameter.

Additionally, the general pre-process includes all tasks and operations of the
original KDD process that have parameters which have only a small number of
distinct values. Due to the small number of distinct values of a parameter, it is
possible to compute the result for each distinct value of a parameter.

As the pre-processing phase and the data mining phase of the original KDD
process contain parameter-independent tasks or operations, respectively, the
general pre-process consists of the two phases pre-processing and pre-mining.

The pre-processing phase of the general pre-process includes all tasks of
the pre-processing phase of the traditional KDD process that are parameter-
independent. Hence, its tasks are a subset of the tasks of the traditional pre-
processing phase.

However, the pre-mining phase includes runs of data mining algorithms that
are made in anticipation of future instances of the specific KDD process that
will make use of the results of these runs.

98 CHAPTER 4. CONCEPT OF ANTICIPATORY DATA MINING

Thus, the remainder of this section is organised as follows: Subsection 4.3.1
discusses the parameter-independency of the tasks of the pre-processing phase
which is required to become part of the pre-processing phase of the general pre-
process. Subsection 4.3.2 first shows how to efficiently pre-compute intermediate
results and auxiliary statistics, as first introduced in section 4.2. Second, it
describes efficient ways to select auxiliary tuples.

4.3.1 Pre-Processing Phase

The pre-processing phase of the general pre-process includes those tasks of the
pre-processing phase of the traditional KDD process which are independent of
any parameter. Data cleaning and data integration are parameter-independent
tasks. Therefore, they are also tasks of the pre-processing phase of the general
pre-process.

Data cleaning and data integration happens in the same way in the general
pre-process as it happens in the traditional KDD process. Hence, this section
only discusses issues of pre-processing that need some special treatment or issues
of pre-processing that arise when combining pre-processing with pre-mining. For
details concerning data cleaning and data integration for KDD the interested
reader is referred to Pyle [61, chapter 8].

Cleaning data consists of subtasks such as correcting erroneous tuples and
inserting missing values. Many data mining algorithms such as clustering algo-
rithms are unable to handle tuples having missing values. Hence, they have to
be inserted before mining them. Yet, a missing value can occur due to several
reasons. On the one hand, a correct value can exist but someone has failed to
insert this value into the database. For instance, a customer might want to be
as private as possible and omits to tell one’s gender. Although there is a correct
value for attribute gender of this customer but the company does not know it.
On the other hand, there are tuples with missing values where the missing value
is the correct value of an attribute. Such a phenomenon can occur when there
is an optional foreign key constraint in the schema of a relation. If an attribute
references to the key attribute of another relation then a missing value in a
tuple of the referencing table denotes that there is no corresponding tuple in
the referenced table. Assume that the company of the running example stores
customers that attracted new customers. It realises this by adding the identi-
fier of the attracting customer to the attracted customers. Customers having a
missing value in that attribute came in touch with the company without being
attracted by other customers.

If it is impossible or too expensive to determine the correct value of a missing
value one can estimate the missing value using some kind of regression method
such as linear regression, logistic regression, or auto-regression. Regression is
a good option to fill missing values because it does not change the expecta-
tion value of the attribute which has missing values. Otherwise, a change in
expectation value can cause a severe bias in succeeding runs of data mining
algorithms.

Integrating data from different sources is useful to avoid network traffic when

4.3. GENERAL PRE-PROCESS 99

accessing data for analyses. Additionally, integrating data avoids several net-
work related problems such as temporarily inaccessible data sources. If a data
source is temporally unavailable, one can integrate it when it becomes avail-
able again. As integration of data sources usually happens when there are no
users working with the data, no user has to wait for temporally unavailable
data sources. Contrary, if an unavailable data source which is not integrated is
needed for an analysis, the analyst has to wait until it becomes available. Once
a data source is integrated, it makes no difference whether the data source is
available or not.

When integrating data from different sources one has the options to either
pre-process the data locally on each machine that hosts a data source or pre-
process the data globally on the machine that hosts the integrated data source.
This option is not limited to pre-processing tasks. Especially, this is also an
option for pre-mining tasks, i.e. one has also the option to choose to pre-mine
data locally or globally. However, the pre-mining method which we will discuss
later depends on the sequence of accessing tuples. Hence, the results of local
and global pre-mining might differ.

Stefan Schaubschléger has shown in his master’s thesis [63] that integrat-
ing data and pre-mining data is almost commutative for large data sets. In a
test series he locally pre-mined tuples on a set of clients and integrated them
on a single server. The result of pre-mining was a tree of summarising statis-
tics. He compared this result with the result of another test series where he
integrated data first on the server before pre-mining them on the server. The
results were very similar but local pre-mining was significantly faster because
several machines simultaneously pre-mine the data. To be more specific, only
the summarising statistics at lower level of the tree of statistics differed from
each other. Hence, local pre-mining is a good option to increase the performance
of pre-mining.

4.3.2 Pre-Mining Phase

In order to split operations of data mining techniques into dependent and inde-
pendent operations, we analyse the results of the operations of the data mining
techniques we have discussed in chapter 2. If an intermediate result does not
depend on any parameter then we can pre-compute it in the pre-mining phase.
If an intermediate result depends on a parameter which has only a few distinct
values we can pre-compute all potential intermediate results in the pre-mining
phase.

This section discusses the ability of intermediate results of data mining al-
gorithms to be pre-computed. Yet for some of these intermediate results, pre-
computing is only possible if special constraints are given. As the focus of this
section is only on the general ability of pre-computing intermediate results, we
postpone the description of how to handle specific constraints to later sections
which describe approaches to pre-compute intermediate results in full. Chapter
5 presents a novel approach for clustering that is able to use a tree of sum-
marising statistics that once has been created and regularly kept up-to-date for

100 CHAPTER 4. CONCEPT OF ANTICIPATORY DATA MINING
type of algorithm | (intermediate) result depends on pre-computable?
naive Bayes classifier |frequencies of pairs of at- | chosen attributes yes
tribute values when at-
tribute have few distinct
values
parameters of joint prob- | chosen attributes yes
ability density function
of pairs of attributes
when attributes have
many distinct values
decision tree classifier | split points of attributes | chosen attributes yes
decision tree training set no
Apriori 1-itemsets chosen attributes yes
d-itemsets minimum support no
FP-growth ordering of items chosen attributes yes
FP-tree minimum support no

Table 4.1: Overview of intermediate results

multiple cluster analyses, while chapter 6 presents novel approaches of other
data mining techniques, namely pre-computing 1-itemsets for Apriori and FP-
growth, and using auxiliary data to increase the quality of decision tree building
classification algorithms and naive Bayes classification algorithms.

The section concludes with a discussion how to efficiently compute interme-
diate results and auxiliary data.

The order of this section follows the order in which section 2 has presented
algorithms of different data mining techniques, i.e. clustering algorithms, clas-
sification algorithms, and algorithms for association rule analysis. Table 4.1
presents an overview of intermediate results for various types of data mining
algorithms. Yet, clustering is missing in this table. Clustering will be discussed
extensively in chapter 5.

Intermediate Results and Auxiliary Data for Clustering Algorithms

Bradley et al. have observed that tuples which are very similar are only rarely
part of different clusters [59]. Hence, many approaches of related work we
discussed in section 3.5 consider sets of very similar tuples instead of considering
tuples individually to increase the performance of clustering algorithms.

When clustering a data set with a hierarchical clustering algorithm one re-
ceives a dendrogram in which the leaf nodes represent small groups of tuples
which are very similar to each other. If one uses this sub-clusters to replace
the original data set in another clustering algorithm, then these sub-clusters are
intermediate results of the succeeding clustering algorithm.

The initial clustering of tuples is a pre-clustering of tuples that generates a
set of intermediate results—which are sub-cluster in this specific case. Hence,
initial clustering of data is a task of the pre-mining phase.

4.3. GENERAL PRE-PROCESS 101

Cluster analyses might differ in the parameters of the used clustering algo-
rithm and the analysed data set.

While existing work can pre-compute intermediate results for cluster analy-
ses with different values of parameters, pre-computing intermediate results for
cluster analyses that need different subsets of a data set is still a challenge.
Chapter 5 presents a novel method that is capable to use a set of sub-clusters
for analyses where the analysed data might be an arbitrary subset of a fact table
that has been pre-clustered.

Intermediate Results and Auxiliary Data for Classification Algo-
rithms

As mentioned in Section 2.3.2, the construction of a naive Bayes classifier re-
quires the frequency of each pair of attribute values, where one attribute is the
class attribute and the other attribute is an attribute the analyst has selected.
Hence, these frequencies are intermediate results for constructing naive Bayes
classifiers. However, the attribute that will function as class attribute in a fu-
ture classification is typically unknown during the pre-mining phase. The same
argumentation holds for those attributes which the analyst selects as relevant
attributes to classify tuples.

Yet, the class attribute and all attributes the analyst considers as relevant
attributes must be attributes of the table that might be used for analyses in
the future. Hence, the schema of that table limits the number of attributes
which are potentially relevant. Moreover, the class attribute typically has only
few distinct values. Having too many distinct classes makes no sense for most
applications. Additionally, the training set needs to be very large if the number
of classes is high. Thus, the class attribute is an attribute that has only a few
distinct values. Hence, attribute values of the class attribute must be frequent.

Section 2.3.2 has mentioned that the number of distinct values of an attribute
must be small to receive highly accurate naive Bayes classifiers. If not, one
could use probability density functions instead of the according frequencies to
improve the classifier’s accuracy. Thus, we distinguish in our argumentation of
the ability to pre-compute intermediate results for naive Bayes classifiers into
analyses using attributes having few distinct values and attributes having many
distinct values.

If an attribute has few distinct values then most values of this attribute
should be frequent.

When pre-computing the frequencies of pairs of frequent attribute values, the
set of so-computed frequencies should also include the frequencies that a poten-
tial application of naive Bayes classification needs as values of class attribute
and relevant attributes are typically frequent.

An approach in Section 6.5 demonstrates how to derive a naive Bayes clas-
sifier using only pre-computed frequencies. An experiment to this approach
in section 7.5.2 shows that the accuracy one receives using pre-computed fre-
quencies exceeds the accuracy one receives when using the conventional way of
computing a naive Bayes classifier using a training set.

102 CHAPTER 4. CONCEPT OF ANTICIPATORY DATA MINING

Intermediate Results and Auxiliary Data for Association Rule Analy-
ses

Apriori algorithm iteratively computes candidate itemsets and tests whether
they are frequent or not. The 1-itemsets candidates depend on no parameter.
Hence, one can determine them in anticipation of an association rule analysis.
In analogy to the argumentation when discussing naive Bayes classification,
association rule analyses might differ in the attributes that identify transactions
and items, respectively. Here again, the schema limits the number of potentially
relevant attributes. Thus, one can pre-compute the frequencies of 1-itemsets for
all attributes that might be relevant.

FP-growth algorithm needs the frequencies of items to receive a strict order-
ing of items in the FP-tree. The frequencies of 1-itemsets and the frequencies
of items denote the same objects. Hence, the argumentation of Apriori also
applies to FP-growth.

Summarising, many analyses require the frequencies of specific attribute val-
ues or combinations of attribute values. Especially, analyses using categorical
attributes can benefit of pre-computed frequencies of attribute values and at-
tribute value combinations.

Contrary, algorithms that operate in multi-dimensional vector spaces such as
many clustering algorithms can profit of pre-computed statistics of sub-clusters.

Additionally, one can use pre-computed statistics for many different purposes
and for many different types of analyses. For instance, clustering algorithms can
save time using statistics instead of tuples. One can use pre-computed statistics
to derive a probability density function of which a classification algorithm can
profit of.

The discussion about the different types of data mining algorithms indicates
that many pre-computable intermediate results depend on the attributes an
analyst selects in an analysis. As in a fact table the number of attributes is
significantly smaller than the number of tuples it is possible to pre-compute
intermediate results for all attributes which an analyst might select.

Efficient Computation of Auxiliary Statistics

Many intermediate results of algorithm which the preceding subsections have
discussed have the type auxiliary statistic, as defined in definition 4.3. Note
that an auxiliary statistic can be an intermediate result as well as an auxiliary
date. The type of analysis determines the role of an auxiliary statistic.

This subsection introduces an efficient way to pre-compute auxiliary statis-
tics for being intermediate results or auxiliary data of future analyses.

Table 4.2 depicts a fact table with five attributes. Assume that attributes
A, B, and C are numerical attributes. Further assume that attributes D and E
are categorical.

As discussed in previous subsections of this section, statistics of interest
include mean, deviation, correlation, and range for each attribute. In order
to compute these statistics, it is sufficient to store count, linear sum, sum of

4.3. GENERAL PRE-PROCESS 103

squares, and extreme values of each attribute—with the single exception of cor-
relation. We will discuss this issue later when presenting the algorithm CHAD
in chapter 5 because there are several alternatives to handle correlation.

CHAD is a clustering algorithm which produces a dendrogram of clusters
in its first phase. Each entry of a node of this dendrogram stores count, linear
sum, sum of squares, and extreme values for a small subset of tuples. Thus,
each entry stores auxiliary statistics of a small and very similar junk of data.

Splitting a fact table into several small parts having very similar data is nec-
essary to select relevant data in the specific KDD process. Thereby, a selection
method applies a selection predicate to each junk of data to receive the statis-
tics of those data that fulfill the predicate. In most cases, determining those
statistics reduces to summing up the according statistics of the junks that fulfill
the selection predicate. Section 5.4 presents the selection of statistics in full.

When pre-clustering the fact table the clustering algorithm has to compare
distances of different attributes. For this purpose it needs a distance function
which makes attributes comparable. The section introducing clustering algo-
rithms has suggested to use normalised attributes when comparing distances
of different attributes. Therefore, we normalise all relevant attributes. Z-
normalisation is a very common technique of normalisation.

Due to its commonness we choose to z-normalise attributes. To do so, we
need to know mean and standard deviation of each attribute.

Mean and standard deviation might change when inserting new tuples. Con-
sequentially, the statistics we have determined are no longer z-normalised when
this happens.

Yet, a change of the mean of an attribute has no effect on the relative
distances between tuples. A change in mean affects only a linear transformation
in the vector space which is spanned by the relevant attributes.

However, a change in deviation of a single attribute can affect the similarity
of tuples—yet, only decreasing deviation can cause a problem. If the deviation
of an attribute decreases then pairs of tuples which have been very similar
before the deviation has decreased might become less similar. If a pair of tuples
becomes so dissimilar that they cannot be members of the same junk, then we
face the problem that we have tuples in the same junk that should be in different
junks. This can happen because these tuples have previously been so similar that
pre-clustering has inserted them into the same junk. If in contrast to that the
deviation of an attribute increases then tuples become more similar. We might
face tuples which now can be part of the same junk although they previously
were too dissimilar. As it is possible to merge junks, increasing deviation is not
a problem.

Fortunately, standard deviation tends to rise slightly with increasing number
of tuples. Therefore, the above mentioned problem of decreasing deviation is a
rarely occurring problem.

Frequencies of attribute values of categorical attributes are auxiliary statis-
tics needed for several types of analyses such as classification and association
rule analysis. Counting the frequencies of attribute values needs a single scan of
the data. If counting of frequencies happens in combination with pre-clustering

104 CHAPTER 4. CONCEPT OF ANTICIPATORY DATA MINING

attributes
nodeid | A B C D E

a1 by C1 dy €1
a2 by C2 dy €2

1 a3 | b3 | c3 || d3 e3
ag | by | cq || dy €4
as | bs | ¢5 || ds es
ag | bs | c6 || ds €6 .
ar | by | ¢ ds er Prg—clustemn.g

5 as | bs | cs ds es splits tuples into
as | be | co do o several . small
a10 | D10 | c10 I dio | €10 subsets in which
aj; | bin | e || din | enn tuples are most
a1s | b1z | 12 || dia 1o similar to each
ai3 | b1z | ci3 || diz | en3 other

3 a14 | b1y | c1q || dia | ewns
ais | bis | ci5 || dis | e1s
aie | bis | c16 || dig | €16
ayr | bir | a7 || dir | err

4 aig | big | c1g || dig | e
ayg | big | c19 || dig | e1g
pre-compute determine
statistics per frequencies
subset for for relevant
relevant non- categorical
categorical attributes
attributes

Table 4.2: Pre-mining a fact table

of data, no additional scan is needed. Section 6.5 demonstrates an approach
that stores the frequencies of distinct values of categorical attributes into a
buffer with fixed size in anticipation of future classifications. Yet, one can use
this approach to pre-compute frequencies needed for association rule analyses.
If the buffer is too small to store the frequencies of all distinct values, the al-
gorithm used in this approach removes infrequent attribute values for having
enough space to store the most frequent attribute values. This simplification
is tolerable because classifications and association rules analyses work only well
with frequent values. The experiments of this dissertation have shown that the
accuracy of classifiers using pre-counted frequencies is very high.

4.3. GENERAL PRE-PROCESS 105

sum (&), sum (b), sum

(c), sum (d)
7 [al, 1l lel, |4

sum (a*a), sum (b*0),
sum (¢*c), sum (d*d)

sum (a), sum (b), sum sum (a), sum (b), sum
{c). sum {d) (c), sum (d)
5 [al, b, [¢]. [d] [3 [al, 8], el &
sum (2*a), sum (b*D), sum (a*a), sum (b*b),
sum (¢*c), sum (d*d) sum (c*c), sum (d*d)
sum (a), sum (1), sum sum (a), sum (b), sum sum (a), sum (b), sum sum (a), sum (b), sum
(<), sum (d) {c), sum (d) (), sum (d) (©), sum (d)
1 [al. b, <, [d] 1 [al. B, . |d! 1 [al, Bl <], [d} 1 [al, 01, el d]

sum (@*a), sum (6°0), sum (a*a), sum (6°D), sum (a*a), sum (0*5), sum (a*a), sum (b*D),
sum (c*c), sum (d*d) sum (c*c), sum (d*d) sum (¢*c), sum (d*d) sum {c*c), sum (d*d)

Figure 4.2: Pre-clustering of data returns a dendrogram of sub-clusters with
auxiliary statistics

Efficient Selection of Auxiliary Tuples

Due to the number of potential auxiliary tuples storing all potential tuples is
inappropriate. Hence, storing a representative selection of potential auxiliary
tuple solves this problem.

When the data set is partitioned in areas of different density, it is inefficient
to store the same fraction of potential auxiliary tuples for each area. Very dense
areas are populated with tuples that are very similar to each other. Thus, a
smaller portion of tuples is needed to represent the variety of tuples in these
areas. Contrary, less dense areas need more auxiliary tuples to represent the
tuples of these areas.

The probability density function over the tuples of the data set is able to
keep the information about dense and sparse areas. That kind of information
is necessary to choose auxiliary tuples of dense areas more likely in instances of
the specific KDD process. Otherwise, the so-chosen sample would no longer be
representative.

As the probability density function might be an arbitrary function in general,
it has to be approximated. As any probability function can be approximated by
a set of Gaussian distributions [64, Section 3.2 kernel estimators], one can parti-
tion the data set with a partitioning clustering algorithm to receive a Gaussian
distribution for each cluster!. The less the average distances within a cluster the
better is the approximation with the probability density function. EM cluster-
ing algorithm [12] is an algorithm that one can use to searches for the optimal
Gaussian mixture model [66][65].

Figure 4.3 illustrates the concept of auxiliary tuples. It visualises two dimen-
sions of an excerpt of one of the data sets used for the experiments in chapter 7.

Tn Subsection 5.4.4 we will discuss assumptions and statistical approximations and their
justification in detail.

106 CHAPTER 4. CONCEPT OF ANTICIPATORY DATA MINING

elf

Figure 4.3: Auxiliary tuples a-h in an excerpt of the data set of Figure A.7

»

A

probability density

Figure 4.4: Probability density of one dimension of of figure 4.3

The boxes marked with a to h emphasise the tuples in their centres. We want
to use these tuples to discuss auxiliary tuples.

Tuples b, d, and the cluster of tuples e, f, and g are located in dense regions
of the data set. In contrast to tuple a these tuples are in the centre of a dense
region. Thus, they are typical representatives of that data set. As the tests
in chapter 7 show selecting these kind of tuples as training set is beneficial for
classification. Thus, they are auxiliary tuples.

The dense area around tuples e, f, and ¢ contains many tuples that might
be auxiliary tuples. Yet, selecting all of them into the set of auxiliary tuples
would mean to select the majority of auxiliary tuples that are all very similar.

Tuples ¢ and h are located in sparse areas of the data set. Thus, they are

potential outliers.

Special Handling for the Specific KDD Process

In order to use auxiliary tuples or auxiliary statistics in analyses of future in-
stances of the specific KDD process, these statistics and tuples must either be

4.3. GENERAL PRE-PROCESS 107

applicable in any analysis or there must exist an appropriate statistic or tuple
for each potential analysis. In other words, one either computes a statistic that
can be used in all potential analyses or one computes all values a statistic might
assume for all analyses.

Potential analyses which use the same data set might differ in the specific
subset of the data set the analyst is interested in. Moreover, the analyst can
perform operations on the data which transform it such as aggregating tuples.

Aggregating data is a potential operation of an analyst on a data set which
needs special handling during the general pre-process. For instance, an analyst
of the company of the running example might analyse purchases per customer.
For doing so, he/she selects data from the sales table with an SQL-statement
and groups tuples according the identifier of customers.

Yet, if the attribute which the analyst uses for grouping has many distinct
values the re-computation of statistics to fit the group-by-condition is error-
prone.

As the number of attributes which the analyst might use to group tuples is
limited, the option of computing statistics for all potential attributes the analyst
might choose for grouping remains.

4.3.3 General Pre-Process of the Running Example

The section describing the general pre-process concludes with this subsection
which demonstrates how to implement the concepts presented so far in the
running example.

For this purpose, Table 4.3 depicts an excerpt of the fact table sales. It
shows the data of six customers which have ordered literature. In this excerpt
only customer 4711 has made more than one purchase.

The company wants to pre-process the fact table sales to improve speed
and quality of KDD analyses in the future. Thereby, it pre-computes auxiliary
statistics and pre-selects auxiliary tuples. Therefore, the succeeding subsections
discuss pre-computing auxiliary statistic and pre-selecting auxiliary tuples, re-
spectively.

Pre-Computing Auxiliary Statistics

In contrast to auxiliary tuples, not all attributes are relevant for being pre-
computed in form of auxiliary statistics. Therefore, we want to discuss how
suitable specific attributes of the fact table are for being part of an analysis to
pre-compute statistics which base on those attributes.

Attribute units denotes how many units of a specific product a customer
has bought in a specific sales transaction. The value of this attribute is needed
to determine many properties of sales transactions such as the total price of
a market basket, or the number of goods purchased in a transaction. Thus,
it is important to store statistics of this attribute for various future analyses
including cluster analyses and classifications.

108 CHAPTER 4. CONCEPT OF ANTICIPATORY DATA MINING

Attribute priceperunit is needed in combination with attribute units for some
analyses which examine revenue of sales transactions. Hence, pre-computing
statistics of this attribute is necessary, too.

As attribute wunits is a product-specific attribute, we must not add units
of different products if we want to be able to analyse purchasing behaviour
concerning specific products or correlation of sales of products. Moreover, we
have to consider the sold units of each product individually, i.e. as a separate
attribute. The same argumentation holds for attribute priceperunit. If there
are too many distinct products one can limit the number of attributes by using
attributes for units and price per unit for each product group, only.

Attribute timestamp is needed for analyses which examine temporal changes
of purchasing behaviour of customers. In special, this attribute is needed when
an analyst wants to select data of a specific time frame. Hence, pre-computing
this attribute is necessary to be able to select other attributes appropriately.

Attribute prid references to the product a customer has purchased in a spe-
cific sales transaction. The product identifying attribute is the most important
attribute when performing a market basket analysis. Due to its many distinct
values, attribute prid is no suitable attribute for other types of analyses beside
market basket analysis. Too many distinct values make classification of cate-
gorical prone to over-fitting. Too many distinct products are also a problem for
cluster analyses because there needs to be a pre-defined distance between each
pair of products. Product groups are much better suited to be used in clus-
ter analyses or classifications because their number of distinct values is much
smaller.

Hence, we pre-compute the frequencies of all distinct values of attribute prid
to speed up the computation of association rule analyses.

In order to improve other types of analyses in which the analyst intends
to examine products we add the product group to the attributes of the fact
table and pre-compute auxiliary statistics for this newly-introduced attribute.
As a product group can have a super-ordinate product group there can exist
several product groups to a given product. For being deterministic we assign the
product group to a tuple which has the lowest level in the taxonomy of product
groups as depicted in figure 4.5. If, for instance, product 8874 is a belletristic
novel then it is also a book and a product. Yet, belletristic is the most specific
product group that applies to product 8874.

The customer identifier (cid) is important to group sales transactions by
customer. Yet, it is uninteresting as attribute of analyses because typically
there are not enough data of a single customer for data mining. Hence, we omit
computing frequencies and statistics of this attribute.

For pre-clustering the fact table we need to z-normalise all relevant at-
tributes. Z-normalisation requires numerical scale of attributes. Yet, only at-
tributes units and priceperunit are numerical attributes. The product identifier
prid, for instance, is a categorical attribute although all its values are numbers.
Yet, we can erroneously consider categorical attributes with numbers as numer-
ical attributes and pre-cluster them. If we do so, we have to keep in mind that
all queries using such an attribute select only a single value of this attribute,

4.3. GENERAL PRE-PROCESS

units | priceperunit timestamp prid | shopid | «cid
1 29.95 2004-12-06 14:30:10 | 6194 1 4711
1 15.95 2004-12-06 14:30:10 | 8874 1 4711
1 14.55 2004-12-06 14:30:10 | 1460 1 4711
1 49.95 2005-02-11 09:15:26 | 8874 1 4711
1 61.80 2005-02-11 09:15:26 | 9997 1 4711
1 49.95 2005-02-11 10:30:00 | 3526 1 0815
1 49.95 2005-02-11 11:15:34 | 2722 1 0515
1 37.50 2005-02-11 11:57:12 | 8945 1 1704
1 15.85 2005-02-11 11:57:12 | 820 1 1704
1 49.95 2005-02-11 13:30:25 | 9585 1 7007
1 69.95 2005-02-11 13:30:35 | 8649 1 1188
1 89.95 2005-02-11 15:30:45 | 2412 1 2468
1 59.95 2005-02-11 15:30:45 | 506 1 2468
4 49.95 2005-02-11 15:30:45 | 1975 1 2468
3 49.95 2005-02-11 15:30:45 | 2606 1 2468
1 69.95 2005-02-11 15:30:45 | 1980 1 2468
1 88.95 2005-02-11 15:30:45 | 1307 1 2468
1 49.95 2005-02-11 15:30:45 | 1909 1 2468

Table 4.3: Excerpt of tuples of fact table sales

109

110 CHAPTER 4. CONCEPT OF ANTICIPATORY DATA MINING

« 7

i.e. only operator “=" is valid. Range queries require ordinal attributes. That
way, we pre-process the attributes prid and shopid.

We can transform attribute timestamp to be a numerical attribute when
we convert it into the time which has elapsed since a given start date. When,
later on, tuples of sales are created, these tuples will have a steadily increasing
value of the transformed attribute timestamp. Hence, standard deviation of
this attribute continuously increases. We suggest to determine the standard
deviation for an initial data set and use this deviation for a longer period of
time. To face increasing deviation we suggest to update standard deviation in
regular intervals. This process includes re-computing auxiliary statistics and
determining the new value of standard deviation. Within an interval we omit
any update of standard deviation.

For being able to handle selection predicates that contain a group-by clause,
we need to compute each statistic for all potential group-by clauses having many
distinct values. Contrary, if the the analyst wants to aggregate by an attribute
which has only few distinct values, one can realise this grouping by selecting
each distinct value. Consider attribute shopid which has few distinct values
compared to the total number of sales. We can compute the total sales of each
shop. All we must do is to perform several selection operations—one for each
shop. The same proceeding is possible for attribute productgroup we additionally
introduced. Therefore, the remaining attributes the analyst can use for grouping
are attributes timestamp and cid. Or in other words, an analyst can analyse
customers, transactions, or parts of a sales transaction. If an analyst uses no
group-by clause, he/she analyses parts of a transaction. If he/she uses a group-
by clause including attributes timestamp and cid, he/she analyses transactions.
Finally, if he/she uses a group-by clause including only attribute cid then he/she
analyses the total sales of a customer. As there are only three group-by clauses
with large sets of distinct values we pre-compute the statistics for each of these
settings.

Tables 4.4, 4.5, and 4.6 depict the fact table after it has been pre-processed
for pre-clustering for the three different settings mentioned above. All attributes
of these tables are z-normalised. For instance, value —1 of sum sales online
journal corresponds with the un-normalised value 0. Hence, the mean must
be positive. As each attribute might have different deviation and mean, the
same un-normalised value can correspond with a different value of a normalised
attribute, i.e. a different value per differently normalised attribute. Hence, the
value 0 has three different normalised values in table 4.5, namely -0.9, -1, and
-1.1. As the tables depict only an excerpt of the fact table, we are unable to
compute the real values of mean and deviation. Thus, the tables contain random
but realistic values. Primary keys have been removed because they are irrelevant
attributes for data mining. To be able to find the corresponding tuples in the
unprocessed fact table, the right-most column contains the missing primary
key. Finally, we receive three dendrograms which we can use in the specific
KDD process.

Tables 4.5 and 4.6 have more attributes than the original fact table. To be
more specific, the newly introduced attributes are horizontal aggregates of the

4.3. GENERAL PRE-PROCESS 111

units | priceperunit | timestamp | product group | shopid | customer
-0.01 -0.1 -1.5 -0.5 0 4711
-0.01 -1.15 -1.5 -0.5 0

-0.01 -1.25 -1.5 -0.5 0
-0.01 0.2 1.703 -0.5 0
-0.01 0.75 1.703 -0.5 0
-0.01 0.2 1.703 -0.5 0 0815
-0.01 0.2 1.703 -0.5 0 0515
-0.01 0.05 1.704 -0.5 0 1704
-0.01 -1.2 1.704 -0.5 0
-0.01 0.2 1.705 -0.5 0 7007
-0.01 0.8 1.705 -0.5 0 1188
-0.01 1.0 1.708 1.5 0 2468
-0.01 0.6 1.708 1 0

0.9 0.2 1.708 1 0

0.7 0.2 1.708 1.2 0
-0.01 0.8 1.708 1.2 0
-0.01 0.95 1.708 1.5 0
-0.01 0.2 1.708 2 0

Table 4.4: Excerpt of tuples of pre-processed fact table sales

attribute units and product group. Using horizontal aggregation is very common
when preparing a data set for KDD [57]. Here, the tables show only the top-
most level of product groups due to restricted space. Yet, typically one would
use the bottom level of the taxonomy of product groups to define an attribute
per product group. By doing so, one receive a data set which has some dozens
of attributes—which is still a small number of attributes.

Some analyses need auxiliary tuples. Hence, the following subsection
presents the pre-selection of auxiliary tuples for the analyses mentioned when
we introduced the running example.

Pre-Selecting Auxiliary Tuples

Auxiliary tuples represent a set of tuples sharing a specific condition such as
that they are outliers or typical representatives of a data set. In contrast to
auxiliary statistics, all attributes are relevant for auxiliary tuples.

The algorithm CHAD as presented in chapter 5 can determine auxiliary
tuples as by-product of its first phase. CHAD can determine auxiliary tuples
as follows: First, we define a buffer for typical representatives of the fact table
we want to pre-process and a second buffer for atypical representatives—i.e.
outliers.

112 CHAPTER 4. CONCEPT OF ANTICIPATORY DATA MINING
sum units | sum units sum sales | sum sales | timestamp
book article article online

journal
0.3 -0.9 -1.1 -1 -1.5
0.25 -0.9 -1.1 -1 1.703
0.01 -0.9 -1.1 -1 1.703
0.01 -0.9 -1.1 -1 1.703
0.25 -0.9 -1.1 -1 1.704
0.01 -0.9 -1.1 -1 1.705
0.01 -0.9 -1.1 -1 1.705
-2.5 3.1 3.5 5.3 1.708

customer

4711

0815
0515
1704
7007
1188
2468

Table 4.5: Excerpt of tuples of pre-processed fact table sales grouped by cus-
tomer and time

sum units | sum units sum sales | sum sales | customer
book article article online
journal
0.4 -0.9 -1.1 -1 4711
0.02 -0.9 -1.1 -1 0815
0.02 -0.9 -1.1 -1 0515
0.28 -0.9 -1.1 -1 1704
0.02 -0.9 -1.1 -1 7007
0.02 -0.9 -1.1 -1 1188
-2.2 3.1 3.5 5.3 2468

Table 4.6: Excerpt of tuples of pre-processed fact table sales grouped by cus-

tomers

4.3. GENERAL PRE-PROCESS 113

‘ product ‘

‘ book ‘ ‘ article ‘ ‘ online journal
[
[| ‘

.. fi .
‘ belletristic ‘ ‘ scientific ‘ ‘ webarticle ‘
monography

Figure 4.5: Taxonomy of product groups

Each time CHAD creates a new leaf node we temporarily store the first tuple
of that leaf node in a temporary table. Depending on the size of the buffer, we
also store the next tuples which CHAD tries to insert into the same leaf node
until the number of tuples in that node exceeds the average number of auxiliary
tuples per node.

We can compute the number of auxiliary tuples per node as quotient of
buffer size and maximum number of leaf nodes. By doing so, we receive a table
which contains a set of tuples where each node donates one or up to a fixed
number of tuples to this table.

Yet, there is no classification which tuple represents typical or atypical tu-
ples. Therefore, we test how dense tuples are in the neighbourhood of the tuples
in the buffer. If they are very dense, we consider tuples as typical representa-
tives. Otherwise, we consider them as outliers.

Some algorithms such as k-means are sensitive to outliers which means that
the existence of outliers decreases the quality of results [16, p. 54]. Hence, outlier
removal can improve the quality of outlier-sensitive clustering algorithms such
k-means. Yet, we store outliers in a separate buffer because an analyst might
need them for an analysis such as a fraud detection. If we do so, an analyst
might use outliers if needed but the analyst can remove them if that would
increase an analysis’ quality.

For determining the density of the neighbourhood of a leaf node, we deter-
mine the average distance between the centroids of leaf nodes. As CHAD puts
the nearest nodes into the same branch of a cluster tree, most of the nodes in
the neighbourhood of a leaf node are on the same branch or a very near branch.
If the average distance within the neighbourhood of a leaf node is higher than
the average distance of all leaf nodes we consider that leaf node as outlier. Con-
sequentially, we move the temporarily stored tuples of this leaf node into the
buffer we reserved for outliers. If, later on, additional tuples are inserted into
the tree in order to update the tree according to changes of the data set, then
tuples that are outliers are inserted into the buffer. If the buffer is full, CHAD
randomly removes outliers from the buffer such that each outlier has the same
chance of being in the buffer. Therefore, the buffer stores a random sample of
outliers.

With auxiliary statistics being continuously pre-computed and auxiliary tu-
ples being pre-selected, we can use both of them to compute the results of

114 CHAPTER 4. CONCEPT OF ANTICIPATORY DATA MINING

analyses in an instance of the specific KDD process, as demonstrated in the
following section.

4.4 Specific KDD Process

The specific KDD process is very similar to the original KDD process. To
be more specific, both processes share the same result and their phases are
identical—although the number of tasks in the specific KDD process is reduced
compared to the traditional KDD process.

However, the specific KDD process primarily uses intermediate results and
auxiliary data of the general pre-process to compute the results of KDD analy-
ses.

When changing from the traditional KDD process to the specific KDD
process, the main step to do is to adapt operations and algorithm in a way
such that they are able to process intermediate results and auxiliary data.

Therefore, this section discusses necessary modifications of data mining al-
gorithms and operations such as selection and transformation of data. It first
presents necessary changes of the pre-processing phase before it presents nec-
essary adaptations of data mining algorithms. Note that evaluating results is
out of the scope of this section because there are no changes necessary in that
phase.

4.4.1 Specific Pre-processing

Pre-processing in the traditional KDD process includes all tasks that process
data before applying data mining algorithms on them. These tasks include
cleaning, integrating, selecting, and transforming data.

Some pre-processing tasks of the traditional KDD process such as cleaning
and integrating are independent of any parameter. Hence, the general pre-
process can completely process them. Consequentially, there is no longer a need
to clean or integrate data during specific pre-processing.

Yet, other pre-processing tasks such as selecting and transforming data de-
pend on parameters. Yet, the general pre-process could pre-compute interme-
diate results and auxiliary data which both are independent of any parameter.

Data mining algorithms of the specific KDD process require correctly se-
lected and transformed intermediate results in the same way as data mining
algorithms of the traditional KDD process need correctly selected and trans-
formed tuples. Thus, the specific pre-processing phase of the specific KDD
process includes the tasks selecting and transforming.

This section first introduces the general principle of selecting data using
intermediate results and auxiliary data. In analogy to that, it 4.4.1 discusses

the general principle of transforming data to fit the requirements of a specific
KDD analysis.

4.4. SPECIFIC KDD PROCESS 115

Selecting Data Using Pre-Processed Intermediate Results and Aux-
iliary Data

Selecting data is necessary in many instances of the KDD process because only
a subset of available data is relevant in the scope of a given analysis. A data
warehouse contains many tables including few but large fact tables and a lot of
dimension tables. An analyst might choose any subset of any set of joint tables.
Only the expressiveness of the used query language and the analyst’s creativity
might limit the analyst in specifying queries.

The pre-mining phase has already processed intermediate results for all kind
of potential analyses. To be more specific, the pre-mining phase computed these
intermediate results using all data from a fact table. Yet, if only a fraction of
that table is relevant in an analysis, these intermediate results are inadequate
for that analysis.

As the pre-computed intermediate results are inappropriate to be used in
a specific analysis except that this analysis needs all data from a fact table,
there is a need for a method to process intermediate results in a way such
that one receives those intermediate results one would have received when one
had selected data first and would have computed intermediate results using
the so-selected data later. In other words, selecting data first and computing
intermediate results on the one hand and computing intermediate results on the
other hand should be commutative.

However, in general selecting data and computing intermediate results are
not commutative. Yet, we can define a selection method which produces inter-
mediate results that are very similar to those intermediate results one would
receive when computing intermediate results using previously selected data.
There is only one requirement the data set must meet: attributes have to be
non-categorical. Yet, the clustering algorithms that use intermediate results
are also limited to non-categorical attributes. Hence, using non-categorical at-
tributes is no additional constraint. We will see later, that the more tuples fulfill
a selection predicate, the more similar are selected pre-computed intermediate
results and intermediate results of selected tuples. In contrast to that, point
queries are subject to low quality of the selection method. Yet, typical queries
in the context of data warehouses are queries that select large intervals of data
such as all data of sales in a range of quarters. Thus, the requirements for
selecting pre-computed intermediate results with high quality are met in the
context of data warehouses.

To be more specific, the selection method for intermediate results must face
the following sub-problems:

Selection of auxiliary statistics If an intermediate result or an auxiliary
date needed for an analysis has the type auziliary statistic then the selec-
tion method needs to re-compute that statistic in a way that the resulting
statistic approximately assumes the same value as one would receive when
one had selected tuples first and had computed the value of the statistic
using these tuples. Note that an auxiliary statistic as defined in defini-
tion 4.3 can be an intermediate result in one analysis while it can be an

116 CHAPTER 4. CONCEPT OF ANTICIPATORY DATA MINING

auxiliary date in another analysis.

Selection of auxiliary tuples If an intermediate result or an auxiliary date
needed for an analysis has the type auxiliary tuple then the selection
method can test whether an auxiliary tuple satisfies a selection predicate
in the same way as an SQL-processor would do when querying a relational
database. Yet, this is only true as long as the selection predicate contains
no aggregate functions.

If the selection predicate includes aggregate functions, the result of many
common functions can be approximated with some auxiliary statistics, as
demonstrated below.

Mixed selection of pre-mined tables and untreated tables The con-
cept anticipatory data mining only includes pre-computing intermediate
results and auxiliary data for very large tables such as fact tables of a data
warehouse because due to the sheer size of these tables scanning them
needs much time. In contrast to that, scanning small tables the tuples
of which fit entirely into the main memory of the analysing computer
system is so fast that a potential improvement due to anticipatory data
mining does not justify the overhead needed to pre-compute intermediate
results and auxiliary statistics.

If an analysis needs data of more than one table, then it is possible that
there exist pre-computed intermediate results of some of these tables while
there are other tables where there are no intermediate results available.

Yet, the analyst should not notice which table has pre-processed interme-
diate results and which not.

Selecting auxiliary statistics can be very complex depending on the selection
predicate. A complete algebra that replaces the relational algebra for auxiliary
statistics would be necessary for selecting auxiliary statistics using any kind of
selection predicate.

Yet due to lack of space and time, we introduce a simplified relational algebra
for auxiliary statistics that includes only the constructs which analysts most
commonly use.

In a project with NCR Teradata we analysed the behaviour of analysts while
they analyse data. We found out that analysts analyse a data set aspect by
aspect. In each case the subset an analyst has selected for analysis could have
been generated by an OIAP operation. This is interesting as no OLAP system
was used to access data. Moreover, analysts were free to specify any query.

Therefore, the author of this dissertation argues to limit the degrees of free-
dom to specify queries on pre-computed intermediate results and auxiliary data
to the following types of conditions:

slice, dice Slice and dice operation limit the range of attribute values fulfilling
a selection predicate to a specific subset of the range of an attribute or
a set of attributes, respectively. When considering the fact table as a

4.4. SPECIFIC KDD PROCESS 117

multidimensional cube, slice and dice cuts sub-cubes out of the original
cube. In terms of relational algebra, one can express a slice and dice
operation as a conjunction of a set of conditions having the form attribute
operator value where operator might assume one of the values {<, <, =,>

, >t

drill-down, roll-up Drill-down and roll-up operations change the level of ab-
straction of a multi-dimensional cube. Drill-down operation refines the
level of abstraction and roll-up coarsens it, respectively. Using SQL, one
can realise drill-down and roll-up respectively by putting an attribute
which represents the level of abstraction in a specific dimension into the
group by clause. Subsection 4.3.2 has discussed how to handle group-by
when the number of distinct values of the grouping attribute is high. If
that number is low, one can implement a group-by of pre-computed sta-
tistics as demonstrated in section 5.4

These types of statements are sufficient to formulate range queries used for
analysing data. However, if a query fails to satisfy the above-listed form, one
cannot benefit of pre-computed auxiliary statistics. One could simplify a com-
plex statement of a query to receive a query which satisfies the form specified
above. If this is impossible, one has to scan the data once more.

The clustering algorithm presented in chapter 5 contains three phases of
pre-clustering, selecting and transforming the pre-clustered data, and final clus-
tering. Pre-clustering is a pre-mining technique, selecting and transforming
are techniques of the specific pre-processing phase, and the final clustering is
a technique of the specific data mining phase, as will be discussed in Section
4.4.2.

The intermediate results of a cluster analysis using intermediate results con-
sist only of auxiliary statistics. Hence, the selection method of the clustering
algorithm presented in chapter 5 describes the process of selecting auxiliary sta-
tistics in detail. As that section will present selecting auxiliary statistics in full,
this section presents only its basic idea.

The basic idea of selecting auxiliary statistics is to break the data set into
several small junks in which tuples are very similar to each other. If we have
split the data set into several small junks we can test each junk if it fulfills a
given selection predicate completely, partially, or not at all. When a junk fulfills
a predicate partially, we can estimate the most likely value of the statistic.

The selected statistics can assume wrong values due to bad estimation of
those junks that only partially fulfill a selection predicate. Yet, if the number of
junks which completely fulfill the selection predicate is large, then the error is
minor—even in worst case. Additionally, errors during estimation of one junk
and another junk can compensate each other which means that the average error
is low.

A short example shall illustrate the idea mentioned above: Assume that
we have to compute the average value of a specific attribute of a subset of
data. Then, the sum of values of that subset and the number of tuples in that
subset are sufficient to compute the average value. By testing each junk of

118 CHAPTER 4. CONCEPT OF ANTICIPATORY DATA MINING

tuples if it satisfies the selection predicate, we receive those junks that fulfill the
selection predicate completely or partially. We add the sums of all junks that
completely fulfill the predicate to receive an intermediate sum. For each junk
that fulfills the predicate only partially, we estimate the most likely sum and
add it to the previously computed intermediate sum. If we proceed the same
way to determine the selected count of tuples we can derive the average value
as quotient of our estimates for sum and count.

Transforming Data Using Pre-Processed Intermediate Results and
Auxiliary Data

Transforming data becomes necessary when a given analysis needs attributes
having a specific scale or a cluster analysis requires normalisation of tuples.

Making a continuously scaled attribute discrete is a common transformation
of attributes because several algorithms such as decision tree algorithms need
discretely scaled attributes. Even those decision tree algorithms that can handle
continuously scaled attributes implicitly make attributes discrete when they
search for appropriate split points.

Performing a cluster analysis with only a single attribute selected is a proper
method to find potential split points of that attribute, as shown by the experi-
ments in section 7.5.

Therefore, clustering is a solution to receive discrete attributes. Hereby,
the affiliation to a specific cluster denotes the value of the discrete attribute.
Following this approach, one would introduce an attribute denoting the cluster
affiliation of tuples. One can determine the affiliation to clusters of tuples.
Better, one can determine the affiliation to clusters of sub-clusters, i.e. the junks
which the pre-mining phase has found. To do this, one must add an attribute
to the sub-clusters. This means to add linear sum, sum of squares, and extreme
values of this attribute to the set of pre-computed statistics of each sub-cluster.
When assigning a sub-cluster to a cluster, the clustering algorithm assigns all
tuples of that sub-cluster to the cluster, i.e. all tuples of a sub-cluster are part
of the same cluster. Hence, one can compute the linear sum of the attribute
which identifies cluster affiliation as product of the number of tuples in that
sub-cluster and a fictive cluster number. Analogously, one can proceed with
sum of squares and the extreme values of that attribute—the extreme values
are identical with the fictive cluster number.

Several analyses require normalised attributes for comparing attributes—
this is especially necessary when the ranges of attributes significantly differ in
size. After the selection of pre-processed data the so-selected data are no longer
normalised when the selection predicate selects only a subset of the original data
set. Only in rare cases mean and deviation of all attributes remain the same.
Hence, re-normalisation is necessary to receive normalised intermediate results
and auxiliary data for a specific KDD analysis such as a cluster analysis.

After re-normalisation the mean of all selected tuples must equal zero; vari-
ance and standard deviation must assume the value 1. Re-normalising means
to compute mean p and deviation o of all selected tuples once more which are

4.4. SPECIFIC KDD PROCESS 119

necessary to apply the z-normalisation (x — p)/o. The z-normalisation is a
simple linear transformation which one can apply to all statistics and tuples
to receive the according normalised statistics and tuples. The argumentation
of section 4.3.2 holds for re-normalising attributes as it does for normalising
attributes: Decreasing deviation can negatively affect the result of an analysis
while increasing deviation has no negative effect.

Although many cluster analyses need normalised attributes, there also exist
analyses that need un-normalised attributes. When analysing geological data,
one must not normalise latitude and longitude. Normalising coordinates of
countries the extension of which is in one dimension larger than in the other one
would mean to penalise the distances in one direction and favouring the other
one. Hence, it is necessary to undo the normalisation of attributes if needed.
Yet, the process of undoing normalisation is also a linear transformation. It
happens as described above after selecting general cluster features and before
specific data mining.

Although an analyst typically knows when normalisation makes no sense
for a specific attribute, we use the combination of normalisation an un-
normalisation to avoid human expert interaction during the pre-general process.
In other words, the person that starts the general pre-process needs no knowl-
edge about the pre-processed data.

4.4.2 Specific Data Mining

The specific data mining phase of the specific KDD process and the data mining
phase of the traditional KDD process share the same tasks. In both of them,
analysts apply sophisticated (data mining) algorithm on data sets to find pat-
terns which the analysts evaluate for their interestingness. Yet, the algorithms
used in the specific data mining phase must be able to handle pre-computed
intermediate results. Further, they should be able to make beneficial use of
auxiliary data to improve the quality of the patterns they find. Hence, it is
necessary to adapt those algorithms which not yet satisfy this requirement.

This subsection sketches the basic principles of approaches that adapt data
mining algorithm to be able to use intermediate results and auxiliary data in-
stead of the original tuples which the pre-mining phase has used to pre-compute
the intermediate results. The following two chapters of this dissertation, namely
Chapter 5 and Chapter 6, will describe those approaches in detail.

As the data mining technique influences the way one has to adapt algorithms,
we spread the discussion of necessary adaption over the next subsections—with
a subsection for each data mining technique, as discussed in Chapter 2.

Specific Clustering

Many of the approaches we discussed in section 3.5 use summarised statistics to
compute the result of a cluster analysis. When re-considering these approaches
we observe that the statistics these approaches use are a subset of the aux-
iliary statistics which phase pre-mining has pre-computed and phase specific

120 CHAPTER 4. CONCEPT OF ANTICIPATORY DATA MINING

pre-processing has processed, respectively. Hence, anticipatory data mining is
an extension of these approaches because it makes those algorithms applicable
to a broader set of applications. These approaches are limited to applications
that use all tuples of a specific data set. Anticipatory data mining enables these
algorithms to process also subsets of that data set. All one has to do is to
replace the generation of statistics with the result of the phases pre-mining and
specific pre-processing.

The algorithm CHAD which is short for Clustering Hierarchically Aggregated
Data is an algorithm which implements the concept anticipatory data mining for
cluster analyses. To be more specific, it contains three phases: The first phase
pre-mines tuples. The second phase specifically pre-processes the statistics of
the first phase. Finally, the third phase specifically clusters the pre-processed
statistics. Currently, the proof-of-concept prototype implements k-means as
specific clustering technique. Yet, the concept is not limited to k-means. We
have already discussed several approaches that uses clustering features for EM
clustering in Section 3.5. As CHAD can create clustering features, one can use
the approaches mentioned there to use the result of CHAD’s second phase for
EM clustering. Additionally, Brecheisen et al. show in [7] how to use data
bubbles for density-based clustering. Once more, as one can easily convert a
clustering feature into a data bubble, one also can use the result of CHAD’s
second phase for density-based clustering. Chapter 5 presents the clustering
algorithm CHAD in full.

Specific Classifying

Unlike clustering and association rule mining, the data mining technique clas-
sification uses only a fraction of a data set to train a classifier. Hence, finding
highly accurate classifiers is more important than making classification algo-
rithms scalable.

Carefully selecting the training set can improve the quality of classifiers.
The set of auxiliary tuples include tuples which are either typical or atypical
representatives of the data set they were selected from.

Experiments show that choosing the training set from auxiliary tuples which
are typical representatives causes a higher accuracy than choosing tuples ran-
domly from the data set. See section 7.5 for details of these experiments.

Furthermore, using a selection of pre-selected auxiliary tuples as training
set for a classifier is beneficial because there is no need to access the persistent
storage to randomly retrieve tuples as auxiliary tuples can be stored in a small
cache which is fast to read.

If the used classification algorithm is naive Bayes then one can use auxiliary
statistics to compute a naive Bayes classifier. Section 6.5 discusses an approach
which uses only auxiliary statistics to compute a naive Bayes classifier.

4.4. SPECIFIC KDD PROCESS 121

Specific Association Rule Mining

The pre-mining phase has pre-computed the candidates of 1-itemsets as it pre-
counted the frequencies of attribute values and pairs of attribute values. Hence,
algorithms mining association rules can start the computation of association
rules the step after determining 1-itemsets.

Apriori algorithm first checks the frequency of candidates of 1-itemsets and
determines frequent 1-itemsets. After this, it continues to iteratively gener-
ate and test itemsets with increasing number of items until there are no ad-
ditional frequent itemsets. Hence, this involves several additional scans. Yet,
pre-computing auxiliary statistics has saved exactly one scan of the fact table.

FP-growth also checks the frequency of the pre-computed 1-itemset candi-
dates first. Then, it orders the frequent itemsets by their frequency. Finally, it
builds the FP-tree as described in Section 2.4.4. Using pre-computed auxiliary
statistics saves exactly one out of two scans of the fact table. Hence, it saves
half of disc accesses.

4.4.3 Specific KDD Process of the Running Example

As mentioned in previous subsections of this chapter, the analyst should notice
nothing but significant increase in speed or quality when using anticipatory data
mining. Especially, he/she should not have to do additional tasks. Hence, this
section describes the tasks an analyst of the company of the running example
has to do when doing the analyses mentioned in Section 1.2—which are the same
when using the traditional method or using anticipatory data mining. Yet, the
system that processes the tasks the analyst specifies has to act differently in the
background. Hence, we will also discuss how the mining system processes these
tasks.

122 CHAPTER 4. CONCEPT OF ANTICIPATORY DATA MINING

Chapter 5

Anticipatory Clustering
Using CHAD

Contents

5.1 Architecture of CHAD 124
5.1.1 Comparing BIRCH and CHAD 127
5.1.2 Sufficiency of Summarising Statistics 129
52 CHADPhasel............00vnn 131
5.2.1 Continuously Inserting Tuples 132

5.2.2 Making CHAD Applicable in Distributed Environ-
ments L 133
53 CHADPhase2 134
5.4 Selecting General Cluster Features 135
5.4.1 Definition of Selection Operation 135
5.4.2 Pruning the Selection Predicate 138

5.4.3 Using the Bounding Rectangle of a General Cluster
Feature for Selection 139

5.5
5.6

5.4.4 Estimating the New Attribute Values of Leaf Node
Entries of Attributes That are Not Part of the Se-

lection Predicate 140
5.4.5 Determining the Proportion of Tuples Fulfilling a

Term of the Selection Predicate 144
5.4.6 Estimating the Statistics of Attributes that are Part

ofaTerm 149

5.4.7 Updating the Borders of the Bounding Rectangle . . 152

Projecting a General Cluster Feature Tree 153
Transforming General Cluster Features 154
5.6.1 Linear Transformation 156
5.6.2 Non-linear Transformation. 158

123

124 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

5.7 Deriving New Attributes 161

58 CHADPhase3 165

5.8.1 General Principle of CHAD’s Third Phase 165
5.8.2 Using Existing Approaches to Implement CHAD’s

Third Phase 168

5.8.3 Implementing CHAD’s Third Phase for k-means . . 168

5.9 Bounding Rectangle Condition 169

5.10 Initialising the Third Phase of CHAD 172

5.10.1 Third Phase of CHAD is Liable to Local Minima . . 172

5.10.2 Initialising k-means With a Sample 175

Sampling Tuples 176

Sampling a Sample 176

5.10.3 Determining the Quality of a Solution 178

Determining the Quality of a Sample 179

Determining the Quality With Cluster Features . . . 180

5.10.4 CHAD’s Method of Initialisation 182

5.1 Architecture of CHAD

CHAD is short for Clustering Hierarchically Aggregated Data. Hence, it is a
clustering algorithm that uses aggregated data for clustering.

CHAD implements the concept of anticipatory data mining for clustering, as
shown in Figure 5.2. It consists of three phases which correspond with phases
of anticipatory data mining: Phase 1 constructs a dendrogram of sub-clusters—
each of which is represented by a set of statistics and extreme values. Phase
2 uses the statistics and extreme values of sub-clusters to select and transform
the dendrogram according a selection predicate which the analyst has specified.
Finally, phase 3 uses the selected dendrogram to cluster the data represented by
the dendrogram. Thus, phase 1 of CHAD corresponds with the pre-mining phase
of anticipatory data mining. Phase 2 corresponds with specific pre-processing.
Last but not least, phase 3 of CHAD corresponds with the specific data mining
phase of anticipatory data mining. To be more specific, phase 3 is a specific
clustering algorithm.

Obviously, CHAD includes a phase for each phase of anticipatory data min-
ing except the general pre-processing phase. Hence, CHAD requires that data
has been previously cleaned and integrated.

Figure 5.1 depicts the general proceeding and the aim of CHAD. The left
hand side of the figure shows from top to bottom how to find clusters in a data
set in the traditional way: An analyst selects and transforms data before a
clustering algorithm finds a set of clusters. Contrary, CHAD pre-clusters data
first in a dendrogram which we will introduce as ¢fg-tree in section 5.2 before an
analyst selects and transforms the pre-clustered data, as sketched on the right
hand side of the figure.

5.1. ARCHITECTURE OF CHAD 125

Construct cfg-Tree in
CHAD phase 1

Perform Select- and

Select Data Project-Functions
\ J Su
\- .l L
-‘v'. Hro o G o
A
I. -\
Apply] Apply Transforming
Transforming Functions
Functions
y=f(x) y=Ff(X)
Apply Data Apply Adapted
Mining Version of
Algorithm such Data Mining
as Clustering Algorithm
4 Algorithm

Q ~ Q
~/
Results Should
be Similar

Figure 5.1: CHAD compared with traditional way of analysis

126 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

Data Sources

\U/ general pre-

processing
Clean and
Integrated Data
Phase 1: Construct parameter-independent cfg-tree pre-mining

4

Phase 2: Derive parameter-dependent cf-tree from
cfg-tree

4

Phase 3: Apply partitioning clustering algorithm
(k-means) on cf-tree

4

k clusters

specific pre-
processing

specific clus-
tering

Figure 5.2: Phases of CHAD

5.1. ARCHITECTURE OF CHAD 127

The aim of CHAD is to find a similar result using aggregated data as a tra-
ditional clustering algorithm would find using non-aggregated data. Yet, using
CHAD saves much time because it has only a single time-consuming scan which
it can share between many runs. A traditional clustering algorithm needs to
re-scan the data set at least once per run. Yet, traditional clustering algorithms
requiring only a single scan are among the set of very efficient algorithms.

Due to aggregation and estimates CHAD makes, the quality of CHAD can
suffer. Yet, the experiments show that the way a clustering algorithm is ini-
tialised influences the resulting quality by far stronger than any other effect can
do. Yet, CHAD is much faster than traditional clustering.

Hence, one can invest a fraction of the time saved by CHAD to find a good
initialisation and receive a better result in shorter time compared to the original
clustering algorithm. In contrast to other generally applicable techniques such
as sampling, CHAD is faster and more broadly applicable. Additionally, CHAD
can determine an upper bound for the error it makes which is impossible when
using sampling.

The first phase of CHAD is very similar to the first phase of BIRCH [81].
Yet, CHAD has some important extensions to make it applicable for anticipatory
data mining in general and anticipatory clustering in specific. Hence, section
5.1.1 surveys commons and differences of both algorithms.

The first phase of CHAD scans a fact table once and constructs a dendrogram
of sub-clusters. Hereby, it uses all attributes of the fact table that can be used
for clustering as all attributes an analyst might select must be a subset of these.

The second phase of CHAD applies a selection predicate of an analyst to
derive a new dendrogram of clusters. This dendrogram is a compact representa-
tion of the data set that an analyst would have gained by applying the selection
predicate on the fact table.

The third phase of CHAD applies a partitioning clustering algorithm on
the selected dendrogram. The experimental prototype of this dissertation im-
plements the k-means clustering algorithm. Other authors such as Bradley et
al. have shown that a subset of the statistics that are stored in the selected
dendrogram is sufficient to compute the result of an EM clustering algorithm,
too.

Sufficiency of statistics is important to use them in cluster analyses. Hence,
Subsection 5.1.2 discusses it in detail.

5.1.1 Comparing BIRCH and CHAD

Tian Zhang introduced the hierarchical clustering algorithm BIRCH in his PhD
thesis in 1997. It is a very efficient clustering algorithm because it introduces
the concept of being main memory optimised. It has influenced many different
approaches since then—including the approach presented in this chapter.
Thus, there are several concepts of BIRCH that one also can find in CHAD.
BIRCH and CHAD share some very similar phases. However, there are also some

significant differences. Hence, this subsection discusses commons and major
differences of BIRCH and CHAD.

128 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

Phase 1 of both algorithms construct a tree of clustering features. Clustering
features are sufficient statistics of a subset of data. We will discuss sufficiency
of statistics in the next subsection because sufficiency depends on the type of
application.

The aim of BIRCH is to optimally use the main memory of the machine which
is running BIRCH. It uses all data which an analyst has specified to be relevant
for a specific analysis. There is no focus on re-use the result for other analyses—
analyses needing only a fraction of the original data set. Hence, among BIRCH’s
parameter are a memory restriction and page size of the machine running it—
both in bytes.

Yet, the clustering feature of CHAD has additional elements to enable pro-
jection and selection of clustering features, which means to enable specific pre-
processing of a pre-mined dendrogram. It is unnecessary to know the exact set
of data the analyst is interested in because CHAD can apply selection later on
when this piece of information becomes known. Hence, CHAD always processes
a fact table as a whole. Due to their more general applicability the clustering
features of CHAD are called general cluster features.

The construction of the tree is almost identical for both algorithms. Both
algorithms use the insertion method which R*-tree uses. Yet, R'-tree uses a
bounding rectangle to insert tuples. In contrast to that, BIRCH and CHAD
determine the most proximate leaf node by determining the distance of the
nodes centroid and the current tuple.

The focus of CHAD is making the result re-usable. Thus, it chooses very
small values for the capacity of nodes. By doing so, it receives more inner nodes
which it can use for selection. In our tests, a minimum capacity of five entries
per node has shown to be a good choice that generates a good balance of inner
nodes and leaf nodes which means that there are much more leaf nodes than
inner nodes but there is still a reasonable number of inner nodes for efficient
selection of a general cluster feature tree. Contrary, BIRCH chooses the capacity
that a node optimally fits a page of the machine. Hence, BIRCH receives fewer
inner nodes compared to CHAD. This difference in focus becomes also obvious
when considering other phases.

The pruning phase of BIRCH increases the level of aggregation of the clus-
tering feature tree of BIRCH to improve the performance of phase 3, the global
clustering.

In contrast to BIRCH, the second phase of CHAD adapts the general cluster
feature to the specific needs of an analysis that is about to be performed in
phase 3. The operations performed in phase 2 include selection, projection, and
transformation of the nodes of the general cluster feature tree. The aim is to
compute approximately the same result as a relational algebra expression on
the data set that has been aggregated in phase 1 would compute. The resulting
cluster feature tree is typically smaller than the general cluster feature tree.
However, this is only a side-effect of selection and projection.

The description of phase 3 is very short in [81]. Particularly, it gives no
solution to handle the problem of a proper initialisation. Many methods of
initialisation use samples of the data to find an initial solution. Yet, taking

5.1. ARCHITECTURE OF CHAD 129

samples from the data means to give up the savings of time needed for accessing
tuples when the algorithm needs to access tuples again and again—mnot for the
clustering algorithm but each time for its initialisation.

CHAD uses the effect that the centroids of sub-clusters on higher level of a
dendrogram often coincide in the same location. It tries several initial solutions
which it finds by randomly picking as k centroids of cluster features, where k
is an analyst-chosen number of clusters. Additionally, the statistics stored in
CHAD are sufficient to determine the quality of each clustering.

5.1.2 Sufficiency of Summarising Statistics

For efficiency reasons the dendrogram only stores statistics of the tuples of a
sub-cluster which are sufficient to use them in potential cluster analyses as
replacement of the tuples of the sub-cluster.

This subsection introduces the statistics used by CHAD. It shows that these
pre-computed statistics are sufficient to use them for computing specific cluster
analyses.

A statistic is a sufficient statistic when it comprises all relevant data of a
sample to predict a random variable. Spoken in terms of databases, a statistic
which summaries a set of tuples is sufficient when using the statistic to compute
an unknown value returns always the same result as when using the set of tuples.
For instance, linear sum and count of a set of tuples are sufficient statistics for
the centroid of that set of tuples. Using all tuples to compute the centroid
returns no other result but requires much more space. Hence, it is an inefficient
option.

Sufficiency of a statistic depends on the item that shall be computed. In
other words, the type of result of a clustering algorithm determines whether
a statistic is sufficient or not. Linear sum and count of tuples are sufficient to
determine centroids. Hence, these statistics are sufficient for k-means clustering.
Yet, for determining Gaussian clusters one also needs statistics about deviation
of attributes. Additionally, several quality measures of clustering also need
information concerning the deviation of attributes. The sum of squares of tuples
can be used in combination with linear sum and count of tuples to determine
the deviation of tuples. As this set of statistics is suitable to compute many
important characteristics of a set of tuples, several authors such as Bradley et
al. [6] and Zhang et al. [81] denote this set as clustering features or cluster
features.

For being able to implement the general pre-process for clustering, CHAD
adds elements to a clustering feature. In order to denote that this extended
cluster feature is the (intermediate) result of the general pre-process, we call it
a general cluster feature—we will define it below.

As a general cluster feature is an extended version of a cluster feature as used
in the literature, many statements hold for extended and original version. Yet,
there are some limitations of the original version of a cluster feature. Especially,
a cluster feature is valid in a specific subset of a data set, only—we will discuss
this issue later on.

130 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

used whenever a statement holds
cluster feature for specific as well as for general
cluster features

4 A

used synonymously for

clustering features and specific general extensions to enable
cluster features in cluster feature cluster feature selection of general

approaches of related work cluster features

cluster feature with

Figure 5.3: Taxonomy of cluster features

Therefore, we will use cluster feature as the generic term for general cluster
feature and original version of cluster feature whenever a statement is true
for both versions of cluster features, as depicted in Figure 5.3. Contrary, if a
statement is only valid for the original version of a cluster feature, we will use
the term specific cluster feature, which we define as follows.

Definition 5.1 A specific cluster feature cf = (N, L_:S', SS) is a triple contain-
g number, linear sum and sum of squares of all tuples represented by this
clustering feature. A specific cluster feature represents a set of tuples C.

Yet, sufficiency of specific cluster features is given as long as the vector space
of an analysis is identical with the vector space of the data set of which the tuples
of the specific cluster features originate from. When projecting attributes one
cannot tell which part of the sum of squares of a specific cluster feature is the
sum of squares of projected attributes or the sum of squares of non-projected
attributes. Additionally, when selecting a subset of tuples of a data set using
a selection predicate then one can estimate but not tell exactly whether tuples
represented by the specific cluster feature fulfill the selection predicate or not.
Hence, one cannot re-use the results of algorithms which use specific cluster
features such as BIRCH when the selected data set contains less attributes as
the original data set or a subset of tuples of it.

For distinguishing the different data sets and the vector spaces they span
we further denote all data of the fact table as D and the set of attributes of
this data set as A. Contrary, we reference the data set of an analysis and the
set of attributes it consists of as D, and A,, respectively. Using these terms,
we can re-formulate the above mentioned discussion as follows: A clustering
feature of a data set C' C D, which has the attributes A, is only sufficient in
an analysis when the data set coincides with the data set of that analysis D,/
with attributes A,/, i.e. Dy = Dy N Ay = Agr.

Due to insufficient re-usability of a specific cluster feature, we extend the
definition of a specific cluster feature and define a general cluster feature as
follows:

Definition 5.2 A general cluster feature cfg = (N, LS,SS, BL, T}E) 8 a quin-
tuple representing a set of tuples C' C D where N, LS and SS denote the number
of tuples, the linear sum and the sum of squares for each dimension. Vectors BL

5.2. CHAD PHASE 1 131

and TR describe a bounding rectangle of the tuples represented by this general
cluster feature, where vector BL (bottom left) stores the minima of all dimen-

sions and vector TR (top right) stores the mazima of all dimensions.

One can use the additional information of a general cluster feature to derive a
specific cluster feature for an analysis which uses a data set D, with attributes
A,. Data set D, and attributes A4, must be subsets of the data set D with
attributes A that has been used to determine the general cluster features.

As each data set D, used in an analysis must be a subset of all available
data D, the first phase of CHAD scans a fact table using all attributes of the
fact table.

To be more specific, it uses all attributes except unique attributes and non-
numerical attributes. If non-numerical attributes should be included one can
pre-process that attribute by replacing it with an appropriate numerical at-
tribute. Doing this, we erroneously consider a categorical attribute as numerical
attribute. We can do so without negative effect if we omit range queries of this
attribute, as we discussed already in Section 4.4.1.

The second phase of CHAD applies a selection and projection method on
general cluster features to produce specific cluster features which are suitable
to be used as sufficient statistics in a specific cluster analysis with a wide range
of algorithms! that requires data set D,.

Thus, a general cluster feature consists of sufficient statistics for any cluster
analysis with a wide range of algorithms using data set D, C D. In contrast to
that, a specific cluster feature consists of sufficient statistics for analyses using
exclusively data set D,. Hence, general cluster features are widely applicable.

The next section will survey how CHAD efficiently constructs a dendrogram
of general cluster features in a single scan of data.

5.2 CHAD Phase 1: Constructing a Parameter-
Independent Tree of Summarising Statistics

As mentioned in Section 5.1.1 the first phases of BIRCH and CHAD are very
similar. The first phase of BIRCH very efficiently computes a clustering feature
tree. The different data structures they use are the major difference of the
first phases of both algorithms. As BIRCH has been presented previously this
section presents the first phase only in short.

Moreover, this section discusses the handling of specific items concerning
efficient computation such as how to handle continuous insertion of tuples and
distributed computation.

In the same way as BIRCH, CHAD uses a BT-tree to store inner nodes. It
also has a total capacity of nodes and a threshold for the maximum distance

IThe experiments of this dissertation show sufficiency for k-means, only. However, as we
discussed in this section and the section before, there exist a lot of approaches using specific
cluster features as sufficient statistics for other partitioning clustering algorithms and density-
based clustering algorithms.

132 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

a tuple might have to the centroid of a general cluster feature to be inserted
into that general cluster feature. If a tuple is too far away of its nearest general
cluster feature, CHAD inserts a general cluster feature as a new entry of a leaf
node—increasing the tree that way. The initial value of this threshold is zero.
Yet, if the size of the tree exceeds the capacity, the algorithm increases the
threshold using linear regression.

The proceeding described above is identical for BIRCH and CHAD. Yet,
they differ in some detail. For instance, CHAD uses a different way to re-assign
entries of a node when the node is full and the algorithm needs to split it in
two nodes. BIRCH takes each pair of entries and tests which pair is the most
distant one. One of the entries of this pair stays in the currently split node
while the other entry becomes the first entry of a new node. BIRCH moves the
remaining entries from the old node to the new node if they are closer to the first
entry of the new node than the other entry of the most distant pair of entries.
CHAD uses the bounding rectangle of a general cluster feature to determine the
two entries which are closest to the lower left and top right edges of the general
cluster feature—the remaining proceeding is identical with BIRCH’s proceeding.
CHAD'’s proceeding is linear in the number of entries while BIRCH’s proceeding
is quadratic. The rationale of using the vectors bl and tr for splitting entries is
that these points have the maximum possible distance within tuples of a cluster
feature. There exist other pairs of corners of the bounding rectangle that also
have the maximum distance. Yet, the vectors bl and tr already reside in the
main memory. Therefore, we assume that the entries that are nearest to these
two vectors have also a high distance. It might not be the pair of entries that
has the highest distance but in our tests it was high enough for splitting entries
well.

The remainder of this section focusses on using the first phase of CHAD as
a pre-mining function for future analyses. This includes the handling of several
problems which are continuous insertion of tuples, and distributed processing.

5.2.1 Continuously Inserting Tuples

Fact tables of data warehouses are subject to continuous change. In regular
intervals ETL processes insert new tuples into the warehouse and modify or
eliminate existing tuples. Yet, inserting new tuples is the most commonly found
operation.

To analyse the current state of the data warehouse, it is necessary to keep a
general cluster feature tree up-to-date.

Due to the additivity of cluster features one can insert a new tuple ¥ =
(x1,...,24)7 by adding a cluster feature representing the tuple, i.e. cluster
feature cf = (1, %, (22,...,22)T), to its most similar cluster feature in the tree.
Adding means to add cluster features element by element. Analogously, sub-
traction of cluster feature cf removes the tuple Z again. A sequence of removal
and insertion of tuples has the same effect as a modification of a tuple.

The re-computation of general cluster features is the same as the re-
computation of specific cluster features. Yet, the bounding rectangle needs

5.2. CHAD PHASE 1 133

special handling. When a tuple is added to an existing general cluster feature,
one can determine the new bounding rectangle by checking if the new tuple is
outside of the existing bounding rectangle. If it is outside then the value of the
tuple in an attribute which is outside the bounding rectangle replaces either the
minimum or the maximum value of this attribute.

Re-computing the bounding box of a general cluster feature after removing
a tuple is simple as long as the values of this tuple does not assume any of the
extreme values of the general cluster feature. If no value of the tuple which is
about being removed is on the bounding rectangle then the tuple must be com-
pletely inside the bounding rectangle. Hence, there must be other tuples which
define the bounding rectangle. Only tuples defining the bounding rectangle are
critical when being removed because the information needed to find the new
extreme value is missing in the general cluster feature.

Hence, CHAD does not re-compute the bounding rectangle of general cluster
features of leaf nodes after removing tuples. By doing so, there could exist
a smaller bounding rectangle of the tuples represented by the general cluster
feature. However, the non-updated bounding rectangle has correct upper and
lower limits of these tuples which are important to know for giving upper and
lower limits of quality of results as is demonstrated in Subsection 5.10.3.

Yet, CHAD can re-compute the bounding rectangle of a inner node when
removing a child node. Hence, it updates the parent nodes of a node that is
removed.

When CHAD splits a node, it also re-computes the bounding rectangle of
the node that has lost entries to another node. For doing so, CHAD adds the
remaining entries of this node and replaces the old general cluster feature of this
node by the result of this addition.

5.2.2 Making CHAD Applicable in Distributed Environ-
ments

A lot of data sets are distributed because the divisions of companies which
own them are distributed. Centralising data is always possible but not always
appropriate because transferring tuples costs time and bandwidth.

Pre-mining tuples locally and sending only local dendrograms to a central
server saves time and bandwidth. It saves time because several machines com-
pute dendrograms in parallel. Yet, it saves bandwidth because a dendrogram is
smaller than the tuples used to build the dendrogram. Stefan Schaubschlager
showed in his master’s thesis that local pre-mining computes a result that is very
similar to the result one receives when pre-mining the same data set globally.
To be more specific, the cluster features of inner nodes of the top-most level of
both general cluster feature trees shared the same centroids.

134 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

5.3 CHAD Phase 2: Deriving a Parameter-
Dependent Tree of Summarising Statistics

The second phase of CHAD uses the general cluster feature tree to derive a
new tree that fits the requirements of a specific cluster analysis. The general
cluster features of the new tree represent the data needed for an analysis. Thus,
the second phase of CHAD derives a parameter-dependent tree of summarising
statistics from a parameter-independent tree. Hence, it implements the specific
pre-processing phase for cluster analyses.

When an analyst traditionally would apply a selection predicate on a data
set D to receive a selected data set D, for a given analysis, an algorithm imple-
menting the specific pre-processing phase such as CHAD must apply the same
selection predicate on a set of intermediate results and auxiliary statistics to re-
ceive the intermediate results for data set D,. Here, the general cluster feature
tree is a tree storing intermediate results and auxiliary data.

Thus, CHAD needs a set of methods to derive a tree with entries that satisfy
the analyst-given selection predicate. To do this, we need an algebra for selecting
general cluster features. In Section 4.4.1 we limited the functionality of this
algebra to queries performing slice and dice operations on the data set because
they are most common in practise. In relational algebra we can formulate them
as Tprojectionattributes (Jselectionpredicate (tUple set T)) In other WO]."dS, we need
a selection method and a projection method for general cluster features. The
selection method selects the general cluster features of relevant tuples while the
projection method prunes irrelevant attributes.

If D, can be expressed as a combination of projection and selection of D%
such as D, = T4, (Gselectionpredicate (D)), it is possible to use this appropriately
defined methods accordingly on a general cluster feature tree.

Furthermore, some analyses demand transforming data including re-scaling
of attributes or adding new attributes from existing ones.

Pre-processing general cluster features for specific analyses is a novel concept
introduced by CHAD—distinguishing it from other existing approaches such as
[81] and [6]. Hence, a major part of the description of CHAD is reserved for
the second phase. Thus, the next sections discuss each aspect of the specific
pre-processing phase of CHAD in detail. They are organised as follows:

e Section 5.4 introduces a selection method for general cluster features. The
selection method creates a new general cluster feature. Yet, the new gen-
eral cluster feature only represents those tuples that fulfill the selection
predicate.

e Section 5.5 introduces a projection method for general cluster features to
choose only relevant attributes for an analysis.

e Section 5.6 introduces a method for transforming general cluster features
according to linear and non-linear functions.

5.4. SELECTING GENERAL CLUSTER FEATURES 135

e Finally, Section 5.7 shows how to add new attributes by combining selec-
tion and transformation.

5.4 Selecting General Cluster Features

The general cluster feature tree, which is the result of the first phase of CHAD,
represents all tuples of a fact table in a database. As no parameter of a specific
analysis influences the first phase, the resulting tree is analysis-independent.
However, specific analyses might need only subsets of the table which is repre-
sented by the general cluster feature tree.

As a consequence, there exists a selection operation in the framework of
CHAD that creates a new general cluster feature tree that represents only those
tuples that fulfill a user-given selection predicate.

Subsection 5.4.1 introduces the selection operation and describes an algo-
rithm to approximate the selection operation. Approximation is necessary be-
cause the general cluster feature tree contains not all information to guarantee
error-free selection—however, potential errors can be detected. Additionally, it
is possible to determine an upper bound for the error that was made during
approximation.

The subsections succeeding subsection 5.4.1 discuss important issues of the
computation within the selection operation.

Subsection 5.4.2 describes pre-processing of the selection predicate which
simplifies further computation because it avoids several cases in case differenti-
ation.

Subsection 5.4.3 shows the usage of the bounding rectangle of a general clus-
ter feature for selecting the general cluster feature. All general cluster features
selected due to their bounding rectangle are selected error-free. In addition to
that, the bounding rectangle provides a guaranteed limit of the error made by
the estimation processes which are shown in subsections 5.4.4, 5.4.5, and 5.4.6

Subsection 5.4.4 introduces the estimation of specific values of a newly se-
lected general cluster feature while subsections 5.4.5 and 5.4.6 describe the most
important features of estimation in detail.

Last but not least, Subsection 5.4.7 shows the update of the bounding rec-
tangle of a selected general cluster feature according to the selection predicate.

5.4.1 Definition of Selection Operation

Definition 5.3 Let P denote the set of predicates over a tuple T in disjunctive
normal form and D a set of tuples. Then, the selection of a general cluster
feature cf g. € CFG representing sub-cluster C C D using the selection predicate
p € P is a function s : CFG x P — CFG that returns a general cluster feature
cfgsx € CFG, such that

1. the number of tuples N, represented by general cluster feature cf g.. equals
the number of tuples in general cluster feature cf g, that fulfill the selection

136 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

predicate p
Niw = {7 € Clp(2)}], (5.1)

2. the linear sum LS., of the tuples represented by general cluster feature
Cfex equals the vector sum of all tuples in general cluster feature cfg, that
fulfill the selection predicate p

LS. = Y 4 (5.2)

zeC:p(Z)

3. the vector SSyx has for each attribute a an element ss.|a] that stores the
sum of squares of all attribute values Tla] of the tuples in general cluster
feature cf g, that fulfill the selection predicate p

ssfal = Y (&a])?. (5.3)

z7eC:p(X)

4. the vector BLy. has for each attribute a an element bl..[a] that stores the
minimum of all attribute values Z[a] of the tuples that fulfill the selection
predicate p

blisla] = fergizgl(i) Z[al. (5.4)

5. the vector T R.. has for each attribute a an element tr..[a] that stores the
mazimum of all attribute values Zla] of the tuples that fulfill the selection
predicate p

trfa] = fencl?g%f) Z[al. (5.5)

The selection predicate p € P consists of a logical statement over tuple & in
disjunctive normal form.

Although the definition of selection of a general cluster feature is valid for
any predicate in disjunctive normal form, the statistics in a general cluster
feature are insufficient to determine the correct values of selected statistics of
all potential predicates in disjunctive normal form. Thus, we narrow the set of
valid selection predicates to selection predicates that obey the syntax which we
introduce next.

A selection predicate p consists of several disjoint terms ¢;.

T
p= \/ ti,r €N
i=1
Each term ¢; consists of a set of literals that are conjuncted with each other.
ti =

J

zlalfc;, 0 € {<,<,=,>,>},seNaecAc; eR,je{l,2,...,s}

s
=1

5.4. SELECTING GENERAL CLUSTER FEATURES 137

a

Figure 5.4: selection predicate in DNF describes a set of hypercubes in d-
dimensional space

The literals in this statement have the form Z[a]fc;, where Z[a| denotes a tuple’s
value of attribute a and 6 is one of the operators {<, <,=,>,>}. Finally, ¢; is
a user-defined constant in a set of s constants.

CHAD includes a selection algorithm to realise the selection of a general
cluster feature as described in definition 5.3. Yet, the selection of general cluster
features is defined on the tuples represented by general cluster features. Yet,
the tuples are no longer accessible when performing selection. Thus, the new
values of a general cluster feature after selection must be derived from the old
values of the general cluster feature. This proceeding can be erroneous.

CHAD’s selection algorithm tries to avoid erroneous selections if possible or
to minimise the total error if an errorfree selection of a general cluster feature
is impossible.

In detail, the selection algorithm generates a new general cluster feature
from a general cluster feature tree in the following sequence of steps:

1. Use the selection predicate to determine a set of disjoint hypercubes H
that contain all points that fulfill the predicate. Each hypercube is repre-
sented by its corners.

2. Create a new initially empty tree.
3. Traverse the general cluster feature tree and test the bounding rectangle
of each visited element if it intersects with any of the hypercubes H.

Depending on the result of this test do one of the following steps:

(a) If the bounding box is completely outside of all of the hypercubes
skip the node and all its descendants.

138 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

a,

a,

Figure 5.5: pruned version of selection criteria of figure 5.4

(b) If the bounding box is completely inside of any of the bounding cubes
insert all leaf nodes of that branch into the new tree.

(¢) If the bounding box of an inner node and at least one cube partially
overlap then traverse the branch of this node.

(d) If the bounding box of a leaf node and at least one cube partially
overlap then estimate the summarising statistics of the tuples that
fulfill the selection predicate.

5.4.2 Pruning the Selection Predicate

Figure 5.4 shows the visualisation of a selection predicate in a 2-dimensional
vector space. The selection predicate consists of two disjunct statements. As
shown in figure 5.4, the rectangles, that represent the set of tuples that fulfill
one of these statements, overlap.

Overlapping areas have to be taken into account or better avoided when
estimating the proportion of tuples of a general cluster feature that fulfill the
selection predicate. It is faster to make the boxes that represent disjunct state-
ments non-overlapping than to handle overlapping parts for each node that is
to be selected.

Thus, CHAD shatters the boxes of the selection predicate in a set of non-
overlapping boxes—or hypercubes in a d-dimensional vector space. The result
of the selection predicate in figure 5.4 after being shattered looks like in figure
5.5.

5.4. SELECTING GENERAL CLUSTER FEATURES 139

o

a

Figure 5.6: selection criteria and general cluster feature tree entries

5.4.3 Using the Bounding Rectangle of a General Cluster
Feature for Selection

When selecting a node, CHAD first tests whether the bounding rectangle of an
entry is sufficient for determining the result of selection. The bounding rectangle
of an entry is a border that guarantees that there are no tuples of that entry
outside the border. To be more specific, it guarantees that all tuples of an entry
fulfill the selection predicate if the bounding rectangle is completely inside a
hypercube of the selection predicate. If the bounding rectangle is completely
overlapping-free of all hypercubes of the selection predicate, none of the entry’s
tuples fulfills the selection predicate.

Figure 5.6 shows the bounding rectangles of six entries and two hypercubes
of the selection predicate. Rectangle A is completely outside of the hypercubes.
Thus, CHAD omits this node because all of its tuples cannot fulfill the selection
predicate. Rectangle B is completely inside the right hypercube. Thus, all of its
tuples fulfill the selection predicate. Consequentially, CHAD inserts the entry
unchanged into the new selected tree if it is an entry of a leaf node. If it is an
entry of an inner node, CHAD takes all leaf node entries of that branch and
insets them into the new selected tree.

Rectangles D, E, and F intersect one or both of the hypercubes of the se-
lection predicate. Depending on the type of the entry of the rectangle—leaf
node entry or inner node entry—, CHAD performs selection differently. If the
intersecting rectangles belong to an inner node entry, CHAD takes the entries
of the child node that is linked to the current inner node entry into account and
tests for intersection once more. CHAD iterates this process until either a leaf
node entry is selected or all entries’ bounding boxes are completely inside or
outside the hypercubes of the selection predicate.

Leaf node entries the bounding rectangles of which intersect the selection

140 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

predicates’ hypercubes are selected using estimation. For this purpose, the
bounding rectangles are insufficient. The detailed description of estimation is
postponed to later paragraphs of this section.

Rectangle C is also completely inside the set of hypercubes that represent the
selection predicate but not a single hypercube contains rectangle C completely.
Using the proceeding as mentioned above means that estimation is used in a
case where an errorless result could have been determined. Yet, for easiness of
computation this special case is omitted which means that we accept the small
error that occurs when the estimated values of both parts of rectangle C are
lower than the correct values. If the estimation overestimates the real values,
i.e. it would select more tuples than there are tuples in the general cluster
feature, then the algorithm inserts the original general cluster feature into the
new tree without changing its elements. Hence, there is no error made in a case
of overestimation. In our tests of the selection method we could not observe an
error that happened because of a entry with a rectangle like rectangle C because
when we used a range query the bounding rectangles of most leaf node entries
was either completely in or completely out of a hypercube, i.e. estimation was
needed in rare cases, only. Furthermore, in rare cases, in which estimation was
used, the phenomenon of a rectangle in a similar situation as rectangle C never
occurred.

5.4.4 Estimating the New Attribute Values of Leaf Node
Entries of Attributes That are Not Part of the Se-
lection Predicate

If the bounding box of a leaf node entry is neither completely inside of one of the
hypercubes representing the selection predicate p or completely outside of all of
them, there is no longer a guaranty that the statistics of the selected general
cluster feature are correct. For instance, all tuples represented by the general
cluster feature of a leaf node entry may fulfill the selection predicate although
the bounding rectangle intersects a hypercube of the selection predicate as is
shown in Figure 5.7. The hypercube in Figure 5.7, that is depicted as a hatched
rectangle, intersects the bounding rectangle, that is marked with dotted lines,
but none of the tuples within the bounding rectangle is within the hypercube.

As the hypercubes that represent the selection predicate do not overlap, we
can determine a general cluster feature cfg;.. for each term ¢; of the selection
predicate and add them to the new general cluster feature cfg.., as shown in
Formula 5.6 where € denotes the addition of general cluster features which we
discussed in Section 5.2. We call a general cluster feature cfg;., of a term ¢; a
component of the general cluster feature cfg... Components are only temporally
stored during the selection process.

Cfg** = @Cfgi** (56)
ti

This subsection and the following subsections describe the computation of the
components of the general cluster feature.

5.4. SELECTING GENERAL CLUSTER FEATURES 141

Figure 5.7: hypercube and bounding rectangle intersect although all tuples fulfill
term

Estimation is used to determine the most-likely value of the new selected
statistics of the general cluster feature that is about to be selected.

Due to the optimal distribution of tuples within a general cluster feature
being unknown, choosing a different distribution that approximates the optimal
distribution is necessary.

using normal distribution for approximation With mean and standard
deviation of the tuples within the general cluster feature being known,
we approximate the real distribution of each attribute with a normally
distributed variable because normal distribution or a set of normally dis-
tributed variables can approximate many different distributions.

assuming conditional independency We assume conditional independency
between each pair of attributes because it is unknown whether attributes
are correlated positively or negatively. Conditional independency favours
none of these extremes.

Approximating an arbitrary distribution with a set of normally distributed
variables uses the well-known technique of kernel estimation in statistics [64].
Kernel estimation uses a kernel function, a function of a probability density
function with parameters, and selects a set of variables which are distributed
according to the kernel function—yet, each time with differently chosen para-
meters. The basic principle of kernel estimation is to find a small set of variables
with well-chosen parameters that in their sum fit the arbitrary density function
best.

Figure 5.8 depicts the probability density function of a single attribute of
an arbitrary distribution which we will use to illustrate kernel estimation. The
density function shows several concentration points on a macroscopic level but
also shows areas of concentration at microscopic level. When clustering data

142 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

hierarchically, each cluster and sub-cluster represents a set of tuples that are
concentrated globally or locally. Thus, the cluster feature of a leaf node entry
represents a single local concentration of tuples.

Yet, if we decide to approximate an arbitrary density function on a given
level with a set of Gaussian density functions, we cannot use a different set of
Gaussian density functions of another level at the same time because this would
mean to have two different assumptions of the distribution of tuples at the same
time. We circumvent this problem by approximating the distribution of tuples
in cluster features with Gaussian density functions at leaf level, only, because
this level is the most fine-grained one.

The Gaussian density function is a good kernel function because it approxi-
mates many arbitrary functions quite well which is illustrated by some examples
in Figure 5.9—the normal distribution with accordingly chosen parameters is
depicted under each example of distribution. Except for the worst case exam-
ple, each other example is well approximated by a normally distributed variable.
Yet, these approximations are good approximations in an area around the mean.
As normal distribution has unlimited range while uniform distribution has a
constant positive probability density within a specific interval and zero density
without this interval, normal distribution can approximate uniform distribution
only in a limited interval around the mean of the normal distribution.

Due to the concentration of tuples around the mean, most tuples are within
an interval around the mean and only few tuples outside this interval. Hence,
there are only few wrongfully selected tuples when using Gaussian approxima-
tion for selection.

Moreover, when applying approximation on a set of general cluster features,
the error made by overestimating the number of tuples fulfilling a selection pred-
icate in a set of cluster features can remedy the error made by underestimating
the number of tuples fulfilling a selection predicate in another set of cluster
features. Hence, two different types of errors can compensate each other. If, for
instance, there is a statement Z[a] < ¢ in the selection predicate and tuples are
uniformly distributed in attribute a, then cluster features having Is[a]/n > ¢
tend to underestimate the number of tuples fulfilling the selection predicate,
while cluster features having Is[a]/n < ¢ tend to overestimate that number.

The hierarchical clustering algorithm used in the first phase of CHAD seeks
a data set to find concentrations of tuples within the data set on different levels.
Yet, there is no guaranty that each sub-cluster exactly finds a concentration of
tuples. If it fails to do so, it might happen that the tuples of a cluster feature are
distributed like shown in example d) of Figure 5.9. This example, denoted as
worst case, can hardly approximated by a single Gaussian function. It would be
better to split the cluster feature into a pair of cluster features. Yet, again, the
error made by overestimating number of tuples can compensate the error made
by underestimating. Therefore, even in worst case, error might be compensated.

Storing the statistics that are necessary to determine conditional dependency
of attributes such as the covariance matrix would be possible but is omitted
because it would increase the size of a general cluster feature in an intolerable

5.4. SELECTING GENERAL CLUSTER FEATURES 143

Figure 5.8: Probability density of a single attribute at macro-level (bottom) and
at micro-level (top)

A,
N
T T~

a) approx. normal distribution | b) approx. uniform distribution
¢) skewed distribution d) worst case of distribution

N
= |

Figure 5.9: Approximating density functions with Gaussian distribution

/\
- T

144 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

way. Storing a covariance matrix requires O(d?) storage space and would make
the CHAD inapplicable to data sets with many attributes.

According to Glymour et al. “...assumptions are typically false but
useful”[23, p. 13] which means that an assumption simplifies the original prob-
lem to a problem that is easier to solve while the unconsidered parts of the
original problem are unable to influence the solution significantly.

The experience made with Naive Bayes Classifier shows that assuming con-
ditional independency can deliver good results even if attributes are correlated
[36, p. 298].

Assuming conditional independency of attributes simplifies the computation
of linear sum, sum of squares, bottom left vector, and top right vector if the
attribute is not part of the selection predicate.

Due to conditional independency mean and deviation parameters of each
attribute a that is not part of the selection predicate remain the same after
selection such that the following conditions must hold. Determining the values
of attributes that are part is described in Subsection 5.4.6.

As the mean, which is computed as quotient of linear sum and count of
tuples, is not changing during selection, the quotients of linear sums and counts
of tuples of the original general cluster feature cfg, and a component cfg;.x
must be equal. B B

I5ixela] Is.]a]
Reformulating equation 5.7, we receive the formula to determine the linear sum
I8;4x[a] of a component.

(5.7)

7 Ni** g
Isise]a] = N Is.]al (5.8)

*

The fraction NN— is the proportion of tuples in the general cluster feature

that fulfill the term t;. By multiplying the same proportion with the old value
of the sum of squares of attribute a, we receive the according new value.

— N** —

$84ilal = J\Z/,* $5.]a] (5.9)

Due to the absence of tuples, correctly determining minimum and maximum

of the selected portion of the tuples of a general cluster feature is no longer
possible. Yet, the bounding rectangle of the original general cluster feature is
also a bounding rectangle of the component. Thus, old and new values are
identical.

BLi.. = BL, (5.10)
TRiwn = TR, (5.11)

5.4.5 Determining the Proportion of Tuples Fulfilling a
Term of the Selection Predicate
N,

As the proportion = of tuples fulfilling term ¢; is so important for selecting
general cluster features, let ¢; denote this proportion ¢; = % Determining the

5.4. SELECTING GENERAL CLUSTER FEATURES 145

unbounded on the left side bounded unbounded on the right side

zla] < ¢j ¢ < zxla] < ¢j ¢ < zlal
¢ < zfa] <¢j

zla] <¢j ¢ < zla] <¢j ¢i < xfal
¢ < za] <¢j

Table 5.1: types of conditions in a term of a selection predicate

proportion ¢; differs with the type of comparison operators 0 = {<, <,=,>,>}
used in the selection predicate.

Due to conditional independency, the total proportion of tuples fulfilling the
condition denoted by a term is the product of the proportions ¢;[a] of tuples
fulfilling the condition denoted by the literals limiting a single attribute a. Thus,
we sort the literals in a term by attributes and determine the proportion of tuples
fulfilling the condition of each attribute.

Assume that a term t; of the selection predicate p consists of the attributes
A, C A and a set of constants C.

¢i=][ala (5.12)

a€Ay

For limiting the number of potential cases, we group the literals of term ¢;
by the attributes they constrain and eliminate redundant statements. Thus,
by complete enumeration we receive the eight different types of conditions as
shown in table 5.1. For instance, if there is

zlairtemp] > 20 A z[airtemp] > 15 A z[airtemp] < 30
in a term of the selection predicate, we receive the pruned condition

20 < z[airtemp] < 30.

The condition z[a] = ¢ is expressed as ¢ < z[a] < ¢. We postpone this case
because it needs special handling.

As we discussed above, the hypercube that represents term t; intersects the
bounding rectangle of the general cluster feature in at least one dimension. Ad-
ditionally there is no dimension in which the corners of the bounding rectangle is
completely outside of the hypercube. Otherwise, the hypercube would be com-
pletely outside or inside the bounding rectangle which means that the general
cluster feature would have already been handled as described in the previous
subsection.

For all non-intersecting attributes® the proportion of tuples fulfilling the
condition of that attribute is 1 because non-intersection in a dimension means

2Non-intersecting attributes are attributes that either are not part of the selection pred-
icate, or the bounding box of the general cluster feature is completely inside the hypercube
when considering this attribute, only.

146 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

extension of entry

A
A

A section of intersection — = .
extension of selection criterion
— t—
>
Fs))
5 \
S /
O
o /
P
Y
/
e AN
_ _ _ »
‘ »
A bl x_Axis LV K tr

Figure 5.10: selection predicate includes condition zfa] < v

that all tuples fulfill the condition of that attribute.

if z{alfc; in termt; A trja) < ¢;
gila) = 1< ife;01x]alfac;in termt; A ¢; < blla] < trla] <c¢; » with,6,,0, € {<,<}
if ¢;0x[a] in termt; A ¢; < bl[a]
(5.13)

Assume that the selection predicate includes a term having a condition in
the form z[a]fv, where v is a constant used as upper bound in a condition and
is either < or <, i.e. the condition is one expression of the left side of Table 5.1.
Further assume there is an overlap of the interval [bl[a],tr[a]] of the bounding
rectangle and the interval (—oo, v] of the condition.

Figure 5.10 shows a special case of a term including the condition z[a] < v
because it contains the condition A < z[a] < v where A\, v € R but the minimum
blla] of attribute a is greater than the lower bound A of the selection condition.
Thus, the condition A < z[a] < v consists of two conditions A < z[a] A z[a] < v,
where the left condition is true for all tuples of the general cluster feature.

Therefore, the conditions A < x[a] < v with bl > X and z[a] < v require the
same statistical estimation.

Let p]a] and o[a] denote the mean and standard deviation of the current leaf
node in the dimension spanned by attribute a. Basing on this assumption, the

%—to be used in

z-normalised value of z[a] can be determined—which is
the gaussian probability density function ¢.

Using the assumption of normal distribution of tuples within the cluster
represented by the general cluster feature we determine the proportion of tuples
fulfilling the selection condition z[a]fv by determining the integral over the
probability density function of the normal distribution, i.e. the area between
the Gaussian curve, the x-axis, and the vertical line at z[a] = v in Figure 5.6.

The cumulative Gaussian function ® at the z-normalised value (v—pula))/o[a)

of v returns the result of the integral [”_ gb(M)dx[a], which is the esti-

ola

5.4. SELECTING GENERAL CLUSTER FEATURES 147

extension of entry

A
A

section of intersection

“ 4

extension of selection criterion
|- -—

. B
/

/

/L

7b| X-Axis n'A ¥} tr

frequency

\ 4

Figure 5.11: selection predicate includes condition A < z[a] < v

mated proportion of the tuples of the general cluster feature fulfilling the con-

dition. .
ald = [o (ML) dola

v — ula
wla =0 (224 (5.14)

Estimation must consider two boundaries in cases where a term ¢; includes a
condition A < z[a] < v and there is no guaranteed boundary on one of the sides
of the interval [\, v], i.e. the boundaries A and v of the condition are completely
inside of the boundaries of the general cluster feature as shown in Figure 5.11.

Again, the proportion g;[a] is the result of the integral of the probability
density function between the limits of the selection condition—yet, in this case
the integral is bounded on both sides, i.e. by the lines z[a] = A and z[a] = v,

respectively. Ll /u) <M> dla] (5.15)
i \ ola]

Determining the result of the integral in equation 5.15 with the cumulative
gaussian function requires splitting the integral in two integrals because the
cumulative gaussian function only determines the probability that a random
variable is less than the argument’s value.

= [() [(s

q:‘(u—u,[a]) <I>(/\—;A.[a])

olal ola]

gila] = ® (V_”[a]) -0 (A_”[a]> (5.17)

148 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

extension of entry

section of intersection
A - >
extension of selection criterion

5\ .
C //
3 /
O
[0]
= \

+— - >

bl Al XAxis v

Figure 5.12: selection predicate includes condition x[a] > A

A condition having the form Adz[a] with operator 6 € {<, <} is handled in
analogous way to a condition having the form z[a]0\. As the conditions z[a] < A
and z,, > A divide all attribute values z[a] in two disjoint and exhaustive
subsets, the proportion of tuples fulfilling a selection condition like z[a] > A is
the difference of the proportion fulfilling the selection condition z[a] < A to 1.

M@:1_¢<A_Mﬂ) (5.18)

olal

Equality in conditions such as x[a] = ¢ is covered by using the bounding
rectangle of the general cluster feature as described in the previous subsection.
The following paragraphs will discuss this point.

The integral fcc 1) (%) dz[a] is 0 unless the standard deviation is 0, too.

For the standard deviation being 0, minimum and maximum of attribute a must
coincide. Yet, if minimum and maximum are equal, testing for intersection with
the bounding rectangle can either be true for all tuples or for no tuples. Thus,
this case must have been handled before. In other words, either the general
cluster feature has been dropped or it has been completely moved into the new
tree.

One needs testing for equality when using categorical attributes because cat-
egorical attribute do not permit range queries. Moreover, it makes no sense to
sum up values. Thus, linear sum and sum of squares of this attribute make no
sense except all values in a general cluster feature of this attribute are iden-
tical. Yet, when they are identical, we can determine this value as quotient
Is[shopid]/N. Therefore, CHAD calculates sums of values of categorical at-
tributes which it represents as numbers knowing that it cannot use these sums
when it has to add distinct values. Therefore, it is necessary to avoid adding
distinct values into the same cluster feature. CHAD inserts two distinct values
of an attribute a into two different cluster features if the distance of these two

5.4. SELECTING GENERAL CLUSTER FEATURES 149

values exceeds the current threshold of the general cluster feature tree which
depends on the size of the cluster feature tree. The more nodes a cluster feature
tree might have, the smaller is the threshold. In our tests, we experienced that
if the number of nodes exceeds the number of distinct values then CHAD inserts
different categorical values into different cluster features.

We want to illustrate the argumentation above with the running example.
Assume an analyst wants to select sales transactions which were bought online—
buying online means that the shop, in which the transaction happened, is the
online shop of the publishing company, the identifier of which is stored in at-
tributeshopid. As shopid is a categorical attribute, we can use a cluster feature
only if it contains only the sum of NV times the same value. To ensure this, we
choose a size of the cluster feature tree that exceeds the number of shops in the
running example. By doing so, the deviation of attribute shopid of a leaf node
entry is zero. Yet, we do not need this deviation because minimum and maxi-
mum are also identical. Therefore, we can test for each node if its minimum and
maximum equals the identifier of the online shop. As CHAD performs the test
that uses the bounding rectangle before estimation, one never need to handle
the special case in which deviation is zero.

The operators < and < can be handled in the same way. If the standard
deviation of the general cluster feature cfg, is not zero in the attribute a, the
resulting components of a term with z[a] < v and a term z[a] < v have the
same values because the probability of x[a] = v is 0. Therefore, the integral
over the probability density function is the same, regardless the upper bound of
the integral is v or an infinitesimal smaller value, as shown in Equation 5.19.

5.4.6 Estimating the Statistics of Attributes that are Part
of a Term

Updating the statistics of an attribute a that is part of a term ¢; of the selection
predicate requires different handling because in contrast to attributes that are
not part of term ¢; mean and deviation of the tuples of the general cluster feature
change.

Consequentially, the statistics linear sum and sum of squares of a component
cf gisx are determined using the expectation values of mean and sum of squares
given the condition ¢; £(x[a]|t;) and & (z[a]?|t;), respectively.

Isisx|a] = q;[a] NLE(z]allt;) (5.20)

88iaxla] = qi[a) NLE(x[a)?|t;) (5.21)

The expectation value of mean E€(x[a]) is defined as the sum of the products of
each potential value of statistic variable z[a] and the according probability—for
continuous variables the integral over the product of variable and the according

150 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

probability density function is used. Depending on the form of condition in
term t;, the expectation value is one of the integrals shown in formula 5.22.

f_”oo zla (x a(],_[a'f) alif z[a ;y in term t;
E(z[a])) =1 [} «] (m[aa o]) dx[a] if)\< [a] 21/ in term t; (5.22)
[(%) dafa]if AZz[a] in term ¢;

The antiderivative of the integral for determining the expectation value of mean
is the negative of the Gaussian density function, as can be shown by differ-
entiation. For easier integration we substitute the term in the integral with

z 1= (z[a] — pla])/ola] and receive the integral pla] + ola] [z¢(z)dz

/zd)(z) = z\/%e_%zzdz = —\/1276_5Z2 +C=—-¢(z)+C (5.23)

By re-substituting variable z and inserting the antiderivative in formula 5.22 we
receive formula 5.24.

ula] — ola] * ¢ ";[‘;[]a] if x[a]éy in term ¢;
E(xla)) =< wpla] + ola] (QS (%’2&‘”) —¢ (Vf[*;[]a])) if)\< [a]<1/ in term ¢;
plal + ola] x ¢ (’\ ’fl[a) if AS Szla] in term ¢;

(5.24)
Determining the expectation value of the sum of squares is similar. Yet, the

integral [x[a]?¢ (M) dz[a], that determines the expectation value of the

ola
sum of squares, has no polynomial antiderivative. Again, we substitute variable
z[a]—p[a]

x[a] with the z-normalised variable z = =y for easier computation.
_ 2
2% = (ala] = pla])” & zla)? = ofa]?2? + 2ula]x]a] — pla)?

By inserting 22 in the integral that determines the expectation value of the sum
of squares, we receive an integral where most terms are known.

/x[a]ng (W) dala]

— [otap 2otz + [2ulalatas (MLt dofal - [utaoeri: -

ola]
= ofa? [2o()i +oulal [aldlo <W) dafa) —ulal? [o0z
see equation 5.28 E(zlal) P(z)

(5.25)

5.4. SELECTING GENERAL CLUSTER FEATURES 151

The antiderivative of term [2?¢(z)dz is as follows:

1 1,2 1 1,2 1 z
22d(2)dz = /22 e 2% dy = — e 2% z+ —erf () +C (5.26
[ot = = st (5) ¢ G20

—_———
P(z), cf. 5.27

The antiderivative of integral [z2¢(z)dz includes the density function of the
Gaussian distribution in its first addend. The second addend of the antideriva-
tive is the cumulative Gaussian function ®—hereby, function erf is the so-called
error function, which is defined as erf(z) = % f02 e~ dt which is also the limit
. . o T 2 no (=1)'z% !
of the infinite series erf(z) = lim,, o 7= Yoo ECE=VRE

z

/ \/12?67%22505 - %erf <ﬂ> +C=d(2)+C (5.27)

Therefore, we can re-write the antiderivative of integral [z2¢(z)dz in 5.26 using
the transformation in 5.27 as follows:

/z2¢(2)dz =P(z) —P(2)z+C (5.28)

With the antiderivative of integral [z2¢(z)dz we have all terms of the anti-
derivative of the integral that determines the expectation value of the sum of
squares. We insert these terms into Equation 5.25 and sort the terms in terms
using the cumulative Gaussian density function and terms using the Gaussian
density function. For shortness of description, we omit re-substituting variable
z.

(ola)* — pla]®) @(2) — (ola] + ola]?z) ¢(2) + C

= (ofa)® — pla)?) @ (M)+G[a] (ule] =1~ ala]) <M>+O

olal olal

(5.29)

With the complete antiderivative of integral [z[a]*¢ (%) we can ex-
press the expectation of the sum of squares & (z[a]?) in terms of mean pa],
standard deviation ola], and the limits A and v only. The expectation is the
value of the antiderivative at the upper bound minus the value of the lower
bound. If one side is unbounded, the limits of the antiderivative in positive or
negative infinity replace the value of the antiderivative. As limit lim, . ®(v)
is 1 and the limits limy_,_ oo ®(\), lim, o v (v), and limy_,_ o v¢(v) are all 0,

152 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

the expectation of sum of squares is as follows:

(ofa]? — ulal?) @ (454
+ola) (ula) =1 —v) ¢ (V;"[a]) if z[a) 21/ in term ¢;

ola]

ot) (o (555 — o (528 +
€ (efal?) = { +ola] (ula] —1-v) ¢ u;[;;[]a] _
—ola] (ula] =1 —=X) ¢)\;[‘;[]a] if A;x[a] 21/ in term t;

—ola] (ula] =1 —=XN) ¢ ()‘7“[“]) if ASz[a] in term ¢;

(5.30)
With expectations & (z[a]) and € (z[a]®) being known, determining the new
values of the statistics linear sum and sum of squares of the component cf g
selected general cluster feature cf g, is possible.

5.4.7 Updating the Borders of the Bounding Rectangle

Although the bounding rectangle of the general cluster feature cfg, is also a
bounding rectangle of the selected cluster feature cfg.«, it is a good idea to up-
date the bounding rectangle to fit the limits of the selection predicate—if these
are more strict than the limits of the bounding rectangle. Think of a general
cluster feature that is selected twice. If we shrink the bounding box according to
the selection predicate of the first selection, the chance that the smaller bound-
ing rectangle fulfills the second selection predicate is higher. Consequentially in
the average there are less estimates required.

Each term of the selection predicate defines a hypercube in which all tuples
fulfilling the predicate must be. As there might be several terms in a selection
predicate, the geometric object that is defined by the selection predicate is a
compound of hypercubes. It is possible to determine a bounding rectangle that
includes this compound of cubes.

We receive the bounding rectangle of the selected general cluster feature
cf g« by intersecting the bounding rectangle of the selection predicate and the
bounding rectangle of the general cluster feature cfg, that is about to be se-
lected.

To be more specific, updating the vectors bl,. and tr., of the bounding
rectangle of the selected general cluster feature cfg.. is done as follows:

1. Determine the minimum m[a] and the maximum m[a] of the constants in
the terms of the selection predicate that are the lower limit mla] or the
upper limit m[a] of an attribute a of the general cluster feature.

If there are two terms in the selection predicate, where one term has a
lower limit of an attribute and another term that has no lower limit in the

5.5. PROJECTING A GENERAL CLUSTER FEATURE TREE 153

bounding rectangle
of general cluster feature

before after

N —
[;

. —
: 1

term BI

7 I Yy

- — - —

term A ;

e — o —

bounding rectangle of selection predicate

Figure 5.13: updating a bounding rectangle of a general cluster feature with the
bounding rectangle of the selection predicate

same attribute, then set the minimum m/a] to the minimum value bl[a], of
the bounding rectangle in the dimension that corresponds with attribute
a. This is necessary to receive a valid bounding rectangle. Otherwise, it
can happen that the updated bounding rectangle is constrained too much.

Proceed in the same way with maximum 772[a] when there is a term without
an upper bound in that attribute.

2. If the minimum mla] is greater than the minimum value bi[a], of the
bounding rectangle in the dimension that corresponds with attribute a,
then the minimum value b_Z[a]** of the new general cluster feature is the
minimum of the lower limits of that attribute, i.e. bi[a],. = m[a]. Other-
wise, old and new value are identical.

3. If the maximum 77[a] is less than the maximum value ¢7[a], of the bound-
ing rectangle in the dimension that corresponds with attribute a, then the
maximum value 7 [a].s of the new general cluster feature is the maximum
of the upper limits of that attribute, i.e. tr[a].. = mla]. Otherwise, old
and new value are identical.

Note that it is unnecessary to determine the bounding rectangle of individual
components of a general cluster feature.

5.5 Projecting a General Cluster Feature Tree

Projection of a general cluster feature simplifies the general cluster feature and
leaves only those items needed for a given analysis to make the clustering of
the third phase faster. Storing the sum of squares in a general cluster feature
attribute by attribute is necessary to tell which attribute contributes how much

154 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

to the sum of squares. Yet, storing the sum of squares attribute by attribute
requires additional time to re-compute the total sum of squares each time the
algorithm of the third phase of CHAD needs it. Thus, it is useful to use cluster
features instead of general cluster features. Additionally, cluster features need
less space than general cluster features. Hence, more cluster features than gen-
eral cluster features fit a page in the main memory—making the algorithm a
bit faster and saving resources.

Thus, we define a projection method 7 which prunes a general cluster feature
to receive a cluster feature that contains only the information needed for a given
analysis, as shown in Definition 5.4.

Definition 5.4 The projection of a general cluster feature cfg =
(N, s, $5,bl, tr) with a set of attributes A, C A is a function 7 : CFGx A — CF

/
that returns a cluster feature cf = (N',ls,ss’) wvalid in a given analysis in
which attributes A, C A are the relevant attributes, where:

N =N (5.31)

Va € Aq : I3 [a] = I3[a] (5.32)

ss’ = Z s5[al (5.33)
acA,

Projection of attributes removes those attributes that are not in the set of
selected attributes of a given cluster analysis. If not all attributes are projected,
the number of attributes of the projected cluster feature is smaller than the
number of attributes of the general cluster feature.

Yet, projection does not alter the number of tuples. Thus, a projected cluster
feature and the general cluster feature that was projected to generate it contain
the same number of tuples. Hence, the count of tuples IV of a general cluster
feature and its projected cluster feature are identical. For the same reason,
the vector that stores the linear sum of tuples of the projected cluster feature
has the same elements as the vector that stores the linear sum of tuples of the
the general cluster feature. Yet, the vector of the general cluster features has
additional components which store the values of those attributes which have
been excluded from projection.

Two methods of projection are possible. First, the entire tree can be pro-
jected. Second, a single general cluster feature can be projected when it is
needed. In [26] we project tuples on demand. But as selection is better used
once for the entire general cluster feature tree, in this approach we favour pro-
jecting each node after it has been successfully selected.

5.6 Transforming General Cluster Features

Transforming data is often necessary to make attributes comparable. Clustering
algorithm require distance functions to express dissimilarity between two tuples.
The best distance function is application-dependant.

5.6. TRANSFORMING GENERAL CLUSTER FEATURES 155

For instance, normalisation is useful to compare attributes that have no
common distance function. The air temperature in the El Nino data set varies
between 18 and 30 degrees Celsius while the geographical longitude has a range
of £180 degrees. This example requires transformation for two reasons. First,
as longitude has a broader range it would dominate clustering if both attribute
remain un-normalised. Second, the longitude values 180 and —180 denote the
same location.

In contrast to that, attributes that have a common distance function should
not be normalised. If we omit the problem with longitude values in the vicinity
of 180 degrees west and east, respectively, longitude and latitude have a common
distance function. It is arbitrary whether we move some degrees in North-South
or East-West direction. If we normalise longitude and latitude we favour the
attribute latitude because longitude has a a broader range as latitude, i.e. 360
degrees in contrast to 180 degrees. That means that one degree difference in
North-South direction is equal to two degrees in East-West direction.

Yet, as the first phase of CHAD does not know the meaning of an attribute,
it cannot automatically determine whether an attribute should be normalised
or not. We omit polling the user for further details about pre-processed data
because this would contradict the basic principle of anticipatory data mining
which is to pre-process all kinds of intermediate result in the first phase without
user interaction. In other words, the person that initiates pre-processing should
not have to be an expert.

Thus, the standard method of processing attributes is to z-normalise each
attribute in phase 1 and to undo normalisation in phase 2—if normalisation
was erroneously applied in phase 1. Z-normalisation is a transformation that
replaces each attribute value with a new value such that the expectation value
of the new values is 0 and their standard deviation is 1. CHAD determines
mean pfa] and deviation ola] of each attribute and determines the z-normalised
value as
= M_ (5.34)

ola]

The general cluster feature of the root node of the general cluster feature tree
has all statistics that are necessary to determine mean and deviation of each
attribute.

As for some attributes normalisation is a bad choice, there must be means
to remedy normalisation. For this reason CHAD has transformation operations
to transform general cluster features to receive the general cluster features one
would have received by transforming the data and determining the statistics of
the general cluster features using the so-transformed data.

Undoing z-normalisation is the most-common application of transformation
but transformation is also necessary for deriving new attributes from existing
ones, see section 5.7 for details of attribute derivation.

Another side-effect of transformation is that re-scaling attributes is easy.
Determining mean and deviation of an attribute would require a scan of the ta-
ble. As both values must be known before constructing a general cluster feature

156 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

tree, this would require two scans in total. Yet, that would make incremen-
tally updating the general cluster feature tree impossible. Thus, CHAD uses
a different strategy to build the cluster feature tree and determine mean and
deviation at the same time: CHAD scans a small part of the table and deter-
mines mean and deviation of this part. With this initial mean and deviation
CHAD normalises tuples and builds a tree of general cluster features. At regular
intervals, it re-determines mean and deviation. If old mean and new mean or
old and new deviation vary significantly, CHAD transforms the tree according
to the new values of mean and deviation and continues inserting tuples—now
with updated mean and deviation.

The remainder of this section is organised as follows: Subsection 5.6.1 de-
scribes linear transformation in detail, as they are an essential part of CHAD.
Subsection 5.6.2 shows the more general approach to handle arbitrary functions.

5.6.1 Linear Transformation

CHAD needs a linear transformation function to re-scale attributes and to derive
new attributes.

Definition 5.5 Given a data set D with d dimensions, a set of general cluster
features CFG representing D, a multiplicity vector m € R, and a constant
vector ¢ € R. Then, the linear transformation of a general cluster feature cfg €
CFG is a function (CFG x R? x R?) — CFG with a multiplicity vector m €
R and a constant transformation vector ¢ € R as parameters that returns a
transformed general cluster feature c/f\g € CFG the statistics of which are those
statistics one would receive by transforming each tuple ¥ that is represented by
the general cluster feature cfg according the linear transformation

i=MZ+7¢, (5.35)

M(1,...,1)" =m. (5.36)

The remainder of this subsection describes how to use the definition of the
linear transformation function to determine the new values of a linearly trans-

formed general cluster feature % = (N , lg, sié, b_l’, t?).
Matrix M in the definition is the result of Equation 5.36. It is a matrix
where all values except the values on the diagonal line from the top left value

are zero. Each value on the diagonal line is a coefficient of a single attribute, as
shown below:

5.6. TRANSFORMING GENERAL CLUSTER FEATURES 157

The number of tuples remains the same before and after transformation
because transformation influences only values but not the count of tuples. Thus,
the counts of tuples NV and N are identical.

N=N (5.37)

The linear transformation transforms all tuples of a general cluster feature
in the same way, which means that each attribute value z[a] of each tuple Z that
is represented by the general cluster feature is transformed into a new attribute
value #[a] as follows:

z[a] = mlalx[a] + c[a].

As bottom left vector bl and top right vector 7 are points transforming them
happens in the same way as transforming tuples. Thus, equations 5.38, and 5.39,
respectively, describe how to compute the transformed values of the vectors of
the bounding rectangle of a transformed general cluster feature.

bi[a] = mla]bl[a] + c[a] (5.38)
trla] = mla]tr[a] + c[a] (5.39)
The linear sum of a general cluster feature comprises an aggregate of several
tuples. To be more specific, it is the sum of N tuples ' or Z, respectively, where
Z denotes a tuple of the original general cluster feature and Z a tuple of the
transformed general cluster feature.
With simple algebraic transformation we receive the expression that deter-
mines the new transformed value of the linear sum of a transformed general
cluster feature as follows:

Isla] = Zgﬁ[a] = m/a) Zx[a] + Z cla] = m[a)ls[a] + N¢[a).

T x x

Isa] = mla]ls[a] + Nc[a] (5.40)
Analogously, we determine the transformed value of sum of squares $s[a] of
attribute a of the transformed general cluster feature as follows.

$sla] = Zﬁ?[a]QZ

= Z (mla]*z[a]? + 2c[a]m[a]z[a] + c[a]?) =

x

= mla)? Zm[a]Q +2c[a]m]al Z xla] + Z cla)?.

&,_/ &,_/ ———
ssla] ls]a] Ncla]?
Summarising, we receive the new transformed value $sfa] of sum of squares of
an attribute a of a transformed general cluster feature as follows:

ss[a] = m[a)*ss[a] + 2c[a]m]a]ls[a] + Nc[a]? (5.41)

158 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

5.6.2 Non-linear Transformation

This subsection introduces how to extend the linear transformation function
when the needed transformation is non-linear. Non-linear transformation is
needed when deriving new attributes to predict non-linear trends such as peri-
odic trends or above-linear trends. We illustrate non-linear transformation with
the following example: Assume there is a seasonal trend in the number of sold
books which is known to be best approximated by the function g : § = yo sin(wt)
where g is the approximated number of sold books per day, yy is the average
number of sold books per day, ¢ the number of days since the first day of a year,
and w a constant that denotes the periodicity of the saisonal trend. If an analyst
wants to classify whether a marketing event was a good or a bad event, then the
analyst has to consider saisonal trends, too. To be more specific, the analyst
must consider the seasonal trend to correct its influence on the classifier. There-
fore, the analyst tests if current number of sold books y exceeds the estimated
number of sold books ¢. In other words, the analyst defines a new attribute by
combing a non-linearly transformed attribute with another attribute.

When transforming tuples linearly, the difference vector between the point
representing an original tuple and the point representing the transformed tuple
of this tuple is constant for all tuples.

When transforming tuples non-linearly, the difference vector between original
point and transformed point is no longer constant. Consequentially, it might be
different for each tuple. Moreover, it is no longer possible to compute aggregated
features such as sum or average of a transformed general cluster feature directly
using the according values of the original general cluster feature. Hence, one
would have to transform each tuple individually and compute the aggregate
function of the transformed values. Yet, there are no tuples stored in a general
cluster feature.

As the tuples of a general cluster feature are not stored in the general clus-
ter feature, a function that transforms general cluster features non-linearly must
approximate the values of a transformed general cluster feature using the infor-
mation kept in the original general cluster feature.

Assume that function f : R? — R? is the non-linear function which trans-
forms a point representing a tuple into another point representing the trans-
formed tuple of the original tuple. We will further reference it as non-linear
transformation function of tuples.

Definition 5.6 The non-linear transformation h defined for a general clus-
ter feature cfg = (N,ls,s8,bl,tr) € CFG with attributes A is a function
CFG — CFG with a non-linear transformation functzon of tuples f R — R

that returns a transformed general cluster feature cfg = (N Is, s, bl tr) € CFG
the statistics of which are the expectation values of those statistics one would
receive by transforming each tuple ¥ using function f. Namely, each component
of a general cluster feature is computed as follows:

N =N. (5.42)

5.6. TRANSFORMING GENERAL CLUSTER FEATURES 159

Va € A:lsla) = NE(f (z]a))). (5.43)
Va € A: ssla] = NE(f (z]a)) f (x[a])) . (5.44)
Vae A:blla]= min f(z]a]). (5.45)

xz[a]€[bl[a];tr[a]]

Ya € A:tr[a] = f(za,) - (5.46)

max
xzla]€[bl[alstr[a]]

The expectation value of a function over an attribute is the result of the
integral

E(f (zla])) = /jo [(zla]) p (z[d]) dzla],

if the attribute is continuously scaled, or the result of the sum

E(f (ala))) = f (xla]) P (z[a]) ,

z[a]

if the attribute is discretely scaled, where p and P denote the probability density
function of the attribute values x[a] of attribute a and the probability of each
value z[a] of attribute a, respectively. Yet, the probability density function can
also approximate the sum of probabilities. This approximation is useful when
there are many distinct values of that attribute.

The expectation value of a variable determines the average of that variable.
Hence, expectation value of the term f (z[a]) is the average transformed value,
not the expected linear sum. By multiplying this average value and the count of
tuples in the general cluster feature, we receive the expected transformed linear
sum. Analogously, we determine the expected transformed sum of squares.

In analogy to the approximation used for the selection operation, we ap-
proximate the distribution of tuples within a general cluster feature with a
normal-distributed variable. In other words, we interpret the attribute value
x[a] as statistical variable which is distributed normally with mean pfa] and
standard deviation o[a], i.e.

ala] ~ N (plal, ola]).

In order to circumvent the problem of conflicting distributions, cf. the dis-
cussion on page 142, we use this approximation on leaf node level, only. By
approximating the unknown probability density with normal distribution the
previously unknown probability density function p has now a known pendant,
namely the Gaussian probability density function ¢. Thus, the computation
of the expectation value of linear sum and sum of squares is computable when
there exists an anti-derivative for the terms shown in the equations below:

tria]

e (falal)) = [

bl[a]

ﬂﬂdw(“ﬂ‘“”vdﬂ@ (5.47)

olal
trlal

e ((ala)?) = [" tla?e (M wld G

160 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

Re-consider our example at the beginning of this subsection. Function g
transforms only attribute values of attribute ¢t. Thus, all other attribute values
x[a] are transformed according to the implicit function Z[a] = z[a], i.e. they re-
main unchanged. Assume there is a general cluster feature with number of tuples
N =100, linear sum ls[t] = 2500, sum of squares ss[t] = 100000, minimum value
bl[t] = 0, and maximum value ¢r[t] = 60. Due to their irrelevance, the values
of other attributes than attribute ¢ are omitted here. Further assume, that the
average number of sold books yy per day is 1000 while constant w is % which
means that one full season lasts exactly one year. We determine the mean ult]
as quotient of linear sum and number of tuples u[t] = Is[t]/N = 2500/100 = 25
and the standard deviation o[t] using the transformation law of variances as fol-
lows o[t] = /ss[t]/N — Is[t]2/N2 = ,/100000/100 — 25002/1002 = 5/15 ~ 19.
With mean and deviation determined, we compute the transformed values of
linear sum and sum of squares using their expectation values, i.e. l:s[t] =

NE (g(alt]) = N fyi] glalt)o (2Lp1) daft] and 5] = NE (g(aft])?) =

N fbtlr[i]ﬂ g(z[t))?¢ (%) dx[t], respectively. We used MathWorld’s antideriv-

ative finder to find the complex antiderivatives of the integrals of both expecta-
tion values. The antiderivative of the expectation value of g(z[t]) is

Using this antiderivative, we receive the result of the integral within the limits
bl[t] and tr[t] which we need to determine the expectation value tuples.

i 2lt] — ul]
Amg@mw(ﬂﬂ>mm

~(0.828175+0.356354%i) ~0.651514+4-0.818215xi

~0.953438% ~0.953438

~ Yo @((—1)(0.356354 +0.651514) + (2 % 0.9534382))

Thus, we receive the transformed linear sum as Is[t] = 0.34yoN = 34000. As
computing sum of squares happens analogously we omit to discuss it here.

5.7. DERIVING NEW ATTRIBUTES 161

Minimum bl[t] and maximum #r[t] of the transformed general cluster feature
are minimum and maximum of the transformed attribute values within the range
of the old minimum and maximum values bl[t] and ¢r[t]. In our example, function
g is monotonously increasing within bl[t] and tr[t]. Hence, the transformed
minimum is g(bl[t]) while the transformed maximum is g(¢r[t]). When inserting
the values of bl[f] and tr[t], we receive bl[t] = 0 and {r = yo sin 1227 ~ 0.86y, =

365
860.

5.7 Deriving New Attributes

This section describes how the task of deriving new attributes can be accom-
plished by applying a combination of selection and transformation.

Sometimes an analysis needs values of objects which are not stored in a
database but which can be computed from the attribute values of the tuples
representing those objects. For instance, there is no attribute in the fact table
of the running example storing the total price of a sales transaction. Yet, one
can easily compute the total price using the attributes of the fact table.

Let attribute a ¢ A*Y denote a new attribute which we want to add to the
set of existing attributes. Further, let attributes a’ € A and a” € A be any two
existing attributes the statistics of which are already elements of the general
cluster feature into which we want to add the new attribute a.

Assume that function f : R? — R determines the relation between an at-
tribute value z[a] of the new attribute a and the attribute values z,, and z,,,
of the existing attributes a’ and a”, respectively, i.e.

zla] = f(z[a’], z[a"]).

Defining a function that takes only two attributes as arguments is sufficient
for defining new attributes which require several involved attributes for their
computation because it is possible to split functions taking more than two ar-
guments into several sub-functions taking only two. For instance, if we need a
function f : R® — R taking three arguments for a given analysis we can use
two functions f; : R? — R and f, : R? — R which we combine such that the
condition f1 (zlasl, f2 (#laa), 7lasl)) = f(lar], zlas)], 2las]) holds.

A general cluster feature cfg that is about to receive an additional attribute
a requires linear sum, sum of squares, minimum, and maximum of the values of
the new attribute. As adding attributes leaves the count of tuples untouched,
count N is the same before and after adding an attribute.

In analogy to transformation function we use the expectation value of linear
sum to approximate the value of linear sum of the new attribute, i.e. the value
of linear sum /s[a] of the new attribute is approximated as

Isla] = NE(f (x[a'], z[a"])) . (5.49)

Multiplying count and expectation value of linear sum is necessary as the ex-
pectation value represents only the average value, not the sum of values of the
new attribute.

162 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

We proceed in the same way for sum of squares of the new attribute.
ssla] = NE(f (x[d'], z[a"]) f (x]a'], z[a"])) . (5.50)

Again, multiplying count and expectation value of sum of squares is necessary
because the expectation value represents only the average sum of squares of a
single tuple.

Approximating the tuples distribution by normal distribution of attribute
values in the dimensions spanned by attributes a’ and a”, respectively, enables
determining the value of the expectation values of linear sum and sum of squares
using the Gaussian probability density function ¢. As we additionally assume
conditional independency of attribute values x[a’] and x[a”'], we can approximate
the joint probability density function of attribute values x[a’] and z[a”’] with
the product of the probability density function of each attribute value z[a’] and
x[a”], respectively. Using these assumptions, we can determine the term of the
expectation value of linear sum of the new attribute by integrating the product
of each pair of attribute values (z[a’], z[a”]) and the joint probability density
function as follows:

E(f (zla’],z[a"])) =

[([setatata o (A o (ST drgar) s,
(5.51)

If only a subset of tuples is relevant for the computation of a derived at-
tribute then the selection function ¢ selects an auxiliary general cluster feature
which includes the information about relevant tuples of a general cluster feature
to compute the new derived attribute. Assume that a selection predicate deter-
mines which tuples are relevant for the new attribute. For a given general cluster
feature c¢fg we use the general cluster feature cfg’ = SGselection predicate(Cfg) as
auxiliary general cluster feature to predict the values of the new attribute when
computing these values for general cluster feature cfg. The steps needed to
determine the new values for linear sum and sum of squares are still the same
as when there would have been no selection. Yet, mean i’ and standard devi-
ation ¢’ of the auxiliary general cluster feature replace mean and deviation of
the original general cluster feature cfg. For instance, we determine the linear
sum of the new attribute a as follows:

Q

Isla] = N'E (f (z[a'], z[a"])) , (5.52)
E(f (zla’],z[a"])) =

- (| ey (x[“l,[a‘,ﬁ'[“'g 6 <x[agqaff}/[aﬂ]) d”“"[“”]) Al
(5.53)

To illustrate the concept of defining new attributes let us re-consider the
pre-processed fact table sales grouped by customer and time, i.e. Table 4.5.
The schema of this pre-processed fact table includes the attributes sum units
books and sum units article.

5.7. DERIVING NEW ATTRIBUTES 163

Assume that we have an analysis where we are interested to know whether
the typical mix of product groups influences the likelihood that a customer
will quit one’s contract or not. Hence, we need to derive new attributes that
represent the difference of product groups. The absolute numbers of items sold
of a product group such as sold books or sold articles is irrelevant for this
analysis. Thus, assume that we want to derive new attributes diff and quot
that comprise the difference of bought books and bought articles on the one
hand and the quotient of both attributes on the other hand. Additionally, we
consider only those books as relevant which are scientific monographs. Thus,
we receive two functions f; and fo with

z[diff] = fi(«[sum units articles], z[sum units books])

= z[sum units articles| — z[sum units books]

and
z[quot] = fo(z[sum units articles], z[sum units books])
_ z[sum units articles]
z[sum units books| ’
respectively.

In the running example the product group scientific monographs has product
group number 3. Thus, we are interested in only those tuples in which the
product group equals 3. Attribute product group is categorical although its
values are numbers, only. Hence, testing for equality is the only valid operator
of comparison.

When determining the new values for bottom left, top right, sum of squares,
and linear sum of attributes quot and diff of a general cluster feature cfg, we
first determine the auxiliary general cluster feature cfg’ = Sproductgroup=3(cfg).
Each time we need a statistic concerning the number of sold books, we use the
appropriate statistic of the auxiliary general cluster feature. When we need a
statistic of any other attribute, we use the appropriate statistic of the original
general cluster feature c¢fg such as the number of tuples in the resulting general
cluster feature.

The Dbottom left value bl[diff] of the new attribute diff is
the minimum of function f; in the ranges z[sum units articles] €
[bl[sum units articles]; tr[sum units articles]] and z[sum units books] €
[bl’[sum units books[; tr’[sum units books]]. In our example the minimum
of function f is

bl[diff] = bl[sum units articles] — ¢r'[sum units books].
Analogously, we determine the top right trq;g as
tr[diff] = tr[sum units articles] — bl'[sum units books].

The value of linear sum of general cluster feature cfg in the new attribute
diff is approximated with the expectation value of function f;, weighted by the

164 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

count of tuples V.
ls[diff] = N& (z[sum units articles] — Sproduct group = 3 (z[sum units books]))

As previously shown in this section, by integrating over all arguments of function
f1 we receive the expectation value we are looking for. If we re-formulate this
integral we receive two integrals, the result of which we already know. For
keeping expressions short we introduce the variables and y to substitute the
attribute values of sold articles and sold monographs as

2 := (z[sum units articles] — y[sum units articles]) /o [sum units articles]

and

x[sum units books| — 1 (Sproduct group = 3(z[sum units books]))

Y= _
0 (Sproduct group = 3(z[sum units books]))

Thus, we can re-formulate the expectation value of linear sum of function f; as

e @-n= [(] @-nowowma)a-

— 00 — 00

= [([romotar)ay— [~ ([~ ooty) ar=

= [o [wotwaray |- [| o /_Zy¢(y>dydm _

—00 —o0 —o0
=£(a) —£(y)
— £ (x) / o(y)dy —€ (3) / o(x)dz =
= =

=&(@) =& (y).

Thus, the expectation value of function f; is the difference of expectation values
of attribute values of sold articles and sold monographs. By multiplying this
the expectation value and the count of tuples of general cluster feature cfg
we receive the linear sum [s[diff] of attribute diff. By expressing linear sum of
attribute sum units articles and the linear sum of the selected attribute values
of attribute sum units books as weighted expectation values, we can show that
linear sum of attribute diff is the difference of linear sums of

Is[diff] = NE (z —y) = NE () — NE(y) =
= [s[sum units articles] — Is’[sum units books].

We omit discussing the computation of the remaining items of the general
cluster feature because it happens in analogy to the above-described computa-
tion.

5.8. CHAD PHASE 3 165

5.8 CHAD Phase 3: Using Parameter-
Dependent Summarising Statistics for
Partitioning Clustering

The third phase of CHAD computes the final result of a given cluster analysis.
Hereby, it uses either specific cluster features or general cluster features which
the second phase of CHAD has specifically pre-processed according to the needs
of the given cluster analysis.

This section gives an overview of the third phase of CHAD. It presents
the general principle of algorithms implementing the third phase of CHAD. It
discusses algorithms of other approaches that are able to implement the third
phase. Yet, it also discusses the implementation of the third phase of CHAD in
the prototype of CHAD.

As this section gives only an introduction into the third phase of CHAD, the
succeeding sections will discuss specific details of the prototype implementing
it.

5.8.1 General Principle of CHAD’s Third Phase

The third phase of CHAD computes the result of a partitioning clustering al-
gorithm such as k-means using a dendrogram of cluster features as replacement
of the tuples which are represented by these cluster features.

A partitioning clustering which uses a dendrogram instead of tuples for clus-
tering works in a similar way as the same partitioning clustering algorithm that
uses tuples does. The most significant difference is that a clustering algorithm
using tuples moves tuples from one partition to another partition, while a clus-
tering algorithm using a dendrogram moves sets of tuples represented by cluster
features from one partition to another one.

Yet, using a dendrogram causes specific problems, namely extension in space
and level of aggregation.

cluster features have an extension in space While a partitioning cluster-
ing algorithm can unambiguously determine the affiliation of a tuple to a
cluster, it might fail to do so for cluster features. A tuple is represented
by a point in a vector space. Hence, it has no extension in space—not so
cluster features. A cluster feature represents a set of tuples and has an
extension in space with the consequence that a part of the area covered
by the cluster feature are closer to a specific cluster and another part of
the area covered by this cluster feature are closer to another cluster.

selecting the right level of aggregation If tuples are represented by hier-
archically organised cluster features, then each tuple is represented by
several cluster features. At the most fine-grained level, a tuple is repre-
sented by an entry of a specific leaf node. This entry is a cluster feature.
Yet, any ancestor node of this leaf node contains an entry which also
represents the same tuple as the entry of the leaf node does.

166 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

Thus, an clustering algorithm using a dendrogram has to choose which
entry to select for clustering. If it chooses entries close to the root node
of the dendrogram then computation becomes faster because there are
less entries to consider because each entry represents more tuples than
entries of levels below that level do, Yet, the extension of that entries is
larger than the extension of lower-level entries. Thus, the afore mentioned
problem becomes more significant. Consequentially, an algorithm using
a dendrogram has to select entries at the right level of aggregation for
balancing speed and correctness of tuples’ cluster affiliation.

In addition to the problems mentioned above, an algorithm implementing
the third phase of CHAD faces another problem concerning the algorithm’s
initialisation. The initialisation method should avoid accessing tuples as this
would slow down the specific data mining. Hence, traditional methods of ini-
tialisation such as clustering a sample to find an initial solution are inefficient
because accessing tuples is needed if the sample has not been pre-selected. Yet,
we omit pre-selecting samples because algorithms using sufficient statistics have
shown superior runtime and quality, confer Section 7.3.

Algorithm 3 shows the working of partitioning clustering algorithms using
a dendrogram. It is very similar to the working of partitioning clustering algo-
rithms using tuples. Algorithms using a dendrogram additionally test whether
it is sufficient to assign a cluster feature to a given cluster as a whole or not.
As this test might fail for a specific cluster feature there exists a function that
replaces a too coarse grained cluster feature by a more fine-grained one.

The next subsection discusses existing partitioning clustering algorithms us-
ing either a dendrogram or cluster features. It shows how one can use these
algorithms to implement the third phase of CHAD.

The next sections present how the implementation of CHAD handles the
above-mentioned problems. To be more specific, section 5.9 introduces the so-
called bounding rectangle condition which is a function that tests if a cluster
feature has been correctly assigned to a cluster as a whole. Section 5.10 intro-
duces a method to initialise the third phase of CHAD without accessing tuples.

Note that in a previous version of CHAD there exists another function to
test if a cluster feature has been correctly assigned to a cluster as a whole, which
was called probability condition. The probability condition uses approximation
with a set of normal distributions to test the probability of misclassified tu-
ples in a cluster feature. Yet, the probability condition was implemented in a
first prototype of CHAD by Dominik Fiirst, see [19] for details. Yet, his tests
have shown that the probability condition only rarely prevents splitting. This
dissertation includes tests using the probability condition. As the probability
condition does not limit the number of splits, the clustering algorithm used all
leaf nodes for clustering. Therefore, these tests show the same performance as
the new version of CHAD does when the bounding rectangle condition is turned
of. As we will discuss in Section 5.9, the bounding rectangle condition is error-
free. Hence, results are identical when using the bounding rectangle condition
or not.

5.8. CHAD PHASE 3 167

Algorithm 3 Pseudo code of partitioning clustering algorithms using a den-
drogram of cluster features

Require: set of tuples represented by a set of cluster features CF' ¢ CF
organised hierarchically haschild : CF' — 2CF ", number of clusters k, initial
solution ©,

Ensure: set of k features © = {6y,...,04}

1: O« @L

2: CF" « select_entries_of_initial level (C'F’)

3: CFp «— {CFy,...,CFy},¥i € {1,...d} : CF; = {} /* create d initially
empty clusters */

4: for all ¢cf € CF" do

5. 4 — determine,inde}unost,similar,feature(Cf'lS @) /* test similar-

cf.N’

ity of ©; € © and the centroid of ¢f */
6: CF, — CF;U{cf} /* add cluster feature cf to i-th cluster */
7: end for
8
9

: for all ; € © do
: 0 «— update_solution(CF)})
10: end for

11: repeat

12: for all CF; € CFp do

13: for all cf € CF}; do

14: 1 «— determine_index most_similar feature (z}c:f],@)

15: perform a test that checks if tuples in c¢f are correctly assigned to 6;

/* Algorithms using a dendrogram of cluster features for partitioning
clustering vary in the implementation of this test. Some algorithms
test if the expected number of wrongfully assigned tuples exceeds a
given threshold while other algorithms test if it can be guaranteed
that there exist no wrongfully assigned tuples */

16: if test fails then
17: CFiemp < cf.-haschildren /* replace cf by its children */
18: if CFiemp # {} /™ if there are children */ then
19: CF" — CF"\{cf} /* remove cf from cluster feature list */
20: CF; — CF;\{cf} /* remove cf from its cluster */
21: CF" «— CF"UCFemp /* add children to list of cluster features
*
/
22: CF; «— CF; UCFyemp /* add children to cf’s cluster */
23: end if
24: end if
25: if i # j then
26: CFZ — CFZ' U {Cf}
27: CF]‘ — OFJ\{Cf}

/* if algorithm uses MacQueen-method then update solution here
instead of line 31 */

28: end if

29: end for

30: for all §; € © do

31: 0; < update_solution(CF})
32: end for

33: end for
34: until stop criterion is met
35: return ©

168 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

5.8.2 Using Existing Approaches to Implement CHAD’s
Third Phase

Several authors have previously published approaches which use cluster features
for computing the results of cluster analyses. There exist approaches which
perform an EM clustering using cluster features such as [6]. There also exist
approaches that implement k-means using cluster features.

As CHAD can produce a cluster feature tree that represents a subset of a
data set which satisfies a given selection predicate, all approaches using a cluster
features tree can work with the result of CHAD’s second phase.

There exist approaches which use lists of cluster features instead of a tree
of cluster features. CHAD can produce a list of cluster features for these ap-
proaches. To do so, CHAD must select all entries of the cluster feature tree
which CHAD has produced in its second phase and add these entries—which
are cluster features—into an initially empty list of cluster features.

5.8.3 Implementing CHAD’s Third Phase for k-means

This subsection discusses how to implement the generalised pseudo code of an
algorithm of CHAD’s third phase for k-means as depicted in Algorithm 3. It also
serves as introduction for the succeeding sections which discuss special issues of
this implementation in detail.

Initialising happens outside of Algorithm 3. Thus, another function must
generate an appropriate initial solution ©” which consists of a set of initial cen-
troids. The experimental prototype of CHAD uses a genetic algorithm to find
a set of k points which serve as initial centroids for k-means. This genetic algo-
rithm uses the centroids of the entries of a set of nodes of the cluster feature tree
as its initial population. It tests the fitness of individuals by running Algorithm
3 and determining the quality of that run’s result. In other words, the genetic
algorithm calls the Algorithm 3 to determine a new improved solution.

Section 5.10 introduces the details of the genetic algorithm which generates
initial solutions for the third phase of CHAD without accessing tuples.

First, the experimental prototype of CHAD selects the level of the cluster
feature tree that contains more than 2k entries, where k& denotes the number of
clusters to be found. The lower limit of 2k entries is the limit of choice because
the initial clusters contain only a very small number of cluster features at the
beginning that way—the smaller the number of cluster features is the faster is
the algorithm. Yet, it is not too small that the chance to receive empty clusters
is too high.

If the rare phenomenon occurs that a cluster is empty after initially assigning
cluster features, the algorithm aborts the current run and signals the calling
genetic algorithm that it failed to produce a result. The genetic algorithm
penalises the initial solution that created no result by assigning a very low
fitness to it.

Except for some extensions we will discuss below, the implementation of
Algorithm 3 in the experimental prototype works in the same way as the k-

5.9. BOUNDING RECTANGLE CONDITION 169

means variant of MacQueen [46], i.e. it iteratively re-assigns cluster features to
clusters and re-computes the centroids of cluster each time after the number of
cluster features affiliated with a cluster has changed.

Most tuples of a cluster feature must be nearest to the cluster that minimises
the distance of centroid of the cluster and centroid of the cluster feature. Yet,
there might be tuples nearer to the centroids of other clusters. As a tuples
represented by the same cluster feature might be part of several clusters, CHAD
tests if a cluster feature might contain tuples of other clusters but the cluster
the centroid of the cluster feature is nearest. If this probability is greater than a
given threshold then CHAD replaces the cluster feature by the cluster features of
its child nodes—if there are child nodes of this cluster feature. CHAD performs
this test each time it tests the affiliation of a cluster feature to clusters.

Section 5.9 presents details of the test whether replacing a cluster feature is
necessary or not.

The implementation of Algorithm 3 in the experimental prototype stops
when there have been no re-assignments of cluster features and no cluster fea-
tures have been replaced by their children within the current iteration.

5.9 Testing the Existence of Wrongfully As-
signed Tuples with the Bounding Rectangle

The third phase of CHAD needs to test if there might exist tuples in a cluster
feature which are closer to another cluster’s centroid than to the centroid of the
cluster the cluster feature is assigned to. If CHAD cannot guarantee that there
are none of these tuples then CHAD replaces the cluster feature with the entries
of its child nodes.

We reference the condition that a cluster feature must satisfy that it needs
not to be replaced as bounding rectangle condition because it uses the bounding
rectangle of a cluster feature to test if there could be a tuple within the cluster
feature that is wrongfully assigned to the cluster to which the cluster feature is
assigned.

If the bounding rectangle condition holds for many cluster features of the
cluster feature tree of a given analysis, then the third phase of CHAD works
with a small set of cluster features, only. As a consequence of this, the algorithm
terminates faster.

This section discusses the bounding rectangle condition in detail.

The bounding rectangle of a cluster feature represents a sub-space of a d-
dimensional vector space that envelopes all tuples represented by this cluster
feature. Or in other words, there exist no tuples of the cluster feature outside
of the cluster feature’s bounding rectangle.

The bounding rectangle condition tests if the bounding rectangle of a cluster
feature is completely inside the sub-space that represents all tuples of a cluster.
As the used clustering algorithm determines the geometric form of this sub-
space, we focus our discussion on k-means clustering. Yet, one can apply the

170 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

tr = a(l..lj - “i)]

X C H b2e2
bl >

M

Figure 5.14: Testing if all points in a bounding rectangle are closer to a mean
than to the mean of another cluster

same techniques we discuss here on analyses with other clustering algorithms in
analogous way.

In a k-means cluster analysis the bisecting hyperplane between a pair of
means separates all tuples that are closer to one of these means from tuples
that are closer to the other mean. If we would use EM instead of k-means, the
sub-space that represents all tuples of a cluster is the sub-space that contains
all vectors where the probability density function of the cluster is higher than
the probability density function of another cluster.

Thus, if we can show that all tuples of a cluster feature are on the same side
of all bisecting hyperplane between each pair of means, we have also shown that
all tuples of this cluster feature are closer to the same mean.

If a pair of means (fi;, ii;) and a cluster feature are given, then the centroid
C' of the cluster feature is either nearer to one of both means or the centroid
has equal distance to both centroids. Assume that C is nearer to mean fi;
Consequentially, there exist tuples that are nearer to mean fi; than to the other
mean/i;. Hence, if there exists only a single tuple in the cluster feature that is
nearer to the other mean fi; then there are tuples in the cluster features that
are part of two different clusters—and not the same cluster, as it is required by
the bounding rectangle condition.

For testing if a tuple that conflicts with the bounding rectangle condition
might exist, we consider the perpendicular of any point in the bounding rec-
tangle on the bisecting hyperplane. Note that a bounding rectangle of a cluster
feature cf is a d-dimensional sub-space containing an infinite number of points—
yet, only c¢f.n points represent tuples. Therefore, if there is no point conflicting
with the bounding rectangle condition, then none of the cluster feature’s tuples
can conflict with the bounding rectangle condition.

For testing on which side of the bisecting hyperplane a point P is located
we drop a perpendicular from point P onto the bisecting hyperplane, as illus-
trated in Figure 5.14. Hereby, let vector H denote the intersection point of the

5.9. BOUNDING RECTANGLE CONDITION 171

perpendicular and the bisecting hyperplane. The difference vector of mean ji;
and mean [i;, vector [i; — [i;, is also perpendicular to the bisecting hyperplane.
Therefore, the difference vector fi; — fi; is parallel to the perpendicular of point
P. Therefore, we can express the perpendicular from point P to the bisecting
hyperplane as a linear combination

H— P = aii; - ft)-

As difference vector has an orientation, we can use the factor a to test on
which side of the bisecting hyperplane point P is: If factor a is positive, point
P is on the same side of the bisecting hyperplane as mean fi;. If it is negative,
point P is on the side of mean ft;. Finally, if it is zero then point Pis exactly
on the bisecting hyperplane.

If there exists at least one point where the linear combination has a negative
factor a, then the bounding rectangle condition is false.

We determine the point that minimises factor a because this point is easy to
determine and if this point has a non-negative value of factor a, then all other
points in the cluster feature have a non-negative value, too—which means that
the bounding rectangle condition is true.

In order to determine the point that minimises factor a we start at any
corner of the bounding rectangle and try to find a corner that is connected via
an edge with the current corner that has a smaller value of factor a. If we find
such a corner, we recursively try to find better corners until there is no better
corner.

Each edge of a bounding rectangle is parallel to exactly one of the axis of
the d-dimensional vector space that contains all tuples. Let vector €, denote a
vector parallel to the m-th axis with normalised length of 1. We will reference
this vector as the m-th axis vector. Therefore, depending on the corner we are
currently considering, we can move in the m-th dimension either in positive or
negative direction of vector €,,.

Moving from a corner in positive direction in the m-th dimension means to
move from the minimum value to the maximum value in this dimension, i.e. a
move from value bi[m] to value r[m]. Contrary, moving in negative direction
means to move from maximum to minimum value.

If we also represent the difference vector ji; — [i; as a linear combination of
all axis vectors, i.e.

d
,L_[j - ﬁz = § bmgma
m=1

then a move in positive direction of axis vector €, decreases the value of factor
a or results in the same value if the coefficient b,,, of the m-th dimension is also
positive. In a Cartesian vector space, each coefficient b, is the component of
the difference vector in the m-th, dimension, i.e.

172 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

Therefore, each coefficient b, determines whether to make a positive or a
negative move in the m-th dimension. Hence, the corner R that minimises factor
ais .
trim] if by, >0

R e RY, with R[m] =3 ~
R eR?, with Km] { bl[m] otherwise.

Once we have determined the corner R that minimises factor a we can test
if the distance of corner R is nearer to fi; than to fi;. If the condition is false,
the bounding rectangle condition is false, too. If the condition is true, we use
the same test for other means. If all tests are positive, the bounding rectangle
condition holds. Therefore, we summarise the argumentation above and define
the bounding rectangle condition as follows.

Definition 5.7 Given a cluster feature cf = (n, l; ss, b_z, t_f“) and a set of means
M ={..,fi...,fj,...}, where p; is the mean that is nearest to the cluster
feature’s centroid C = cf.l?s/cf.n. The bounding rectangle condition brc of a
cluster feature is a predicate that is true, if all corners of the bounding rectangle
are nearer to mean fi; than to each other mean. In other words, the following
condition must hold:

V(jij, i) € M x M with fi; # ji;

trm] if (ji; — fi;)[m] > 0

here R; € RY, with Rlm] =4
where R; € RY, wi [m] { bl[m] otherwise.

[[R; — || < [|R; — i

5.10 Initialising the Third Phase of CHAD
5.10.1 Third Phase of CHAD is Liable to Local Minima

CHAD’s implementation of k-means is very similar in structure to MacQueen'’s
variant of k-means. The major difference is that the implementation of CHAD’s
third phase moves entire sub-clusters instead of single points between the k main
clusters. So, it might be vulnerable to the same shortcomings as k-means is. We
will discuss these shortcoming in this subsection before we will discuss different
methods to initialise k-means and the effectiveness of theses methods to master
the shortcomings in succeeding subsections.

k-means is a hill-climbing optimisation method. Each hill-climbing method
starts with an initial solution and searches the local environment of the current
solution for a better solution. The method repeats this process until there is
no better solution in the local environment of the current solution. Due to this
local search approach it is possible that the local environment contains no better
solution than the current one while there is a better solution in global scope.

Hence, a drawback of k-means is its liability to the initial clustering. A
badly chosen initial clustering can cause k-means to return a local minimum.
Due to the complexity of the clustering problem, the optimal solution cannot

5.10. INITIALISING THE THIRD PHASE OF CHAD 173

Figure 5.15: finding the optimal clustering for two one-dimensional clusters

be determined efficiently—this is also true for determining an initial clustering
that causes k-means to result in the optimum. Hence, heuristical methods try
to maximise the probability of finding an optimal solution.

The liability to local minima can be seen in Figure 5.15. This figure shows
a fictive clustering problem with two clusters. The according vector space is
one-dimensional. So, all potential solutions of this clustering problem can be
visualised in a two-dimensional drawing, where a single solution consists of
a pair of two variables—in Figure 5.15 denoted as variable x and variable vy,
respectively. Variable x denotes the mean of the first cluster, while variable y
denotes the mean of the second one. The third dimension contains the value
of a quality measure. In the case of k-means clustering, the quality measure is
the sum of distances. In other words, the optimal clustering is the combination
(z,y) which minimises this quality measure. In Figure 5.15 the left-most and
the right-most valley are both minimal in this figure. Yet, there is another
(local) minimum that have about the same value of total sum of differences.

Figure 5.15 also includes three initial solutions—marked as polylines with
arrows—that all result in a final solution after two iterations of k-means. While
initial solutions a) and c) result in one of the global minima, solution b) fails to
find a globally optimal solution.

The influence of local minima on quality can be greater than the influence of
all other influences on quality. Figure 5.16 depicts a test result of a test series
we will discuss in detail in Section 7.4. It is a test series which uses sampling for
efficient clustering of a data set. However, this figure is a good example of the
effect of local minima on quality. Most initial solutions result in a total distance
of approximately 1.05-108. If we would look at the exact values of total distance
we would notice that the total distances of tests vary about 1% around 1.05-108

174 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

‘Oseed 1 Oseed 2 Oseed 3 Aseed 4 Xseed 5 —seed 6 ‘

100

sampling ratio in percent
=
o

T g PEE X T

1 A ‘ ‘ ‘

3.0E+07 4.0E+07 5.0E+07 6.0E+07 7.0E+07 8.0E+07 9.0E+07 1.0E+08 1.1E+08
sum of distances

Figure 5.16: El Nino test series with three clusters

in both directions—see Section 7.4 for details. Yet, one solution is significantly
better than the other solutions which means that there is one initial solution
ending in a different local minimum than the other initial solutions do. The
other initial solutions find a solution very close to the same local minimum but
they differ due to sampling error. Yet, it is hard to notice the effect of slightly
varying results because the effect caused by the different local minima outweighs
other sources of error such as sampling error or computational inaccuracy.

Summarising, we state that the method used to initialise k-means, regard-
less, whether it is a variant using tuples or clustering features, must have a high
chance to find an initial solution that ends in the global minimum of total dis-
tance. Hence, the following subsections of this section discuss different methods
to initialise k-means.

It makes no difference if the used k-means variant uses tuples or cluster-
ing features because finding an initial solution can happen outside of k-means.
Hence, it is possible to use a sample of tuples to find an initial solution for
a k-means algorithm which then uses clustering features to compute a final
solution.

However, if the tuples are no longer present to take a sample of them, one
needs alternatives to sampling to initialise k-means. Alternative ways of initial-
isation are also needed when taking a sample would worsen the performance of
k-means. Taking a sample means to scan at least the entire index of a fact table
to ensure that each tuple has the same chance of being part of the sample.

Preparing a sample for initialising would be a potential solution. Yet, we will
show that this is a bad solution because we are unable to judge the quality of
results. Therefore, the next subsection discuss specific methods to initialise k-
means. A subsection about the method to initialise k-means which the prototype
of CHAD uses concludes this section.

5.10. INITIALISING THE THIRD PHASE OF CHAD 175

5.10.2 Initialising k-means With a Sample

Taking a set of samples of the data to be clustered and performing k-means
on each sample is a popular way to initialise k-means. Hence, this subsection
discusses this method of initialisation.

Clustering a sample of a set of tuples produces a result which is similar to
the result the clustering algorithm would have been produced when it had used
the set of tuples. Yet, the results of both methods can differ due to sampling
error. In other words, a clustering algorithm using a sample could produce a
wrong result because the sample contains more tuples of a specific cluster than
it does of another cluster. Consequentially, there is a bias in the result favouring
the over-represented cluster.

Yet, clustering a data set which has a small number of tuples is very fast.
Hence, clustering a sample which is a small subset of the original data set is
faster than clustering the original data set.

Taking a sample also needs time. In order to receive an unbiased sample
each tuple has to have the same chance of being selected. To achieve this, one
must at least scan the entire index of a table before accessing the chosen tuples
by point accesses. If the sample ratio is very high it is more efficient to access
tuples in a bulk operation, which means that the entire table is scanned. Yet,
if index or table, respectively, are very large then taking a sample needs much
time. Moreover, it can take longer than the clustering of the sample as clustering
uses data that fits the main memory, only. Hence, the clustering needs no disc
accesses.

To improve the speed of taking a sample, pre-selecting a sample that can
reside in the main memory could be beneficial because the sample would be
present when needed without accessing the disc.

Therefore, we discuss different techniques of taking samples from a fact table,
namely sampling tuples, sampling samples, and sampling centroids. Sampling
tuples requires disc accesses. Hence, it is slow when the index of the sampled
table is reasonably large. Sampling a pre-selected sample requires disc accesses
only when selecting the initial sample which is used to take samples. Hence,
it needs no additional disc accesses when taking the samples from this sample.
Therefore, it is a fast method to take several samples. The final option, sampling
centroids, uses the clustering features of a clustering feature tree for sampling.
To be more specific, it uses each centroid of a clustering feature as potential
element of the sample. As the clustering feature tree resides in main memory,
this method is a very fast method.

However, the above-mentioned different techniques of taking a sample also
differ in the expected sampling error. Therefore, the following subsections dis-
cuss each technique. We will show how each methods influences the expected
quality of initial solutions.

176 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

Sampling Tuples

If there are several clusters or several dimensions, there exist only heuristics to
find the optimal solution which means that k-means either manages to find the
globally optimal solution or it finds a locally optimal solution.

Our tests show that the likelihood that a randomly selected initial solution
terminates in the global optimum does not increase with increasing sample size
when sample size exceeds few thousands of tuples, see Section 7.4 or confer [25].
For instance, Figure 5.16 depicts a test series in which the test with the smallest
sample size finds a better solution than the tests having larger sample sizes.

By iteratively taking samples one can increase the probability of finding
the global optimum. Assume that probability p denotes the likelihood that an
initial solution terminates in the globally optimal solution. Further, assume
that probability ¢ denotes the likelihood that an initial solution terminates in a
locally optimal solution, only. Obviously, both probabilities sum up to p+q = 1.
Using these assumptions, the likelihood not to find the global optimum in d
attempts with a sample for each attempt is ¢?. The term ¢? is a geometric
series which approximates zero. In other words, with rising number of tries it
becomes more and more unlikely to fail each time to find the global optimum.

Hence, it is a good choice to iteratively take small samples and use the
sample which returns the best result when used as initial solution of k-means.
Yet, taking a sample of tuples requires additional disk accesses which slow down
the total performance of an algorithm. Therefore, we will discuss taking samples
from a pre-selected sample in the next subsection because once the pre-selected
sample has been retrieved there are no additional scans necessary.

Sampling a Sample

In this subsection we show that sampling a sample results in the same esti-
mated distribution of tuples. Hence, the initial solution received by sampling a
sample is suitable to find the optimal solution. Yet, we also show that finding
this solution only depends on the pre-selected sample—not the samples of this
sample.

When taking a sample having the size n from a data set with NV tuples that
consists of N — M noisy tuples and M non-noisy tuples, the number of non-
noisy tuples m in the so-taken sample is a random variable X that is distributed
according to a hypergeometric distribution because taking a large sample is a
similar random process as drawing random items from a ballot box without
putting them back—which is the random process that leads to a hypergeometric
distribution.

X ~ h(n; N; M)

The expectation p of the number of non-noisy tuples X is given by the expec-
tation of the hypergeometric distribution as

5.10. INITIALISING THE THIRD PHASE OF CHAD 177

Hence, the expected proportion of non-noise in the sample equals the proportion
of non-noise % in the entire data set, i.e.

w nM M
n nN N’
In other words, sampling does not change the expected ratio of non-noise or
noise, respectively. Too much noise would negatively influence the quality of
results. Hence, a sample is prone to noise in the same way as the set of tuples
is.

However, the variances are different when a sample is taken from a sample
on the one hand or taken from the data set on the other hand. To show this,
we take a small sample from the data set and take a sample of the same size
from the large sample.

Let the variable m denote the actual number of non-noise in the large sample.
Further, let variable r denote the sampling ratio of the large sample. Let variable
d denote the common size of both small samples.

When taking a small sample from the entire data set the number of tu-
ples that is non-noisy Y; is again distributed according to a hypergeometric
distribution—yet, now with an expectation of

M

and a variance of

M M\ N —d

Contrary, when taking a sample of the large sample, expectation and variance
of the number of tuples that are non-noisy Y5 in the so-taken sample depend
on the outcome of the first sample. In other words, the number of tuples of
the large sample n and the number of non-noisy tuples in the large sample m
replaces the according values of the data set IV and M, respectively. Hence,
random variable Y5 has an expectation of

m
EYs)=d—
(Yz2) p
and a variance of g
m m\ n—
Var(Ys) = d- (1 - g) e

Let us compare the quotient of both variances. Further we assume that
the outcome of number of non-noisy tuples in the large sample has the average
number of non-noisy tuples, i.e. the ratio of non-noisy tuples is identical % =
in the large sample and the data set.

Under the assumption of identical ration of non-noisy tuples, the quotient of
variances shows that the variance of the sample of the total data set is higher:

m (1) =t

n/ n—1

dyy (1- %) 51

178 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

yon A (=) g
N - <1lifd>1AN>n.
di(1-45) (N —d)(n—1)

Having higher variance means that it is more likely to have extreme samples
when using the entire data set for sampling. Thus, we might receive samples
with many noisy tuples as well as samples with almost only non-noisy tuples.
If we take several samples there is a good chance to receive at least in one case
a sample that has only a minimal number of noisy data—which is good for
classification and clustering as shown in the experiments section.

Additionally, sampling a sample changes the chance that a specific tuple is
selected. This means that there is an additional but unintended bias. As we
will discuss in the experiments section, a bias can be beneficial when it reduces
the number of noise in the used data set. However, an unintended bias can
result in bad results—we will also discuss this in the experiments section when
discussing experiments with a bias that increases noise.

Assume that one has taken a large sample once and takes several small
samples from this sample later on. Then, the likelihood that a tuple is part of
one of these final samples depends on the outcome of the initial sampling. Even
if the chance that a tuple is selected when taking a small sample from the data
set is low, the chance that this tuple will be selected at least once in series of
several samples is comparably high. If the chance of being selected in a sample
is p then the probability to be selected at least once in a series of k samples is
1—(1—p)*. The limit of this likelihood is 1. Therefore, there exists a number of
samples k where the term 1 — (1 — p)* is higher than the limit of the according
probability that a tuple is never selected when taking a sample from a sample.

The necessity of a tuple determines whether it is sufficient not to select that
tuple or not. If the tuple fulfills a special condition such as its attribute values
assume the extreme values in a specific attribute then the tuple is necessary to
be part of a sample when an analysis needs that extreme values.

Consequentially, using samples of a sample for initialising k-means is infe-
rior in terms of quality to sampling the total data set because it is subject to
unintended bias and it has lower deviation which means that it less extensively
explores the solution space compared to sampling the total data set.

5.10.3 Determining the Quality of a Solution

After a solution has been determined it is necessary to know the quality of
that solution—regardless, whether this solution is an initial solution or a final
solution. Yet, if a sample has been used to find that solution, one cannot use
this sample to determine the quality of the solution. Otherwise, it would be the
same problem as is testing a hypothesis with the same data set that was used
to derive it.

Hence, this section describes how to judge the quality of a solution

1. if a sample has been used to find the solution, or

5.10. INITIALISING THE THIRD PHASE OF CHAD 179

2. if cluster features, i.e. clustering features or general cluster features, have
been used to find the solution.

We will show that testing quality with general cluster features is superior to the
other mentioned methods because general cluster features contain all necessary
information to derive solutions and to test these solutions’ quality. Moreover,
they need no external information to judge the quality of solutions.

Determining the Quality of a Sample

As mentioned above, a sample is insufficient to judge the quality of solutions
that have been generated using this sample. The sampling error that negatively
influenced the found solution occurs in the same way when determining the
quality of this solution. Consequentially, using the sample to determine the
sample’s solution’s quality could not detect sampling error and would suggest
good quality where there is no good quality. It is the same effect we have
discussed as over-fitting in the introductory section about classification.

Therefore, a second sample is needed to judge the quality of a solution which
has been computed from a given sample. The sample used for testing quality
and the sample used for finding a solution must be taken independently from
each other to prevent that the error of one sample depends from the error of
the other sample.

Moreover, the above-mentioned condition of independency of samples fails
to hold for samples taken from the same sample. By taking two samples from a
sample one might determine a solution and test the quality of this solution. Yet,
one can only determine whether this solution is a good solution with respect to
the sample that has been used to take both samples. However, the result of this
test cannot be used to predict the quality of the solution with respect to the
entire data set because it is unknown whether the the initial sample is a good
sample or not.

The lack of verifying quality of a sample without taking another sample
is an immanent problem of taking samples from a sample. It is a problem
which one can avoid by using anticipatory data mining because the general
cluster features of CHAD allow testing a solution without re-generating the
general cluster feature tree—re-generating the cluster feature tree would be the
analogous operation to taking another sample.

Yet, testing the quality of a solution with another sample has also disadvan-
tages in comparison with testing the quality of a solution with general cluster
features: Testing the quality of a solution with another sample can estimate
the error caused by the first sample, i.e. one tests if the likelihood that the
assumption that the sample’s solution is also a good solution of the entire data
set is true exceeds a given error threshold. Yet, the relation between this test
and the real facts in the data set are stochastic which means that the devia-
tion of the estimated relations from the real relations is unlikely but potentially
unbounded.

In contrast to that, testing the quality of a solution with general cluster

180 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

features can give deterministic bounds of potential error, which we will discuss
next.

Determining the Quality With Cluster Features

Unlike a sample, a general cluster feature tree and a clustering feature tree,
respectively, comprises a compressed representation of the entire original data
set. We use the term cluster feature when we intend to describe common features
of clustering features and general cluster features. If some feature apply only to
either clustering features or general cluster features we use the terms clustering
feature or general cluster feature, respectively.

In contrast to cluster features, a sample is just an excerpt of this data set.
Therefore, when computing an item using cluster features, this computation in-
cludes all tuples—yet, in compressed form. Moreover, there can be no sampling
error when using cluster features because cluster features are no samples but
compressed representatives of a data set.

As all cluster features of the same level in a cluster feature tree represent
all tuples in a data set, a statistic we compute using these cluster features is no
estimated value of the entire data set. This statistic is the appropriate value
of the data set when tuples of different clusters are not mixed in the same
cluster feature—we will discuss mixture of clusters in the next paragraph. This
condition is especially true for quality measures of a given cluster analysis. In
other words, using cluster features can find the correct value of a quality measure
while using a sample can only find an estimated value of a quality measure.

When there exist tuples in a cluster feature which are not all part of the
same cluster, computed quality measures might be erroneous. Yet, using gen-
eral cluster features make it evident when potential misassignment of tuples
occurs because the bounding rectangle gives deterministic information about
the extension of tuples in a general cluster feature. Moreover, it is possible
to tell when all tuples are correctly assigned to a specific cluster. Only those
general cluster features potentially having misassigned tuples in them can cause
miscomputation of quality measures. Yet, one can use the elements stored in
a general cluster feature to define a limit of the error made in worst case, or
to compute the estimated error. The remainder of this section presents how to
compute a limit of error and the expected error.

The total squared distance T'D? is a quality measure for k-means clusters.
It measures the sum of the sums of the squared distances of each tuple 7 to its
nearest centroid ji of a cluster. Therefore, the total squared distance TD? of a
single cluster C' with centroid [is

D= @F-pf=>@->(i)

zreC zreC zeC _.
—— =cf.s/cf.N
=cf.ss

By adding all cluster features that contain tuples of the i-th cluster C', we receive
a cluster feature cf that represents all tuples of this cluster. By doing so, we

5.10. INITIALISING THE THIRD PHASE OF CHAD 181

can express the total squared distance T'D? of the i-th cluster in terms of the
elements of this cluster feature as follows:

2 _ _ 22 2 _ VI
TD; =cf.ss—cf.N-cfls Jcf.N*=cf.ss—cfls [cf.N.

The total squared distance TD? of a clustering is the sum of all total squared
distances T'D? of all clusters, i.e.

TD? =) TD}.

In other words, if we add all cluster features that contain all tuples of a clus-
ter then we receive a single cluster feature for each cluster which contains all
information necessary to compute the quality measure total squared distance®.

Yet, if some of the cluster features we added to receive a cluster feature
per cluster have tuples of other clusters within them, the summed up cluster
feature is erroneous. Due to the bounding box of a general cluster feature we
can check if there might exist tuples of other clusters in a general cluster feature.
Therefore, we split the set of general cluster features into two sets by testing
each general cluster feature if it might contain tuples of other clusters. The first
set contains all general cluster features containing tuples of a single cluster only.
The second cluster contains the remaining general cluster features.

Due to the bounding box of a general cluster feature we can also test to
which clusters its tuples might belong to. Therefore, we can receive a general
cluster feature of a cluster the tuples of which are definitely part of the cluster
and a set of cluster features the tuples of which might be part of that cluster.

The lower bound of the total squared distance T'D? of the i-th cluster is the
total squared distance of the cluster feature one receives when adding all cluster
features that contain only tuples of the i-th cluster—which one can test using
the cluster features bounding rectangle.

In contrast to that, the upper bound of the total squared distance TD? of
the i-th cluster is the total squared distance of the cluster feature one receives
when adding all cluster features that might contain tuples of the i-th cluster,
i.e. all cluster features that have been used to determine the lower bound plus
all cluster features having a bounding rectangle that has an overlapping area
with the extension of the i-th cluster.

When adding the lower bounds of total squared distance of all clusters,
one receives the lower bound of total squared distance T'D? of a clustering.
Analogously, when adding the upper bounds of all T D2, one receives the upper
bound of total squared distance of a clustering.

In addition to that, it is possible to compute the expected total squared dis-
tance by estimating the expected contribution of those general cluster features

3For other quality measures of partitioning clustering, see [72]. One can compute several
of them using only general cluster features. Thus, total squared distance is only a single
representative quality measure of a set of quality measures that one can compute from general
cluster features

182 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

that consist of several clusters’ tuples to the total squared distance?. The ex-
pected total squared distance is the sum of the minimal total squared distance
and the expected total distance of those general cluster features which might
contain tuples of several clusters. As this estimation uses only the general clus-
ter features that might contain tuples of more than a single cluster, stochastical
influences are lesser compared with testing quality with sampling. Using sam-
pling, all tuples are subject to a stochastic process. Contrary, using general
cluster features, some general cluster features that represent only a subset of
the data set are subject to the same stochastic process.

Computing quality measures using general cluster features is superior to
other techniques of computing them because it needs no scans on the one hand
and it guarantees upper and lower bounds on the other hand. Contrary, using
a sample for testing the quality of a solution can only give an estimated value
of a quality measure.

Therefore, CHAD uses a combination of techniques discussed in this section.
As general cluster features are superior for testing quality, CHAD uses general
cluster features to test the quality of results. It uses the centroids of general
cluster features to find initial solutions. We will discuss this issue in the next
subsection.

5.10.4 CHAD’s Method of Initialisation

As iteratively selecting initial solutions increases the likelihood of finding the
optimal solution, CHAD iteratively selects initial solutions to initialise its third
phase. The number of initial solutions, that CHAD uses, is a parameter an
analyst can specify. The experiments of this dissertation use ten randomly
selected initial solutions which turned out to be a good value for the test data
we used.

For finding an initial solution for k-means, CHAD randomly selects k cluster
features within the same level of the specific cluster feature tree that has been
selected from the general cluster feature tree to fit the need of a specific cluster
analysis.

The centroid of a so-selected cluster feature is an initial mean for k-means.

Selecting cluster features from the same level within the cluster feature tree
is necessary to avoid solutions where the number of tuples per cluster varies
significantly. When choosing the level of which CHAD picks cluster features for
initialisation, we considered the following issues:

First, the higher the level of a node is in a cluster feature tree the more the
centroid of that cluster feature are closer to the centres of clusters.

4The computation of the total squared distance of a cluster uses the sum of squares of
tuples of a cluster. Hence, the expected contribution of a cluster feature to the total squared
distance of a cluster is the estimated sum of squares of those tuples that are part of this
cluster. If the cluster feature might contain tuples of another cluster, too, we also determine
the expected contribution of the cluster feature to the other cluster. Finally, we compute the
total squared distance in the conventional way.

5.10. INITIALISING THE THIRD PHASE OF CHAD 183

Second, if one wants to select more than one initial solution there must
be more than k cluster features because each initial solution needs k cluster
features.

Therefore, CHAD picks cluster feature from the first level below the top-
level that has more than 2k nodes. The minimal number of nodes 2k has been
chosen because it offers a good balance between aggregation level and diversity of

cluster features. Having 2k nodes one can create (zkk) distinct initial solutions.

If the analyst chooses a number of initial solutions that is higher than (2,5),

CHAD uses the first level below the top-level of the specific cluster feature tree
that has enough nodes to select the analyst-chosen number of distinct initial
solutions.

184 CHAPTER 5. ANTICIPATORY CLUSTERING USING CHAD

Chapter 6

Anticipatory Classification
and Anticipatory
Association Rule Analysis

Contents
6.1 Introduction 185
6.2 Buffering Auxiliary Tuples and Auxiliary Statistics 186
6.2.1 Buffering Auxiliary Tuples 186

6.2.2 Buffering Auxiliary Statistics of Categorical Attributes187
6.3 Deriving Probability Density Function from cf‘-tree188

6.4 Using Cluster Features to Find Split Points . .. 189
6.5 Intermediate Results & Auxiliary Data for Naive
Bayes. 190

6.6 Accelerating Algorithms Finding Association Rules191

6.1 Introduction

The clustering algorithm CHAD we discussed in the previous chapter has been
designed for cluster analyses in which analysts can experiment with data sets
by interactively selecting subsets of a data set and apply partitioning clustering
algorithms on it. The current implementation of CHAD uses k-means to par-
tition data sets. Extending CHAD for EM clustering is the current project of
Messerklinger’s master thesis [48].

Yet, anticipatory data mining is a general principle. Moreover, it is not
limited to cluster analyses, only. One can also use anticipatory data mining to
improve speed and quality of classification algorithms. Additionally, one can
use it to increase the speed of constructing frequent itemsets.

185

186 CHAPTER 6. ANTICIPATORY CLASSIFICATION AND ARA

The statistics in a general cluster feature tree, pre-counted frequencies of the
top frequent pairs of attribute values, and pre-selected auxiliary tuples are all
that is needed to realise anticipatory data mining for classification analyses and
association rule analyses.

Therefore, this chapter discusses how to use auxiliary statistics and auxiliary
tuples for using anticipatory data mining for other applications but clustering.
Section 6.2 discusses buffering auxiliary statistics of categorical attributes as
CHAD omits storing statistics of categorical attributes. It also shows buffering
auxiliary tuples. Each of the remaining sections surveys a technique to use
auxiliary statistics or auxiliary tuples except clustering. Section 6.5 shows the
derivation of a naive Bayes classifier using only auxiliary statistics.

6.2 Buffering Auxiliary Tuples and Auxiliary
Statistics

We already discussed the general principle of pre-selecting auxiliary tuples and
pre-computing auxiliary statistics in Section 4.3.1 on page 111. The general idea
is to maintain buffers of auxiliary tuples and pre-computed statistics, namely a
buffer for typical representatives of a data set, a buffer for outliers, and a buffer
for pre-counted frequencies of categorical attributes. As we have discussed han-
dling of pre-computed statistics of numerical attributes in detail when discussing
CHAD, we leave out describing their handling here.

This section presents the details to continuously maintain buffers for auxil-
iary tuples and auxiliary statistics of categorical attributes.

6.2.1 Buffering Auxiliary Tuples

Section 4.3.1 suggests to store tuples that are typical representatives of a data set
as well as tuples that are atypical representatives or outliers. It also mentions to
use index based sampling for buffering a representative set of tuples representing
typical tuples.

In combination with CHAD it is easy to realise index based sampling as
follows: As the first phase of CHAD incrementally maintains a tree of general
cluster features with a maximum number of nodes, one can buffer a fixed set of
tuples per node. For instance, if the tree has a maximum capacity of n nodes and
one takes n’ tuples of each node as representatives of that node, then a buffer
with capacity to store n-n’ tuples is sufficient to keep the typical representatives
of a data set.

While there is enough space in the buffer reserved for a specific node, the
first phase of CHAD can insert currently scanned tuples into the buffer. If the
buffer is full, it has to randomly replace an existing tuple. This technique is
known as reservoir sampling [38].

Maintaining the auxiliary tuples representing atypical tuples happens anal-
ogously with reservoir sampling—yet, with a single reservoir for all outliers
because outliers are widely spread in the vector space of a data set. In other

6.2. BUFFERING AUXILIARY TUPLES AND AUXILIARY STATISTICS187

words, a typical auxiliary tuple represents a given well-defined area of concen-
tration in the vector space of a data set in contrast to an atypical auxiliary tuple
that is a representative of a huge sparsely populated area in the vector space of
the data set.

Using the sparse distribution of outliers, we can easily identify outliers as
entries of leaf nodes that are

1. member of a leaf node that has a significantly higher extension than the
average extension of leaf nodes, and

2. that have an above-average distance to the other members of this leaf
node.

We determine the extension of a leaf node using the bounding rectangle of the
node’s cluster feature.

6.2.2 Buffering Auxiliary Statistics of Categorical At-
tributes

In contrast to ordinal or continuous attributes, categorical attributes have no
ordering of attribute values. Hence, sorting them or compressing those tuples
with similar values is impossible. Moreover, frequencies of specific attribute
values in a set of data is the only remaining type of auxiliary statistic.

The frequency of an attribute value is needed as 1-itemset of association rule
analyses and as frequency of a class in classification analyses. Yet for analyses
that need to know the co-occurrence of attribute values such as classification
analyses, the joint frequency of attribute value combinations is needed.

As it is unclear which frequencies of attribute values and combination of
attribute values a future analysis will require, buffering auxiliary statistics must
include all of these frequencies. As there might be a huge amount of frequencies
when attributes have many distinct values, the amount of frequencies to count
might exceed the number of items that can be kept in memory. Hence, it is
necessary to limit the number of frequencies to keep.

Unique attributes are unsuitable to be used in an analysis but increase the
number of frequencies to store. Hence, one should exclude unique attributes or
attributes which are almost unique.

Additionally, as most analyses need only frequent attribute values, a poten-
tial solution is to store the top frequent pairs of attribute values in a buffer with
fixed size and take the risk of having a frequency not at hand in rare cases.

For storing the top frequent pairs of attribute values, one can reserve a buffer
with b entries and maintain it as follows: When a tuple is read it is divided in
a set of pairs of attribute values with a pair for each combination of attributes.
If a pair is already in the buffer, the according counter is increased. Otherwise,
the algorithm inserts a new entry. As long as the buffer has enough free space,
each pair of attribute values that is not yet part of the list is inserted into the
list with frequency 1. If the buffer is full when trying to insert a new pair an
item with low frequency is removed from the buffer.

188 CHAPTER 6. ANTICIPATORY CLASSIFICATION AND ARA

To ensure that a newly inserted element of the list is not removed at the
next insertion, we guarantee a minimum lifetime ¢, of each element in the list.
Thus, the algorithm removes the least frequent item that has survived at least
t7, insertions.

One can realise this by splitting the buffer in two buffers: the first buffer is a
FIFO buffer which has the size by, representing the minimum lifetime, i.e. each
element survives at least by insertion operations—and more insertions when
there have been attribute value pairs that were already part of the list. The
second buffer contains the remaining b — by, combinations. When the FIFO
buffer is full, it is tested whether the oldest element of the FIFO buffer or the
exceeds the element with minimal frequency of the second buffer. If the FIFO
buffer’s element is more frequent, it is moved from the FIFO buffer to the second
buffer while the least frequent element is removed. If not, the oldest element of
the FIFO buffer is removed. In both cases, the FIFO buffer gains the capacity
for a new element.

6.3 Deriving a Probability Density Function
from a General Cluster Feature Tree

Several applications we will discuss in the following sections need the probability
density function of a specific attribute or the joint probability density function
of a set of attributes.

Therefore, this section discusses how to derive a probability density function
from a general cluster feature tree.

The leaf nodes of a general cluster feature tree represent all tuples of a data
set and each node represents a subset of tuples. Hence, these subsets of tuples
are a disjunctive and exhaustive partitioning of all tuples.

As the probability density function is unknown, we approximate it with a
set of normally distributed variables. As mentioned in Section 5.4, approximat-
ing an arbitrary distribution with a set of normally distributed variables uses
the well-known technique of kernel estimation in statistics [64]. The Gaussian
density function is a good kernel function because it approximates many arbi-
trary functions quite well. For a detailed discussion of using Gaussian density
function for density estimation, re-consider Section 5.4.

If we approximate a leaf nodes probability density function with normal
distribution, we can formulate a probability density function for the tuples of
each leaf node.

In the case of the probability density function of a single attribute we can
formulate the probability density function f; of the i-th leaf node that is nor-
mally distributed with p; as mean of the relevant attribute and o; as deviation
of this attribute as follows:

1 _(w—py)?

i) = e

6.4. USING CLUSTER FEATURES TO FIND SPLIT POINTS 189

The probability density function of a single attribute is the weighted sum of
the probability density functions of all leaf nodes, i.e.

By integrating the probability density function f(x) we can verify that f(x)
is a normalised probability density function as its result equals 1.

[= [S e = | N e | = =

When determining the probability density at any given point zg, there is no
need to test the probability density of all nodes as many of them would be zero
at that given point. Especially, we can exclude all nodes where z is outside the
interval of the lower limit bl and the upper limit ¢r of that node. Therefore, we
select only those nodes where the condition bl < xg < tr holds. As a general
cluster feature tree is organised similarly to an R*-tree, we can efficiently query
those nodes.

6.4 Using a General Cluster Feature Tree to
Find Good Split Points of a Decision Tree

When a decision tree includes numerical attributes the number of potential
split points is infinite, as we discussed in Subsection 2.3.3. Hence, a heuristic is
needed which finds good split points.

Markus Humer searched in his master’s thesis [35] for beneficial split strate-
gies of Rainforest. He compared conventional split strategies and split strategies
using only auxiliary data. His tests show that split strategies using only auxil-
iary data tend to deliver smaller and robuster decision trees which means that
using auxiliary statistics performs a more efficient search for the optimal split
point!. As auxiliary statistics are statistics of the data set they were taken
from, they are independent from the training set, i.e. an ill chosen training set
has few influence on finding good split points. Consequentially, the so-found
split points are robust. This section demonstrates finding split points using the
probability density function of an attribute. We will revise the afore-mentioned
tests in the succeeding chapter.

The goal of shattering a set of tuples ideally in subsets of tuples that are
homogeneous with each other is related with the goal of partitioning clustering.

Therefore, we use CHAD’s partitioning clustering method to produce a set
of partitions. We receive a set of clustering features where each cluster feature
consists only of a single attribute—the attribute we want to split.

IThe better a split point is the more homogeneous are the split partitions. Consequentially,
there is less need to do another split.

190 CHAPTER 6. ANTICIPATORY CLASSIFICATION AND ARA

One can use the cluster features of the so-found clusters to determine the
points where the probability density functions of a pair of clusters assume the
same value. Markus Humer’s tests have evaluated that the points of equal
probability density are good candidates of split points [35]. There is no need
to test each pair of clusters. As there is only a single relevant attribute, it is
better to order clusters according their mean and test each cluster with its left
and right neighbour, only. Doing this for all clusters, we receive the minima of
the probability density function of the split attribute.

The minima of the probability density function of the split attribute are
good candidates for splitting.

Additionally, one can use the minima of the probability density function to
define a histogram of the attribute of the probability density function.

Histograms can be used to make continuous attributes discrete by assigning
a discrete value to each interval of the histogram.

6.5 Intermediate Results and Auxiliary Data for
Naive Bayes Classification

Subsection 2.3.2 has introduced the concept of naive Bayes classification. With
the concepts of anticipatory data mining being introduced, this section shows
how to apply the concept of anticipatory data mining to improve naive Bayes
classification.

It is very easy to deduce a naive Bayes-classifier using only pre-computed
frequencies. A naive Bayes-classifier classifies a tuple t = (¢1,...,tq) as the class
c € C of a set of classes C' that has the highest posterior probability P(c|t).

The prior probabilities P(¢;|c) and the probability P(c) of class ¢ are all that
is needed to determine the posterior probabilities according to the formula

d

P(clt) = P(c) [] P(tilc). (6.1)

i=1

Determining the probabilities on the right hand side of formula 6.1 requires
the number of tuples, the total frequency of each attribute value of the class
attribute, and the total frequencies of pairs of attribute values where one element
of a pair is an attribute value of the class attribute, as the probabilities P(c) and
P(t;|c) are approximated by the total frequencies as P(c) = @ and P(t;]c) =

F;f(r; ﬁi) , respectively.

Frequency F'(c) is also the frequency of the 1-itemset {c}, which is an aux-
iliary statistic as we discussed in sectionbuffering. As count n is the sum of all
frequencies of the class attribute, the frequency of pairs of attribute values is
the only remaining item to determine.

Storing all potential combinations of attribute values is very expensive when
there is a reasonable number of attributes but storing the top frequent com-
binations is tolerable. As the Bayes classifier assigns a tuple to the class that

6.6. ACCELERATING ALGORITHMS FINDING ASSOCIATION RULES191

maximises posterior probability, a class with infrequent combinations is rarely
the most likely class because a low frequency in formula 6.1 influences the prod-
uct more than several frequencies that represent the maximum probability of
1.

As a potential solution, one can store the top frequent pairs of attribute
values in a buffer with fixed size and take the risk of having a small fraction of
unclassified tuples.

Counting the frequency of attribute value pairs is only appropriate when the
attributes to classify are ordinal or categorical because continuous attributes
potentially have too many distinct attribute values.

If a continuous attribute shall be used for classification, the joint probability
density function replaces the probabilities of pairs of attribute values in formula
6.1. One can determine the joint probability density function as described in
Section 6.3.

The parameters necessary to determine the joint probability density function
such as the covariance matrix are auxiliary statistics for the succeeding Bayes
classification.

Hence, pre-computed frequencies and a set of pre-computed parameters of
probability density function are all that is needed to derive a naive Bayes clas-
sifier. Subsection 7.5.2 shows that the resulting classifiers have high quality.

6.6 Accelerating Algorithms Finding Associa-
tion Rules

Efficient algorithms finding association rules such as Apriori or FP-growth find
the frequent itemsets in a set of scans before searching for valid association
rules using the set of frequent itemsets. Apriori needs multiple scans of the
database in which it counts the frequency of itemsets with increasing length
of itemsets—i.e., the first scan determines the frequent 1-itemsets, while the
d-th scan determines the frequent d-itemsets. FP-growth needs the 1-itemsets
to have an ordering of items when scanning the data a second time to build a
frequent pattern tree.

By storing the frequencies of attribute values in anticipation, one receives
the frequencies of 1-itemsets for free when starting an association rule analysis.
In other words, Apriori can save exactly one scan. FP-growth can also save one
scan which effectively halves the number of needed scans. As this condition is
obvious when analysing both algorithms, we omit demonstrate with tests.

192 CHAPTER 6. ANTICIPATORY CLASSIFICATION AND ARA

Chapter 7

Experimental Results

Contents
7.1 Overview of Evaluation and Test Series 193
7.1.1 Hypotheses Concerning Time 194
7.1.2 General Hypotheses Concerning Quality 195
7.1.3 Hypotheses Concerning Quality of Clustering 196
7.1.4 Hypotheses Concerning Quality of Classification . . 198

7.1.5 Hypotheses Concerning Association Rule Mining . . 198

7.1.6 Description of Used Data Sets. 198
7.2 Results of Tests Demonstrating Scalability of CHAD201
7.3 Effects of Clustering Features and Samples on

Cluster Quality oo v v v v v 206

7.4 Comparing Effects on Quality 207
7.5 Using Pre-computed Items for KDD Instances. . 215
7.5.1 Benefit for Decision Tree Classification 215
7.5.2 Benefit for Naive Bayes Classification 217

7.6 Summary of Evaluation 219

7.1 Overview of Evaluation and Test Series

This chapter presents experiments performed with two prototypes that imple-
ment the concepts of anticipatory data mining. To be more specific, there exist
a prototype implementing CHAD and a prototype pre-processing the auxiliary
statistics mentioned in chapter 6.

As we discussed in Section 1.3, evaluating concepts is an important issue
in design research. Evaluating concepts with a proof-of-concept prototype is
an important technique of evaluation but not the only one. Especially, it is
possible to analytically show important properties of artefacts, i.e. properties
of the method anticipatory data mining.

193

194 CHAPTER 7. EXPERIMENTAL RESULTS

First of all and most important, the existence of a proof-of-concept proto-
type proves that it is possible to realise the concept anticipatory data mining.
Furthermore, we use the prototypes to evaluate several sub-concepts shown in
previous chapters. Each of these concepts has been tested by a set of test series.

Yet, tests using benchmark data can only show the behaviour of a prototype
in a small subset of all potential data sets. Hence, one can use the test of a data
set to have an idea how the tested prototype will react when analysing data
that share similar characteristics with the data used for testing. Yet, there is
no guarantee that all potential phenomena are covered by these tests.

Therefore, using experiments is only a technique of a set of techniques to
evaluate the concepts of anticipatory data mining. The essential concepts are
evaluated by a combination of experiment and analytical evaluation.

Additionally, there are characteristics of sub-concepts of anticipatory data
mining which one can formally prove. Therefore, we omit testing those concepts
which can be proved otherwise.

This section specifies a set of hypotheses each of them regarding a concept of
this dissertation. Each test series matches one of these hypotheses. Yet, there
are hypotheses already proven analytically in previous chapters. For the sake
of completeness, this section also lists these hypotheses and references to the
section containing the proof.

The hypotheses concern improvements of time and quality, where hypotheses
concerning quality includes general hypotheses and hypotheses only relevant for
a specific data mining technique.

7.1.1 Hypotheses Concerning Time

The hypotheses concerning time are as follows:

first phase of CHAD is scalable CHAD'’s first phase implements the pre-
mining phase of anticipatory data mining for numerical attributes. For
guaranteeing high performance, it must be possible to incrementally
update intermediate results and auxiliary data. For the same reason,
CHAD'’s first phase must scale well in the number of tuples. To be more
specific, it must scale linearly in the number of tuples. For this reason,
there is a set of test series consisting of several tests with increasing num-
ber of tuples. The data used in this test series are synthetically generated
data. The reason for using synthetic data is that there a too few very
large benchmark test sets available. Table 7.1 shows the parameters of
used test series.

Each test of a test series consists of six runs of the first phase of CHAD.
Each of these runs uses a different set of data. Hence, at least six different
data sets are needed. Each data set includes a finite set of Gaussian
clusters. Table 7.3 gives an overview of used data sets.

The tests C; to Cop examine CHAD'’s scalability in the maximum number
of nodes of the general cluster feature tree, respectively.

7.1. OVERVIEW OF EVALUATION AND TEST SERIES 195

For being scalable, CHAD must scale linearly or better in the number of
tuples, number of dimensions, and number of nodes.

Time needed for second phase of CHAD is negligible The second
phase of CHAD derives a clustering feature tree from a general cluster
feature tree to fit the needs of a given analysis. For doing so, CHAD has
to scan the general cluster feature. To be more specific, depending on
the selection predicate it can omit scanning branches that are irrelevant
with respect to the selection predicate. As all operations happen in main
memory, this task is very fast.

While performing the tests, the second phase of CHAD always lasted
about a hundredth of a second which is the most fine-grained interval of
the clock function of the machine used for testing. As the time needed to
compute the result of CHAD’s second phase is so small as it is, we omit
examining it further.

CHAD’s third phase is independent of the number of tuples
Obviously, the time needed to compute the result of CHAD’s third
phase is independent of the number of tuples in the data set that has
been pre-mined in CHAD’s first phase because a clustering feature tree
consists of a fixed maximum number of entries. In other words, scanning
the clustering feature tree involves at maximum a number of entries
that is significantly smaller than the number of tuples. Moreover, if the
number of tuple increases, the number of entries cannot exceed the upper
limit of entries. Hence, the third phase of CHAD must be independent of
the number of tuples, i.e. its runtime complexity concerning the number
of tuples is constant O(1).

We omit examining the minimum number of nodes that are necessary to
apply CHAD because few hundred of nodes have shown to be sufficient for
CHAD. Additionally, CHAD’s third phase runs about a second with few
hundred of nodes. Consequentially, limiting the number of nodes would
make no sense because runtime improvement would be unnecessary.

Time needed for third phase of CHAD is low Although the time needed
for CHAD’s third phase is independent of the number of tuples in the
data set, there exist other factors influencing the runtime of CHAD’s third
phase. Hence, there exists a test series showing that the runtime of CHAD
depends on the tree size and is generally low enough such that an analyst
can test a reasonable number of analyses with distinct parameters in short
time.

7.1.2 General Hypotheses Concerning Quality

Quality is measurable and has a deterministic upper limit It is incor-
rect to assume that quality is measurable in each analysis. When using
a sample to compute the result of an analysis, each quality measure that

196 CHAPTER 7. EXPERIMENTAL RESULTS

used the sample for its computation measures the quality of the sample,
only. Especially, it does not measure the quality in the total data set.
Therefore, it is necessary to evaluate the quality of a result of an analy-
sis externally, for instance with another sample that serves as estimate of
the quality of the total data set. Yet, the so-determined quality is just
an estimate of the real quality which might significantly differ from the
measured quality. Moreover, if the sample has itself been taken from a
sample then the sample of the sample is only capable to estimate the qual-
ity of the sample it was taken from—and not the total data set. In other
words, if the initially taken sample is biased in any way, then all samples
taken from it will deliver biased results without being able to detect this
phenomenon.

In contrast to that, the pre-mined statistics are sufficient statistics for
computing quality measures of the total data set. It is also possible to
give deterministic limits of quality measures. We have discussed this issue
extensively in Subsection 5.10.3 and have formally shown it there.

Approach is generally applicable Related approaches using trees of suffi-
cient statistics are limited to analyses where the subset of a data set rel-
evant for an analysis is identical with the data set used to determine the
sufficient statistics. One could use the alternative to pre-process a sample
with all attributes and perform selection and projection operations on this
sample.

Yet, the sampling alternative might face the problem that the selected
sample is empty—although there would be tuple in the data set that fulfill
the selection predicate. In such a case, the second phase of CHAD returns
a non-empty tree of clustering features.

CHAD is also superior to other approaches that offer no support for re-
using sufficient statistics in multiple analyses with varying subsets of rel-
evant data.

7.1.3 Hypotheses Concerning Quality of Clustering

quality of aggregated data is sufficient It is possible to shrink the time
needed for computation of the second phase nearly to any short period
of time by taking very small samples of the data or by limiting the num-
ber of nodes in the general cluster feature tree to a very small number.
Yet, the resulting clustering model is likely to be of low quality. Hence,
there is a set of test series that examines the minimal number of nodes the
general cluster feature tree must have to produce results that share about
the same quality with a clustering that is done using all tuples instead of
their aggregated representations.

As sampling is a commonly-used alternative to using aggregated represen-
tations, another set of test series examines the minimum size of a sample
that fulfills the same condition as shown above.

7.1. OVERVIEW OF EVALUATION AND TEST SERIES 197

Both sets of test series are identical. They use data sets consisting of syn-
thetic data and benchmark data which are available to the public. Syn-
thetic data has the advantage that the optimal locations of the centroids
are known but they are only somewhat useful for comparing aggregated
representations and samples. As artificial data are typically unsorted and
independently and identically distributed, sampling techniques face a very
easy problem—which might be oversimplified. If there is no order within
the data it is possible to take the first n tuples of a table as a sample for all
tuples in that table. The so-taken sample would be unbiased. In general,
it is necessary to assume that tuples are ordered making this sampling
method inapplicable. Tuples might be ordered because the table has been
sorted for quicker access of its contents or because the tuples have been
inserted in any unintended order—for instance, if a company inserts all
sales of a store in a bulk load operation, parts of the table are ordered.

With the optimal locations of clusters being known within the synthetic
data sets, all tests with synthetic data use the number of clusters that
is specified in the description of the used data set to check whether the
known optimal solution is found. If we would test with another number
of means, we could only receive suboptimal results.

Initialisation outweighs other effects Partitioning clustering algorithms
need an initial solution to produce a final solution. Hereby, the initial
solution determines the quality of the resulting solution.

We will show in a test series that the effect of the initial solution on quality
outweighs all other effects. Therefore, we use a set of benchmark data sets
a apply k-means on these data sets.

If we can show that the initial solution determines the quality of the result
more than other effects, then slight losses in quality due to aggregation
are tolerable as they are outweighed by the effect of the initial solution.

As we have extensively discussed in Section 5.10, trying independently
finding initial solutions many times, is very likely to find the optimal
initial solution. Hence, one can use some of the cost saving of anticipatory
data mining to search more often for a good initial solution. As mentioned
before, this proceeding is more likely to succeed than searching a single
time with a large set of data.

As k-means is liable to the chosen initial solution in terms of speed and
quality of results, each test is iterated six times—each time initialised with
a different seed to receive a different initial solution each time.

For the optimal solution being unknown within benchmark data sets, the
tests with benchmark data use the total sum of distances as criterion for
quality.

198 CHAPTER 7. EXPERIMENTAL RESULTS

7.1.4 Hypotheses Concerning Quality of Classification

Using auxiliary tuples as training set improves quality Markus Humer
[35] implemented the concept of anticipatory data mining for classification
using decision trees. His tests show that using auxiliary tuples as training
set improves the accuracy of decision tree classification. We will discuss
these results in a section of this chapter. These results also have been
published in a paper [25].

Using auxiliary statistics results in highly-accurate Bayes classifiers
The approach mentioned in Section 6.5 that derives a naive Bayes
classifier for free from a set of pre-buffered auxiliary statistics has been
implemented as a prototype. Its results are published in a paper [25].
The results show that the accuracy of the so-determined classifiers is very
high and comparable with a very large sample. Yet, one can receive the
classifier for free, i.e. without accessing tuples from disc.

7.1.5 Hypotheses Concerning Association Rule Mining

Anticipatory data mining saves one scan By buffering frequencies of at-
tribute values, one receives the 1-itemsets which one can use for associa-
tion rule analyses to improve the speed of Apriori or FP-growth, respec-
tively. In other words, the 1-itemset is an intermediate result that has
been pre-mined in anticipation of future association rules analyses. As
the saving is constantly a scan which one can verify by analysing Apriori
and FP-growth, respectively, we omit showing this in a test series.

7.1.6 Description of Used Data Sets

Most tests demonstrating the quality of CHAD’s results use data of real world
problems such as climatical data or medical data.

Yet, some tests use synthetical data to show how CHAD handles data sets
that are known to be hard to analyse.

All synthetic data sets used for testing have only numerical attributes but
they vary in number and location of clusters. There are some data sets that can
be easily used for k-means clustering, while there are other data sets the k-means
algorithm is known to face problems with such kind of data sets. For instance,
there is a data set containing no noise and clusters with low deviation—which
is known to be an easy problem for k-means. Other data sets have clusters with
high deviation and a high proportion of noise—which might cause k-means to
produce bad results if it has not been initiated with a good initial solution. If
there is a mix of clusters with high deviation and clusters with low deviation, k-
means also produces bad results. Hence, there are some data sets with clusters
of varying size and deviation.

7.1. OVERVIEW OF EVALUATION AND TEST SERIES

199

Number No. tuples (x x 1000)
| of nodes || 200 | 400 | 600 | 800 | 1000
100 || Cy Cio
200 || Cq Cn
400 || Cs Ci2
800 || C4 Cis
1,600 || Cs Cua
3,200 || Cg Cus
6,400 || C; Cis
12,800 | Cs Ci7
25,600 Cg Czl C22 023 C18
51,200 Cio
102,400 Cao

Table 7.1: Names of tests with number of nodes resp. tuples of test series scaling

data set | description details in table

D, easy k-means problem with few clusters hav- | A.1, see page 221
ing low deviation; noise is missing.

Dg set containing few clusters with medium de- | A.2, see page 222
viations and a low proportion of noisy data;
deviation of clusters only slightly varies.

D, same set as Dg except the proportion of noisy | A.3, see page 222
data is significantly higher.

Ds data set without noise; there is one big cluster | A.4, see page 229
with a high deviation and there are several
small clusters with low deviation.

D, data set with many clusters of similar devia- | A.5, see page 230
tion without noise.

D¢ data set with several clusters of varying devi- | A.6, see page 231

ation without noise.

Table 7.2: description of synthetic data sets

200 CHAPTER 7. EXPERIMENTAL RESULTS

data set | description

El Nino | Spatio-temporal data storing the sensor values of a network
of buoys in the Pacific ocean for several years. Data has
been collected to explain or predict the weather anomaly
called El Nino effect that is made responsible for calami-
ties in coastal areas of the Pacific ocean. The data set is
available to the public by the UCI KDD archive.

Telco | The Telco data set (TELecommunication COmpany) is an
anonymised sample of usage data of cellular phone cus-
tomers. It contains a single tuple per customer and more
than a hundred attributes per customer. There are approx-
imately 10’000 customers. The data set is used to predict
which customer will cancel one’s contract. Due to legal
issues and corporate interests these dissertation omits the
description of the data set’s attributes. Aggregated results
can be found in this section and in a paper [25].

Table 7.3: description of synthetic data sets

7.2. RESULTS OF TESTS DEMONSTRATING SCALABILITY OF CHAD201

800
700 - MIN
A MAX /f
600 O AVG-STD n
O AVG+STD / o}
%? 500 m AVG
§ — Linear (AVG) o
(]
£ 400 + -
(O]
£ q
S 300 ~ T
A /2
200 Y
A O
[m]
100 - o O
©
0 i T
0 1000000 2000000 3000000 4000000 5000000

number of tuples

Figure 7.1: Scaling of CHAD’s first phase in the number of tuples

7.2 Results of Tests Demonstrating Scalability
of CHAD

This section discusses the results of the tests concerning the scalability of CHAD.
For the sake of a compact description, all charts in this section are summaries
of test series. For a complete description of test results, please confer section
A3 of the appendix.

For being scalable, the runtime needed for the first phase of CHAD must
scale at worst linear with the number of tuples. Compared with the number of
tuples other factors that influence CHAD’s runtime such as maximum number
of nodes or number of dimensions are small in fact tables of data warehouses—
which is the typical scenario of anticipatory data mining. Hence, this section
shows the scalability of CHAD in the number of tuples first.

The tests of test series C which tested the scaling of CHAD’s first phase in
the number of tuples show that CHAD scales linear in the number of tuples.
Figure 7.1 shows the runtime of CHAD's first phase with rising number of tuples.
Although all data sets have the same number of tuples the clustering of some
data set happens faster than the clustering of other data sets. This means that
runtime might depend on the scanned data and the order or access. However,
the data set’s influence and the sequence of access on runtime are minor as the
low deviation of runtime from the average runtime in figure 7.1 indicates.

The tests Cy to Cg and C1g to Cag examined the effect of maximum number
of nodes on runtime. The capacity of each node was 5 in all tests, i.e. each

202 CHAPTER 7. EXPERIMENTAL RESULTS

80
A
70 7
0
€50
o) /
(8]
840 — —— —
N
£30
2 20 | — MIN
- MAX
10] - AVG
0 — logarithmic trend

o

6400 12800 19200 25600
maximum number of nodes

Figure 7.2: Logarithmic scaling of CHAD’s first phase in the max number of
nodes

node contains at least 5 and at maximum 9 general cluster features. A capacity
of 5 gives a good balance between the number of inner nodes and leaf nodes:
Inner nodes are important for quickly selecting nodes while the more leaf nodes
a tree has the smaller is the threshold of a cluster feature tree with the conse-
quence that tuples are less aggregated. The results show that runtime scales
logarithmical in the maximum number of nodes, as depicted in Figure 7.2 and
7.3, respectively. Figure 7.3 also illustrates the effect that occurs when the tree
no longer fits the main memory. When testing, the database management sys-
tem and CHAD shared the same machine. In a single run of CHAD it happened
that the main memory was insufficient to keep the general cluster feature tree
and the cache of the database system in memory. Hence, the machine began
swapping memory to disk causing a significant decrease in performance. Con-
sequentially, it is necessary to choose the maximum number of nodes in a way
that the general cluster feature tree and other programs fit into available main
memory.

Figure 7.3 also shows that CHAD’s first phase scales logarithmic for most
of the tests in the test series

CHAD re-organises the general cluster feature tree each time the tree is full.
Initially, its threshold is zero which it increases using linear regression method,
i.e. it maintains a list of previous threshold values and the number of tuples
the tree was able to store with that threshold. Each time it reorganises the tree
it selects the threshold such that the expected capacity of tuples is expectedly
twice the current capacity, i.e. the tuples the tree could insert before it became
full. Figure 7.5 illustrates how the threshold steadily increases with increasing
number of tuples scanned.

7.2. RESULTS OF TESTS DEMONSTRATING SCALABILITY OF CHAD203

1000 I

900 | ~—— MIN

800 | —— MAX
_ ——AVG
ﬁ 700 1 — - |ogarithmic trend
8§ 600 | -- - lineartrend
(0]
£ 500
(O]
E 400 - /
S 300 | o

200 - —— —

i —
100
0+
0 25600 51200 76800 102400

maximum number of nodes

Figure 7.3: Decrease of performance if main memory is insufficient

The first reorganisation of the general cluster feature tree needs special con-
sideration as the history of pairs of threshold and capacity is empty. CHAD
follows the suggestion of BIRCH that slightly increases the threshold in a way
that at least the most similar pair of entries of at least one node can be merged.
This might cause BIRCH and CHAD that reorganisation is needed again very
soon. As the capacity of BIRCH and CHAD is sensitive to the order in which
the algorithms scan tuples, it might happen that the capacity after increasing
the threshold is lower than before. Thus, we observe a leveling-off phenomenon
when determining the first re-organisation. Figure 7.4 depicts threshold and
number of nodes of the first the first 14 reorganisations of a general cluster fea-
ture tree. The first reorganisations overestimate or underestimate an optimal
threshold, indicated by the absence of a trend during the first nine reorgani-
sations. Yet, once the history of reorganisation contains a sufficient number of
pairs of threshold and capacity, this phenomenon no longer occurs.

Obviously, reorganising has no significant effect on runtime. Otherwise,
runtime could not increase linearly with the number of tuples. Hence, several
reorganisations can be tolerated.

Finally, a test series analysed the runtime of CHAD needed for phases two
and three. The runtime used for phase two is listed in Figure 7.4. The test series
used all tuples of data set D¢ which is the data set with the most clusters in it.
Additionally, the number of nodes was 25600, which corresponds with a capacity
of 230 000 entries. In quality tests, a much smaller number of entries showed
to be sufficient to receive good results. Hence, the test series measures extreme
values of runtime. For the same reason, Figure 7.4 also depicts a test series with
an average sized general cluster feature tree having a capacity of more than 23
000 general cluster features—all other conditions remain the same.

Obviously, phase 2 is negligible compared with phase three, especially com-

CHAPTER 7. EXPERIMENTAL RESULTS

204

4000

ploysaiyy

V)T 3500

N

ST

3600

3500 T

3400

3300
3200 -

sa|dn)

9 10 11 12 13 14

8

3600

3550

3500

3450

3400
3350

sajdny

3300

2000 3000 4000

threshold

1000

tuples ——— threshold

igure 7.4: leveling-off during first reorganisation

F

ploysaiy

=))))) 1)
3 3 1S3 3 3

S S S S S

o =Y o 1) S

2 3 3 3 3

@ 3 < & i

AN\ A\

I} 2 g 9 g g g g o
3 g 8 8 8 8 8 8

S S S S S S S S

o S g © © 9o o o

8 S 8 B I &8 <& B

sopdm

o o o o o o o o
S S S S S S S

S <] S S S S S

2 =3 =3 =3 =3 =] 2

I S B S o S B

& @ & S B =

sa|dm

11

10

70'000

30000 40000 50000 60000

10'000 20000

0

zatuples ——threshold

threshold (in distance units)

correlation of threshold and tree capacity in tuples

5:

Figure 7

7.2. RESULTS OF TESTS DEMONSTRATING SCALABILITY OF CHAD205

phase 2 init optimal phase 2 init optimal
all in seconds all in seconds

9.094 63.341 0.681 0.812 2.546 0.406
(a) 9.219 59.355 0.05 (b) 0.828 3.125 0.391

9.359 63.091 0.961 0.813 3.265 0.39

8.891 58.945 0.761 0.828 3.922 0.593

9.125 60.628 1.021 0.813 2.906 0.703

9.297 64.723 1.142 0.844 1.688 0.296

Table 7.4: Runtime of test series with (a) very large clustering feature tree and
(b) medium-sized clustering feature tree

pared with the initialisation of phase 3. The test series show that the number of
nodes of the cluster feature tree influence the runtime of phase three. CHAD’s
third phase spends most of its time to find a good initial solution using the
strategy we discussed in Subsection 5.10.4 while it finds the final result very
quickly.

Consequentially, one can improve the performance of CHAD’s third phase by
decreasing the number of nodes. One can receive a good balance of runtime and
quality by using few hundreds of nodes for initialisation and a few thousands of
nodes for the final run of k-means.

Especially, the runtime using a tree with average size requires a few seconds
to compute a result which is low enough for an analyst to interactively examine
the solution space. In other words, an analyst can experiment with data sets
by including/exluding attributes as well as defining new attributes. CHAD can
give the analyst a upper limit for the quality of each solution. Once a very good
solution is found, the analyst can use a large tree to find the most accurate
solution.

Dominik Fiirst has examined the scaling behaviour of a single run of k-
means using clustering features and found out that it scales linearly in numbers
of nodes, dimensions, clusters, and the number of iterations needed [19, chapter
6]. The number of needed iterations slightly increases with the number of nodes
but the better the initialisation is the less iterations are needed.

Summarising the scalability tests, a single run of the prototypes of anticipa-
tory data mining including initialisation scales linearly or better in all relevant
factors, namely number of dimensions, tuples, and tree size. To be more spe-
cific, only the construction of intermediate results and auxiliary data depends
on the number of tuples while the time needed for using intermediate results
and auxiliary data is independent of the number of tuples. As mentioned in
previous chapters, it is possible to incrementally update general cluster feature
trees and buffers with auxiliary tuples and auxiliary statistics. Hence, one can
use anticipatory data mining during the load cycle of a data warehouse which
means that auxiliary statistics and auxiliary tuples are at hand when an analyst
needs them.

206 CHAPTER 7. EXPERIMENTAL RESULTS

7.3 Effects of Clustering Features and Samples
on Cluster Quality

This section discusses experiments analysing the quality of clustering algorithms
using cluster features. As sampling is commonly used technique to speed-up al-
gorithms when the number of tuples is very large, this section compares the tests
of clustering algorithms using cluster features with tests of clustering algorithms
using samples. It also compares these tests with tests using all tuples.

This section will evaluate the superiority of approaches using cluster features
with a set of experiments of related work and experiments under the supervision
of this dissertation’s author.

Several authors have shown the superiority of cluster features when com-
pared with approaches using sampling. Hence, we discuss their results in this
section.

Huidong Jin et al. used EM clustering to analyse the forest cover type data
set of the UCI KDD archive, a popular benchmark data set. Their approach
improves EM clustering using cluster features. They compare their improved
approach with the original clustering algorithm EM on the one hand and EM
clustering using 15 % samples on the other hand. While the original algorithm
takes about 170 thousand seconds to compute a result, the sampled approach
needs only about 50 thousand seconds to solve the same task. Yet, their ap-
proach using cluster features needs only a fraction of the time the sampled
algorithm needs, namely about 8 thousand seconds. They test the quality of
results by comparing the accuracy of tuples, i.e. in the data set the real cluster
affiliation of a tuple is known enabling comparing real affiliation and assigned
affiliation of tuples.

Huidong Jin et al. found that the difference in accuracy of their approach
and the sampling approach is at least 5 % in favour of their approach using
cluster features [37, Figure 4].

Other test series of Huidong Jin et al. with synthetical and benchmark
data show the same trend. Yet, in these tests the difference in runtime is less
significant.

Bradley at el. also used EM clustering in combination with cluster features to
analyse synthetical and benchmark data [6]. Each time, they compared a sample
of a given size with a set of cluster features having the same size. Additionally,
they used the uncompressed and un-sampled data set in an additional test. As
the real cluster were unknown they used the information gain of a cluster to
indicate the homogeneity of clusters.

In all tests, the approach with cluster features returns the best results of
all tests [6, tables 2 and 3]. Moreover, the results were better than EM using
all tuples which can be explained that cluster features are less vulnerable to
outliers.

When generating data synthetically the creator of the data has the oppor-
tunity to generate the data in a way such that the optimal solution is known—
which is not the case in most real world data due to the huge amount of potential

7.4. COMPARING EFFECTS ON QUALITY 207

total deviation tuples average runtime (s)
416.66 5’000°000 3727.39 + 68.8 CHAD
430.14 5’000°000 15790 k-means all tuples
428.11 2’000°000 4’500 k-means 40 % sample
424.74 800’000 1’925 k-means 16 % sample

Table 7.5: Total deviation from optimal solution of CHAD and sampled k-means

solutions.

With the optimal solution being known it is possible to check if an algorithm
finds this solution—or if not, if the found solution is at least in the vicinity of
the optimal solution.

Table 7.5 depicts a comparison of test series using CHAD and k-means on the
data set SHF (see appendix for details). The table depicts the total deviation of
the found means ji; and the means of the optimal solution ji{, which is the sum
of the Manhattan distances of all pairs (f;, @), i.e. Y, ||i@; — i@?]|. The smaller
the deviation the better is the solution. CHAD used 130’000 leaf node entries
in this test. The table shows that CHAD delivers the best solution but needs
less time than an average sized sample. To be more specific, the first phase of
CHAD needs the majority of its runtime while the remaining phases need only
a fraction of the time which the first phase needs.

Yet, Table 7.5 also shows that increasing sample size decreases the quality
of the result which is a non-expected result because typically one would expect
increasing quality. Assuming that quality rises with increasing number of tuples,
there must be other effects on quality. Each of the tests shown in 7.5 has its
own initialisation. Therefore, the next section discusses a set of tests examining
the effect of initialisation and other effects on quality.

7.4 Comparing Effects on Quality

In the previous section, we have seen that clustering using clustering features
returns better results than clustering of samples. This means, that sampling
error typically outweighs the error of wrongfully assigned tuples when using
clustering features. Yet, all previously mentioned quality tests but the last test
series we discussed in the previous section used all the same initial solution.
Hence, the effect of initialisation on clustering has been hold out until now.

Therefore, this section examines the effect of initialisation on the quality of
clustering. Moreover, it compares the effect of initialisation with other effects
on quality. As sampling has shown lower quality in the last section, we compare
sampling effect on quality with initialisation effect on quality.

As a sample is only a part of the data set from which the sample has been
taken, it is possible that tuples that are important for the correct result are not
part of the sample—causing bad results. We call the error that occurs due to
an ill-chosen sample sampling error.

208 CHAPTER 7. EXPERIMENTAL RESULTS

Oseed 1 Oseed 2 Oseed 3 Aseed 4 Xseed 5 —seed 6 ‘

100

sampling ratio in percent
=
o

T g PEE X T

1 A ‘ ‘ ‘

3.0E+07 4.0E+07 5.0E+07 6.0E+07 7.0E+07 8.0E+07 9.0E+07 1.0E+08 1.1E+08
sum of distances

Figure 7.6: El Nino test series with three clusters

Yet, sampling error is only one component of the total error of an optimisa-
tion algorithm like k-means. k-means is known to be significantly dependant of
a good initialisation.

In order to take apart the effects of sampling and initialisation on a test,
each test is repeated for six times—each time with a different seed but the same
sample. The quality of tests that use the same sample can only differ due to
different initialisations. Hence, initialisation error is the only error component
that can manifest itself within these tests.

The test series documented in this section used the El Nino data set, a
popular benchmark data set from the UCI KDD archive. The schema of this
benchmark data can be found in the appendix. All tests have been performed
on the same machine, a PC with 1.8 GHz Pentium IV processor and 512 MB
RAM.

Some tests failed to deliver a proper results, i.e. the algorithm returned less
than k clusters. An ill-chosen initialisation can be the reason that an initial
partitioning is empty causing the algorithm to return less than k clusters. Tests
returning no result were omitted but can easily be identified. Figure 7.13 shows
that there are only two test results for the 2-percent sample. As there have been
six tests, four tests must have failed to deliver £ means.

The k-means algorithm used in the test series initialises itself by taking a
random sample of the data to analyse and apply itself once to this sample.
As the data that is about to be analysed is already a sample, the data used
for initialisation are a sample of a sample. We will call this method initially
clustering a sample.

In test series with a sample ratio less or equal 2 % another initialisation
method was chosen because the sample of the sample did not contain enough
tuples. In such a case, the initialisation consisted of k& randomly taken tuples
of the data. This was the case for tests where the sampled data were a one or
two percent sample of the original data, We will call the method used for small
samples randomly selecting tuples.

The test results show that the two initialisation methods differ in the likeli-

7.4. COMPARING EFFECTS ON QUALITY 209

‘Oseed 1 Oseed 2 Oseed 3 Aseed 4 Xseed 5 —seed 6 ‘

£ 100 £
(0]
E —
[}
o
£ A
o
3 10 A 2
o A
=
3 B
©
w1 A8 ‘ B
0.0E+00 2.0E+07 4.0E+07 6.0E+07 8.0E+07 1.0E+08 1.2E+08
sum of distances
Figure 7.7: El Nino test series with four clusters
‘Oseed 1 Oseed 2 Oseed 3 Aseed 4 Xseed 5 =seed 6 ‘
100 &
1<
3 &
g
< a8
o |
3 10 A
2
s
§ - 0
1 : £
0.0E+00 2.0E+07 4.0E+07 6.0E+07 8.0E+07 1.0E+08 1.2E+08
sum of distances
Figure 7.8: El Nifo test series with five clusters
Oseed 1 Oseed 2 Oseed 3 Aseed 5 Xseed 6 ‘
_ 100
c
2 o]
g
<
2 |
3 10 X
g =
=3
g X
1 T =
0.0E+00 2.0E+07 4.0E+07 6.0E+07 8.0E+07 1.0E+08 1.2E+08

sum of distances

Figure 7.9: El Nino test series with six clusters

210 CHAPTER 7. EXPERIMENTAL RESULTS

Oseed 1 Oseed 2 O seed 3 Aseed 4 Xseed 6 ‘

. 100 o)
c
o N
g
£ X
) |
§ 10
g ©
=
€
3
1 A ‘ ‘
0.0E+00 2.0E+07 4.0E+07 6.0E+07 8.0E+07 1.0E+08 1.2E+08
sum of distances
Figure 7.10: El Nino test series with seven clusters
Oseed 1 Oseed 3 Oseed 4 Aseed 5 Xseed 6 ‘

~ 100 ©
[
g o
g
£ O
2 |
3 10 A
2 X
a
£ > 9)
[
RO A :

0.0E+00 2.0E+07 4.0E+07 6.0E+07 8.0E+07 1.0E+08 1.2E+08

sum of distances
Figure 7.11: El Nino test series with eight clusters

- Oseed 1 Oseed 2 ¢&seed 5 Aseed 6
g 100 K&
o
@ o
o
k=
o) |
7 10
o O
£
= A
§ 1 e :

0.0E+00 2.0E+07 4.0E+07 6.0E+07 8.0E+07 1.0E+08 1.2E+08

sum of distances

Figure 7.12: El Nino test series with nine clusters

7.4. COMPARING EFFECTS ON QUALITY 211

‘Oseed 1 Oseed 3 ¢seed 4 Aseed 6

g .

9 100 &t

g O

-g OA

= O

5 o O

E 1 ‘

® 0.0E+00 2.0E+07 4.0E+07 6.0E+07 8.0E+07 1.0E+08 1.2E+08

sum of distances

Figure 7.13: El Nino test series with ten clusters

hood distribution of returning good results.

The initialisation method randomly selecting tuples seems to deliver better
results as shown in figures 7.6, 7.7, 7.8, 7.10, 7.11, and 7.12. Yet, Figure 7.15
shows that the initialisation method randomly selecting tuples is not better in
general. Figure 7.15 shows the same results as shown in Figure 7.6 with the only
difference that the best solution is omitted. With the best solution omitted, we
observe in Figure 7.6 that quality increases with increasing sampling ratio.

As Figure 7.15 shows, the initialisation method randomly selecting tuples
also delivers the worst results. In addition to that, Figures 7.10,7.11, 7.12, and
7.13 show that there are many tests with improper results. One can notice tests
with improper results only due to their absence in the figures, e.g. Figure 7.13
depicts only tests with three different seeds while there have been performed
tests with six different seeds.

Summarising the observed phenomena above, the initialisation method ran-
domly selecting tuples has a higher deviation in the resulting quality. That
means, if we have the time for several tries, the chance to get a better result is
higher for the initialisation method randomly selecting tuples than the method
initially clustering a sample.

Yet, all figures show that the influence of initialisation on quality is by far
greater than any other influence, in special the influence of sampling.

Figure 7.14, which contains the test series that search for two clusters, has
been left out of the discussion until now because it shows no initialisation effect
at all. Regardless the chosen initialisation, each test of the test series with two
clusters to be found returns the same result for a sample.

The effect caused by sampling is the only remaining influence on the quality
of the tests with two clusters. One can explain this phenomenon by the com-
plexity of the clustering task: The more clusters have to be found the more
local minima exist to trap a clustering algorithm. In the lower extreme case
that searches for a single cluster, the result is deterministic, i.e. there are no
local minima.

As Figure 7.14 shows, there is a tendency that quality improves with increas-
ing sampling ratio. This trend is obviously subject to a statistical process with
high deviation as indicated by the 5-percent sample and the 2-percent sample.

212 CHAPTER 7. EXPERIMENTAL RESULTS

=
N g o
o O O

N g

sampling ratio in percent
=
o

1

1.0445E+08 1.0450E+08 1.0455E+08 1.0460E+08 1.0465E+08 1.0470E+08 1.0475E+08
sum of distances

Figure 7.14: El Nino test series with two clusters

‘Oseed 1 Oseed 2 Oseed 3 Aseed 4 Xseed 5 =—seed 6 ‘

‘gloo D1

o

5 2

o

S ® O
o

3 10 - O ®
o D

£

=

: o .
g 1

1.0452E+08 1.0456E+08 1.0460E+08 1.0464E+08 1.0468E+08 1.0472E+08 1.0476E+08
sum of distances

Figure 7.15: El Nino test series with three clusters without the best initialisation

When taking only those tests into account that use the initialisation method
for large samples, the same trend becomes apparent. The initialisation method
used for large samples has only a small deviation in the resulting quality. Thus,
the initialisation method has approximately the same effect on each test within
the same sample. Hence, we observe the effect of sampling on quality more
clearly. Figures 7.16, 7.17, 7.18, 7.19, 7.20, 7.21, and 7.22 show the trend to
better quality with rising sampling ratio.

Summarising the test series of this section, we observed that the effect of
initialisation on quality can significantly outweigh the effect of other effects
on quality. To be more specific, it can outweigh the effects of sampling and
aggregation by far if there are local minima in the data set—which is typically
the case in real world data sets. As mentioned in Section 5.10, repeatedly trying
a clustering algorithm with different initialisation is very likely not to be trapped
by local minima at least once. In other words, it has a high chance to find the
global optimum at least once. Therefore, CHAD’s initialisation method of its
third phase that involves many runs of k-means with different initialisation has
a good chance not to be trapped by local minima.

7.4. COMPARING EFFECTS ON QUALITY 213

‘Oseed 1 Oseed 3 Aseed 4 Xseed 5 —seed 6

2 100 &

(<]

8 —

[}

o

£ A

) | -
3 10]
o *

£

N

£

3 1

1.04560E+08 1.04565E+08 1.04570E+08 1.04575E+08 1.04580E+08 1.04585E+08
sum of distances

Figure 7.16: El Nino test series with four clusters and high sampling ratios

‘Oseed 1 Oseed 2 Oseed 3 Aseed 4 Xseed 5 —seed 6

=
o
o
B

A &

sampling ratio in percent
=
o
|
[y
=

1
1.04560E+08 1.04564E+08 1.04568E+08 1.04572E+08 1.04576E+08 1.04580E+08 1.04584E+08

sum of distances

Figure 7.17: El Nifio test series with five clusters and high sampling ratios

‘Oseed 1 Oseed 2 Oseed 3 Aseed 5 Xseed 6

2 100

3

e o]

o

£ »

% 10 1 O X
o O

£

a

£

3 1 ‘ ‘ ‘ ;

1.04560E+08 1.04565E+08 1.04570E+08 1.04575E+08 1.04580E+08 1.04585E+08
sum of distances

Figure 7.18: El Nino test series with six clusters and high sampling ratios

214 CHAPTER 7. EXPERIMENTAL RESULTS

Oseed 1 Oseed 2 O seed 3 Aseed 4 Xseed 6 ‘

2 100 o)
[}
o »
[)
o
£ A
o) i
3 10
o O
£
=
€
S 1
1.04560E+08 1.04562E+08 1.04564E+08 1.04566E+08 1.04568E+08

sum of distances

Figure 7.19: El Nino test series with seven clusters and high sampling ratios

‘Oseed 1 Oseed 3 Oseed 4 Aseed 5 Xseed 6

H
1)
IS
Q

sampling ratio in percent
=
o
>

1 : .
1.04560E+08 1.04564E+08 1.04568E+08 1.04572E+08 1.04576E+08 1.04580E+08 1.04584E+08

sum of distances

Figure 7.20: El Nino test series with eight clusters and high sampling ratios

‘Oseed 1 Oseed 2 Oseed 5

;,E, 100 &
g <
o}
o
£
[}
= 10
<
o O
£
=3
£
<
o 1
1.04560E+08 1.04562E+08 1.04564E+08 1.04566E+08 1.04568E+08 1.04570E+08

sum of distances

Figure 7.21: El Nino test series with nine clusters and high sampling ratios

7.5. USING PRE-COMPUTED ITEMS FOR KDD INSTANCES 215

‘Dseed 3 Oseed 4 Aseed 6‘

=
o
o

o
o D> Og

1
1.015E+08 1.020E+08 1.025E+08 1.030E+08 1.035E+08 1.040E+08 1.045E+08 1.050E+08

sum of distances

sampling ratio in percent
=
o

Figure 7.22: El Nino test series with ten clusters and high sampling ratios

7.5 Using Pre-computed Items as Intermediate

Results or Auxiliary Data for Succeeding
KDD Instances

The principles of anticipatory data mining are widely applicable. To be
more specific, they are not limited to clustering. Thus, this section documents
the results of a series of experiments that use pre-computed statistics and pre-
specified specific tuples that could potentially be used as intermediate results
and auxiliary data for succeeding data mining algorithms.

Classification is a major data mining technique. Therefore, a set of scenarios
examines the effect of pre-computed intermediate results and auxiliary data on
classification.

Subsections 7.5.1 and 7.5.2 survey a set of experiments we performed for a
paper [25].

Subsection 7.5.1 discusses a set of experiments Markus Humer performed
in the project of his master’s thesis under the supervision of this dissertation’s
author. He implemented the concept of anticipatory data mining for decision
tree classification. He adapted the classification algorithm Rainforest [21] to
use auxiliary data consisting of auxiliary tuples and auxiliary statistics. Sub-
section 7.5.1 discusses the improvement on classification accuracy by using these
auxiliary data.

Subsection 7.5.2 discusses a set of experiments the author of this dissertation
performed for the above mentioned paper [25]. The experiments show how to
construct naive Bayes classifiers using only pre-computed intermediate results
consisting of frequent pairs of attribute values. We compare the classification
accuracy using these pre-computed intermediate results with the conventional
way to train a naive Bayes classifier.

7.5.1 Benefit for Decision Tree Classification

This section surveys tests to initialise the approach mentioned in Section 6.4
which uses partitioning clustering algorithm to find good split points for deci-
sion tree classification. This section also surveys tests using auxiliary tuples as

216 CHAPTER 7. EXPERIMENTAL RESULTS

‘l without auxiliary statistics 2 with auxiliary statistics ‘

far set B

random set A (CRLLLLZZZZZZZZZZ 2222222

height of tree

Figure 7.23: Height of decision tree

training set of decision tree classifiers to show the superiority of a so-selected
training set versus randomly selected training sets.

For demonstrating the benefit of auxiliary data for decision tree classification
we modified the Rainforest classification algorithm to use auxiliary data. The
data set used for testing is a synthetical data set having two dozens attributes of
mixed type. The class attribute has five distinct values. Ten percent of the data
is noisy to make the classification task harder. Additionally, classes overlap.

In a anteceding step we applied k-means to find the best-fitting partitioning
of tuples. The partitioning of tuples into k clusters returns sets of k clustering
features one can use to receive a good approximate of the probability density
function. Again, the minima of the probability density function are good split
points of a decision tree to split numerical attributes.

We also use these partitions to select tuples from the set of auxiliary tuples
that are typical representatives and outliers of the data set: We consider tuples
that are near a cluster’s centre as a typical representative. Analogically, we
consider a tuple that is far away of a cluster’s centre as an outlier. Due to their
distance to their cluster’s centre we call them near and far tuples.

We tested using both kinds of auxiliary tuples as training set instead of
selecting the training set randomly.

We used these statistics for determining split points in a succeeding run
of Rainforest. After each run we compared the results of these tests with the
results of the same tests without using auxiliary statistics.

Compactness of tree and accuracy are the measures we examined. Com-
pacter trees tend to be more resistant to over-fitting, e.g. [18, p 49]. Hence,
we prefer smaller trees. We measure the height of a decision tree to indicate its
compactness.

Using statistics of distribution for splitting returns a tree that is lower or
at maximum as high as the tree of the decision tree algorithm that uses no
auxiliary statistics, as indicated in Figure 7.23.

The influence of using auxiliary statistics on accuracy is ambiguous, as shown
in Figure 7.24. Some tests show equal or slightly better accuracy, others show

7.5. USING PRE-COMPUTED ITEMS FOR KDD INSTANCES 217

tuples in training set
\Eloo 00200 E2300 H500 M 1000 E 2000 & 3000 ISOOO\

accuracy

BT
=ii
HIH
H I
H
HIH
H I
H IH
H I
H I
H EANE

rsoA rsaA noA naA foA faA rsoB rsaB noB naB foB faB
origin of tuples

without auxiliary statistics with auxiliary statistics
< data set A ‘ data set B ‘ data set A ‘ data set B
8 random sample rSOA rsoB rsaA rsaB
%0 near tuples noA noB naA naB
— far tuples foA foB faA faB

Figure 7.24: Accuracy of decision tree classifier

sample 10 % sample 20 % sample 50 %
actual class actual class actual class
false | true false | true false | true
false | 7683 | 1394 false | 7885 | 1449 false | 8195 | 1494
true | 487 97 true | 321 52 true | 130 25

estimate
estimate
estimate

auxiliary buffer 400 |auxiliary buffer 1000
actual class actual class
false | true false | true
false | 8054 | 1461 false | 8124 | 1471
true | 140 35 true | 108 31

estimate
estimate

Table 7.6: Results of Naive Bayes Classification in detail

worse accuracy than using no auxiliary statistics.

However, using auxiliary tuples as training set significantly influences ac-
curacy. Figure 7.24 shows that choosing tuples of the near set is superior to
choosing tuples randomly.

Considering each test series individually we observe that the number of tu-
ples only slightly influences accuracy. Except for the test series foA and faA,
accuracy is approximately constant within a test series.

Thus, selecting the training set from auxiliary tuples is more beneficial than
increasing the number of tuples in the training set. We suppose that the chance
that there are noisy data in the training set is smaller when we select less tuples
or select tuples out of the near set.

Summarising, if one is interested in compact and accurate decision trees
then selecting training data out of the near data set in combination with using
statistics about distribution for splitting is a good option.

7.5.2 Benefit for Naive Bayes Classification

For demonstrating the benefit of pre-computing frequencies of frequent combi-
nations for naive Bayes classification, we compared naive Bayes classifiers using

218 CHAPTER 7. EXPERIMENTAL RESULTS

test S10% | S20% | S50% | aux400 | aux1000
accuracy (%) 80.5 | 81.8 | 83.5 | 83.5 83.8
classified (%) 96.6 | 97.1 | 98.4 96.9 97.3
total accuracy (%) | 77.8 | 79.4 | 82.2 | 80.9 81.2
buffer size| 400 1000
pairs of class attribute churn| 107 248

Table 7.7: Classification accuracy of Bayes classifier with pre-computed frequen-
cies

a buffer of pre-computed frequencies with naive using the traditional way of
determining a naive Bayes classifier.

We trained naive Bayes classifiers on a real data set provided by a mobile
phone company to us. We used data with demographical and usage data of
mobil phone customers to predict whether a customer is about to churn or not.
Most continuous and ordinal attributes such as age and sex have few distinct
values. Yet, other attributes such as city have several hundreds of them. We
used all non-unique categorical and ordinal attributes.

For checking the classifiers’ accuracy, we reserved 20 % of available tuples
or 9999 tuples as test data. Further, we used the remaining tuples to draw
samples of different size and to store the frequencies of frequent combinations
in a buffer.

For storing the top frequent pairs of attribute values, we performed two
tests. In the first test, we reserved a buffer to store the frequencies of 400 pairs
of attribute and attribute value combinations. The capacity of the buffer in the
second test was 1000. If the buffer is full when trying to insert a new pair an
item with low frequency is removed from the buffer.

To ensure that a newly inserted element of the list is not removed at the next
insertion, we guarantee a minimum lifetime ¢;, of each element in the list. We
realised the guaranty of minimum lifetime by applying the method we discussed
in Subsection 6.2.2.

Estimating the class of a tuple needs the frequency of all attribute values of
that tuple in combination with all values of the class attribute. If a frequency
is not present, classification of that tuple is impossible.

A frequency can be unavailable because either (a) it is not part of the training
set or (b) it is not part of the frequent pairs of the buffer. While option (b) can
be solved by increasing the buffer size, the problem of option (a) is an immanent
problem of Bayes classification.

Therefore, we used variable buffer sizes and sampling rates in our test series.
We tested with a buffer with space for 400 pairs and 1000 pairs of attribute
values. As the buffer with capacity of 1000 pairs became not full, we left out
tests with larger buffers.

Table 7.7 contains the results of tests with sampling S10%, S20%, and S50%
and results of tests with buffers as auxiliary data aux400 and aux1000 in sum-
marised form. Table 7.6 lists these results in detail.

Table 7.7 shows that small buffers are sufficient for generating Bayes classi-

7.6. SUMMARY OF EVALUATION 219

fiers with high accuracy.

Although the tests show that classification accuracy is very good when fre-
quencies of combinations are kept in the buffer, there are few percent of tuples
that cannot be classified. Thus, we split accuracy in Table 7.7 in accuracy of
tuples that could be classified and accuracy of all tuples. The tests show that
the buffer size influences the number of classified tuples. They also show that
small buffers have a high classification ratio.

Thus, small buffers are sufficient to generate naive Bayes classifiers having
high total accuracy using exclusively intermediate results.

7.6 Summary of Evaluation

Our experiments have shown that the costs for computing intermediate results
and auxiliary data are low—even, if one stores a broad range of different types of
intermediate results such as the top frequent attribute value pairs and auxiliary
data such as typical members of clusters to disk. In contrast to that, the benefit
of intermediate results and auxiliary data is high.

We have shown that quality of clustering is higher when using clustering
features instead of samples. Yet, we have also shown that the effect of sampling
as well as the effect of using clustering features on the result of a k-means
cluster analysis is negligible when compared with the effect of initialisation on
a k-means cluster analysis. Hence, finding a good initialisation is crucial for
analysing clusters.

Yet, anticipatory data mining is ideally suited to support an analyst finding
the optimal clustering solution because

e it is so fast that an analyst can iteratively analyse data in order to find
an optimally fitting clustering,

e it also enables checking the quality of results which is impossible in ap-
proaches based on sampling.

Therefore, we can automate the process of finding the optimal solution by iter-
atively creating a potential solution and testing it.

We have shown that classification algorithms using auxiliary data compute
classifiers having higher quality than those algorithms using no auxiliary data.
To be more specific, decision tree algorithms find compacter decision trees when
using auxiliary statistics for splitting numerical attributes. Moreover, selecting
auxiliary tuples as training sets of a classification algorithm increases the ac-
curacy of classifiers. Finally, one can use auxiliary statistics to derive highly
accurate Bayes classifiers for free.

Summarising the statements above, pre-computing intermediate results and
auxiliary data is a cheap option with high potential improvement of runtime or
quality—or both.

220 CHAPTER 7. EXPERIMENTAL RESULTS

Appendix A

Description of Tests

A.1 data sets

data set D,
number of clusters 4
number of dimensions 10
number of tuples 5,000,000
percentage of noise 0%

clusters

clus. | pz1 pz2 Hes Hoa HPzs Hoe Mot Hos Mz Haio | dev. | perc.
1 1 -0.7 0 1 0 -1 1 -1 0 1]1025]20%
115 1 1 -1 -1 0 0 -1 1 0 -11025]20%
113 -0.8 -1 1 0 0 1 0 0 1 1]10251]20%
114 -1 1 0 0 0 -1 -1 -1 0 -11025]20%

Table A.1: parameters of synthetical data set D,,

221

222 APPENDIX A. DESCRIPTION OF TESTS

data set Dg

number of clusters 5
number of dimensions 10
number of tuples 5,000,000
percentage of noise 10 %

clusters
clus. | pz1 fa2 Has Pod Hos Poe ot PBos M9 o |dev. perc.
11 1 1 2 0 1 1 0 0 0 0]0.25 20 %
) -1 2 1 o -1 12 -1 -1 0 1/0.25 20 %
13 o -1 -2 0 0 3 1.2 -2 0 0]0.25 20 %
14 2 -1.2 1 1 15 -2 3 1 0 0]0.25 20 %
15 -2 0o -1 2 2 -1.8 5 1.1 0 1.5/0.25 20 %

Note: percentages of data in clusters refer to non-noisy data only, so they sum
up to 100%. Assuming the percentage of noise is 10%, a percentage of 20% of a
cluster denotes 20% in the remaining 90%—which is only a percentage of 18%
in the entire data set. Noise is uniformly distributed between the lower left
corner and the upper right corner of the bounding rectangle that contains all
non-noisy data. In test set Dg the according corners are defined by the points
(-3,-3,-3,-3,-3,-3,-3,-3,-3,-3)T and (3,3,3,3,3,3,3,3,3,3)T

Table A.2: parameters of synthetical data set Dg

data set D,

number of clusters 5
number of dimensions 10
number of tuples 5,000,000
percentage of noise 30 %

clusters
clus. | i1 Hao Pz3 Pad Mo Hos Pz Pas Hao Heio|dev. perc.
11 1 1 2 0 1 1 0 0 0 010.25 20 %
11 -1 2 1 o -1 12 -1 -1 0 1]10.25 20 %
113 0o -1 -2 0 0 3 1.2 -2 0 0]0.25 20 %
14 2 -1.2 1 1 15 -2 3 1 0 0/0.25 20 %
In3 -2 0 -1 2 2 -1.8 5 1.1 0 1.5]0.25 20 %

Note: percentages of data in clusters refer to non-noisy data only, so they sum
up to 100%. Assuming the percentage of noise is 30%, a percentage of 20% of a
cluster denotes 20% in the remaining 70%—which is only a percentage of 14%
in the entire data set. Noise is uniformly distributed between the lower left
corner and the upper right corner of the bounding rectangle that contains all
non-noisy data. In test set D, the according corners are defined by the points
(-3,-3,-3,-3,-3,-3,-3,-3,-3,-3)T and (3,3,3,3,3,3,3,3,3,3)T

Table A.3: parameters of synthetical data set D,

A.1. DATA SETS 223

2 0
9
L}
2
= [
[] L B |
n " n
u] []
" - ..I -
nE . LI }'I:
- 1]
DI - " [
- my = [] 1

P

I. .'.-.,'-.:‘:...i. l.
- I. .l. I.-. 0,5 -
A . . LI '. "
; 0
B -2 Y 2
'..'. :-“..l .-
-'--l-f . .
"a .-.:' = s .'.
I.. ..! g.- []
" L

Figure A.1: first 1000 tuples of test set D, shown in the first two dimensions

224 APPENDIX A. DESCRIPTION OF TESTS

.

3 4
[. _3 | n

Figure A.2: first 1000 tuples of test set Dg shown in the first two dimensions

A.1. DATA SETS 225

I

Figure A.3: first 1000 tuples of test set D, shown in the first two dimensions

226 APPENDIX A. DESCRIPTION OF TESTS

I

3 -
2 -. l.l . ﬁ.-
. n -t - - - —-'. -
. g. u :. :..' ' [Bl] " n
n 1 " []
.g - 3 'l-.l. '.- " ou
.. " - - l..f :.ll - L]
an) LW e u .T'. - "

-+ -2 . 0™ % }"'?2:.. .. 4 6
u DR Y TR " - [
= . I .l..' } .-?l _ .
= = " . .'..i; '.. . " " u
" 1 ‘..]
u - ..I » [
- L I
*l - L b
3

Figure A.4: first 1000 tuples of test set Dy shown in the first two dimensions

A.1. DATA SETS 227

al

|]

-

L

|

il
" agpp®a,

s
" :‘II -
i 5
6
A

Figure A.5: first 1000 tuples of test set D, shown in the first two dimensions

228 APPENDIX A. DESCRIPTION OF TESTS

Q

()]

Figure A.6: first 1000 tuples of test set D¢ shown in the first two dimensions

A.1. DATA SETS 229
data set Ds
number of clusters 9
number of dimensions 10
number of tuples 5,000,000
percentage of noise 0 %
clusters
clus. | a1 pia2 fa3 Maa Mas Hae He7 Has Hro Maio| dev.| perc.
| 1.5 -0.2 0 01 -2 1.5 1 -1 0 0 1.0|40%
) 0o -2 3 0.6 -0.5 0 2 -1 1.2 -110.125(7.5 %
uz |-1.8 -1 -3 0.8 1 1.5 1 0 3 110.125(7.5 %
py | -1.2 -0.1 2.7 2 28 14 2 0 1 310.125|7.5 %
s | -2.5 1 -2.7 -0.8 2 03 1 1 -1 410.125|7.5 %
ue |-0.8 1.3 2.5 25 3.2 0 2 1 -1.3 3.2/10.125|7.5 %
17 1 2 1 2 4 1 0 0 -1.9 -1.1/10.125{7.5 %
1138 3 3 -0.8 3 52 05 0 -1 0 0[0.125|7.5 %
o | 3.5 1.8 -2 2 6 0 0 1 0 -310.125(7.5 %
SR DU
o | e T erainTe, .
::. ‘:.":;333 {‘ ¥ ?’:’ : ..
: . M. “1' >4 o:“.ﬁno. .
-] M I MRS CUEY v .
-4000 . -10000, * “H‘u: PR . AT w3000 3000
- R -, i oY ‘..‘.m Ay M -
.o RO S 25 et A IR
¢ "“':’ ’.: ;)".; ;:f Y SR
. ISR A a0 S I

uuuuu

Figure A.7: first 1000 tuples of test set SHF shown in the most-discriminating
dimensions

230 APPENDIX A. DESCRIPTION OF TESTS
data set D,
number of clusters 18
number of dimensions 10
number of tuples| 5,000,000
percentage of noise 0%
location, deviation and percentage of clusters
clus. | pz1 Hzo Pz3 Hea Pzs Hee Po7 Hzs Moo Haio|dev.| perc.
w | -3.8 -4 1.8 -2.2 -04 -0.7 -1.5 04 2.7 0.3 0.3/5.5%
11 -2 -1.2 -02 -2 15 5 -04 08 25 15| 03[55%
113 0 3 19 02 1.7 -39 2 -3 -1 23| 03[55%
o 4 0.3 0.2 1 -24 -14 1-1.9 -2 1.6| 0.3/5.5%
ws | 1.3 -3.1 0 -0.8 -28 1.3 -0.7 -2 03 4.7 03[55%
16 2 05 18 1.7 25 -22 -1.2 27 -06 38| 03[55%
uwr |-0.8 -3 -1.1 -1 1 -1.5 -1.5 -0.3 0.3 5.3| 0.3/5.5%
113 1 1 1.2 42 -35 09 4 25 4 -2.3| 0355 %
119 1 -04 27 13 -25 4 3.7 5 -1.3 42| 0355 %
pio | -2 3 -0.3 2 3 -08 -1 3 25 -06| 03[55%
uii] 04 2 -1.1 1.7 33 09 -2 -23 -08 -0.3] 0.3[5.5%
1112 3 -02 24 -0.2 1 2 05 03 14 -1 0.315.5 %
uis| -3 -1 -25 05 5 24 42 -02 1 -3] 03[55%
uis | -1 1 32 -2 1.8 -04 21 1.3 -2 -3] 03[55%
wis| 1.6 3 -1.7 3 3.6 -26 29 -1 3 -27] 03[55%
uie | 4.1 -1.2 -2.2 -3.1 -0.3 4 26 3 -29 18| 0355 %
uiz | 26 -2 1 45 -0.3 -04 -3 -23 2 21 0.3]5.5 %
1118 3 03 -2.7 0 -1.2 -32 1.3 41 -4 -13] 03[65%
Table A.5: parameters of synthetical data set D,
120 E 140 E 160 E 180 E/W 160 W 140 W 120w 100 W 80 W

o o 0N® ° ° ® N

o ° o | o e . ® e s °

e t ° ® ® !

o ® [3 [] [[} [

L] 10S® o ° °

The radius of a point denotes the air temperature at that location. The larger
the radius the higher is the temperature.

Figure A.8: air temperature and position of buoy of one day in the El Nino data

set

A.1. DATA SETS 231

data set D¢
number of clusters 12
number of dimensions 10
number of tuples 5,000,000
percentage of noise 0%

location, deviation and percentage of clusters

clus. | pay P flzz Paa fas fas Moy fag Pao feao | dev. | perc.
11 -3.8 -4 1.8 -22 -04 -07 -15 0.4 2.7 0.3 0.31]63%
115 -2 -1.2 -0.2 -2 15 5 -04 08 25 .51 07] 12%
13 0 3 19 02 1.7 -39 2 -3 -1 23| 03]63%
114 4 03 02 1 -24 -14 1 -1.9 -2 1.6 | 0.1]83%
I3 1.3 -3.1 0 -08 -28 13 -0.7 -2 03 4.7 06| 3.3%
116 2 05 18 17 25 -22 -12 -27 -06 381 03| 1%
17 -0.8 -3 -1.1 -1 1 -15 -15 -03 03 53| 03 |83%
118 -1 1 32 -2 18 -04 21 1.3 -2 3] 03]83%
19 1.6 3 -1.7 3 36 -26 29 -1 3 27| 1.0] 12%
50 41 -1.2 -22 -31 -0.3 4 26 3 -29 1.8 1 0.3]83%
uin | 26 -2 1 45 -03 -04 -3 -23 2 2] 03[83%
U2 3 03 -27 0 -1.2 -32 13 4.1 -4 -1.31] 03]16%
Table A.6: parameters of synthetical data set D
attribute description
obc observation count, an additionally inserted unique identifier to serve as
primary key—is not part of the original data set in [31]
date day of measurement in the form YYYYMMDD
latitude geographical latitude, positive value denotes that measure was taken in
the northern hemisphere
longitude | geographical longitude, positive value denote coordinate is in the East
zonwinds speed of zonal winds, zonal winds with positive speed blow from west to
east
merwinds | speed of meridional winds, meridional winds with positive speed blow
from south to north
humidity | measured humidity in percent, i.e. range is [0, 100]
airtemp air temperature in degrees Celsius
subseatemp | average temperature under water in degrees Celsius

Table A.7: schema of the El Nino data set

232 APPENDIX A. DESCRIPTION OF TESTS

test name | dimensions nodes tuples
C 10 100 200,000
Co 10 200 200,000
Cs 10 400 200,000
Cy 10 800 200,000
Cs 10 1,600 200,000
Ce 10 3,200 200,000
Cr 10 6,400 200,000
Csg 10 12,800 200,000
Co 10 25,600 200,000
Cio 10 100 | 1,000,000
Ci1 10 200 | 1,000,000
Cio 10 400 | 1,000,000
Cis 10 800 | 1,000,000
C1s 10 1,600 | 1,000,000
Cis 10 3,200 | 1,000,000
Cie 10 6,400 | 1,000,000
Ci7 10 12,800 | 1,000,000
Cis 10 25,600 | 1,000,000
Cio 10 51,200 | 1,000,000
Cag 10 102,400 | 1,000,000
Coy 10 25,600 400,000
Cao 10 25,600 600,000
Cos 10 25,600 800,000
Coy 10 25,600 | 2,000,000
Cas 10 25,600 | 3,000,000
Cag 10 25,600 | 4,000,000
Cor 10 25,600 | 5,000,000

Table A.8: test series C

A.2 test series

Each test has been executed six times, once per data set D, Dg, D, Ds, D, D¢
and each time with different seed.

A.2. TEST SERIES

233

machine I | machine II | machine III | machine IV | machine V | machine VI | block
aCoy BC27 7Ca7 0Co7 €Car ¢Car C1
BCa 7C% 0C5 €O (Ca aCyg C2
BC20 7C% 0Cy €Cyo (Cso aCyg
vCas 0Co5 eCys (Cas aCys BCas5 C3
vC24 0Coy €Oy (O aCoy BC24
0C53 €Coas3 ¢Ca3 aCa3 BCa23 7Cas C4
0C5 €O (O aCyy BC2 7Ca2
00 €Cy1 ¢Co1 aCay BCo1 7Ca1
609 609 CCQ Ong BCQ ’ng
608 608 CCS O(Og 508 ’)/Cg
(507 607 CO7 OZO7 66’7 ")/07
506 606 CCﬁ OZCG ﬁCﬁ '706
(505 605 CCB Ole ﬂC{, ’YC5
(504 604 CC4 0104 504 ’YC4
(503 603 <C3 0403 503 ’}/03
602 602 COQ OlOQ 502 ’702
501 601 <01 OZCl ﬂC’l ")/Cl
€Chg ¢(C1g aCig BC19 7Clhg 0C1g C5
eCig (C1g aCig BC18 7Cl1s8 0C3g
eCyr ¢Cir aCyy BC17 vC17 0C17
eCie ¢C1e aCie BC16 7C16 0C16
eCis (Cis aCys BC5 7C1s 0C5
(Ciy aCly BC14 vC14 004 eCy C6
¢C13 aCy3 BC13 vC13 0C13 €C13
¢Cha aCla BC2 7Ch2 0C2 eClg
(Cn aChy BC1 7Ch1 0C1 eCy
¢C1o aCo BC10 7Cho 0C1o eCho

Meaning of items: aCy: test Cg was tested with data set D, . Details of test
Cy can be found in Table A.8.

Table A.9: allocation of test series C on available machines

sequence

machine I
machine II
machine III
machine IV
machine V
machine VI

C1,C2,C3,C4,C5,C6
C1,C2,C3,C4,C5,C6
C1,C2,C3,C4,C5,C6
C1,C2,C3,C4,C5,C6
C1,C2,C3,C4,C5,C6
C1,C2,C3,C4,C5,C6

Table A.10: schedule of machines

234

C1

«

B

APPENDIX A. DESCRIPTION OF TESTS

v

0

€

average

Cor

C2

605.640

Table A.

g

674.672

11: runtime of tests

v

697.542

d

642.701

of block C1 in secon

€

501.610

¢

624.433

ds

average

A.3

Ca
Cao

993.125
175.578

562.328
248.031

547.753
261.502

388.840
302.829

511.787
915.561

520.767
380.700

Table A.12: runtime of tests of block C2 in seconds

results in detail

C3 |

v

4 |

€|

¢ |

a |

average

Cas
Cou

496.625
373.735

461.009
370.685

316.327
226.457

415.057
328.343

377.701
252971

413.344
310.438

Table A.13: runtime of tests of block C3 in seconds

A.3. RESULTS IN DETAIL

C4) € ¢ «@ 8 | average
Coz | 232.937 | 116.947 | 200.724 | 116.573 | 118.276 | 157.091
Cy | 183.906 | 93.136 | 147.415 | 81.386 | 95.936 | 120.356
Co | 155.656 | 66.028 | 122.447 | 55.607 | 58.021 91.552
Cy 36.047 | 33.139 | 73.402 | 33.608 | 32.760 | 41.791
Cy 55.469 | 33.374 | 61.107 | 27.858 | 26.417 | 40.845
Cr 42.657 | 27.499 | 44.795 | 25.733 | 26.870 | 33.511
Ce 29.078 | 21.437 | 38.061 21.061 28.417 | 27.611
Cs 22.000 | 21.374 | 25.999 17.733 | 23.199 | 22.061
Cy 17.516 | 23.124 | 22.296 15.234 19.168 19.468
Cs 12.000 12.406 17.499 14.155 14.170 14.046
Cy 10.797 11.827 17.375 13.031 13.044 13.215
C1 8.391 12.609 16.124 | 12.249 11.639 12.202
Table A.14: runtime of tests of block C4 in seconds
C5 € ¢ « I} v | average
Chg | 178.812 | 298.938 | 144.524 | 146.680 | 369.873 | 227.765
Cig | 134.922 | 203.068 | 124.713 | 156.804 | 229.961 | 169.894
Ci7 | 106.641 | 153.742 | 124.306 | 164.523 | 170.782 | 143.999
Cig 88.203 | 131.056 | 103.917 | 123.353 | 124.500 | 114.206
Cis 80.109 | 93.979 | 86.090 | 98.839 | 89.594 | 89.722
Table A.15: runtime of tests of block C5 in seconds
Cé6 ¢ @ 16} 5 0 | average
Chyg | 101.750 | 73.043 | 86.652 | 88.480 | 69.828 | 83.951
Ci3 78.234 | 79.965 | 51.388 | 66.168 | 55.234 | 66.198
Cio 75.719 | 65.122 | 43.044 | 70.184 | 74.078 | 65.629
C 50.828 | 66.152 | 47.639 | 62.169 | 66.328 | 58.623
Cio | 45.187 | 57.810 | 59.731 | 66.997 | 38.516 | 53.648

Table A.16: runtime of tests of block C6 in seconds

235

236 APPENDIX A. DESCRIPTION OF TESTS

Bibliography

1]

Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. A
framework for clustering evolving data streams. In Johann Christoph Frey-
tag, Peter C. Lockemann, Serge Abiteboul, Michael J. Carey, Patricia G.
Selinger, and Andreas Heuer, editors, VLDB 2003: Proceedings of 29th In-
ternational Conference on Very Large Data Bases, September 9-12, 2003,
Berlin, Germany, pages 81-92, Los Altos, CA 94022, USA, 2003. Morgan
Kaufmann Publishers.

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining
association rules. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo,
editors, Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pages 487—
499. Morgan Kaufmann, 12-15 1994.

Ibraheem Al-Furaih, Srinivas Aluru, Sanjay Goil, and Sanjay Ranka. Par-
allel construction of multidimensional binary search trees. In ICS ’96:
Proceedings of the 10th international conference on Supercomputing, pages

205212, New York, NY, USA, 1996. ACM Press.

K. Alsabti, S. Ranka, and V. Singh. An efficient k-means clustering algo-
rithm. In Proc. First Workshop on High-Performance Data Mining, 1998.

Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jorg Sander.
Optics: ordering points to identify the clustering structure. In SIGMOD
’99: Proceedings of the 1999 ACM SIGMOD international conference on
Management of data, pages 49-60, New York, NY, USA, 1999. ACM Press.

Paul S. Bradley, Usama M. Fayyad, and Cory Reina. Scaling clustering
algorithms to large databases. In Knowledge Discovery and Data Mining,
pages 9-15, 1998.

Stefan Brecheisen, Hans-Peter Kriegel, and Martin Pfeifle. Multi-step
density-based clustering. Knowl. Inf. Syst., 9(3):284-308, 2006.

Doina Caragea. Learning Classifiers from Distributed, Semantically Het-

erogeneous, Autonomous Data Sources. PhD thesis, Iowa State University,

2004.

237

238

[9]

[10]

[14]

[15]

[16]

[17]

[18]

BIBLIOGRAPHY

Tom Chiu, DongPing Fang, John Chen, Yao Wang, and Christopher Jeris.
A robust and scalable clustering algorithm for mixed type attributes in
large database environment. In Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
263—268. ACM Press, 2001.

Alfredo Cuzzocrea. Providing probabilistically-bounded approximate an-
swers to non-holistic aggregate range queries in olap. In DOLAP ’05: Pro-
ceedings of the 8th ACM international workshop on Data warehousing and
OLAP, pages 97-106, New York, NY, USA, 2005. ACM Press.

Antonios Deligiannakis, Yannis Kotidis, and Nick Roussopoulos. Compress-
ing historical information in sensor networks. In SIGMOD ’0/: Proceedings
of the 2004 ACM SIGMOD international conference on Management of
data, pages 527-538, New York, NY, USA, 2004. ACM Press.

A. P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood via the
EM algorithm. Journal of the Royal Statistical Society, (39):1-38, 1977.

Alin Dobra and Johannes Gehrke. Secret: a scalable linear regression tree
algorithm. In KDD ’02: Proceedings of the eighth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 481-487,
New York, NY, USA, 2002. ACM Press.

William DuMouchel and Daryl Pregibon. Empirical bayes screening for
multi-item associations. In KDD °01: Proceedings of the seventh ACM
SIGKDD international conference on Knowledge discovery and data min-
ing, pages 67-76, New York, NY, USA, 2001. ACM Press.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-
based algorithm for discovering clusters in large spatial databases with
noise. In KDD, pages 226-231, 1996.

Martin Ester and Joerg Sander. Knowledge Discovery in Databases.
Springer Verlag, Heidelberg, 2000.

Edward W. Forgy. Cluster analysis of multi-variate data: Efficiency vs.
interpretability of classifications. Biometrics, 21:768-769, 1965.

Alex. A. Freitas. Data Mining and Knowledge Discovery with Evolutionary
Algorithms. Spinger-Verlag, Berlin, 2002.

Dominik First. Effizientes k-clustering: K-centroids clustering auf ba-
sis von hierarchisch aggregierten daten. Master’s thesis, Institut fiir
Wirtschaftsinformatik, Abteilung Data & Knowledge Engineering, 2004.

Venkatesh Ganti, Johannes Gehrke, and Raghu Ramakrishnan. Mining
data streams under block evolution. SIGKDD Explor. Newsl., 3(2):1-10,
2002.

BIBLIOGRAPHY 239

[21]

[22]

[31]

[32]

Johannes Gehrke, Raghu Ramakrishnan, and Venkatesh Ganti. Rainforest
- a framework for fast decision tree construction of large datasets. Data
Mining and Knowledge Discovery, 4(2/3):127-162, 2000.

Corrado Gini. Variabilita e mutabilita. Studi Economico-Giuridici
della Facolta di Giurisprudenza dell’Universita di Cagliari, 3:3-159, 1912.
Reprinted, with few variations, in C. Gini, Memorie di metologia statistica,
vol. I, Veschi, Roma, 1955, pp. 211-282.

Clark Glymour, David Madigan, Daryl Pregibon, and Padhraic Smyth.
Statistical themes and lessons for data mining. Data Min. Knowl. Discov.,
1(1):11-28, 1997.

Matteo Golfarelli, Dario Maio, and Stefano Rizzi. The dimensional fact
model: A conceptual model for data warehouses. International Journal of
Cooperative Information Systems, 7(2-3):215-247, 1998.

Mathias Goller, Markus Humer, and Michael Schrefl. Beneficial sequential
combination of data mining algorithms. In Proceedings of the Sth Interna-
tional Conference on Enterprise Information Systems (ICEILS 2006), 2006.

Mathias Goller and Michael Schrefl. Anticipatory clustering. In Proceedings
of the IASTED International Conference on Databases and Applications
2004, Innsbruck, Austria, February 17 - 19. Acta Press, Calgary, Canada,
2004.

S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan. Clus-
tering data streams: Theory and practice. IEEE Transactions on Knowl-
edge and Data Engineering, 15, 2003.

Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: an efficient
clustering algorithm for large databases. In ACM SIGMOD International
Conference on Management of Data, pages 73-84, June 1998.

Greg Hamerly and Charles Elkan. Alternatives to the k-means algorithm
that find better clusterings. In Proceedings of the eleventh international
conference on Information and knowledge management, pages 600—607.
ACM Press, 2002.

Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without
candidate generation. In Weidong Chen, Jeffrey Naughton, and Philip A.
Bernstein, editors, 2000 ACM SIGMOD Intl. Conference on Management
of Data, pages 1-12. ACM Press, 05 2000.

S. Hettich and S. D. Bay. The UCI KDD Archive [http://kdd.ics.uci.edu.
University of California, Department of Information and Computer Sci-
ence., Irvine, CA, 1999.

Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design
science in information systems research. MIS Quarterly, 28(1):45-73, 2004.

240

[33]

[41]

[42]

BIBLIOGRAPHY

Jochen Hipp and Ulrich Giintzer. Is pushing constraints deeply into the
mining algorithms really what we want?: an alternative approach for asso-
ciation rule mining. ACM SIGKDD Ezxplorations Newsletter, 4(1):50-55,
2002.

Zhexue Huang. A fast clustering algorithm to cluster very large categorical
data sets in data mining. In Research Issues on Data Mining and Knowledge
Discovery, pages 0—, 1997.

Markus Humer. Kombiniertes data mining - klassifikation unter verwen-
dung von durch clustering gewonnenen hilfsinformationen. Master’s thesis,
Institut fiir Wirtschaftsinformatik, Abteilung Data & Knowledge Engineer-
ing, 2004.

Micheline Kamber Jiawei Han. Data Mining: Concepts an Techniques.
Morgan Kaufmann, 2000.

Huidong Jin, Man Leung Wong, and Kwong-Sak Leung. Scalable model-
based clustering by working on data summaries. In Proceedings of the
3rd IEEE International Conference on Data Mining (ICDM 2003), 19-22
December 2003, Melbourne, Florida, USA. IEEE Computer Society, 2003.

Theodore Johnson, S. Muthukrishnan, and Irina Rozenbaum. Sampling
algorithms in a stream operator. In SIGMOD ’05: Proceedings of the 2005
ACM SIGMOD international conference on Management of data, pages
1-12, New York, NY, USA, 2005. ACM Press.

Michael Jordan. A statistical approach to decision tree modeling. In Pro-
ceedings of the Seventh ACM Conference on Computational Learning The-
ory, pages 13-20, 1994.

Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine Pi-
atko, Ruth Silverman, and Angela Y. Wu. An efficient k-means clustering

algorithm: Analysis and implementation. IEEE Transactions on Pattern
Analysis ans Machine Intelligence, 24(7), 2002.

L. Kaufman and P. Rousseeuw. Finding Groups in Data: An Introduction
to Cluster Analysis. John Wiley and Sons, 1990.

Mika Klemettinen, Heikki Mannila, Pirjo Ronkainen, Hannu Toivonen, and
A. Inkeri Verkamo. Finding interesting rules from large sets of discovered
association rules. In Nabil R. Adam, Bharat K. Bhargava, and Yelena
Yesha, editors, Third International Conference on Information and Knowl-
edge Management (CIKM’9/4), pages 401-407. ACM Press, 1994.

Bill Kuechler and Vijay Vaishnavi. Design research in information systems.
www.isworld.org/researchdesign/drisisworld.htm, accessed at 2005-08-16.

BIBLIOGRAPHY 241

[44]

[45]

[46]

[47]

[51]

[53]

Laks V. S. Lakshmanan, Jian Pei, and Yan Zhao. QC-trees: an efficient
summary structure for semantic OLAP. In SIGMOD ’03: Proceedings of
the 2003 ACM SIGMOD international conference on Management of data,
pages 64-75, New York, NY, USA, 2003. ACM Press.

Bing Liu, Wynne Hsu, and Yiming Ma. Mining association rules with
multiple minimum supports. In KDD ’99: Proceedings of the fifth ACM
SIGKDD international conference on Knowledge discovery and data min-
ing, pages 337-341, New York, NY, USA, 1999. ACM Press.

J. MacQueen. Some methods for classification and multivariate observa-
tions. In Proceedings of the 5th Berkeley Symp. Math. Statist, Prob., pages
1:281-297, 1967.

Salvatore T. March and Gerald F. Smith. Design and natural science
research on information technology. Decis. Support Syst., 15(4):251-266,
1995.

Julia Messerklinger. Project discussions concerning master thesis. private
communication, March 2006.

Andrew W. Moore and Mary S. Lee. Cached sufficient statistics for effi-
cient machine learning with large datasets. Journal of Artificial Intelligence
Research, 8:67-91, 1998.

Biswadeep Nag, Prasad M. Deshpande, and David J. DeWitt. Using a
knowledge cache for interactive discovery of association rules. In KDD
’99: Proceedings of the fifth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 244-253, New York, NY, USA,
1999. ACM Press.

Olfa Nasraoui, Cesar Cardona Uribe, Carlos Rojas Coronel, and Fabio
Gonzalez. Tecno-streams: Tracking evolving clusters in noisy data streams

with a scalable immune system learning model. volume 00, page 235, Los
Alamitos, CA, USA, 2003. IEEE Computer Society.

Samer Nassar, Jorg Sander, and Corrine Cheng. Incremental and effec-
tive data summarization for dynamic hierarchical clustering. In SIGMOD
’04: Proceedings of the 2004 ACM SIGMOD international conference on
Management of data, pages 467-478, New York, NY, USA, 2004. ACM
Press.

R. T. Ng and J. Han. Efficient and effective clustering methods for spatial
data mining. In Jorgeesh Bocca, Matthias Jarke, and Carlo Zaniolo, editors,
20th International Conference on Very Large Data Bases, September 12—
15, 1994, Santiago, Chile proceedings, pages 144-155, Los Altos, CA 94022,
USA, 1994. Morgan Kaufmann Publishers.

242

[54]

[59]

BIBLIOGRAPHY

Raymond T. Ng, Laks V. S. Lakshmanan, Jiawei Han, and Alex Pang.
Exploratory mining and pruning optimizations of constrained associations
rules. In SIGMOD °98: Proceedings of the 1998 ACM SIGMOD interna-
tional conference on Management of data, pages 13-24, New York, NY,
USA, 1998. ACM Press.

L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani. High-
performance clustering of streams and large data sets. In Proc. of the 2002
Intl. Conf. on Data Engineering (ICDE 2002), February 2002, 2002.

Carlos Ordonez. Clustering binary data streams with k-means. In Proceed-
ings of the 8th ACM SIGMOD workshop on Research issues in data mining
and knowledge discovery, pages 12-19. ACM Press, 2003.

Carlos Ordonez. Horizontal aggregations for building tabular data sets. In
DMKD °04: Proceedings of the 9th ACM SIGMOD workshop on Research
issues in data mining and knowledge discovery, pages 35-42, New York,
NY, USA, 2004. ACM Press.

Carlos Ordonez and Edward Omiecinski. Frem: fast and robust em clus-
tering for large data sets. In Proceedings of the eleventh international con-
ference on Information and knowledge management, pages 590-599. ACM
Press, 2002.

Raghu Ramakrishnan Ramakrishnan Srikant Paul Bradley, Jo-
hannes Gehrke. Scaling mining algorithms to large databases. Com-
munications of the ACM, 45(8):38-43, August 2002.

Chang-Shing Perng, Haixun Wang, Sheng Ma, and Joseph L. Hellerstein.
Discovery in multi-attribute data with user-defined constraints. ACM
SIGKDD Explorations Newsletter, 4(1):56-64, 2002.

Dorian Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999.

Yaron Rachlin, John Dolan, and Pradeep Khosla. Learning to detect par-
tially labeled people. In Proceedings of the 2003 International Conference
on Intelligent Robots and Systems (IR0OS’03), 2003.

Stefan Schaubschlédger. Effizientes clustering von horizontal verteil-
ten daten. Master’s thesis, Institute for Business Informatics/DKE at
Johannes-Kepler-University Linz, Austria, 2005.

D.W. Scott and S.R.. Sain. Multi-Dimensional Density Estimation. Elsevier,
Amsterdam.

Noam Shental, Aharon Bar-Hillel, Tomer Hertz, and Daphna Weinshall.
Advances in Neural Information Processing Systems 16, chapter Comput-
ing gaussian mixture models with EM using equivalence constraints. MIT
Press, 2003.

BIBLIOGRAPHY 243

[66]

Noam Shental, Tomer Hertz, Aharon Bar-Hillel, and Daphna Weinshall.
Computing gaussian mixture models with EM using using side-information.
In Proc. of the workshop “The Continuum from labeled to unlabeled data
in machine learning and data mining” at ICML 2003., 2003.

Rui Shi, Wanjun Jin, and Tat-Seng Chua. A novel approach to auto im-
age annotation based on pairwise constrained clustering and semi-naive
Bayesian model. In MMM, pages 322-327, 2005.

A. Silberschatz and A. Tuzhilin. What makes patterns interesting in knowl-
edge discovery systems. IEEE Trans. On Knowledge And Data Engineering,
8:970-974, 1996.

Ting Su and Jennifer Dy. A deterministic method for initializing k-means
clustering. In Proceedings of the 16th IEEFE International Conference on
Tools with Artificial Intelligence (ICTAI’04), pages 784-786, 2004.

Sam Y. Sung, Zhao Li, Chew L. Tan, and Peter A. Ng. Forecasting associ-
ation rules using existing data sets. IEEE Transactions on Knowledge and
Data Engineering, 15(6):1448-1459, 2003.

Pang-Ning Tan, Vipin Kumar, and Jaideep Srivastava. Selecting the right
interestingness measure for association patterns. In KDD ’02: Proceedings
of the eighth ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 32—41, New York, NY, USA, 2002. ACM
Press.

Michalis Vazirgiannis, Maria Halkidi, and Dimitrios Gunopulos. Uncer-
tainty Handling and Quality Assessment in Data Mining. Springer, 2003.

C. J. Matheus W. J. Frawley, G. Piatetsky-Shapiro. Knowledge discovery
in databases: An overview. In W. J. Frawley G. Piatetsky-Shapiro, editor,
Knowledge Discovery in Databases, pages 1-27. AAAT Press / The MIT
Press, 1991.

Geoffrey 1. Webb. Efficient search for association rules. In KDD ’00: Pro-
ceedings of the sixth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 99-107, New York, NY, USA, 2000. ACM
Press.

Max Welling and Kenichi Kurihara. Bayesian k-means as a maximisation-
expectation algorithm. to appear in Proc. of the STAM Conference in Data
Mining, April 2006.

David A. White and Ramesh Jain. Similarity indexing with the ss-tree.
In ICDE ’96: Proceedings of the Twelfth International Conference on Data
Engineering, pages 516523, Washington, DC, USA, 1996. IEEE Computer
Society.

244

[77]

[82]

BIBLIOGRAPHY

Xintao Wu, Daniel Barbara, and Yong Ye. Screening and interpreting
multi-item associations based on log-linear modeling. In KDD ’03: Pro-
ceedings of the ninth ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 276-285, New York, NY, USA, 2003.
ACM Press.

Evangelos Xevelonakis. Developing retention strategies based on customer
profitability in telecommunications: An empirical study. Database Market-
ing & Customer Strateqy Management, 12:226-242, January 2005.

Bin Zhang, Gary Kleyner, and Meichun Hsu. A local search approach to
K-clustering. HP Labs Technical Report HPL-1999-119, Hewlett-Packard
Laboratories, 1999.

Tian Zhang. Data Clustering and Density Estimation for Very Large
Datasets Plus Applications. PhD thesis, UW-Madison Computer Sciences
Department, December 1997.

Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: an efficient
data clustering method for very large databases. In Proceedings of the
1996 ACM SIGMOD International Conference on Management of Data,
Montreal, Quebec, Canada, June 4-6, 1996, pages 103-114, 1996.

Zijian Zheng, Ron Kohavi, and Llew Mason. Real world performance of
association rule algorithms. In KDD ’01: Proceedings of the seventh ACM
SIGKDD international conference on Knowledge discovery and data min-
ing, pages 401-406, New York, NY, USA, 2001. ACM Press.

