

JOHANNES KEPLER

UNIVERSITY LINZ

Altenberger Str. 69

4040 Linz, Austria

jku.at

Author

Brigitte Andorfer-Plainer,

BSc

Submission

Department of Business

Informatics – Data &

Knowledge Engineering

Thesis Supervisor

o. Univ.-Prof. Dipl.-Ing.

Dr. techn. Michael

Schrefl

Assistant Thesis

Supervisor

Mag. Dr. Bernd Neumayr

April 2021

SemNOTAM Container

Management

with a Task-Based

Retrieval Service

Master’s Thesis

to obtain the academic degree of

Master of Science

in the Master’s Program

Business Informatics

April 21, 2021 Brigitte Andorfer-Plainer, BSc I

SWORN DECLARATION

I hereby declare under oath that the submitted Master’s thesis has been written solely by me

without any third-party assistance, information other than provided sources or aids have not been

used, and those used have been fully documented. Sources for literal, paraphrased and cited

quotes have been accurately credited.

The submitted document here present is identical to the electronically submitted text document.

Linz, April 21, 2021

Signature

April 21, 2021 Brigitte Andorfer-Plainer, BSc II

ABSTRACT

Ensuring smooth and safe air traffic requires a lot of information and calls for efficient and effective

air traffic management (ATM). ATM consists of air traffic control (ATC), air traffic flow management

(ATFM), and aeronautical information services (AIS). AIS provide relevant information to the users

of the airspace, especially pilots, in the form of information messages, so-called Notices to Airmen

(NOTAMs). Currently, the communication between stakeholders takes place via point-to-point

connections yielding a tight coupling. Hence, information is not shared within the whole community

and needs to be provided for each stakeholder separately. To overcome these drawbacks, System

Wide Information Management (SWIM) reorganizes information management and communication

in ATM.

The project “Achieving the BEnefits of SWIM by making smart use of Semantic Technologies”

(BEST) contributes to the SWIM approach by introducing data containers that group a set of

NOTAMs by different characteristics. The segmentation of the whole NOTAM set is needed to

reduce the set of NOTAMs that is used for querying or filtering for relevant NOTAMs. The created

data containers are provided by data producers in the SWIM environment and can be used by

several stakeholders, i.e., the data consumers. To ensure that data producers and data

consumers have a common understanding of the contents of the data containers, a common

vocabulary is necessary. To enable the task-based retrieval of relevant NOTAMs, this thesis

leverages the briefing application of the project SemNOTAM, which allows a fine-grained filtering

and querying of NOTAMs by using a combination of a rule- and ontology-based approach.

This thesis covers the conceptualization, the design, and the implementation of the three main

components for a SWIM environment. This includes an ontology for managing a vocabulary to

describe data containers, a web application for managing these data containers, and services that

serve this application and enable task-based retrieval of NOTAMs with a briefing application, e.g.,

SemNOTAM. Therefore, a requirements analysis is conducted, which defines the functionality,

inputs and outputs, as well as the business logic for the implementation. Based on the resulting

requirements, an approach for developing the three components is developed. An ontology for the

common vocabulary is developed and prototypes for the Container Management Application as

well as the services for task-based retrieval of relevant NOTAMs are implemented. The resulting

management application is demonstrated with exemplary data containers concerning Europe.

Finally, the functionality of the task-based retrieval service is exemplified based on a use case

flight from Vienna to Frankfurt.

April 21, 2021 Brigitte Andorfer-Plainer, BSc III

ZUSAMMENFASSUNG

Für einen reibungslosen und sicheren Ablauf des Flugverkehrs werden viele Informationen

benötigt und ein effizientes und effektives Flugverkehrsmanagement wird vorausgesetzt.

Flugverkehrsmanagement umfasst die Flugverkehrskontrolle, das Flugverkehrsflussmanagement

und die Luftfahrtinformationsdienste. Die Luftfahrtinformationsdienste stellen den Nutzern des

Luftraums, insbesondere den Piloten, relevante Informationen in Form von Nachrichten,

sogenannten Notices to Airmen (NOTAMs), zur Verfügung. In der Kommunikation aller Beteiligten

gibt es aktuell viele Punkt-zu-Punkt-Verbindungen, was eine enge Kopplung zur Folge hat. Daher

werden Informationen nicht innerhalb der gesamten Community geteilt, sondern müssen für jeden

Stakeholder separat bereitgestellt werden. Um diese Nachteile zu überwinden, wird im Rahmen

von System Wide Information Management (SWIM) die Kommunikation und das

Informationsmanagement im Flugverkehrsmanagement reorganisiert.

Das Projekt „Achieving the BEnefits of SWIM by making smart use of Semantic Technologies”

(BEST) trägt zum SWIM-Ansatz bei, indem es Datencontainer einführt, die eine Menge von

NOTAMs nach verschiedenen Merkmalen gruppieren. Die Segmentierung der gesamten NOTAM-

Menge wird benötigt, um die Anzahl der NOTAMs zu reduzieren, die für die Abfrage oder das

Filtern von relevanten NOTAMs verwendet wird. Die erstellten Datencontainer werden von

Datenproduzenten in der SWIM-Umgebung zur Verfügung gestellt und können von allen

Stakeholdern, den Datenkonsumenten, genutzt werden. Um sicherzustellen, dass

Datenproduzenten und Datenkonsumenten ein gemeinsames Verständnis über die Inhalte der

Datencontainer haben, ist ein gemeinsames Vokabular notwendig. Um die aufgabenbasierte

Abfrage von relevanten NOTAMs zu ermöglichen, nutzt diese Arbeit die Briefing-Applikation des

Projekts SemNOTAM, welche eine feingranulare Filterung und Abfrage von NOTAMs durch eine

Kombination aus einem regelbasierten und einem ontologiebasierten Ansatz ermöglicht.

Diese Arbeit umfasst die Konzeptionierung, das Design und die Implementierung der drei

Hauptkomponenten für eine SWIM-Umgebung. Dazu gehören eine Ontologie zur Verwaltung

eines Vokabulars zur Beschreibung von Datencontainern, eine Webanwendung zur Verwaltung

dieser Datencontainer, sowie Services, die diese Anwendung bedienen und eine

aufgabenbasierte Abfrage von NOTAMs mit einer Briefing Applikation, z.B. SemNOTAM,

ermöglichen. Dazu wird eine Anforderungsanalyse durchgeführt, die die Funktionalität, Ein- und

Ausgaben sowie die Geschäftslogik für die Implementierung definiert. Basierend auf den daraus

resultierenden Anforderungen wird ein Konzept zur Umsetzung der drei Komponenten entwickelt.

Es wird eine Ontologie für das gemeinsame Vokabular entwickelt und es werden Prototypen für

die Container Management Applikation und die Services zum aufgabenbasierten Abruf relevanter

NOTAMs implementiert. Die resultierende Management Applikation wird mit exemplarischen

Datencontainern zu Europa demonstriert. Abschließend wird die Funktionalität des

aufgabenbasierten Abfrage-Services anhand eines Anwendungsfalls, eines Fluges von Wien

nach Frankfurt, exemplarisch dargestellt.

April 21, 2021 Brigitte Andorfer-Plainer, BSc IV

Table of Contents

1 Introduction ... 1

1.1 Preface .. 1

1.2 Problem statement ... 5

1.3 Outline ... 7

2 Fundamentals ... 8

2.1 Theoretical background .. 8

2.2 Projects .. 17

3 Requirements Analysis ... 25

3.1 Existing applications ... 25

3.2 Task Description .. 26

3.3 Requirements ... 29

3.4 Challenges and Problems .. 31

4 Design .. 33

4.1 Approach .. 33

4.2 Architecture .. 40

5 Implementation ... 49

5.1 Technologies .. 49

5.2 Container Ontology .. 51

5.3 Container Management Application .. 57

5.4 Container Description Service .. 78

6 Demonstration .. 83

6.1 Container Ontology .. 84

6.2 Container Management Application .. 86

6.3 Task-Based Retrieval Service .. 94

7 Conclusion .. 96

Bibliography ... 97

List of Figures .. 100

List of Tables ... 102

List of Listings .. 103

Acronyms ... 104

Appendix .. 105

April 21, 2021 Brigitte Andorfer-Plainer, BSc 1/105

1 Introduction

This section introduces the topics Air Traffic Management (ATM), System Wide Information

Management (SWIM), and the idea to bring these topics together. Furthermore, it describes the

scope of this thesis, its role, and its structure.

1.1 Preface

In February 2017 the European Organization for the Safety of Air Navigation (EUROCONTROL)

stated that the total air traffic in 2016 in Europe reached 10.2 million flights and is expecting a

growth of 2.9 % in 2017 [1]. In September 2017 a new forecast was published which shows that

in 2017 the total air traffic grew by 4.5 %. With the expectation of 2.8 % growth in 2018 and a

stable annual growth of 1.7 % from 2019 to 2023, the total number of flight movements in 2023

will be 12.0 million [2]. This is a growth rate of 17 % from 2016 to 2023. This amount of air traffic

requires an efficient and effective ATM, which consists of three main activities [3]:

1. Air Traffic Control (ATC) denotes the process of safely separating aircraft at airports and

as they operate a flight. At airports, the aircraft are guided by the tower, whereas during

the flight phase ATC centers guide them.

2. Air Traffic Flow Management (ATFM) is conducted prior to flights. For each flight, a flight

plan exists which is analyzed in a central repository. Air traffic controllers have to handle a

large number of flights. To enable this, the ATFM computes the positions of each aircraft

at any moment.

3. Aeronautical Information Services (AIS) compile and distribute needed aeronautical

information to airspace users. The provided information covers legal matters, technical

information, or updates on the navigation.

The messages that contain the information provided by the AIS are called Notices to Airmen

(NOTAM) and are mainly free text and hence loosely structured [4]. Geographical and temporal

information in text-based NOTAMs can lead to inaccuracies as, for example, only the position and

radius of a NOTAM can be processed automatically but not the concrete area. In addition, the free

text information needs human interpretation to filter the relevant NOTAMs for a specific flight [4].

These drawbacks make clear that traditional NOTAMs cannot satisfy the increasingly automated

Aeronautical Information Management (AIM) systems [5]. Therefore, Digital NOTAMs (DNOTAMs)

were introduced to overcome these drawbacks. Free text information of traditional NOTAMs is

represented as semi-structured information in DNOTAMs. The shift to DNOTAMs also enables

the provision of the information by digital services that can be processed by systems and

automated equipment [5].

The information exchange between the stakeholders of the ATM process, and therefore, the

encoding for DNOTAMs is based on the Aeronautical Information Exchange Model (AIXM) [4].

This model was developed and extended by the EUROCONTROL and the Federal Aviation

Administration (FAA), who created a new version (version 5.1). The semi-structured data allows

machine-interpretation and -processing and thus reduces the number of irrelevant DNOTAMs,

which reduces the risk of information overload in pilot briefings [6]. Furthermore, AIXM provides a

data encoding specification for geographical information, that is based on the Geography Markup

Language (GML) [5].

April 21, 2021 Brigitte Andorfer-Plainer, BSc 2/105

Providing and accessing relevant DNOTAMs is important for various ATM stakeholders, such as

airport staff and pilots. The communication between these stakeholders is traditionally

implemented through own proprietary applications [7]. The left side of Figure 1.1 shows that this

approach results in numerous point-to-point connections, which leads to a tight coupling of these

applications. In contrast, the vision of SWIM, depicted on the right side of Figure 1.1, follows the

idea of a service-oriented architecture [8]. For example, traditionally, airports develop their own

interfaces to communicate with aircraft, while the ATFM center would need a similar interface but

cannot use it, as it is too specific for the airport’s application. When the interfaces for

communicating with different stakeholders are defined in a SWIM environment, each stakeholder

can communicate over this central interface.

Figure 1.1: System Wide Information Management (SWIM) Vision [8]

The goal of SWIM visionaries is to completely reorganize the whole ATM communication within a

SWIM environment [8]. The provision and consumption of information shall be completely

decoupled. The result will be that producers, those who provide the data, and consumers, those

who want to access and use the data, will no longer need to know each other. Furthermore,

consumers can benefit from the information of several producers, as they are not limited to one

information producer due to a single point-to-point communication [9]. As information is shared in

a SWIM environment a common understanding is needed – otherwise collaborative decision

making cannot be enabled. By decoupling of information producers and consumers through

standardized interfaces and the provision of common semantics in a SWIM environment, a

marketplace for the exchange of aeronautical information is enabled.

Concerning the ATM process there are two relevant issues. On the one hand, the large number

of DNOTAMs needs to be filtered in an effective and efficient way to minimize the need of human

interpretation and optimize the precision of the filter results. On the other hand, a SWIM

environment is needed to decouple the stakeholders and establish a marketplace for aeronautical

information. The filtering aspect is covered by the SemNOTAM project, which aims to improve

temporal and spatial filtering and enable filtering based on the semantics. The BEST project

focuses on a data-centric perspective, which reflects the SWIM vision, and aims to build a

prototype for the mentioned marketplace for aeronautical information.

The project SemNOTAM [10], which tries to achieve a precise filtering of DNOTAMs, was launched

due to the limited spatial and temporal filtering capabilities of existing services, like the Federal

NOTAM Service and NOTAM Distribution Service (FNS-NDS) [11]. On the one hand, the

SemNOTAM project tries to improve the temporal and spatial filtering by conducting a more fine-

grained approach, e.g. filtering on the exact shapes or the actual times the DNOTAMs are active.

On the other hand, the aim of SemNOTAM is to enable intelligent filtering based on concepts with

April 21, 2021 Brigitte Andorfer-Plainer, BSc 3/105

predefined semantics [12]. To enable this, an ontology-based approach for the explicit

specification of the used concepts combined with business rules for filtering and annotating the

DNOTAMs is used. The DNOTAMs are categorized by concepts using business rules, e.g., a

DNOTAM concerning a runway facility and a closure event is categorized using the concept

RunwayClosure. Other business rules specify which DNOTAMs are relevant for a specific flight

and how to determine the importance of these DNOTAMs [13]. As part of the SemNOTAM project

a web service, the SemNOTAM Web Service, is developed, which provides the functionality to

filter a DNOTAM set with so-called interest specifications or task descriptions. An interest

specification consists of the information the user is interested in, respectively his/her specific task,

and is represented using eXtensible Markup Language (XML) [14]. The SemNOTAM Web Service

expects such a specification of the user’s task and a DNOTAM set as input and performs the

filtering and annotation based on the concepts and business rules. As an output this service

returns a filtered DNOTAM set with the annotated importance for each DNOTAM [12].

Furthermore, to address the pilots’ needs, to easily describe their task, i.e. define their flight plan,

a web application, the SemNOTAM Briefing Application, is developed. This application allows the

users to create their flight plan in a simple user interface and receive the filtered and annotated

DNOTAM set from the SemNOTAM Web Service.

The main drawback of the SemNOTAM filtering approach is that a large number of DNOTAMs,

for example, all DNOTAMs of Europe, are used as input for the filtering. This overload of DNOTAM

data causes high costs while filtering because many irrelevant DNOTAMs have to be processed.

The idea to improve the filtering process is to use less DNOTAMs as input for the filtering.

Therefore, the available DNOTAMs shall be split in segments that can be organized as subsets of

each other, i.e., in a subsumption hierarchy. For filtering the DNOTAMs with respect to a specific

task description, only the most specific superset necessary for the specified task shall be found

and shall be used as the input for the filtering process.

The segmentation of the available DNOTAMs is defined in more detail in the project BEST [15],

which was started in 2016. In this project the term semantic container is introduced for one such

DNOTAM set. Gringinger et al. [16] use the term data container as a synonym for semantic

containers while Kovacic et al. [9] only use the term data container. Therefore, the concept of

these containers will be referred to as data containers in this thesis. A data container consists of

its description, including temporal, spatial, and semantic description, and the corresponding data

set [9]. For example, a data container can contain all DNOTAMs of the year 2017 in Europe that

are relevant for aircrafts with a wingspan of more than 120 feet. The project BEST focuses on a

data-centric perspective to distribute data containers over SWIM [15]. The goal of this project is to

find out which semantic technologies can be used in the context of SWIM. The data containers

need to be described through an ontology-based specification, to allow to derive subsumption

hierarchies between them [17]. The subsumption hierarchies define which DNOTAM sets are

subsets of other DNOTAM sets, thus only a specific subset can be used to minimize the costs for

filtering. Furthermore, a prototype for demonstrating the technical feasibility of data containers is

developed in the BEST project and the integration within a SWIM lifecycle is shown [18].

April 21, 2021 Brigitte Andorfer-Plainer, BSc 4/105

With the SemNOTAM and the BEST project both sides of actors in the SWIM environment can be

facilitated. The producers can define data containers by describing the content to be published,

while consumers only specify the information necessary for a task (see Figure 1.2). As described

before, it is important that consumers and producers have the same understanding of the shared

information. The use of the ontological descriptions allows to derive a subsumption hierarchy

between the information need and the provided data containers. In the end, the created

subsumption hierarchy enables the discovering of the most specific superset for a defined

information need, i.e., the consumer’s task [17].

Figure 1.2: Producer vs. consumer

The producers use a management application to describe the information they want to provide,

whereas the consumers describe their task in the SemNOTAM Briefing Application. As described

before, both actors need to have a common understanding and therefore, use the concepts

defined in the ontology for their description. As depicted in Figure 1.2, the management application

for producers accesses the ontology for providing the vocabulary and it uses the Container

Description Service to derive information about the existing data containers. The SemNOTAM

Briefing Application accesses the vocabulary of the ontology via the Container Description Service

to ensure the consumer uses the same vocabulary as the producer. The resulting task description

is then forwarded to a task-based retrieval service in the SWIM environment and returns the result

containing the relevant information for the specific task, i.e. the relevant DNOTAMs with the

corresponding annotations. The task-based retrieval service allows pilots to find relevant

DNOTAMs according to their information need, respectively their task.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 5/105

1.2 Problem statement

One of the main problems for the SWIM environment is that consumers and producers must have

the same understanding for describing data containers. This means that for each term, its meaning

and interpretation has to be specified. Therefore, a common vocabulary has to be defined to

enable the communication between producers and consumers. Such a vocabulary has to be

extensible to cover new terms when needed. The definition of a vocabulary can be realized with

an ontology. Studer et al. [19] define an ontology as “a formal, explicit specification of a shared

conceptualization.” Another definition of ontologies from Gruber also addresses the exchange of

information between two stakeholders:

“Pragmatically, a common ontology defines the vocabulary with which queries

and assertions are exchanged among agents. Ontological commitments are

agreements to use the shared vocabulary in a coherent and consistent

manner.” [20]

After ensuring the common understanding, an exchange process has to be defined. The producers

shall be able to provide and manage data containers. A platform is needed where the producers

can maintain their data containers by regularly refreshing the data items. The consumers, e.g.,

pilots, require access to these data containers and need to be able to find a concrete data

container according to their specified task.

In this thesis this problem is tackled by designing and developing several systems – each of them

specific to a problem to be solved. Producers and consumers need to have the same

understanding (vocabulary), the producers must have the ability to manage their data containers

and a service for describing the data containers using the vocabulary is needed.

 A Container Ontology is developed allowing for the management of the vocabulary in a

repository. Each repository includes an ontology that contains the descriptions of the data

containers and the referenced files containing the data items and task descriptions, i.e. interest

specifications, of those data containers. The interest specification is an XML representation of

the information covered by this container that can be used by services, for example, the

SemNOTAM Web Service, to filter DNOTAMs accordingly.

 For the producers, a Container Management Application has to facilitate different tasks

concerning the management of their data containers. This management system needs to be

able to show the existing data containers and to enable the producer to delete, modify, and

refresh their data containers.

 A Container Description Service shall enable producers to describe data containers, and

consumers to describe their information need with a shared common vocabulary.

Figure 1.3 shows the overall system view, which includes the three parts described before

(Container Ontology, Container Management Application, and Container Description Service) on

the top. The bottom shows the existing applications (SemNOTAM Web Service and SemNOTAM

Briefing Application), that shall be integrated. Furthermore, the relationships between the systems

are depicted. The Container Management Application and the Container Description Service

access the ontology in the repository directly, whereas the existing applications only communicate

over the Container Description Service. The Container Management Application additionally uses

the Container Description Service for creating new data containers. The Container Management

Application, as well as the SemNOTAM Briefing Application, use the SemNOTAM Web Service to

filter DNOTAMs.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 6/105

Figure 1.3: Overview of applications

The SemNOTAM Briefing Application environment shall benefit from this prototype as the filtering

process must not be applied to all available DNOTAMs anymore. The SemNOTAM Web Service

can use the Container Description Service to find an adequate data container based on the

described task, respectively the interest specification, which is used as input for its filtering

process. The task description is based on the concepts defined in the ontology. Hence, it is

compatible with other applications that use the same ontology.

This thesis covers the requirements analysis, approach, implementation, and usage of a prototype

for the management of the data containers and the embedding of it into an existing briefing

application environment, i.e., SemNOTAM. The aim of this thesis is to provide a SWIM

environment enabling producers to manage the data containers as well as enabling consumers to

determine relevant DNOTAMs based on their information need, i.e., task description. The

Container Ontology and the basic functionality of the Container Management Application shall be

shortly demonstrated using simple concepts and small data containers concerning Europe, and

especially Austria.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 7/105

1.3 Outline

The thesis is structured as follows. Section 2 gives an overview of the fundamentals. First, a

theoretical background (Section 2.1) about the key terms NOTAMs and SWIM, the information

structure, and the main concepts of knowledge-based systems is given. Afterwards, the basic

concepts of the projects SemNOTAM (Section 2.2.1) and BEST (Section 2.2.2) are described.

Section 3 starts with the description of the existing applications, and their relationship to the

Container Management Application (Section 3.1), followed by an overview of the given task

(Section 3.2). This is divided into three main parts, the Container Description Service

(Section 3.2.1), the Container Ontology (Section 3.2.2), and the Container Management

Application (Section 3.2.3). Based on this task description, requirements are elicited and

categorized (Section 3.3). At the end, Section 3.4 provides a description of challenges and

problems that might occur during the implementation and possible solutions to handle them.

Section 4 describes the design process of a client-server application. The approach for the

different parts of the application is described in Section 4.1. Furthermore, the architecture of the

Container Management Application, which represents the client application is described in

Section 4.2.2, followed by the architecture of the Container Description Service, representing the

server application, in Section 4.2.3.

The implementation is detailed in Section 5. Therefore, the used technologies for the ontology, the

management application, and the services are described (Section 5.1). First, the implementation

of the ontology is presented (Section 5.2) followed by the implementation of the Container

Management Application (Section 5.3). The last section describes the Container Description

Service, which is used by the Container Management Application as well as the SemNOTAM

Briefing Application and the SemNOTAM Web Service (Section 5.4).

Section 6 covers the different usages of the application. The administration of the ontology is

demonstrated (Section 6.1), followed by the description of the use of the Container Management

Application (Section 6.2) and a demonstration of the task-based retrieval service by the use case

flight from Vienna to Frankfurt (Section 6.3).

Finally, a conclusion and an outlook on future work is given (Section 7).

April 21, 2021 Brigitte Andorfer-Plainer, BSc 8/105

2 Fundamentals

This section describes the fundamentals for understanding the purpose and goals of this thesis.

Therefore, a theoretical background about important key terms, the information structure and main

concepts of knowledge-based systems is given. Furthermore, the main concepts of the

SemNOTAM project and its architecture are introduced. Afterwards, the purpose of the project

BEST is described to foster the understanding of the concept of data containers.

2.1 Theoretical background

Important key terms and fundamentals are introduced in this section. First, the evolution of

NOTAMs from textual representation to a digital, more structured representation is described.

Afterwards, the concept of SWIM is explained, which focuses on centralizing the communication

in a so-called SWIM environment to avoid point-to-point connections of stakeholders. Next, an

overview of knowledge-based systems is given, followed by the concept of ontologies in more

detail. The last subsection describes the reasoning process to infer new knowledge and the

possibility to derive hierarchies between the concepts, e.g., a subsumption hierarchy of the data

containers.

2.1.1 Notices to Airmen

At the moment, NOTAMs are represented by plain text that is provided over basic teletype

networks [21]. Those NOTAMs, which are mainly free text and loosely structured, contain

information about any changes of aeronautical facilities and are used by pilots, controllers, and

other operational personnel [5]. NOTAMs can contain information of different relevance, for

example, Listing 2.1 contains information about the closure of the runway 01 for aircraft with a

wingspan of more than 120 feet from 30 July 2018 12 p.m. to 31 July 2018 12 p.m. This NOTAM

is critical to all flight at that time with an aircraft that exceeds the wingspan and would be

represented like this:

1 RWY 01 CLSD TO ACFT WINGSPAN MORE THAN 120FT

1807301200-1807311200

Listing 2.1: Textual NOTAM - Runway Closure

Textual NOTAMs cannot be interpreted and filtered automatically, because the information

contained in a NOTAM is loosely structured [4]. In addition, geographical and temporal information

often requires human interpretation, which can lead to misunderstandings and slows down the

information flow.

To overcome the drawbacks of textual NOTAMs, a joint project by EUROCONTROL and FAA was

launched in 2009 [6]. The aim was to develop DNOTAMs that can be processed by automated

systems, thus minimizing the need of human interpretation. A more structured representation of

the information in DNOTAMs simplifies both the automatic processing, such as schedule

resolution, and the human readability and therefore, mitigates the risk of human misinterpretation.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 9/105

EUROCONTROL defines DNOTAMs as follows:

“A data set made available through digital services containing information

concerning the establishment, condition or change in any aeronautical facility,

service, procedure or hazard, the timely knowledge of which is essential to

systems and automated equipment used by personnel concerned with flight

operations.” [5]

The shift from textual NOTAMs to DNOTAMs does not only concern the conversion of the textual

information in a more structured format [4]. Rather, information updates are encoded the same

way as long-term information and are provided over the same distribution channels.

EUROCONTROL [5] describes DNOTAMs with the following six characteristics:

 Geo-referenced: The geographical information included in a DNOTAM can automatically be

processed and plotted to a chart for human readability.

 Temporal: Temporal information in textual NOTAMs is hard to comprehend by humans.

DNOTAMs eliminate the risk of human misunderstandings by allowing to compute and

interpret the effective time automatically.

 Linked to static data: Temporal information is not stored redundantly anymore, as changes

are referenced to the baseline information, which refers to the static information in a NOTAM.

 Transformable: A conversion of the information into textual or graphical representations is

possible.

 Query enabled: Based on the users need complex queries can be executed by computer

systems to select the information of interest.

 Electronically distributable: The distribution of one to another computer system does not

need any manual intervention.

A comprehensive data model for aeronautic information was developed by EUROCONTROL in

cooperation with the FAA and the support of the international AIS community to realize the concept

of DNOTAMs [5]. AIXM [22] version 5.1.1 is an exchange standard for aeronautical information

based on XML that can be used for several current and future aeronautical information

applications, as, for example, DNOTAMs [5]. AIXM includes a temporality model [23] and a

geographical model based on GML [24] to allow a more precise description of temporal and

geographical information.

Due to a missing structure of the different aspects of temporal information in textual NOTAMs, it

is hard for humans to comprehend temporal information [25], e.g., the relevant days or time of

day. Furthermore, the same temporal information can be described in various possibilities, which

can lead to human misunderstandings. Listing 2.2 shows the same textual NOTAM as before with

different temporal information.

1 RWY 01 CLSD TO ACFT WINGSPAN MORE THAN 120FT TUE-FRI 0130-1300

1811161200-1901011200

Listing 2.2: Textual NOTAM - Additional Temporal Information

The temporal information in this NOTAM, TUE-FRI 0130-1300 1811161200-1901011200, means

that the NOTAM is only relevant from Tuesday to Friday from 1:30 a.m. to 1 p.m. in the period

from 16 November 2018 until 1 January 2019. The time information after the dates is only relevant

for the period, but not for the actual time slot where the NOTAM is active, i.e. when the NOTAM

is actually relevant. As the 1 January 2019 is a Tuesday, the NOTAM would be active from 1:30

April 21, 2021 Brigitte Andorfer-Plainer, BSc 10/105

a.m. to 1 p.m., but as the period ends at 12 p.m., the NOTAM is not active from 12 p.m. to 1 p.m.

anymore.

AIXM includes a temporality model, which allows the definition of different time slices for

information concerning permanent or temporal changes [23]. A temporary change can either be

permanent or temporary, but in AIXM the temporary status of the feature does not have to replace

the permanent status, by generating a new NOTAM. Instead, a temporary time slice, like the

schedule TUE-FRI 0130-1300, is overlaid on the permanent status, and can easily be reverted

back to the permanent time slice [23].

Using a defined structure for the representation of the different aspects of information increases

the human readability and minimizes the risk of misunderstandings. Therefore, AIXM includes a

temporality model to store all states and events of aeronautical facilities [23]. The automatic

processing benefits of this model and can easily extract the relevant information for further

processing and presentation to humans. This means that temporal information changes in

DNOTAMs can be processed in a machine-readable way as they are encoded in a defined

structure.

Addressing the geographical information of DNOTAMs, the AIXM contains a geographical model

based on GML [24], which is an international standard for exchanging geographical information in

XML format [26]. While textual NOTAMs only contain information about the position and influenced

radius [4], GML allows DNOTAMs to describe geographical information through detailed

geometries which consequently improves the filtering capabilities as it is more precisely [26].

Figure 2.1 shows the difference between the geographical information of textual NOTAMs

compared to DNOTAMs.

Figure 2.1: Geographic information in NOTAMs/DNOTAMs

The left part of Figure 2.1 shows the geographic information in a textual NOTAM where the center

of the shape and a radius is defined. The grey part shows the irrelevant geographical information

that is included in this NOTAM. On the right side, the geographical information of a DNOTAM

represented with GML is shown, where each corner of the actual shape can be defined as an

explicit point, and therefore the filtering is more precise. Furthermore, as GML is based on XML,

points of one geometry can be easily reused by other geometries by simply referencing the XML

element.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 11/105

An example of a geometric surface represented in GML is shown in Listing 2.3, where the positions

of the surface are directly listed, instead of referencing another XML element.

1 <ns9:ElevatedSurface

 srsDimension="2" srsName="urn:ogc:def:crs:EPSG::4326"

 xmlns:ns9="http://www.aixm.aero/schema/5.1"

 xmlns:ns5="http://www.opengis.net/gml/3.2"

 ns5:id="ESf06e533a-f75c-4b72-a49b-da596c5c5c1a">

2 <ns5:patches>

3 <ns5:PolygonPatch>

4 <ns5:exterior>

5 <ns5:LinearRing>

6 <ns5:posList>

 40.50954437508608 -73.71719841801409

 41.74146679120112 -73.75080079239157

 1.83145522828321 -73.7499539336916

 40.50954437508608 -73.71719841801409

 </ns5:posList>

7 </ns5:LinearRing>

8 </ns5:exterior>

9 </ns5:PolygonPatch>

10 </ns5:patches>

11 </ns9:ElevatedSurface>

Listing 2.3: GML surface

2.1.2 System-Wide Information Management

The ATM process involves various stakeholders, e.g., operators, pilots, and airport authorities,

which need to communicate and exchange information with each other [9]. Traditionally, these

stakeholders have their own communication interfaces, connected over point-to-point

connections, as shown on the left side of Figure 1.1 [7]. In this setting, the stakeholder providing

information (the producer) communicates directly with the stakeholder that needs the information

(the consumer). The communication over point-to-point connections is based on the assumption

that consumers know beforehand where, that is, from which producer, they can obtain the required

information, as there is no central administration available allowing consumers to find producers

based on their information need [9].

The concept of SWIM envisions using a service-oriented architecture for the whole ATM

communication to facilitate the exchange of data between various applications [7]. Following a

service-oriented architecture allows to decouple information provisioning and consumption [9].

Ultimately, SWIM will result in a marketplace, where producers provide, and consumers consume

various information via aeronautical information services [9]. Information producers provide

relevant information as so-called data products for the consumers, whereas information

consumers shall have the ability to search for data products according to their information need.

Furthermore, these roles can be intertwined as, for example, a consumer accesses information

regarding to his/her need, processes the information in some way, and afterwards, provides this

information as a data product for other consumers. In this case, the user acts as a consumer as

well as a producer in the marketplace.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 12/105

SWIM aims to ensure a common understanding of information by providing relevant information

to the right people [9]. EUROCONTROL states that the collaborative information-sharing approach

of SWIM is an important driver for global interoperability and standardization [8]. DNOTAMs are

one kind of information that can be exchanged in a SWIM marketplace. A data-centric approach

for SWIM, concerning data products for DNOTAMs and other aeronautical information is

developed as part of the BEST project [9], which is described in Section 2.2.2.

2.1.3 Knowledge-based systems

A knowledge-based system is a program that was developed to emulate the work of experts in a

specific field or to support humans in their decision-making process [27]. The system uses the

built-in knowledge to solve problems or make decisions, as a human would do. When compared

with human expertise, a knowledge-based system is focused on a specific problem and can be

more accessible than one or a few experts [27]. On the other hand, humans are creative, have a

broad focus, and can use common sense knowledge – all of this currently cannot be performed

by a knowledge-based system.

Kendal and Creen describe the following seven main types of knowledge-based systems [27]:

1. Expert systems: Expert systems are used to model algorithms that mimic the human

decision-making process. The main characteristics of an expert system are that it uses

knowledge and an inference mechanism to process this knowledge. Expert systems are

mainly used to give advice in the decision-making process by processing existing data and

utilizing rules to find the most suitable solutions.

2. Neural networks: A neural network consists of simplified models of the brain. Based on

measured data, a neural network is able to perform classification and predictions by

estimating relationships in the given data and can adopt different behavior based on new

data. Neural networks are used for pattern recognition tasks and for predicting future

trends.

3. Case-based reasoning: In case-based reasoning systems, existing cases, which consist

of the definition of the problem and the corresponding solution, are used to reason via

analogy. For new problems, the descriptions of the existing problems and solutions are

used, to find a match for the situation and solve it accordingly, such as humans would do

based on their experience.

4. Genetic algorithms: Methods of evolving solutions to complex problems are called

genetic algorithms. The algorithms in neural networks are static, whereas a genetic

algorithm tries to mimic evolution by reproduction, crossover, or mutation of the code.

Genetic algorithms are mainly used for scheduling tasks, such as timetables or

transportation tasks.

5. Intelligent agents: Intelligent agents are programs that have a specific goal or task

defined, but the software can make its own decisions on how to achieve it. The purpose of

intelligent agents can either be to gather information and provide reports or to make

decisions based on the gathered information and perform actions.

6. Data mining: Data mining is a term that describes knowledge discovery, knowledge

extraction, and data harvesting. The idea is that a database containing a large amount of

data is used in conjunction with a data mining algorithm to uncover specific and useful

knowledge and relationships. Data mining algorithms can also be used to predict future

trends and use data analysis techniques, such as neural networks, decision trees, or

genetic algorithms.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 13/105

7. Intelligent tutoring systems: Tutoring systems are used to support teaching, but for an

intelligent tutoring system, it is important to react to the different student’s learning, as a

teacher would do. In contrast to simple tutoring systems, intelligent tutoring systems

provide multiple teaching methods according to the type of domain knowledge.

Often the terms knowledge-based system and expert system are used as synonyms, but it is just

one type of knowledge-based systems [27]. The main characteristic of an expert system is the

clear distinction between the knowledge base, where the expertise is stored, and the processing

of the knowledge for solving specific problems [28]. A schematic structure of an expert system is

depicted in Figure 2.2, which clearly shows the separation of the knowledge base and knowledge

processing.

Figure 2.2: Schematic structure of expert systems [28]

As depicted in Figure 2.2, an expert system schematically consists of several components and

provides different types of interfaces, i.e., an interface for the expert that needs to provide his/her

knowledge, and an interface for the user of the system, who needs to have a problem solved.

Rule-based knowledge that is provided by the experts over the knowledge acquisition component

is stored in the knowledge base, whereas knowledge that is provided by the user, for example, a

description of the problem is defined as case-specific knowledge [28]. For both interfaces, a

dialogue component exists, but for the user additionally an explanation component is included,

that is used to describe how the system presents how the given problem was solved by using the

experts’ knowledge [28].

In the SemNOTAM project, the knowledge base consists of specific knowledge and deduction

rules [12]. The knowledge processing, in this case, is the use of the rules by a reasoner to derive

new knowledge, which in the end, becomes part of the knowledge base. A more detailed

description of the knowledge representation and processing in SemNOTAM is given in

Section 2.2.1.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 14/105

For the container management, the knowledge base is defined as ontology, i.e., the Container

Ontology, which contains all relevant information about the data containers and their DNOTAMs.

The Container Description Services are part of the knowledge processing, and the Container

Management Application is used for knowledge acquisition. On the one hand, the expert interface

is the Container Ontology which allows to define new concepts. On the other hand, it is realized

through the Container Management Application which enables experts to create new data

containers based on the existing knowledge base, i.e., the concepts in the Container Ontology. A

more detailed description of the connection between the systems and the corresponding

functionality is given in Section 4.

2.1.4 Ontology

The term ontology originates from the field of philosophy, but in the 1990s, it was introduced as a

technical term [29]. In a philosophic field, ontology is defined as the study of being, concerning

what entities exist, how they are grouped or divided according to similarities and differences, and

how the entities are related to each other [30]. As already mentioned in Section 1.2, in the

informatics, an ontology defines a formal vocabulary that allows to query and exchange

information between actors that share the same understanding. An ontology can be defined by

the following three main characteristics. An ontology is:

 an explicit, formal specification

 of the conceptualization of a defined area for a specific purpose

 that a group of actors has agreed on [31].

Staab and Studer [31] describe these three characteristics as follows. The conceptualization of a

specific area refers to concepts and relations between those concepts that give a simplified view

of the relevant parts of the world you want to describe. The identified concepts need to be explicitly

specified in a suitable language, for example in a machine-readable way by using F-Logic or the

Web Ontology Language (OWL). As the purpose of ontologies is to share it with other people, all

involved actors need to have the same understanding of the specified ontology. To understand a

defined ontology correctly, the communication between the machine and the human has to be

enabled [31]. This communication can be represented by the semiotic triangle, which is depicted

in Figure 2.3.

Figure 2.3: Semiotic triangle [31]

The semiotic triangle in Figure 2.3 illustrates that when somebody sends, and another one

receives any kind of sign (e.g., a word, a picture, or a symbol), both actors invoke some concept

in their mind represented by this sign [31]. Depending on the context of the communication, both

actors identify a thing or entity based on their concept, which leads to the indirect reference of a

sign to a thing.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 15/105

In this thesis, all stakeholders in the SWIM environment need to have the same understanding of

the concepts for describing data containers. Therefore, an ontology defining these concepts is

needed to ensure the interchangeability of the data containers across various producers and

consumers.

Two other important terms in the context of ontologies are the Closed World Assumption (CWA)

and the Open World Assumption (OWA), which refers to whether a specific part of the world is

assumed to be modeled in total or some parts are not modeled although they exist in the real

world [32]. Figure 2.4 shows an example of an ontology as a graph, which has the concept Person

and two individuals Max and Mike.

Figure 2.4: Open World Assumption vs. Closed World Assumption

Additional to the concepts in Figure 2.4, we have the concept hasSibling that defines one Person

to be a sibling of another Person. Now we want to know if Max and Mike are siblings. When

considering the CWA, the answer would be No as the negation would be assumed to be true [33],

but when considering the OWA, the answer is unclear, as this relationship might exist but is not

modeled. With ontologies one typically makes the OWA, which means that everything that is not

modeled is unclear and cannot be inferred as true or false.

2.1.5 Reasoning and subsumption hierarchies

Reasoning describes the process of using existing knowledge and rules to infer new knowledge

and is a central component of each knowledge-based system [28]. The reasoning term also comes

from the philosophical field, where Peirce[34] defined the following three types of inference [34]:

1. Deduction: Based on the existing knowledge, a certain truth is deducted, by concluding

from a general case to one specific case. For example, if we know that all birds can fly and

Tweety is a bird, then we can infer that Tweety can fly.

2. Induction: Induction means, that based on several individual cases, general knowledge

can be inferred. In most cases, the new knowledge might be correct, but it is not

necessarily true for all possible cases. For example, if we know three dogs, that do bark,

but do not bite, we infer that dogs that bark do not bite. However, this is an uncertain

inference.

3. Abduction: Due to rule-based knowledge, an inference is made for an observation, which

is often used in medicine. For example, with the rule that when a patient has a high

temperature, then he/she most likely has the flu, and the observation that a person has a

high temperature, then he/she probably has the flu. This is again only an uncertain

inference.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 16/105

The reasoning process can also be distinguished in monotonic and non-monotonic reasoning,

which refers to whether knowledge is persistent or can be thrown away and redone [27]. In non-

monotonic reasoning, it is possible that due to new knowledge, some of the inferred knowledge

before becomes false and has to be removed from the knowledge base [35], whereas in monotonic

reasoning newly inferred knowledge cannot be conflicting the existing knowledge [36].

The open world assumption described in Section 2.1.4 also has an impact on the results of the

reasoning process. For example, when defining a concept in an ontology for only child as a person

that has no siblings and having the individual Max who has no siblings defined, the reasoner will

not infer that Max is an only child. Due to the open world assumption, only asserted knowledge is

used in the reasoning and nothing is assumed. There might be a sibling of Max that is not modeled

in the ontology, and therefore, it is not sure that Max is an only child.

Reasoning enables to infer new knowledge, so-called facts, by combining the given knowledge

represented in the ontology. This also includes the identification of concepts that subsume other

concepts, which allows to derive a so-called subsumption hierarchy. The possibility to identify such

hierarchies enables to automatically find the most specific superset, the set that is directly one

level above the current set. The data set of the subset can be retrieved by filtering the data items

of the superset. How to find the most specific superset and the factors that are considered are

further discussed in Section 3.2, where the task is defined, and in Section 5.2.3 and Section 5.4.3,

where the concrete implementation is described.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 17/105

2.2 Projects

This section gives an overview of the projects SemNOTAM and BEST. The SemNOTAM project

is about a knowledge-based system that allows intelligent, fine-grained filtering, and annotating of

DNOTAMs, which was launched in 2014 [12]. The project BEST focuses on a data-centric

perspective to distribute data containers over SWIM [15].

2.2.1 SemNOTAM

The research project SemNOTAM was launched in 2014 as a cooperation between industry and

university partners with the aim to filter and annotate DNOTAMs [10]. The research of the

Department of Business Informatics – Data & Knowledge Engineering at the Johannes Kepler

University covers inter alia business intelligence, semantic technologies, and the development of

web-based and knowledge-based systems [37]. One of the main industrial partners is the Austrian

company Frequentis AG, which develops safety-critical communication and information solutions

in safety and transportation markets [38]. Other cooperation partners are EUROCONTROL and

the FAA, who conduct research on modernizing and harmonizing the ATM systems, i.e., in the

Single European Sky ATM Research Program (SESAR) or with the Next Generation Air

Transportation System (NextGen) [39].

The huge and steadily growing number of DNOTAMs that results in information overload,

especially for pilots, has shown that intelligent querying and filtering of DNOTAMs is an important

aspect of air traffic safety [12]. Existing filtering systems, e.g., the FNS-NDS, only support basic

filtering and do not fit the need of complex semantic querying of DNOTAMs [12]. According to

Burgstaller et al. [12], two specific approaches exist in the literature that address issues of

intelligent NOTAM processing. The first approach was for querying DNOTAMs by the use of an

ontology that contains knowledge about DNOTAMs [40]. Defining when, how, and for whom the

information is relevant is not possible with this approach, as no business rules are used [12]. The

second approach uses business rules for notifying the cockpit crew with DNOTAMs depending on

their relevance for a certain flight and their significance [41]. This approach is not knowledge-

based and therefore, does not allow to use ontologies for the reasoning process [12].

2.2.1.1 Problem description and method

In the SemNOTAM project, a combination of rule- and ontology-based approach is used in a

knowledge-based framework, which allows fine-grained filtering and querying of DNOTAMs [12].

Conditions of DNOTAMs are described with event scenarios, e.g., runway closure, that are then

used in business rules to derive the relevance and importance of a DNOTAM [12]. Additionally to

the event scenarios, SemNOTAM supports business terms for the definition of precise,

understandable, and machine-processable concepts, that can again be used in business terms to

derive the relevance and importance of DNOTAMs concerning these scenarios [12].

As described in Section 2.1.3, a knowledge-based system consists of two main components,

respectively the knowledge base and the reasoner. The knowledge base in the SemNOTAM

system consists of the knowledge and the business rules [12]. As depicted in Figure 2.5, the

reasoner uses the rules to derive new knowledge out of the existing knowledge, which then

becomes part of the knowledge in the knowledge base for further processing.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 18/105

Figure 2.5: Reasoning process [12]

The knowledge-based framework of SemNOTAM accesses different data to build up its

knowledge, e.g., DNOTAMs, AIXM baseline data, configuration data, e.g. aircraft characteristics,

and the query interface, where specific interests can be provided [12]. Figure 2.6 shows that all

data needs to be mapped from AIXM to the ontological representation to store it in the

SemNOTAM ontology.

Figure 2.6: SemNOTAM Settings and Components [12]

As described before, the knowledge base contains the ontology that comprises the business terms

and the hierarchical relationship between them [12]. The SemNOTAM Rules contain the business

rules that define whether a DNOTAM is relevant or not and classifies its importance based on the

business terms of the ontology. The SemNOTAM Interest Specification allows the specification of

what the user is interested in, by defining so-called simple interests that can be combined to

complex interests [12]. However, each simple interest is evaluated separately, and the results are

combined to complex interests with union or intersection. The complete definition of the user’s

task, the combination of simple and complex interests, is called interest specification, i.e., task

description. A more detailed description of the structure and use of interest specifications is given

in Section 2.2.1.2.

For the integration with external applications the SemNOTAM Web Service was developed, which

provides filtering functionalities of the SemNOTAM prototype. The concrete usage of this web

service is described in Section 5.3 and is demonstrated in Section 6.2. Interest specifications,

which are the input for the SemNOTAM Web Service, are introduced in the next section.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 19/105

2.2.1.2 Interest specification

An interest specification is the definition of what the user is interested in, and affects which rules

of the SemNOTAM system are applied [12]. A user can define his/her task to perform in three

different interests, namely aircraft, temporal, and spatial interests [12]. These types of simple

interests can be combined to complex interests using intersection or union. Listing 2.4 shows an

exemplified simple interest in XML format for the aircraft type 717. By defining this interest,

SemNOTAM rules that are not relevant for this aircraft type are not considered further.

1 <ns11:AircraftOfInterest

 xmlns="http://www.aixm.aero/schema/5.1/extensions/FAA/FNSE"

 xmlns:ns11="http://semnotam.frequentis.com/schema/1.0"

 xmlns:gml="http://www.opengis.net/gml/3.2"

 gml:id="AF_717">

2 <ns11:aircraftTypeName>717</ns11:aircraftTypeName>

3 </ns11:AircraftOfInterest>

Listing 2.4: Simple Interest - Aircraft

A temporal interest, as represented in Listing 2.5, has a bit more structure, where the begin of the

time interval is defined in Line 4 and the end of the time interval is defined in Line 5. This temporal

interest defines that the user is only interested in DNOTAMs that are relevant in the year 2017.

1 <ns11:PeriodOfInterest

 xmlns="http://www.aixm.aero/schema/5.1/extensions/FAA/FNSE"

 xmlns:ns11="http://semnotam.frequentis.com/schema/1.0"

 xmlns:gml="http://www.opengis.net/gml/3.2"

 gml:id="TIF_Year2017">

2 <ns11:occTime>

3 <ns11:TimeInterval>

4 <ns11:beginPosition>

 2017-01-01T00:00:00.000Z

 </ns11:beginPosition>

5 <ns11:endPosition>

 2018-01-01T00:00:00.000Z

 </ns11:endPosition>

6 </ns11:TimeInterval>

7 </ns11:occTime>

8 </ns11:PeriodOfInterest>

Listing 2.5: Simple Interest - Period of Interest

To define an interest that has both restrictions a complex interest is used, in this case an

intersection interest, shown in Listing 2.6. Intersection means that only when a DNOTAM fits both

restrictions, i.e., it is relevant in 2017 and for the aircraft type 717, it is relevant for this complex

interest. The evaluation is done for each simple interest and those DNOTAMs that are included in

both result sets are returned to the user.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 20/105

1 <ns11:IntersectionInterest

 xmlns="http://www.aixm.aero/schema/5.1/extensions/FAA/FNSE"

 xmlns:ns11="http://semnotam.frequentis.com/schema/1.0"

 xmlns:gml="http://www.opengis.net/gml/3.2">

2 <ns11:hasMember>

3 <ns11:AircraftOfInterest gml:id="AF_717">

4 <ns11:aircraftTypeName>717</ns11:aircraftTypeName>

5 </ns11:AircraftOfInterest>

6 </ns11:hasMember>

7 <ns11:hasMember>

8 <ns11:PeriodOfInterest gml:id="TIF_Year2017">

9 ...

10 </ns11:PeriodOfInterest>

11 </ns11:hasMember>

12 </ns11:IntersectionInterest>

Listing 2.6: Complex Interest - Intersection

In contrast to the intersection interest, the union interest can be seen as a logical OR, which is

mostly used for spatial interests. For example, when defining two spatial interests, like in

Listing 2.7 one departure aerodrome area and one destination aerodrome area, the user is

interested in DNOTAMs that are in the first aerodrome area or in the second aerodrome area. It

only has to fulfill one of the requirements to be part of the result set.

1 <ns11:UnionInterest

 xmlns="http://www.aixm.aero/schema/5.1/extensions/FAA/FNSE"

 xmlns:ns11="http://semnotam.frequentis.com/schema/1.0"

 xmlns:gml="http://www.opengis.net/gml/3.2">

2 <ns11:hasMember>

3 <ns11:DepartureAerodromeArea>

4 <ns11:designator>KJFK</ns11:designator>

5 </ns11:DepartureAerodromeArea>

6 </ns11:hasMember>

7 <ns11:hasMember>

8 <ns11:DestinationAerodromeArea>

9 <ns11:designator>KIAD</ns11:designator>

10 </ns11:DestinationAerodromeArea>

11 </ns11:hasMember>

12 </ns11:UnionInterest>

Listing 2.7: Complex Interest - Union

The combination of all restrictions with union and intersection interests is then called interest

specification, i.e., task description. This specification is used by the SemNOTAM prototype for

filtering DNOTAMs based on the corresponding rules. How the Container Management

Application creates the interest specifications and why the interest specification is also relevant

for the SemNOTAM Briefing Application is described in Section 4.1 and Section 3.1.2.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 21/105

2.2.1.3 Filtering process

As already introduced in Figure 2.6, the filtering and annotation process is covered by the

SemNOTAM Rules, which are used by a reasoner to retrieve the relevant DNOTAMs and infer

their importance. For the definition of the SemNOTAM Rules the language ObjectLogic, which is

based on the knowledge representation technology F-Logic, was used [12].

As already described before, business terms are used to define specific concepts, that are

referenced in the filtering and annotation rules. Business terms can also be hierarchically

structured, by defining so-called super-business terms, for example, the business term aerodrome

is a super-business term of the business terms runway, taxiway and gateway [12]. The

representation of this hierarchy in ObjectLogic is shown in Listing 2.8. Each DNOTAM (defined by

?n:NOTAM) will be classified as an AerodromeConcept if it is of the type RunwayConcept,

TaxiwayConcept or GatewayConcept.

1 ?n:AerodromeConcept :- ?n:NOTAM, (?n:RunwayConcept OR

2 ?n:TaxiwayConcept OR ?n:GatewayConcept).

Listing 2.8: Business Term – AerodromeConcept [12]

The defined business terms can then be used in the relevance rules to reduce the complexity of

the rules and increase the readability [12]. These SemNOTAM Rules are defined similar to

business terms, which either determine a DNOTAM to be relevant or irrelevant if it is a negative

rule. Most of the rules will be negative because a recall of 100 % should be provided, which means

that no relevant DNOTAM must be excluded [12]. An example for such a negative rule is given in

Listing 2.9, which classifies all DNOTAMs of the type RwyClosure as irrelevant for a specific

aircraftInterest if the aircraft width is more than 20 ft smaller than the closure width.

1 aircraftInterest[irrelevant -> ?n] :- ?n:RwyClosure,

2 AircraftInterest[type -> ?type[wingspan -> ?acWSpan]],

3 ?n[wingspan -> ?nWSpan, wingSpanInterpretation -> "above"],

4 (?acWSpan + 20) < ?nWSpan.

Listing 2.9: Relevance Rules – Wingspan Rule [12]

Additionally to the filtering functionality, SemNOTAM also covers the aspect of annotating relevant

DNOTAMs based on their importance [13]. For example, some DNOTAMs are only additional

information for a flight, while others need to be classified as flight critical. In the SemNOTAM

project the following six importance levels can be distinguished:

 Flight Critical

 Special Consideration

 Operational Restriction

 Potential Hazard

 Additional Information

 Unknown Importance

The annotated importance of the DNOTAMs depends on the importance for the flight and the

probability of the DNOTAM. For example, a runway closure would be annotated as flight critical,

whereas, wildlife hazards at an aerodrome would only be annotated as additional information [13].

April 21, 2021 Brigitte Andorfer-Plainer, BSc 22/105

2.2.2 BEST

The research project BEST was launched in 2016 and focuses on a data-centric perspective with

the aim to identify how semantic technologies can be used in combination with the SWIM concept

in aeronautical domain [9]. It shall be determined what types of ATM data can be represented in

ontologies and how these ontologies can effectively be used in SWIM [42].

The BEST project is a follow-up project of the original SESAR project, that has two main results.

First the SWIM concept that will lead to changes in how ATM information is provided and second

ATM Information Reference Model (AIRM), which provides a standardized vocabulary for sharing

information [18]. In addition to SWIM and AIRM, modelling techniques, languages and tools of

semantic technologies should be used to avoid information overload and enable a truly effective

information management [18].

2.2.2.1 Problem description and method

The SWIM concept that is used in the BEST project aims for an service-oriented architecture for

the organization of ATM communication and achieving a shared understanding by all stakeholders

[9]. As already described in Section 2.1.2, the result of SWIM will be a marketplace, where

producers provide, and consumers consume various information via aeronautical information

services [9]. According to EUROCONTROL, this concept of collaborative information-sharing is

an important driver for global interoperability and standardization [8].

In the BEST project the AIRM ontology was separated into several ontology modules for certain

topics, for example, Aircraft or Meteorology [16]. The ATM information represented by these

vocabularies is then used by data containers, which describe the information provided to end-

users [42]. Furthermore, to describe how the ATM information should be exchanged, in BEST

strategies for data distribution and consistency management are developed [42]. Gringinger et al.

[16] use the term data container as a synonym for data containers while Kovacic et al. [9] only use

the term data container. Therefore, the concept of these containers will be referred to as data

containers in this thesis. The next section describes in more detail how data containers are

structured and which types of information they contain.

2.2.2.2 Data containers

To organize ATM information in suitable data sets the concept of data containers was introduced,

which should enable an effective data exchange [42]. One data container contains data items of

one specific data type, for example, DNOTAMs [9]. The data items that are included in one data

container are described by the corresponding semantic label [9]. Data containers can be

distinguished between Primary Data Containers and Secondary Data Containers, as depicted in

Figure 2.7. Primary Data Containers have a defined data set, whereas Secondary Data Containers

have another data container as data source, either a Primary Data Container or a Secondary Data

Container, and filter the data set accordingly [9].

April 21, 2021 Brigitte Andorfer-Plainer, BSc 23/105

Figure 2.7: Data Container Hierarchy [9]

Each data container has a semantic label that describes the corresponding data set. A semantic

label consists of several ontology-based concepts and annotations, so-called metadata [9]. Two

different types of metadata can be distinguished, administrative metadata for container

maintenance and descriptive metadata for the description of the data items as shown in Figure 2.8

[9].

Figure 2.8: Semantic Label – Metadata [9]

As depicted in Figure 2.8 the administrative metadata as well as the descriptive metadata are

each further divided into three different categories. The administrative metadata is divided in the

following three groups [9]:

 Technical metadata describes technical characteristics of the data set of the data container,

such as data format or encoding.

 Completeness, relevance or timeliness are examples for quality metadata, which provides

information about the freshness of the data container, like the date of the last change and the

last update.

 Provenance metadata describes the origin and data processing by specifying the data

source, which is another data container and a data service that is used for filtering the data set

of the data source accordingly.

The descriptive metadata either describes semantic, temporal, or spatial conditions of the data

set of the data container [9]. Therefore, these three different types of facets are distinguished,

where one or more facets belong to each category. The realization of the facets in the container

ontology will then be further described in Section 5.2.1.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 24/105

In the context of this thesis, reasoning is used to identify hierarchies between the concepts of a

specific facet and consequently derive the subsumption hierarchy of the data containers based on

their descriptive metadata. For example, the set of DNOTAMs including all DNOTAMs of Europe

subsumes the set of DNOTAMs that only include the DNOTAMs for Austria and this set again

subsumes the set containing the DNOTAMs for Upper Austria. By applying reasoning on the facts

described by the spatial information, the subsumption hierarchy shown in Figure 2.9 is inferred.

Figure 2.9: Data Container – Subsumption hierarchy

April 21, 2021 Brigitte Andorfer-Plainer, BSc 25/105

3 Requirements Analysis

This section provides a detailed task description, which clearly describes the scope of this thesis

and serves as a base for the definition of requirements. At first, the existing applications of

SemNOTAM are introduced to understand the integration with them. Afterwards, a detailed task

description is given, which describes the implementation components of this thesis and serves as

a base for the definition of requirements. Furthermore, possible problems that might occur are

presented. Further sections will then refer to the identified requirements when describing the

design (Section 4) and the implementation (Section 5).

3.1 Existing applications

An overview of the existing applications that are used by or use the Container Management

Application and the Container Description Service is given in this section. A simple depiction of

the applications is shown in Figure 1.3. Since the aim of the SemNOTAM project is to enable the

intelligent and fine-grained filtering of DNOTAMs, a web service was developed, which is also

used by the Container Management Application for secondary containers. As this thesis also

covers a task-based retrieval service, the SemNOTAM Briefing Application is also described,

which allows pilots to find relevant DNOTAMs according to their information need, respectively

their task.

3.1.1 SemNOTAM Web Service

The SemNOTAM Web Service enables to use the filtering capabilities of the SemNOTAM

prototype by providing two different methods for filtering DNOTAMs. Either the set of DNOTAMs

is given by the user as input for the method, or the system performs the filtering based on a set of

DNOTAMs that fits the user’s need. In both cases, the user has to pass the information need, i.e.,

task description, in the form of an XML interest specification as described in Section 2.2.1.2.

The integration of the SemNOTAM Web Service aims for two goals. On the one hand, this service

is used by the Container Management Application to perform the filtering of DNOTAMs accordingly

to the descriptive metadata of a data container. On the other side, the identification of the most

suitable set of DNOTAMs for the user’s need is performed by the Container Description Service,

which means that the SemNOTAM Web Service uses methods of the Container Description

Service. Therefore, when the user sends a request to the SemNOTAM Web Service without a

specific set of DNOTAMs, the Container Description Service will be called along with the task

description i.e., the interest specification. The result of this call will provide the SemNOTAM Web

Service with the corresponding most specific superset. The specific requirements concerning this

service are described in more detail in Section 3.3.

3.1.2 SemNOTAM Briefing Application

Another part of this thesis is the integration of the Container Management Application with a

briefing application by providing a task-based retrieval service. The SemNOTAM Briefing

Application is the client web application of the SemNOTAM system, which enables pilots to filter

DNOTAMs based on their task to be performed. By defining a flight plan according to their task,

an interest specification is mapped and used as input for the SemNOTAM Web Service. The users

of the SemNOTAM Briefing Application only pass their task description and the SemNOTAM Web

April 21, 2021 Brigitte Andorfer-Plainer, BSc 26/105

Service returns the filtered and annotated/grouped DNOTAMs. To this end, the SemNOTAM Web

Service receives the most specific superset regarding specific task to be performed from the

Container Description Service. To enable the Container Description Service to transform the task

description into a data container, a service has to be provided that forces the users of the

SemNOTAM Briefing Application to define their task by using the predefined concepts. These

concepts need to be defined in the Container Ontology.

3.2 Task Description

To clarify the aim of this thesis, this section describes the task to be fulfilled. It is clearly specified

what functionality shall be covered by the implementation and how the subsystems relate.

A management application for data containers should be developed. A data container can either

represent a primary container which does not have another data container as a data source or a

secondary container which uses other primary or secondary containers as data source.

Regardless of the type, a data container consists of the data set, including the data items and a

semantic label representing metadata. The metadata can either be descriptive or administrative.

Descriptive metadata is used to describe the membership conditions fulfilled by the data items in

the data set. Administrative metadata is used to capture other technical, quality, and provenance

aspects of the data container.

The semantic label includes the descriptive metadata, such as the time period or the spatial area

covered by the data set. The concepts of the descriptive metadata are assigned to semantic labels

by so-called facets. The basic idea of facets is to describe the features of the content, e.g., the

contained DNOTAMs. The data set must be sound, which means that each data item in a data set

has to fulfill the assigned concepts. Furthermore, it must be complete, which means that at least

all existing data items which fulfill the concepts must be included in the data set. For example,

assigning the concept Austria over the spatial facet to a semantic label indicates that the data set

contains all existing data items which can be assigned to Austria, or even more. Additionally, a

facet “Specific Interest” shall be included, that has concepts assigned that, for example, represent

a flight path. The difference between those concepts and the other administrative metadata is that

typically the concepts for the descriptive metadata are used by several semantic labels, whereas

a concept of the specific interest facet is only used by a single semantic label. The semantic label,

as well as the descriptive metadata, shall be represented by concepts within an ontology to enable

the creation of a hierarchy between the metadata of one facet as well as the semantic label.

The use of an ontology for the descriptive metadata should make it possible to create

specialization respectively generalization hierarchies between concepts, which are used for facets

of semantic labels. These hierarchies should either be defined explicitly by the user or should be

derived by employing subsumption reasoning. Following this approach, it should be possible to

derive specialization hierarchies between semantic labels, and since semantic labels describe the

content of the data container, it also allows to draw subsumption hierarchies between the data

containers. This allows finding the most specific superset for a given semantic label representing

a user’s task description. Since multiple data containers can represent the most specific superset,

the administrative metadata can be considered to decide which superset shall be selected, e.g.,

select the superset which contains most-recent data items, has the smallest size, or the one with

the right encoding.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 27/105

This additional information represented by the administrative metadata shall not be used for

reasoning purposes, which is why it shall not be represented by concepts in the ontology; instead,

it shall be annotated in some way.

The communication with the existing applications described in Section 3.1 also has to be realized.

Therefore, web services shall be implemented to enable the task-based retrieval of relevant

DNOTAMs with the SemNOTAM Briefing Application. The management application and the

briefing application need to be able to select concepts for facets based on the Container Ontology.

Furthermore, both systems need to build interest specifications based on the selected concepts

and use this interest specification as input for a filtering service. This thesis only shows the filtering

of DNOTAMs and therefore, uses the SemNOTAM Web Service, but the concept can also be

applied to other aeronautical information, e.g., METeorological Aerodrome Report (METAR).

The difference between the Container Management Application and the SemNOTAM Briefing

Application is as follows: The Container Management Application is used by information producers

that have the intention to create new data containers, while the users of the SemNOTAM Briefing

Application want to get the relevant data items for their information need. Therefore, the users of

the Container Management Application decide which data container shall be used as the data

source for a secondary data container. Users of the SemNOTAM Briefing Application shall not be

confronted with this, they only describe their information need and send a request to the

SemNOTAM Web Service. This service calls another service that shall find the most specific

superset in the ontology, based on the subsumption hierarchy between containers and their

administrative metadata. This most specific superset is then filtered by the SemNOTAM Web

Service.

To support these and other tasks an ontology, a management application for data containers, and

a web service shall be developed.

3.2.1 Container Description Service

To create a container description, the user shall be able to select concepts for the different facets.

Therefore, a service to select a concept for one specific facet, which only provides concepts for

this facet, must be provided. Furthermore, it shall be possible to select other ontologies which

include other concepts for this facet.

The SemNOTAM system requires an interest specification as input to filter a set of DNOTAMs.

This means that the container description needs to be translated to its corresponding interest

specification representation. Therefore, a service is needed, which realizes the mapping between

a concept and its interest representation. For that reason, the annotated interest representations

of the concepts in the ontology are used.

Another service shall enable the user to find the most specific superset of his/her information need

respectively specified interest specification. Therefore, a service for retrieving the most specific

superset shall be implemented. The service needs to map the interests back to its corresponding

concepts since interests itself do not store the concept information. The service shall find all

possible most specific supersets and decide which one to use based on the administrative

metadata.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 28/105

3.2.2 Container Ontology

The semantic label of a data container includes the descriptive metadata which shall be

represented by ontology concepts. The facets are also represented as concepts, and the

descriptive metadata concepts are defined as their sub-concepts. Furthermore, each descriptive

metadata concept has an interest representation annotated. The interest representation is the

XML representation of the concept that is used to build the interest specification and can be used

as input for the SemNOTAM Web Service. The administrative metadata is assigned to the punned

instance of a data container. Punning means that the data container has a representation as class

and instance, and both can be referenced through the same Internationalized Resource Identifier

(IRI). The Container Ontology shall support create, modify, and delete operations on concepts and

their annotations.

3.2.3 Container Management Application

An application for managing data containers shall be implemented. This application should enable

the user to view, modify, delete, create, and refresh data containers, respectively their metadata.

 View: The user shall be able to view the existing containers which are available in the

corresponding ontology. The list of containers shall display the descriptive metadata, and a

detailed view of a single container shall display descriptive and administrative metadata.

 Modify: Furthermore, the user shall be able to modify some of the administrative metadata,

e.g., the refresh interval and the refresh until timestamp. If other metadata shall be modified,

e.g., descriptive metadata, then this shall be prevented, and it shall be indicated that a new

container shall be created for this purpose.

 Delete: The user shall also be able to delete a container, but in this case, possible existing

dependencies to another container must be considered, e.g., the user should be informed that

the data container might act as a data source for another container.

 Create: For the creation of new containers, there shall be an interface where the user can

select a concept for each facet. The user can choose between creating a primary container or

a secondary container.

 For primary containers, the corresponding data set has to be declared explicitly, since they

do not have a data source. Therefore, no other primary or secondary data container shall

be selected as input. The user shall ensure that the selected data set includes all the data

items specified by the container facets respectively the administrative metadata, hence,

primary containers can only be updated manually.

 For the creation of a new secondary container, first, its most specific superset shall be

found. The user shall be able to decide which superset should be used. Furthermore, a

service that is used for filtering the data set has to be selected by the user, e.g., the

SemNOTAM Web Service. The data set of the subsuming container is then used as input

for the selected service. This service filters the data set based on the selected concepts

and if existing on the specific interest. The output of this service represents the data set of

the created container. The service and the parameters that are used for calling it are saved

in the ontology to enable the refreshing of the container.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 29/105

A data container shall be created within a repository. A repository includes the ontology and

the data sets of the existing data containers. Repositories shall allow creating “public”

containers and “private” containers, e.g., for specific flights. These repositories shall be

considered during the data container search. The implementation only includes one repository,

which acts as public repository. However, the possibility to select another repository shall be

given.

 Refresh: The refreshing of containers shall only be implemented as a manual task. The

automatic refreshing, however, shall be considered as well. Furthermore, different variants of

refreshing shall be analyzed, such as the decentral/central or the push/pull refresh process.

The basic steps of the refresh process can be summarized as follows: When a refresh is

initiated the administrative data of the container and its data source container must be

checked, whether there has been a refresh of the data source and whether the data source

contains new data. If a refresh is needed, then the new data items must be filtered with the

service and the parameters of the container and the data container with its metadata shall be

updated.

3.3 Requirements

The task description of Section 3.1 is used to specify the requirements. These requirements are

first grouped according to which of the three subsystems (Container Description Service,

Container Ontology, and Container Management Application) they belong. A second grouping is

done according to the part or functionality of the subsystem they describe.

1 Container Ontology

1.1 Container

1.1.1 A data container must be represented by a class and an individual, which have

the same IRI (punning).

1.1.2 It must be possible to assign descriptive and administrative metadata to a data

container over facets.

1.1.3 It must be possible to create a subsumption hierarchy of the existing data

containers by utilizing their semantic labels.

1.2 Descriptive Metadata

1.2.1 A single feature of the content of a container is represented by a concept in the

corresponding facet.

1.2.2 The different types of descriptive metadata must be assigned to facets.

1.2.3 A data containers’ descriptive metadata must be described by the combination

of one concept of each facet.

1.2.4 The concepts of the facets must be organized hierarchically to enable

subsumption reasoning. Some hierarchies must be specified explicitly whereas;

other hierarchies shall be derived through the characteristics of a facet, e.g., the

start and end of a time period.

1.3 Administrative Metadata

1.3.1 The administrative metadata of the data container must be assigned to the data

container.

1.3.2 For secondary data containers, the data source container must be referenced.

1.3.3 Each data container needs to have several timestamps assigned to enable the

comparison of their quality.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 30/105

2 Container Management Application

2.1 View container

2.1.1 The application must enable the user to see a list of all containers in an ontology.

2.1.2 The list of containers must show the descriptive metadata.

2.1.3 The application must enable to view the details of a specific container, which

includes its descriptive and administrative metadata.

2.2 Create container

2.2.1 The application must enable the user to create new containers.

2.2.2 The user must be able to specify the descriptive metadata using concepts for

the facets.

2.2.3 The user must be able to define parts of the administrative metadata, i.e., data

format, data encoding, refresh interval, and refresh until timestamp.

2.2.4 For the creation, the user must be able to decide if a primary or secondary

container should be created.

2.2.5 For primary containers, the user must be able to upload the data items for the

new container.

2.2.6 For secondary containers, the user must be able to select the superset data

container to be used.

2.2.7 The user must be able to decide which service shall be used for filtering the data

items of the superset data container.

2.2.8 The user must be able to define whether a public or a private repository should

be used.

2.3 Modify container

2.3.1 The user must be able to modify the refresh interval and the refresh until

timestamp.

2.4 Delete container

2.4.1 The user must be able to delete containers of an ontology.

2.4.2 The application should inform the user that containers may serve as data source

for other containers.

2.5 Refresh container

2.5.1 The application must enable the user to initiate a refresh for a container.

2.5.2 For secondary data containers, the refresh shall only be started when it is

needed. This means that the refresh until timestamp is not reached yet and the

data source container contains new data items.

2.5.3 When refreshing a primary data container, the user must be able to upload the

file with the current data items for this data container.

3 Container Description Service

3.1 Service for selecting a concept for one specific facet

3.1.1 This service has a facet IRI as input parameter and returns a list of concept IRIs.

3.1.2 This service must return all possible concepts for the given facet.

3.2 Service for the mapping between concepts and interest representations

3.2.1 This service has the ontology IRI and a concept IRI as input parameter.

3.2.2 This service must return the interest representation for the given concept in the

given ontology.

3.3 Service for finding the most specific superset

3.3.1 This service has an interest specification as input parameter and returns a

feature collection with DNOTAMs.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 31/105

3.3.2 The interests in the interest specification must be mapped to its corresponding

concepts.

3.3.3 For the given interest specification, a data container must be created, described

by concepts in the facets.

3.3.4 This service must find the most specific superset in the main ontology and return

its feature collection.

3.3.5 If multiple most specific supersets are available, the administrative metadata

shall be considered for the decision which data container to use.

The further sections, especially the approach and the implementation, reference these

requirements when describing the corresponding parts of the applications.

3.4 Challenges and Problems

Requirement 2.2.8 defines the possibility to create data containers in private or public repositories.

However, when a user has a specific information need and wants to retrieve the relevant

DNOTAMS, which is a functionality provided by the SemNOTAM Briefing Application, the data

container is always created in his/her private repository. The challenge for creating the link to the

identified superset data container is, that at first, the superset data container shall be searched in

the corresponding private repository. Only if no suitable data container can be found, the public

repository is searched for a superset data container. In the implementation of this thesis only one

repository is defined which acts as a public repository and the application always searches the

superset in this repository. Therefore, the differentiation between private and public repositories

is not considered in the implementation.

Another challenge concerning the connection between data containers and their superset data

containers is the type of implementation that can be used. The automatic refreshing of data

containers can either follow a decentralized or centralized approach.

The decentralized approach can be realized either with the push or the pull principle. Figure 3.1

shows the two possibilities for the decentralized refresh strategy, where the data container

DNOTAM_EUR is the superset data container of the data container DNOTAM_AT1.

Figure 3.1: Decentralized refresh strategy – Pull vs. Push

When using the pull principle, as depicted in the left part of Figure 3.1, the secondary data

container requests new data items of its superset data container. The secondary data container

stores the information of when (refresh interval) to request data of which data container (data

source) over which service (data service).

April 21, 2021 Brigitte Andorfer-Plainer, BSc 32/105

On the other side, when using the push principle, the data source data container, i.e., the data

container DNOTAM_EUR, needs to store this information of all the data containers for which it

acts as data source, in Figure 3.1, two data containers are indicated. The data container

DNOTAM_EUR stores for each dependent data container when (refresh interval) to forward new

data, according to the data container’s interest specification.

The last refreshment possibility is the centralized approach where a central administration

manages all the data source dependencies. For the above example with two data containers, this

approach is depicted in Figure 3.2.

Figure 3.2: Centralized refresh strategy

The central administration stores the refreshment information for each secondary data container,

respectively its data source, refresh interval and interest specification. As shown in Figure 3.2, the

central administration performs a pull of new data items according to the interest specification of

a specific data container and forwards the data items to this data container. Using this approach,

a single point of truth is created, that has all the information about the freshness of all data

containers and their refresh cycles.

However, as the automatic refreshing of data containers is not part of the implementation of this

thesis, there is no decision for one of these strategies. To enable the manual refreshing of data

containers, each secondary data container stores the data source, refresh interval and interest

specification, and the manual refresh is implemented using the pull principle.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 33/105

4 Design

In this section, the design process, including the basic approach, the underlying data model, and

the architecture is detailed. The approach comprises the whole system, which consists of the

components Container Ontology, Container Management Application, and Container Description

Service. The data model gives an overview of the relationships between data of the different

subsystems, and finally, the application architecture of the client and the server is detailed.

4.1 Approach

Three main components have to be developed, performing the task, and fulfilling the requirements

identified in Section 3. First, the overall approach, the relationships, and the communication

between the components, including the existing applications, are described. Section 4.1.1 details

the approach of creating a suitable ontology for the definition of data containers along with the

modeling of their relationships and dependencies. Section 4.1.2 describes the organization of the

Container Management Application, comprising the design and functionality that should be

provided. Finally, Section 4.1.3 presents the approach for the Container Description Service,

which provides the task-based retrieval service and therefore, enables the integration with the

SemNOTAM Briefing Application.

The overall task is divided with regard to the three introduced components Container Ontology,

Container Management Application, and Container Description Service, as shown in Figure 4.1.

At the bottom of Figure 4.1, the existing applications to be integrated are depicted. Above them

the three components, that have to be implemented as part of this thesis are depicted, comprising

the repository, including the Container Ontology and its data items, the Container Description

Service and the Container Management Application. The Container Management Application and

the Container Description Service both directly communicate with the Container Ontology (green

uses-relationship). The Container Description Service is used by the Container Management

Application as well as the existing applications, the SemNOTAM Web Service and the

SemNOTAM Briefing Application (red uses-relationship). The SemNOTAM Web Service provides

methods for evaluating an interest specification and a corresponding set of DNOTAMs for the

Container Management Application and the SemNOTAM Briefing Application (blue uses-

relationship).

April 21, 2021 Brigitte Andorfer-Plainer, BSc 34/105

Figure 4.1: Overview of Application Functionality

The communication with the Container Ontology is directly implemented using the OWL

Application Programming Interface (OWL API), which is detailed in the implementation part of this

thesis (Section 5). The red and blue relationships are detailed as follows: There are seven

relationships at all (five red relationships and two blue relationships) between the Container

Management Application, the Container Description Service, the SemNOTAM Briefing

Application, and the SemNOTAM Web Service. The two services for selecting a specific concept

and for receiving the interest representation for the concepts of the Container Description Service

are used by the Container Management Application and the SemNOTAM Briefing Application,

therefore, this communication pattern is only described once as it works the same for each of

those applications. This means that the following five different communication patterns shown in

Figure 4.2 exist.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 35/105

Figure 4.2: Communication patterns between the systems

A communication pattern always consists of a request and a response between two systems. In

Figure 4.2, the continuous arrows represent the requests, and the dashed arrows represent the

corresponding responses. The different communication patterns are numbered in Figure 4.2,

where communication pattern 1 and 2 occur between various components. As depicted, the

communication between the Container Management Application and the Container Description

Service follows the same communication pattern, i.e., the same sequence of request and

response as the communication between the SemNOTAM Briefing Application and the Container

Description Service (communication pattern 1 and 2 in Figure 4.2). This yields the following five

communication patterns:

1. The first communication pattern is the call of the Container Description Service for

receiving all possible concepts for one specific facet. Users of the Container Management

Application invoke this service during the creation of a new data container, whereas users

of the SemNOTAM Briefing Application invoke this service during the definition of their

information need. The calling application, either the Container Management Application or

the SemNOTAM Briefing Application, provides one specific facet in OWL representation

as input and receives a list of the IRIs all possible concepts for this facet of the Container

Description Service.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 36/105

2. The Container Description Service further provides the functionality to transform a specific

concept into its corresponding interest representation. This is used by the Container

Management Application as well as the SemNOTAM Briefing Application. The Container

Management Application or the SemNOTAM Briefing Application send the OWL

representation of one concept to the Container Description Service, which returns the

corresponding XML interest representation. Both applications need those interest

representations to build their interest specification, which is in turn needed by the

SemNOTAM Web Service to filter DNOTAMs.

3. The third communication pattern shows the use of the SemNOTAM Web Service by the

Container Management Application for filtering DNOTAMs. The Container Management

Application passes the interest specification and the DNOTAMs that shall be filtered as

XML documents to the service. The SemNOTAM Web Service filters the set of DNOTAMs

according to the interest specification and returns a new XML document including the set

of relevant DNOTAMs. This service is invoked by the Container Management Application

to receive the relevant DNOTAMs for a specific secondary data container.

4. The filtering service of the SemNOTAM Web Service is used by the SemNOTAM Briefing

Application. The SemNOTAM Web Service filters a set of DNOTAMs (the selection of the

set of DNOTAMs that is used for filtering is described in communication pattern 5) and

returns the evaluated interest specification to the SemNOTAM Briefing Application. The

SemNOTAM Briefing Application, therefore, forwards the created interest specification in

XML format to the SemNOTAM Web Service and receives an evaluated interest

specification in XML format containing all relevant DNOTAMs. An evaluated interest

specification includes all the information of the provided interest specification, such as the

geometric points of the flight route, and additionally all relevant and annotated DNOTAMs.

5. The last communication pattern described here regards the communication between the

SemNOTAM Web Service and the Container Description Service. As described before,

the SemNOTAM Web Service requires to find the most specific superset for the information

need, i.e., XML interest specification, provided by the SemNOTAM Briefing Application.

Therefore, the Container Description Service is invoked by the SemNOTAM Web Service

by passing the XML interest specification. The Container Description Service isolates

several parts of the interest specification to map them back to corresponding OWL

concepts, to define a temporary data container. These parts are contained in the general

interest specification and consist of interest representations of the previously selected

OWL concepts. By using a reasoner, the most specific superset of the existing data

containers is chosen, and its corresponding set of DNOTAMs in XML format is sent back

to the SemNOTAM Web Service. This set contains all relevant DNOTAMs for the user’s

task. The temporary data container is deleted from the ontology afterwards, as this

container is only used for the specific information need and no administrative metadata

exits.

4.1.1 Container Ontology

As defined in the task description (Section 3.2), a vocabulary is required to provide concepts

during the description of data containers. Each concept thereby represents specific characteristics

which can be assigned to corresponding data containers. Each data container, however,

represents a concept in that ontology. This allows to utilize reasoning capabilities of ontologies to

derive hierarchies between the data containers. This is essential for the identification of the most

specific superset for the Container Management Application as well as the retrieval of relevant

April 21, 2021 Brigitte Andorfer-Plainer, BSc 37/105

DNOTAMs based on a task description provided by the SemNOTAM Briefing Application.

Typically, knowledge-based systems are built incrementally as not all the requirements can be

specified at the beginning, and therefore, an iterative implementation with the use of prototypes is

needed [43]. For ontologies, this methodology cannot be applied, as the ontology shall be

shareable. Fernández et al. [43] defined a method of how to build ontologies, called the

Methontology. It is based on the experience from modeling an ontology of chemicals and consists

of the following seven phases:

1. Specification: In the first phase, a document that specifies the purpose of the ontology

should be written in natural language. The level of formality and the scope shall be

included, which means the set of terms, the characteristics, and the granularity that will be

represented by the ontology.

2. Knowledge Acquisition: Most of the knowledge acquisition is already done in the

specification phase. However, the purpose of the ontology has to be clearly defined

throughout this phase. Knowledge Acquisition is usually performed by brainstorming and

conducting interviews. The aim of this phase, on the one hand, is to understand what the

purpose of the ontology is and on the other hand, gather knowledge about what shall be

included in the ontology.

3. Conceptualization: This phase includes the creation of the conceptual model, which

corresponds to the definition of the Glossary of Terms. This comprises of the definition and

grouping of the needed classes, instances, verbs, and properties. Furthermore, these

concepts need to be set into relation to each other to define the modeling possibilities that

are needed by the ontology.

4. Integration: In this phase, existing ontologies shall be reviewed. Existing ontologies

should be reused only if the concepts are coherent with the identified concepts during the

conceptualization phase.

5. Implementation: For implementing the ontology, an ontology environment shall be

chosen, which meets the already defined requirements.

6. Evaluation: After completing the ontology implementation, the whole ontology needs to

be evaluated, to ensure the ontology is correct, and the goal is reached. Depending on

whether any concepts are missing or not clearly defined, or the overall task cannot be

fulfilled by the current state of the ontology, the process needs another cycle of the

previous phases.

7. Documentation: The last phase in the Methontology consists of the documentation of the

ontology. The documentation should rather be an ongoing process during the whole

development.

For the development of the ontology in this thesis, not all the phases are relevant, as, for example,

the ontology shall be developed independently and therefore, no existing ontologies shall be used.

Furthermore, apart from annotations directly defined for the concept in the ontology, there will be

no additional documentation as the ontology as well as its usage are described in this thesis. The

specification of the purpose is documented in the task description (Section 3.2.2), which already

required knowledge acquisition. The third phase is partly covered in the following subsections,

where the main structure of the ontology is described. The next three sections describe the

approach followed to build the ontology including the concept of data containers and their

metadata. The implementation of the concepts is detailed in Section 5.2, which covers the whole

implementation phase, including facets, data containers, and the discovery of subsumption

hierarchies through reasoning.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 38/105

4.1.1.1 Data Container

The main concept in the ontology is the data container, which represents a set of DNOTAMs, that

are characterized by multiple facets. As subsumption hierarchies between data containers have

to be derived by a reasoner (Requirement 1.1.3), the data containers need to be modeled as

classes (Requirement 1.1.1). Some information, however, shall not influence the reasoning, e.g.,

administrative metadata such as the size of data items contained in the data container or the

refresh interval. Therefore, data containers need to be modeled as individuals additionally to allow

the assignment of the administrative metadata (Requirement 1.1.1). The definition of one concept

as class and individual with the same IRI is called punning [44]. This clearly indicates that both,

the class and the individual, represent the same concept. A data container consists of descriptive

metadata, which describes the data items contained by the data container and administrative

metadata, which, amongst others, describes the quality of the data container. The connection

between the data container and its descriptive and administrative metadata is modeled either by

using object properties or data properties (Requirement 1.1.2).

4.1.1.2 Descriptive Metadata

Descriptive metadata describes the content of the data containers, i.e., the data items. The

concepts are defined as classes (Requirement 1.2.1) and are modeled as subconcepts of so-

called facets, that are classes themselves (Requirement 1.2.2). A facet is, for example, the

temporal restriction of the data container and a corresponding descriptive metadata concept would

be the Year_2017. Either, the concepts in the facets are explicitly hierarchized, or the reasoner

can infer the hierarchy based on the description of the concepts (Requirement 1.2.4). The facet

for describing the spatial or temporal filter level needs to be specified explicitly since there is no

property for inferring these hierarchies. For example, it needs to be explicitly defined that the

spatial filter level Shape is more precise than the filter based on the BoundingBox, which

corresponds to a rectangle from the top left point to the bottom right point. The inferring of such a

hierarchy is enabled through descriptions of the concepts via data properties, e.g., the wingspan

or weight of an airplane. A data container needs to be described by always one concept of each

facet (Requirement 1.2.3). To assign the descriptive metadata concepts to a data container, object

properties are needed.

4.1.1.3 Administrative Metadata

In addition to the descriptive metadata, each data container is characterized by administrative

metadata. Since administrative metadata is not used for reasoning, it needs to be assigned to the

corresponding data container individuals. For assigning the administrative metadata, data

properties are used (Requirement 1.3.1), except for the data source, which requires an object

property referencing the data container concept that is used as superset (Requirement 1.3.2). The

administrative metadata comprises, amongst others, several timestamps that enable to conclude

the freshness of the data (Requirement 1.3.3). These timestamps, furthermore, allow to make

decisions for the most specific superset, as they also define the quality of the data set. For

example, let us assume we are looking for relevant DNOTAMs for a flight from Linz to Salzburg

on the 31st of January 2017 and two data containers exist. The first one contains all DNOTAMs of

Austria in January 2017, whereas the second data container contains all DNOTAMs of Upper

Austria and Salzburg in the year 2017. Simply by using the subsumption reasoning of the spatial

and temporal restrictions, it is not clear which data container shall be used. The reasoner would

return both data containers as direct supersets as none of them is the superset of the other. Let

us further assume that the first data container has last been updated on January the first and the

second data container has been updated each day. Considering these timestamps, the second

April 21, 2021 Brigitte Andorfer-Plainer, BSc 39/105

data container shall be used as the first one is not as fresh as the second and therefore might

miss relevant DNOTAMs.

The conceptualization of the needed classes, individuals, object properties, and data properties is

done in Section 5.2, as well as the implementation and evaluation phase. As described before,

the integration phase of the Methontology is not in the scope of this thesis.

4.1.2 Container Management Application

The Container Management Application will be developed as a web application. To simplify the

development of web applications, it is recommended to follow design patterns [45]. Design

patterns are abstract templates that can be applied for several problems, especially the

communication of the application parts. The most common design pattern for web applications is

the Model-View-Controller (MVC) pattern, which distinguishes the three different component

classes, the model, which stores and manages the data, the view, which creates the graphical

interface, and the controller, which comprises the business logic [46].

The Java framework Vaadin [47], used for the SemNOTAM Briefing Application, allows to develop

a web application similar to a desktop application. To avoid the introduction of new design

paradigms and to foster reuse of the design, the Vaadin framework is also used for the

implementation of the Container Management Application. It is typical for applications created in

the Vaadin framework to use a similar design pattern as the MVC pattern, the so-called Model-

View-Presenter (MVP) [48]. The third component, the presenter, is responsible for presenting the

view throughout an interface and connecting it with the data provided by the model. This means

that the model is only for the data perspective, and the view is only responsible for the visualization

independent of the data. The presenter is the connection between the model and the view to

present the model’s data in the view’s interface. There is no direct communication between the

model and the view anymore. However, the Container Management Application has a higher focus

on the business logic, and therefore, the original MVC design pattern is used. The concrete

organization of those three components and its implementation is described in more detail in

Section 5.3.

4.1.3 Container Description Service

The Container Description Service is designed as a web service which provides three different

functions. The Container Description Service needs to enable the access to the concepts of a

facet, to their interest representation and must be able to find the most specific superset for the

given information need. The decision for the most specific superset is primarily based on the

subsumption hierarchy, and secondarily based on the administrative metadata. Therefore, the

Container Description Service needs to have access to the Container Ontology and should act as

a middleware between the Container Management Application or the SemNOTAM Briefing

Application and the Container Ontology.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 40/105

4.2 Architecture

This section introduces the architecture of the client application represented by the Container

Management Application, and the server application, which consists of the Container Description

Service and the SemNOTAM Web Service. The visualization of the architecture is based on the

modeling language ArchiMate [49], which was specified by the Open Group for modeling

enterprise architectures. In this section, parts of the whole architecture model, especially the most

detailed ones, are shown and described, while a general view of the complete model is provided

in the Appendix.

4.2.1 ArchiMate

The Open Group specified the modeling language ArchiMate to enable users to model complex

structures of enterprise architectures [50]. Therefore, ArchiMate separates the model into different

layers, the business layer, the application layer, and the technology layer [51].

1. The business layer contains the business services that are provided to customers. The

customers only know which services are available but do not know the underlying business

processes and functions.

2. The application layer describes the different applications that are used to fulfill the business

processes.

3. In the technology layer, the services for storing and processing information are depicted.

Additionally, the communication and system software that is needed to realize the

application are modeled.

Figure 4.3 shows the connection between those three layers, where the yellow elements represent

the business layer, the blue elements represent the application layer, and the green elements

belong to the technology layer.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 41/105

Figure 4.3: Service-oriented structure in ArchiMate [51]

Figure 4.3 exemplary shows that each layer consists of a service and a function. The function

realizes the service of the same layer, whereas, a function at the next higher layer can use a

service of an underlying layer, i.e., the used service serves this function [51]. For example, the

Technology Function realizes the functionality offered by the Technology Service, and the

Application Function can use this service. The Business Function can only access services of the

application layer, but not of the technology layer.

The main elements of ArchiMate are services, functions, and processes [52]. As described above,

typically functions or processes realize a service that either is provided to the customer, which is

the user of the application or serve the functions or processes in the next layer [51]. Processes in

ArchiMate represent a collection or a sequence of functions depending on if the functions in the

process are linked with process flow or not. Figure 4.4 shows the symbols of those three elements

that are used in ArchiMate.

Figure 4.4: ArchiMate Elements – Service, Function, Process [52]

The color of the element represents the corresponding layer, which is, in this case, the business

layer. In the following sections, other elements are introduced when they are used in the

architecture model.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 42/105

4.2.2 Client-Application

The Container Management Application is the client application that is implemented as part of this

thesis. It enables the management of data containers in the SWIM environment. The next sections

show its architecture divided into the three parts, technology layer, application layer, and business

layer.

4.2.2.1 Technology Layer

The technology layer of the client application defines the technical set-up, and needs to model all

the services that are provided to the next layer, the application layer [51]. To describe the technical

set-up, five additional ArchiMate elements of the technology layer need to be introduced, which

are shown in Figure 4.5.

Figure 4.5: ArchiMate Elements – Device, System Software, Node, Artifact, Path [52]

The five elements in Figure 4.5 have the following meaning [52]:

 A device can represent any device, e.g., a personal computer.

 The system software can be used inside of a device, to show that the device has this software

installed.

 A node can be used for itself to represent any component that is not described in more detail.

Inside of a device, it can be used to depict that a server is running.

 Any file is represented by an artifact. By modeling some elements inside of the artifact, it

means that the artifact consists of them or uses them.

 The path element can be used for the description of any communication path between

elements in the technology layer.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 43/105

Figure 4.6 visualizes the technical infrastructure and provided services of the client application.

Apart from the newly introduced elements, also the services of the technology layer that enable

the connection to the application layer are used.

Figure 4.6: Client Application – Part of the Technology Layer

In Figure 4.6, the Container Management Application is modeled as a WAR file artifact. This

artifact uses the OWL API for the communication with the Container Ontology and the Hypertext

Transfer Protocol (HTTP) to communicate with the SemNOTAM Web Application and the

SemNOTAM Briefing Application. This artifact is modeled inside of the Jetty Server node, which

represents that this WAR file is running on this server. The server node is modeled inside of the

device where it runs, and on this device, there is the system software Java running. Additional to

the technical set-up, Figure 4.6 also shows which services are realized by the Container

Management Application. All the provided services serve an element in the application layer,

which is described in the next section.

4.2.2.2 Application Layer

In the application layer, all applications that are needed for the business purpose are modeled. In

some cases, only the connection between the technology layer and the business layer needs to

be enabled with a corresponding function and service. In other cases, the application layer may

contain some logic or processes that are not visible for the user and therefore, shall be modeled

in this layer. For the application layer, one additional element needs to be introduced, shown in

Figure 4.7.

Figure 4.7: ArchiMate Elements – Application Component [52]

April 21, 2021 Brigitte Andorfer-Plainer, BSc 44/105

This element represents a component of the overall application or can also represent the whole

application. As already described in Section 4.2.1, a service of the technology layer can serve a

function or process in the application layer. However, to simplify the model, the services can be

merged into one application component, and then the component is connected to the functions

and processes [52]. A part of the application layer for the Container Management Application is

depicted in Figure 4.8.

Figure 4.8: Client Application – Part of the Application Layer

In the bottom of Figure 4.8, the Container Management is modeled as an application component

to merge all the services of the technology layer. This component is then used by all the functions

or processes. The simplest part of the application layer are those services that are passed from

the technology layer to the business layer by adding an application function and an application

service. For the saving of a data set, this is shown in Figure 4.8. For modifying or deleting a

container and loading the container descriptions this works the same, and therefore, it is not shown

separately. The more complex parts, such as refreshing and creating a container as well as finding

the superset, are modeled as processes. In the Refresh Container Process, firstly it needs to be

checked if there are modifications of the data set of the data source. Afterwards, a service needs

to be called, and finally, the container needs to be refreshed. The Container Creation Process

consists of two functions, first creating the container description and second saving the

corresponding interest specification. In the Find Supersets Process first the subsumption

reasoning is performed and then the container descriptions of the superset data containers are

loaded. Each of these processes are realized by a corresponding service, that again enables the

connection to the business layer.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 45/105

4.2.2.3 Business Layer

The business layer is used to model the business logic of the whole application. For the business

layer, two new elements need to be introduced as this layer also describes the user of the

application, shown in Figure 4.9.

Figure 4.9: ArchiMate Elements – Business Actor, Business Role [52]

The business actor describes a person or an organization that somehow interacts with the system,

and the business role is used to describe the role a business actor can have [52]. One business

actor can have several roles, depending on which services the actor uses. As this layer contains

the whole business logic, only a part of it is shown in Figure 4.10.

Figure 4.10: Client Application – Part of the Business Layer

In the middle top of Figure 4.10, the user of the application is modeled as a business actor. Two

roles are connected to this user, the business role producer, and the business role consumer. For

the Container Management Application, only the producer is relevant, but as this ArchiMate model

also contains the architecture of the SemNOTAM Briefing Application (see Figure 4.11), and one

user can be a producer and a consumer, the consumer role is also modeled. The Container

Management is modeled as a service that consists of all the other services below, e.g., the

container creation service. As the container creation service is the most complex one, Figure 4.10

only shows this part of the business layer. Services in ArchiMate can be modeled as

specializations of another service; for example, the service Create Secondary Container is a

specialization of the service Create Container. The process Container Creation Process depicts

the whole creation process, whereas the processes Primary Container Process and Secondary

Container Process show the specific process depending on which container shall be created.

ArchiMate allows to model triggers that are shown on arrows. After the function

April 21, 2021 Brigitte Andorfer-Plainer, BSc 46/105

createInterestSpecification depending on which container shall be created, different flows will be

taken. The functions inside of the processes are at the end connected to the corresponding

application service; for example, the function SelectSupersetAsDataSource uses the application

service findSupersets.

The relevant part of the business layer of the SemNOTAM Briefing Application, the part concerning

the evaluation of interest specifications, is shown in Figure 4.11. As mentioned before, the users

of this application act as a consumer in the SWIM environment.

Figure 4.11: Client Application – Part of the Business Layer (Briefing Application)

The evaluation process in Figure 4.11 shows that it is either possible to specify a new interest

specification or to load an existing interest specification. For the creation of a new interest

specification, the services of the Container Description Service for selecting a concept for each

facet is used. Furthermore, when the SemNOTAM Briefing Application forwards the interest

specification to the SemNOTAM Web Service, this service calls another service of the Container

Description Service to find the most specific superset in the existing data containers for the

evaluation of the given interest specification.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 47/105

4.2.3 Server-Application

This thesis also covers the implementation of the Container Description Service, which is one of

the server applications for the Container Management Application. The second server application

is the SemNOTAM Web Service, which is reused as it was already developed as part of the

SemNOTAM project and provides the functionality to filter and annotate DNOTAMs. The next

three sections show the architecture of these two services, again divided into the three parts,

technology layer, application layer, and business layer.

4.2.3.1 Technology Layer

The technology layer describes the technical set-up and infrastructure of the server applications.

This set-up and the provided services of the server applications are visualized in Figure 4.12.

Figure 4.12: Server Application – Part of the Technology Layer

Figure 4.12 shows that the SemNOTAM Web Service and the Container Description Service are

modeled as WAR file artifacts, that are running inside of a web server, in this case, a Tomcat web

server. As for the client application, the server is running on a device with the system software

Java. The Container Description Service artifact includes the OWL API, which is needed for the

communication with the Container Ontology. The technology services provided by the Container

Description Service are selectConceptForFacet, getInterestForConcept and

getMostSpecificSuperSet, and the SemNOTAM Web Service has one relevant service, the

evaluateInterestSpecification. The services are then referenced by the application layer, which is

described in the next section.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 48/105

4.2.3.2 Application Layer

The application layer is used to model all the applications that are needed for the business

purpose. Therefore, again, application services and processes are modeled in this layer.

Sometimes only a function and a service are modeled to enable the connection of the technology

layer and the business layer. In Figure 4.13, the application layer for the Container Description

Service is modeled like this, as the exact implementation of these services is not relevant in the

architecture model.

Figure 4.13: Server Application – Part of the Application Layer

The right side of Figure 4.13 shows the application layer of the SemNOTAM Web Service, which

in contrast to the Container Description Service has a process defined. On the technology layer,

only one service for evaluating an interest specification was modeled, but on the application layer,

we need to distinguish between the two services evaluateInterestSpecification and

evaluateInterestSpecificationWithNotams. When the set of DNOTAMs for filtering is given by the

business layer, the service evaluateInterestSpecificationWithNotams is used, and the interest

specification can be directly evaluated. Whereas, when no set of DNOTAMs is given, the

evaluation process starts with finding the most specific superset, which is modeled in Figure 4.13

with the function getMostSpecificSuperset. This function directly refers to the service

getMostSpecificSuperSet of the Container Description Service.

4.2.3.3 Business Layer

For the server applications, it is not useful to have a business layer as they are not supposed to

be directly accessed by a user. The provided application services are used by the business

functions of the client application, which can be seen in the Appendix.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 49/105

5 Implementation

The implementation of the defined requirements (Section 3.3) and the resulting architecture

(Section 4.2) is described in this section. First, an overview of the technologies, which are used

for the ontology, the client application, and the server application, is given. Section 5.2 covers the

implementation of the Container Ontology. The Container Management Application, which is the

client application, is described in Section 5.3. The last section, Section 5.4, documents the

implementation of the server application, respectively the Container Description Service.

5.1 Technologies

This section gives an overview of the technologies that are used for the implementation. The Web

Ontology Language (Section 5.1.1) is used for the realization of the Container Ontology and the

tool Protégé (Section 5.1.2) is used for its creation and administration. For the Container

Management Application and the Container Description Service, the programming language Java

is used (Section 5.1.3). Furthermore, the Container Management Application uses the framework

Vaadin (Section 5.1.4), whereas the Container Description Service uses the web service

framework Apache CXF (Section 5.1.5).

5.1.1 OWL

The Web Ontology Language (OWL) is a language to describe ontologies and was specified by

the World Wide Web Consortium (W3C) [53]. Technically, OWL is based on the Resource

Description Framework (RDF), which is one of the main components of the Semantic Web.

However, OWL has a wider range of language constructs and therefore allows to represent rich

and complex knowledge about things, groups of things, and relations between things.

For the implementation of the Container Ontology OWL is used to define classes, object

properties, data properties, and instances. As described in Section 4.1.1, the language constructs

are used in different ways, e.g., for the definition of facets and DNOTAM characteristics, as well

as for the definition of data containers. To guarantee an easy and comfortable way of managing

the ontology, different tools for the ontology definition exist, for example, Protégé.

5.1.2 Protégé

Protégé is the most widely used ontology editing environment in the world. It provides a Desktop

and a Web Client for the development of complex ontologies [54]. Furthermore, this tool includes

visualization tools, several plug-ins, and an Application Programming Interface (API) that allows

to access and alter an ontology from other systems.

As mentioned in Section 4.2, the Container Management Application and the Container

Description Service use this API to read from and write to the Container Ontology. In Section 5.2,

the interface of Protégé is described in more detail, where the development of the Container

Ontology is documented.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 50/105

5.1.3 Java

Java is one of the most popular programming languages that is used for the development of

applications and services [55]. It enables to provide applications over heterogenous systems;

hence, the communication and cooperation of the end users can be increased.

The existing systems, respectively SemNOTAM Web Service and SemNOTAM Briefing

Application, also use Java as a programming language. Since OWL provides a Java API to access

the ontology, the Container Management Application and the Container Description Service are

implemented with the programming language Java in version 8. For the implementation of the

Container Management Application, additionally, a framework for developing Java web

applications is used, which is described in the next section. The SemNOTAM Web Service and

the Container Description Service use CXF for the implementation of the services, which is

introduced in Section 5.1.5

5.1.4 Vaadin

Vaadin is a framework for the development of Java web applications, which allows to implement

powerful web applications without the need of knowledge of additional web technologies, like

Hypertext Markup Language (HTML) or JavaScript [56]. The advantage of the usage of Vaadin is

the simplicity and maintainability by having simple Java code, that is transformed into HTML and

JavaScript code during runtime [57]. This allows to develop a web application in the same way as

a desktop application, without worrying about web technologies. Furthermore, themes can be used

in Vaadin to have a similar styling of all the web pages in the application with no Cascading Style

Sheet (CSS) knowledge needed [58]. However, for additional style options, a custom CSS code

can be added to the theme. The SemNOTAM Briefing Application was also developed with the

Vaadin framework. To ensure a consistent look and feel, the same Vaadin framework and theme

is also used for the development of the Container Management Application.

5.1.5 Apache CXF/JAX-WS

Apache CXF is an open source services framework that helps to develop services with frontend

programming APIs [59]. One of these APIs is Java API for XML Web Services (JAX-WS), that

allows to develop web services with Java [60] easily. The calls and responses of the web services

are coded in XML and are communicated as Simple Object Access Protocol (SOAP) messages

over HTTP [61]. The development of the Container Description Service with these technologies is

described in Section 5.4.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 51/105

5.2 Container Ontology

The implementation of the ontology is divided into three parts. The first part (Section 5.2.1)

describes how the facets are represented in the ontology. This also includes modeling the

hierarchy between the concepts of the different facets. Afterwards, Section 5.2.2 covers the

realization of the data containers, which consists of their representation as classes and individuals,

and the definition of the descriptive and administrative metadata. Finally, data discovery is

explained in Section 5.2.3, which enables the creation of a hierarchy between data containers.

5.2.1 Facets

This section describes the created facets and their concepts, as well as the data properties that

are used to describe these concepts. As defined in Requirement 1.2.1 each feature of the

descriptive metadata of a data container shall be realized through concepts and facets. Therefore,

each facet and concept is modeled as OWL class, as shown in Figure 5.1.

Figure 5.1: Container Ontology – Facets

The main OWL classes DataContainer and Facet are used for the distinction between the data

containers and the facets that are used for the description of the data containers. Figure 5.1 shows

the full list of facets. The AircraftFacet is used to define for which type of aircraft the DNOTAMs of

a data container are relevant, for example, for aircraft of the type A380. The facets DataModel and

DataType describe the type of data items and the according data model. In this thesis data

containers are used for data items of the type DNOTAM and the data model AIXM, but the ontology

can also be used for other data items, for example, the Weather Information Exchange Models

and Schema (WXXM) that is used for meteorological information.

The spatial metadata of a data container can be defined by several facets. The SpatialFacet

describes the geographical shape defining the relevance of the data items, whereas the

SpatialFilterFacet defines the granularity of the spatial relevance. This facet has exactly three

concepts, SpatialNone, BoundingBox, and GmlShape. SpatialNone means that there is no

geographical filter applied to the data items of this data container. When BoundingBox is used, a

rectangle from the top left corner and the bottom right corner is used for filtering, whereas

GmlShape filters the data items based on the exact shape.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 52/105

For temporal information also two facets, one for the granularity and one for the temporal

relevance, exist. The TemporalIntervalFacet defines the interval during which the data items of

the data container are relevant. The TemporalFilterFacet again has three concepts, ActiveTime,

ValidTime, and TemporalNone. TemporalNone, similar to the spatial filter SpatialNone, means

that no temporal filter is applied to the data items. The difference between ValidTime and

ActiveTime is that each DNOTAM has a time period in which it is valid and can have a more

precise definition of when the DNOTAM is actually activated. For example, a DNOTAM concerning

a runway closure due to construction work can be valid for several weeks, which would be used

for the filtering based on ValidTime. But let us assume that the construction work is done each

week from Monday to Wednesday, which means that from Thursday to Sunday this DNOTAM is

not active and therefore not relevant for flights on these days. This can be filtered by the use of

the ActiveTime concept. The spatial and temporal relevance can also be specified with the

SpatialTemporal4DFacet instead of the SpatialFacet and the TemporalIntervalFacet. Concepts of

this facet contain both temporal and spatial information about the relevance of the data items.

Furthermore, this facet allows to specify a third spatial dimension, the flight height. The last facet

is the SpecificInterest, which can contain a whole flight plan or some other specific information.

This facet is primarily used for data containers that are built for specific tasks, e.g., specific flights,

or broadly specified flight plans which can be used for several flights.

Requirement 1.2.2 states that each concept has to be classified by one of the described facets.

Therefore, the concepts that belong to one facet are modeled as direct or indirect subconcepts of

this facet. A direct subconcept is modeled as a concept one hierarchy level after the facet itself,

whereas an indirect subconcept is a subconcept of another concept that can again be a direct or

an indirect subconcept of the facet. Furthermore, the concepts in one facet can be organized

hierarchically to allow subsumption between the data containers (Requirement 1.2.4). The

hierarchical structure can either be modeled explicitly by the definition of subconcepts, as shown

in Figure 5.2, or can be described through data properties used in equivalent axioms, like in

Figure 5.3 and Figure 5.4.

Figure 5.2: Container Ontology – Subconcepts

The left part of Figure 5.2 shows the direct definition of a concept to be the subconcept, i.e., the

subclass of the facet it belongs to, in this case, that the TemporalNone concept is a subconcept

of the facet TemporalFilterFacet. The right side shows the explicit definition of the hierarchy

between the concepts in one facet. As described before, the concept ValidTime is more precise

than the concept TemporalNone and therefore, is modeled as subconcept. The hierarchy view

shows that ValidTime consequently is also a subconcept of the TemporalFilterFacet.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 53/105

Figure 5.3: Container Ontology – Year2017

Concepts of facets can also be described with data properties to specify the characteristics of the

belonging data items. In the “Equivalent To” section of Figure 5.3, the concept Year2017 is

described with the data properties hasStartDate and hasEndDate, to define the corresponding

time interval, in this case from the first January in 2017 to the first January in 2018. For these data

properties, the data type dateTime was specified, which requires to set a dateTime when using

them. As described in Section 2.1.5, the descriptions of a concept can be used by the reasoner to

infer further knowledge, whereas the annotated interest representation is only used for building

the whole interest specification. In Figure 5.4, another concept of the facet TemporalIntervalFacet

is shown, which is also described with the data properties hasStartDate and hasEndDate.

Figure 5.4: Container Ontology – January2017

April 21, 2021 Brigitte Andorfer-Plainer, BSc 54/105

The concept January2017 has no explicit definition as a subclass of the concept Year2017.

However, Figure 5.4 shows that the time interval for this concept is defined from the first January

in 2017 to the first February in 2017. As this time interval is part of the time interval defined by the

concept Year2017, the reasoner will infer that January2017 is a subconcept of Year2017.

Figure 5.5: Container Ontology – Data properties for concept description

The list of data properties for the description of concepts is shown in Figure 5.5. The above

example already showed the data properties hasEndDate and hasStartDate, for the description of

time intervals. Figure 5.5 also shows the data properties hasLatitude and hasLongitude for

describing spatial information and the data properties hasWeight and hasWingspan for the

description of aircraft. These data properties are needed, as the AircraftFacet can contain not only

concepts of specific aircraft types, but also more wide concepts concerning the size or weight of

an aircraft. This can be relevant for the filtering of DNOTAMs concerning a closed runway for

aircraft with a higher wingspan than 100 feet.

As mentioned before, facets are used to describe the content of data containers. A data container

has one characteristic for each facet (Requirement 1.2.3). The realization of data containers in the

Container Ontology and their description with concepts of each facet are described in the next

section.

5.2.2 Data Container

A data container in the Container Ontology is represented as a class and as an individual using

the so-called punning [44]. This means that the class and the individual can be referenced with

exactly the same IRI (Requirement 1.1.1). The descriptive metadata, that is represented by

concepts of the specific facets can be assigned to the data container class with object properties,

whereas, administrative metadata is assigned to the individuals with object properties or data

properties (Requirement 1.1.2). The possible object properties and data properties concerning

descriptive or administrative metadata are shown in Figure 5.6.

Figure 5.6: Container Ontology – Object Properties, Data Properties

April 21, 2021 Brigitte Andorfer-Plainer, BSc 55/105

Except of the object property dataSource, which is part of the administrative metadata, all object

properties are used for the description of the data items contained in a data container. The

combination of these object properties is the descriptive metadata, i.e., semantic label, of the data

container that describes the data items contained in this data container (Requirement 1.2.3).

Facets that have no constraints directly refer to the facet itself, whereas restrictions refer to one

specific concept of the facet. The descriptive metadata has to specify a concept for each existing

facet to enable the complete subsumption reasoning. Listing 5.1 describes the semantic label of

the data container DNOTAM_AT_2017 that contains data items of Austria in the year 2017.

1 (hasAircraftFacet some AircraftFacet)

2 and (hasDataModel some AIXM)

3 and (hasDataType some NOTAM)

4 and (hasSpatialFacet some FirAustria)

5 and (hasSpatialFilterFacet some GmlShape)

6 and (hasSpatialTemporal4DFacet some SpatialTemporal4DFacet)

7 and (hasSpecificInterest some SpecificInterest)

8 and (hasTemporalFilterFacet some ActiveTime)

9 and (hasTemporalIntervalFacet some Year2017)

Listing 5.1: Data Container DNOTAM_AT_2017 – Semantic Label

The data container DNOTAM_AT_2017 has for example no constraint for the AircraftFacet, as

shown in Line 1 in Listing 5.1. The definition of the spatial constraint for Austria is shown in Line 4

in Listing 5.1. By using the semantic labels of each data container, a reasoner can infer a

subsumption hierarchy (Requirement 1.1.3). How the semantic label is used for the reasoning, is

further described in Section 5.2.3.

In contrast to descriptive metadata representing the semantic label, administrative metadata is

assigned to the individual by data properties or the object property dataSource

(Requirement 1.3.1). For secondary data containers the data container that acts as data source,

needs to be stored to enable the refreshing of the secondary data container (Requirement 1.3.2).

For example, the data container DNOTAM_AT_Jan2017 can use the data container

DNOTAM_AT_2017 as its data source and therefore, references the data container with the object

property dataSource. For enabling the refreshing of data containers, the two data properties

dataService and interestSpecification need to be defined for secondary data containers.

Other administrative metadata concerning primary as well as secondary data containers, such as

the data format or the data encoding, are stored as literals. Therefore, they are represented as

data properties in the Container Ontology. The relevant timestamps, that are needed to define the

freshness of the data container, are also implemented as data properties (Requirement 1.3.3).

Two examples of such timestamps are lastChange, which refers to the timestamp of the last added

data item, or lastCheck, which is the timestamp of when the last check for new data items was

performed.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 56/105

5.2.3 Discovery

As already mentioned before, the semantic labels are used to create a subsumption hierarchy

between the data containers (Requirement 1.1.3). The reasoner evaluates each part of the

semantic label and then combines the results to get the information about the subclass

relationships. The reasoner checks for each object property if the following concept is either the

same as for the other data container, or if it is defined or can be inferred as subconcept.

Additionally to the data container DNOTAM_AT_2017, where the semantic label is shown in

Listing 5.1, the data container DNOTAM_AT_Jan2017 is specified in Listing 5.2.

1 (hasAircraftFacet some AircraftFacet)

2 and (hasDataModel some AIXM)

3 and (hasDataType some NOTAM)

4 and (hasSpatialFacet some FirAustria)

5 and (hasSpatialFilterFacet some GmlShape)

6 and (hasSpatialTemporal4DFacet some SpatialTemporal4DFacet)

7 and (hasSpecificInterest some SpecificInterest)

8 and (hasTemporalFilterFacet some ActiveTime)

9 and (hasTemporalIntervalFacet some January2017)

Listing 5.2: Data Container DNOTAM_AT_Jan2017 – Semantic Label

In this example, only the concept for the object property hasTemporalIntervalFacet differs

(Listing 5.1, Line 9 and Listing 5.2, Line 9). As described in Section 5.2.1 the concepts Year2017

and January2017 are defined by start and end dates, which allow the reasoner to infer that

January2017 is a subconcept of Year2017. Hence, the semantic label of the data container

DNOTAM_AT_Jan2017 describes a part of the semantic label of the data container

DNOTAM_AT_2017, and therefore, the subsumption hierarchy between these two data containers

can be inferred. The result of the reasoner in Protégé is shown in Figure 5.7, which shows the

additional subclass relationship with the concept DNOTAM_AT_2017.

Figure 5.7: Data Container DNOTAM_AT_Jan2017 – Reasoning Result

April 21, 2021 Brigitte Andorfer-Plainer, BSc 57/105

5.3 Container Management Application

For managing the data containers, a web application that has access to the described Container

Ontology and that can use the SemNOTAM Web Service and the Container Description Service

is developed. As mentioned before, the Container Management Application is developed with the

use of the Java framework Vaadin. The Java project is set up as a Maven project, therefore, the

needed Vaadin dependencies are set in the corresponding pom.xml file. Furthermore, the

Container Management Application needs to have access to the Container Ontology and needs

to make use of a reasoner to receive the subsumption hierarchy. Therefore, also the OWL API

and the Hermit reasoner are referenced in the pom.xml file.

Five packages are used to structure the implementation of the Container Management Application:

 aero.aixm

 at.jku.dke

 com.frequentis.semnotam

 net.opengis

 org

The package at.jku.dke contains the source code written during this thesis, whereas the other

packages were provided for enabling the usage of the SemNOTAM Web Service and to make use

of the Java representations of interest specifications (task descriptions) and DNOTAMs. The

package at.jku.dke is again split in two packages where the package containerdescription.ws

contains the relevant classes for communicating with the Container Description Service, and the

package containerManagement contains the source code for the Container Management

Application. The structure of this package is shown in Figure 5.8.

Figure 5.8: Package Structure containerManagement

Source code that only provides supporting functionality, like the NameSpaceFilter,

XMLParserService, and XMLUnmarshaller, are put directly in the containerManagement package.

As already described in Section 4.1.2, the implementation uses the MVC design pattern, as shown

in Figure 5.8, with the packages model, view, and controller. These MVC packages contain

general functionality of the Container Management Application, such as the navigation in the

application, the communication with the ontology, or the hierarchical view of data containers.

Functionality that is developed for specific requirements, as the creation of data containers, is

capsulated in separate packages, i.e., containerCreation, containerDetails, and containerList. The

following paragraphs describe the MVC packages in more detail, whereas the functionality-specific

packages are described in more detail in Section 5.3.1, Section 5.3.2, and Section 5.3.3.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 58/105

Table 5.1 provides a short description of each class in the MVC packages. Furthermore, important

aspects of the source code that are either relevant for the whole application or are a special

programming type, are described afterwards.

MVC packages – containerManagement

Package/Class Description

model The model package contains all classes concerning the data

that is needed for the Container Management Application as

well as interfaces to other systems, like the Container

Ontology.

OntologyService The connection to the ontology via the OWL API is handled

in this class. Whenever information of the ontology is

requested or needs to be changed, methods of this class are

called. For example, receiving a list of all data containers,

creating a new data container, or editing an existing

container, is performed with methods of this class.

Container This class is used to represent a data container as a Java

object and to easily use the metadata of a data container

without the need of requesting the ontology for each

visualization.

view The view package contains classes for the visualization and

navigation of the Container Management Application.

Classes with visualizations that are reused in specific

functionalities are also located in this package.

HomeView The Container Management Application has a start view that

shows some information of how to work with the application

and where to find the information needed. This class mainly

contains HTML code.

NavigatorUI The navigation in the Container Management Application is

implemented in the NavigatorUI class, which extends the

user interface (UI) provided by Vaadin.

OntologySelectWindow The Container Management Application allows to switch

between ontologies. The window that pops up when

switching the ontology is designed in this class.

DataItemsUploadWindow For creating or refreshing a primary data container, a file

containing the data items has to be uploaded. The class

implements the functionality to upload such a file.

(Requirements 2.2.5, 2.5.3)

HierarchyView The subsumption hierarchy of data containers in the

ontology is represented as a tree in the Container

Management Application. The tree representation is also

provided by the Vaadin framework.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 59/105

controller The controller package contains only one class for the

general functionality of the application.

ManagementController The controller implements all the listeners for button clicks,

selections in the hierarchy view, and success and failure of

file uploads. Furthermore, this class builds the connection

between the model, the views and has a reference to the

specific controller classes, i.e. ListController,

DetailsController, and CreateController, which are described

in the following sections.

Table 5.1: MVC packages – containerManagement

The UI is the entry point for the application. When opening the application in the browser window

the init method of the class NavigatorUI is called. The source code of this method is shown in

Listing 5.3, where at first a new instance of the ManagementController is created (Line 2). The

constructor of the ManagementController establishes the connection to the default ontology and

initializes all other controllers.

1 protected void init(VaadinRequest vaadinRequest) {

2 controller = new ManagementController(this);

3 VerticalLayout layout = new VerticalLayout();

4

5 tabs = new TabSheet();

6 tabs.setSizeFull();

7 tabs.addTab(new HomeView(), "Home", VaadinIcons.HOME);

8 tabs.addTab(controller.getListView(),

 "List of containers", VaadinIcons.LINES);

9 tabs.addTab(controller.getCreateView(),

 "Create a new container", VaadinIcons.PLUS);

10 tabs.addTab(controller.getDetailsView(),

 "Container details", VaadinIcons.INFO);

11 tabs.addSelectedTabChangeListener(controller);

12

13 layout.addComponent(tabs);

14 layout.setMargin(new MarginInfo(true, true, false, true));

15

16 setContent(layout);

17 }

Listing 5.3: NavigatorUI – init

As shown in Listing 5.3, the remaining part of the init method only concerns visualization aspects,

where the TabSheet, a Vaadin specific UI component, is created and the tabs with corresponding

icons are defined. The functionality of each tab is implemented in the ManagementController, as

it is set as listener for the TabSheet in Line 11. The ManagementController checks to which tab

the user has changed and calls the according methods, for loading the list of data containers,

creating the view for creating new data containers, or showing the details page.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 60/105

As the class OntologyService implements the connection to the ontology, this class contains most

relevant source code. As already mentioned in Table 5.1, the data containers of the ontology are

also stored as Java objects to allow a faster processing and minimize the number of requests to

the ontology. Therefore, the class OntologyService contains the method loadContainer which

loads all data containers and stores them as Java objects in a HashMap. In Listing 5.4, the code

snippets of the loadContainer methods are shown. The loadContainer method without parameters

(Lines 1-9) is called for loading all data containers, whereas, the loadContainer method with the

OWLClass as parameter (Lines 11-18) creates and saves the Java object representation for a

specific data container.

1 private void loadContainer() {

2 OWLClass dataContainerClass =

 factory.getOWLClass(currentBaseIRI + "#DataContainer");

3 Stream<OWLClass> containers =

 reasoner.subClasses(dataContainerClass, false);

4 containers.forEach(c -> {

5 if (!"owl:Nothing".equals(c.toString())) {

6 loadContainer(c);

7 }

8 });

9 }

10

11 private void loadContainer(OWLClass c) {

12 Container container = new Container();

13 container.setName(c.getIRI().getShortForm());

14 loadDescriptiveMetadata(container, c);

15 OWLNamedIndividual individual =

 factory.getOWLNamedIndividual(c);

16 loadAdministrativeMetadata(container, individual);

17 saveContainer(container);

18 }

Listing 5.4: OntologyService – loadContainer

In Line 2 in Listing 5.4, the OWLClass DataContainer which is the superclass of all data containers

in the ontology is stored in the variable dataContainerClass. All subclasses of this class, i.e. all

data containers, are then stored as a stream for further processing (Line 3). The second parameter

of the subClasses method indicates that all subclasses shall be returned, independent of whether

they are direct or indirect subclasses. For each of this classes, except for the class owl:Nothing,

the second loadContainer method is called. In Line 12, the Java object for the data container is

created and in Line 14, its descriptive metadata is loaded from the ontology. For loading the

administrative metadata, which is stored for the individuals in the ontology, the same IRI can be

used to retrieve the OWLNamedIndividual. After the administrative metadata has been loaded,

the data container is saved to the HashMap.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 61/105

Another important functionality of the OntologyService class is loading the container hierarchy for

the hierarchical view. The visualization part of the hierarchy is implemented in the class

HierarchyView, whereas loading the data containers accordingly is implemented in the

OntologyService in the method loadContainerHierarchy shown in Listing 5.5.

1 public void loadContainerHierarchy(Tree hierarchy) {

2 OWLClass dataContainerClass =

 factory.getOWLClass(currentBaseIRI + "#DataContainer");

3 reasoner.subClasses(dataContainerClass, true).forEach(c -> {

4 if (!"owl:Nothing".equals(c.toString())) {

5 hasChildren = false;

6 long id = nextHierarchyId;

7 hierarchy.addItem(id);

8 hierarchy.setItemCaption(id, c.getIRI().getShortForm());

9 nextHierarchyId++;

10 reasoner.subClasses(c, true).forEach(sc -> {

11 if (!"owl:Nothing".equals(sc.toString())) {

12 addChildItem(hierarchy, id, sc);

13 hasChildren = true;

14 }

15 });

16 if (!hasChildren) {

17 hierarchy.setChildrenAllowed(id, false);

18 }

19 }

20 });

21 }

Listing 5.5: OntologyService – loadContainerHierarchy

The OWLClass for data container is retrieved and then each subclass, in this case only direct

subclasses, is processed, as shown in Line 3 in Listing 5.5. In Lines 7-8, the subclasses are added

to the hierarchy with an appropriate name. In Lines 10-15, the direct subclasses of the current

class are processed and for each subclass the method addChildItem is called, which is shown in

Listing 5.6. In Listing 5.5, Lines 16-18 are only needed to disable the expand arrow in the

visualization, when there are no further subclasses.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 62/105

The source code for the method addChildItem in Listing 5.6 is similar to the previous method. In

Lines 4-5, the subclass is added to the hierarchy, while in Line 6, the parent relationship to the

previously added item is set. By setting this relationship the tree is visualized correctly in the

application. The remaining code in Lines 8-13 again processes the next hierarchy level, by calling

the method addChildItem with the new parent and child classes. By recursively calling this method

the whole hierarchy tree is visualized, even if one data container is a direct subclass of several

data containers. Data containers that have several direct superclasses appear several times in

the hierarchy view. The differentiation between the used data source and the possible superset

data containers is shown later in Section 6.2, where the Container Management Application is

demonstrated.

1 private void addChildItem(Tree hierarchy, long parentId,

OWLClass child) {

2 hasChildren = false;

3 long id = nextHierarchyId;

4 hierarchy.addItem(id);

5 hierarchy.setItemCaption(id, child.getIRI().getShortForm());

6 hierarchy.setParent(id, parentId);

7 nextHierarchyId++;

8 reasoner.subClasses(child, true).forEach(sc -> {

9 if (!"owl:Nothing".equals(sc.toString())) {

10 addChildItem(hierarchy, id, sc);

11 hasChildren = true;

12 }

13 });

14 if (!hasChildren) {

15 hierarchy.setChildrenAllowed(id, false);

16 }

17 }

Listing 5.6: OntologyService – addChildItem

The content of the packages containerList, containerDetails, and containerCreation is described

in the next sections. First, an overview of the packages and classes is given, followed by some

specific source code snippets.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 63/105

5.3.1 Container List

As described in Requirement 2.1.1 the Container Management Application must enable the user

to see a list of all data containers in an ontology. Therefore, the package containerList again

contains the three packages model, view, and controller. Table 5.2 lists and shortly describes the

content of these packages.

MVC packages – containerList

Package/Class Description

model The model package for representing the list only contains

one class to access the ontology.

ListModel This class stores the connection to the OntologyService and

loads all data containers with the corresponding method.

view The view package contains the classes for visualizing the list

and creating the connection to the corresponding controller.

ListView A list for showing all data containers and their descriptive

metadata (Requirement 2.1.2) is implemented in the class

ListView. The items of this list can be filtered and are

clickable to show the details of the chosen data container

(Requirement 2.1.3).

controller The controller package contains one class that handles all

button clicks and selections in the list.

ListController The ListController processes each button click and reloads

the list when a filter text is entered by the user. Furthermore,

this class contains the implementation for the functionality

when the user selects a data container.

Table 5.2: MVC packages – containerList

As mentioned in Table 5.2, the ListController implements the listener for selecting a data container

of the list. The source code for this method is shown in Listing 5.7.

1 public void select(SelectionEvent event) {

2 Object selected = view.getGrid().getSelectedRow();

3 if (selected != null) {

4 TabSheet tabs = navUI.getTabSheet();

5 tabs.setSelectedTab(3);

6 String containerName = ((Container) selected).getName();

7 view.getGrid().deselectAll();

8 managementController.loadDetails(containerName);

9 }

10 }

Listing 5.7: ListController – select

In Line 2 in Listing 5.7, the selected object of the list, which is implemented with the Vaadin

component Grid, is retrieved. After checking if the selection is valid, the view is changed to the

third tab, the details tab, in Line 5. The selection is removed again in Line 7 to reset the selection

April 21, 2021 Brigitte Andorfer-Plainer, BSc 64/105

status, and the name of the selected data container is provided to the loadDetails method of the

ManagementController. The descriptive and administrative metadata of the data container is

loaded and visualized in the details view, which is described in the next section.

5.3.2 Container Details

As described before, the descriptive and administrative metadata of a specific data container can

be viewed in a separate tab (Requirement 2.1.3). Furthermore, the details page allows the user to

delete (Requrement 2.4.1) and refresh (Requirement 2.5.1) a data container, and to modify the

refresh interval and the refresh until timestamp (Requirement 2.3.1). The packages and classes

of the containerDetails package are listed in Table 5.3 below.

MVC packages – containerDetails

Package/Class Description

model The model package for showing the details of a data

container only contains one class to access the ontology.

DetailsModel This class stores the connection to the OntologyService and

forwards changed data of a data container or the deletion of

a data container.

view The view package contains all relevant classes for

visualizing the details of a specific data container, i.e., the

descriptive and administrative metadata. Furthermore, it

contains one class for the window that pops up when

deleting a container.

DetailsView The DetailsView class sets up the main visualization frame,

which consists of a hierarchical view of all data containers,

the HierarchyView, and separate views for the descriptive

and administrative metadata (Requirement 2.1.3). Buttons

for deleting (Requirement 2.4.1), refreshing

(Requirement 2.5.1) or modifying (Requirement 2.3.1) the

container are also defined in this class, and linked to the

corresponding controller, the DetailsController.

DescriptiveMetadataView This class contains the visualization of the descriptive

metadata of a data container, i.e., the concepts for each

facet, which is realized by a set of not editable text fields.

AdministrativeMetadataView The administrative metadata is visualized the same way as

the descriptive metadata, with not editable text fields, except

for the timestamps, like the last change timestamp. The

timestamps are visualized with date fields, that allow to

select a date of a calendar, when the user is modifying the

data container.

DeleteWindow When the user wants to delete the selected data container,

a separate window opens that informs the user, that the

data container may act as data source for other data

containers (Requirement 2.4.2). This class gives the user

the opportunity to go on with the deletion or to cancel it.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 65/105

controller The controller package contains one class that handles all

button clicks for each view or window described above.

DetailsController The class DetailsController sets all the text fields and date

fields correctly whenever a data container’s details are

viewed. When initiating a refresh of the data container, this

class checks whether a primary or secondary data container

needs to be refreshed. Either a window to upload the file

containing the current data items for the primary data

container (Requirement 2.5.3) is opened, or the defined data

service is called with the secondary data container’s interest

specification and the data items of the data source.

Furthermore, this class handles deletions of data containers

and changes to the refresh interval and the refresh until

timestamp and forwards it to the Container Ontology.

Table 5.3: MVC packages – containerDetails

The details page provides a lot of functionality and therefore, has to handle many different button

clicks. Hence, the most interesting method of the DetailsController is the buttonClick method,

where each button click is processed accordingly. The source code of this method is shown in

Listing 5.8 below.

1 public void buttonClick(ClickEvent event) {

2 containerName = ((Label) view.getContainerView()

 .getComponent(0)).getValue();

3 switch (event.getButton().getId()) {

4 case "delete":

5 deleteWindow = new DeleteWindow(containerName, this);

6 navUI.addWindow(deleteWindow);

7 break;

8 case "delete2":

9 model.deleteContainer(containerName);

10 navUI.removeWindow(deleteWindow);

11 managementController.loadHierarchy();

12 disableContainerView("<p>This container does not exist

 anymore.</br>" + "Please select one of the containers in

 the hierarchy.</p>");

13 break;

14 case "cancelDelete":

15 navUI.removeWindow(deleteWindow);

16 break;

17 case "modify":

18 preserveOldValues();

19 view.setModifyToolbar();

20 break;

21 case "save":

22 saveNewValues(containerName);

23 view.setDefaultToolbar();

April 21, 2021 Brigitte Andorfer-Plainer, BSc 66/105

24 break;

25 case "cancelModify":

26 setOldValues();

27 view.setDefaultToolbar();

28 break;

29 case "refresh":

30 Container container =

 managementController.getContainer(containerName);

31 Container superSet = container.getDataSource();

32 if (superSet == null) {

33 uploadWindow = new DataItemsUploadWindow(this);

34 navUI.addWindow(uploadWindow);

35 } else {

36 String superSetContainerName = superSet.getName();

37 Date now = new Date();

38 Date refreshUntil = container.getRefreshUntil();

39 if (now.before(refreshUntil)) {

40 if (container.getLastCheck().before(

 superSet.getLastChange())) {

41 String serviceName = container.getDataService();

42 String interestSpecPath =

 model.getInterestSpecificationPath(containerName);

43 File interestSpecFile = new File(interestSpecPath);

44 InterestSpecificationType interestSpec =

 XMLUnmarshaller.unmarshalInterestSpecification

 (interestSpecFile);

45 String superSetFilePath = superSet.getDataLocation();

46 File superSetFile = new File(superSetFilePath);

47 FeatureCollectionType featureCollection =

 XMLUnmarshaller.unmarshalFeatureCollection

 (superSetFile);

48 String resultFilePath =

 managementController.callService(serviceName,

 interestSpec, featureCollection);

49 model.saveAdministrativeMetadata(containerName,

 "dataLocation", resultFilePath);

50 model.saveAdministrativeMetadata(containerName,

 "dataVolume", new File(resultFilePath).length()

 + " Bytes");

51 managementController.setDates(containerName,

 superSetContainerName, resultFilePath);

52 } else {

53 managementController.setDates(containerName,

 superSetContainerName, null);

54 }

55 initDetailsView(containerName);

56 Notification.show("The container has been successfully

 refreshed!");

April 21, 2021 Brigitte Andorfer-Plainer, BSc 67/105

57 } else {

58 calendar.setTime(refreshUntil);

59 String refreshUntilStr = calendar.get(Calendar.YEAR)

 + "-" + df.format(calendar.get(Calendar.MONTH) + 1)

 + "-" + df.format(calendar.get(Calendar.DATE));

60 Notification.show("This container shall only be

 refreshed until " + refreshUntilStr + ".",

 Type.ERROR_MESSAGE);

61 }

62 }

63 break;

64 default:

65 }

66 }

Listing 5.8: DetailsController – buttonClick

The main part of the buttonClick method in Listing 5.8 is a switch statement (Lines 3-65) that

handles the different buttons based on their id. The first three cases (delete, delete2, and

cancelDelete) are needed for the deletion of a data container, modifying a data container is

covered in the next three cases (modify, save, cancelModify), and the last case (refresh)

implements the possibility to initiate a refresh of a specific data container.

When the delete button is clicked (Lines 4-16), the DeleteWindow opens where the user gets the

information that this data container may be a data source for another data container

(Requirement 2.4.2). In this window the user, has the possibility to either delete the data container

or to cancel the deletion. In Line 9, the deletion of the specific data container is forwarded to the

corresponding model, which has the connection to the ontology via the OntologyService to

permanently delete this data container. In Lines 11-12, the hierarchical representation of the data

containers needs to be reloaded and the details view is disabled as the data container does not

exist anymore and the user has to select another data container to view its details. If the user

decides against the deletion of the data container the DeleteWindow disappears and the details

view looks the same as before (Lines 14-16).

The details view allows the user to modify (Lines 17-28) the refresh interval and the refresh until

timestamp of a data container (Requirement 2.3.1). When the user clicks the modify button, the

existing values of these two fields are temporarily saved and the fields are enabled for changes

(Listing 5.8, Line 18). The toolbar is then changed (Line 19), so that two buttons appear, with one

button for saving the changes and one button for discarding the changes. By clicking the save

button the new values are permanently stored in the ontology (Line 22) and the toolbar is set back

to default (Line 23), with the buttons delete, modify, and refresh. If the user decides to cancel the

modification, the two fields are set back to their old values (Line 26) and the toolbar is set back to

default (Line 27).

April 21, 2021 Brigitte Andorfer-Plainer, BSc 68/105

The refreshing of the data container has the most complex source code (Listing 5.8, Lines 29-63).

First, the container object that shall be refreshed and the data source container, if one exists, is

selected. Primary data containers do not have a data source from which they can be refreshed.

Instead, the user can upload the file with the current data items. In Line 33, a

DataItemsUploadWindow is created and forces the user to upload such a file (Requirement 2.5.3).

From Line 35 ongoing, the refreshing of secondary data containers is covered. The refresh until

timestamp of the secondary data container is compared to the current date (Line 39). If the refresh

until timestamp is in the past (Lines 57-61) a message is shown to the user that this data container

shall only be refreshed to the corresponding timestamp (Requirement 2.5.2). In Line 40, the

last change timestamp of the data source data container is compared to the last check timestamp

of the secondary data container. If the data source contains no new data items, i.e., the last change

is prior the last check, the data container needs no refresh (Requirement 2.5.2). However, the last

check timestamp and the updated till timestamp are changed accordingly. If the data container

needs to be refreshed, the defined data service needs to be called with the secondary data

container’s interest specification and the data items of the data source data container

(Lines 41-48). The new data item file for the secondary data container is saved and the timestamps

are changed accordingly.

5.3.3 Container Creation

The Container Management Application allows the user to create new data containers and to

decide between the creation of primary or secondary data containers (Requirement 2.2.1).

Table 5.4 describes the content of the MVC packages, followed by the description of some

important source code snippets. The containerCreation package contains one more package that

contains all classes concerning descriptive or administrative metadata. This package is again

structured in the packages model, view, and controller, which are described in Table 5.5.

MVC packages – containerCreation

Package/Class Description

model For the creation of data containers, the model package

contains one class for the connection with the ontology.

CreateModel This class stores the connection to the OntologyService and

forwards the information, including the descriptive and

administrative metadata, of the newly created data

containers to the ontology.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 69/105

view The view package contains all relevant classes for

visualizing the form for the creation of a new data container

and provides separate views for creating primary and

secondary data containers.

CreateView The CreateView class builds the main layout of this page to

enable the creation of new data containers

(Requirement 2.2.1). The view consists of a hierarchical

view of all data containers, the HierarchyView, and the

metadata views. The metadata views, one for the descriptive

metadata and one for the administrative metadata, are

located in a separate package and are described in

Table 5.5. Furthermore, the CreateView provides two

buttons for creating either a primary data container or a

secondary data container (Requirement 2.2.4). For primary

data container a window to upload the data items, the

DataItemsUploadWindow, opens where the user can upload

a file with the corresponding data items (Requirement 2.2.5).

SupersetWindow When creating secondary data containers, the user has to

choose an existing data container that shall be used as data

source (Requirement 2.2.6). This SupersetWindow shows

the most specific supersets and the corresponding

administrative metadata, so that the user can base his/her

decision on the freshness of the data containers.

ServiceWindow After choosing the superset data container, the user has to

decide which service shall be used to filter the data items

accordingly (Requirement 2.2.7). The ServiceWindow

provides a dropdown menu where the user can choose

between different services. In this thesis only the

SemNOTAM Web Service is available.

controller The controller package contains one class that handles all

clicks and actions performed of the views or windows

described above.

CreateController This class implements the different behavior when creating a

primary or secondary data container. Either the

DataItemsUploadWindow or the SupersetWindow followed

by the ServiceWindow is shown. Furthermore, the

CreateController checks if all inputs are valid, e.g. the

refresh interval is a numeric value, and the container name

is available for use. If all input values are checked, the

creation of a new data container with all relevant information

is forwarded to the model where the corresponding methods

of the OntologyService are called.

Table 5.4: MVC packages – containerCreation

April 21, 2021 Brigitte Andorfer-Plainer, BSc 70/105

To create a new data container the method createClick of the CreateController is called. Based

on the id of the clicked button, it is decided which type of data container shall be created. The

source code for this method is shown in Listing 5.9, where the different behavior for primary and

secondary data containers is implemented in Lines 8-17.

1 private void createClick(String buttonId) {

2 if (validContainerName()) {

3 if (validDoubleValue()) {

4 createContainer();

5 metadataController.buildInterestSpec();

6 metadataController.setInterestSpecificationId

 (containerName);

7 switch (buttonId) {

8 case "createPrimary":

9 uploadWindow = new DataItemsUploadWindow(this);

10 navUI.addWindow(uploadWindow);

11 break;

12 case "createSecondary":

13 supersetWindow = new SupersetWindow(this);

14 navUI.addWindow(supersetWindow);

15 List<Container> supersets =

 model.loadSupersets(containerName, true);

16 supersetWindow.setSupersets(supersets);

17 break;

18 default:

19 }

20 } else {

21 Notification.show("For the refresh interval only numeric

 values are allowed!", Type.ERROR_MESSAGE);

22 }

23 } else {

24 Notification.show("Please enter a valid container name!

 (must be unique)", Type.ERROR_MESSAGE);

25 }

26 }

Listing 5.9: CreateController – createClick

Before the data container is created, the uniqueness of the defined container name (Line 2) and

the value of the refresh interval (Line 3) are checked. If a data container with the same name

already exists, or if the refresh interval is not a numeric value, a corresponding notification is shown

to the user, and the container is not created. If the entered values are valid, a data container with

the defined name is created in the ontology (Line 4) and the corresponding interest specification

is built based on the selected concepts for the descriptive metadata (Line 5). Depending on the

type of data container that shall be created, Listing 5.9 shows that either a

DataItemsUploadWindow for the file upload (Line 9) or a SupersetWindow with a list of data

containers that can be used as data source (Lines 13-16) is created.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 71/105

The upload of data items for the creation of a primary data container is the same as for the refresh

of a primary data container, where the user has to upload a file containing all data items for the

current data container (Requirement 2.2.5). For secondary data containers, the SupersetWindow

shows a list with the available data containers that can be used as supersets. Therefore, the

reasoner finds all available superset data containers based on the descriptive metadata. By

clicking on one of these data containers, the user selects the data container as data source

(Requirement 2.2.6). The source code for the itemClick method of the class DetailsController is

provided in Listing 5.10.

1 public void itemClick(ItemClickEvent event) {

2 superSetContainerName =

 event.getItem().toString().split(" ")[0];

3 Container superSet =

 managementController.getContainer(superSetContainerName);

4 String filePath = superSet.getDataLocation();

5 try {

6 supersetFile = new File(filePath);

7 } catch(NullPointerException e) {

8 superSetContainerName = null;

9 superSet = null;

10 filePath = null;

11 Notification.show("The data set for this container

 cannot be found. Please use another container.",

 Type.ERROR_MESSAGE);

12 return;

13 }

14 model.setDataSource(containerName, superSet);

15 supersetWindow.setVisible(false);

16 serviceWindow = new ServiceWindow(this);

17 navUI.addWindow(serviceWindow);

18 }

Listing 5.10: CreateController – itemClick

In Listing 5.10, first the selected data container is retrieved (Lines 2-3), the path to the file

containing the data items is stored (Line 4) and the file with this file path is referenced (Line 6). If

no file exists for this path, a notification is shown to the user that the data set is not available, and

another data container shall be selected. If the file was located successfully, the data container is

saved as data source and the ServiceWindow opens, where the user has to select the service that

shall be used for filtering the data items according to the prior created interest specification.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 72/105

The ServiceWindow shows all possible services that can be used to filter the data set. As

mentioned before, this thesis only provides the SemNOTAM Web Service in the implementation

of the Container Management Application. When the user has chosen the service that shall be

used for filtering (Requirement 2.2.7), the method callService of the class DetailsController, which

is shown in Listing 5.11, is called.

1 private void callService() {

2 String serviceName =

 (String) serviceWindow.getSelect().getValue();

3 saveInterestSpecification();

4 FeatureCollectionType featureCollection =

 XMLUnmarshaller.unmarshalFeatureCollection(supersetFile);

5 String resultFilePath =

 managementController.callService(serviceName,

 interestSpec,featureCollection);

6 model.saveAdministrativeMetadata(containerName,

 "dataLocation", resultFilePath);

7 model.saveAdministrativeMetadata(containerName, "dataVolume",

 new File(resultFilePath).length() + " Bytes");

8 managementController.setDates(containerName,

 superSetContainerName, resultFilePath);

9 model.saveAdministrativeMetadata(containerName,

 "dataService", serviceName);

10 createSucceded();

11 serviceWindow.setVisible(false);

12 }

Listing 5.11: CreateController – callService

To call the selected service three parameters, the service, the interest specification and the data

set to filter, need to be set. In Listing 5.11, the name of the selected service (Line 2), the interest

specification that shall be used (Line 3), and the data set to filter (Line 4) are stored in the needed

formats. These parameters are forwarded to the ManagementController, where the service is

called, and the file path of the resulting data set is returned (Line 5). After completing the service

call, the administrative metadata, i.e., data location, data volume, relevant timestamps, and data

service, are set accordingly (Lines 6-9). At the end of Listing 5.11, the method createSucceded is

called, which shows a notification to the user that the container creation was successful and sets

the view in the browser back to default.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 73/105

As mentioned before, a separate package for the metadata exists, which is again structured based

on the MVC pattern. These packages and classes for the descriptive and administrative metadata

are described in Table 5.5 below.

MVC packages – metadata

Package/Class Description

model The model package of the metadata package contains one

class that reads and combines the descriptive and

administrative metadata.

MetadataModel In this class the selected concepts for the descriptive

metadata are combined to an intersection interest that is

needed to create the ontological representation and the

interest specification of a data container.

view This package contains views for the descriptive and

administrative metadata, and one window for the selection of

a concept of one specific facet.

DescriptiveCreateView The DescriptiveCreateView contains a button and a text field

for each facet. The buttons can be used to select a concept

for the corresponding facet (Requirement 2.2.2), and the text

fields show the currently selected value. The possible

concepts for a chosen facet, are shown in a separate

window, the ElementLoadWindow.

AdministrativeCreateView This class provides the input fields for the administrative

metadata. The user can define the data format, data

encoding, refresh interval in corresponding text fields and

choose a date for the refresh until timestamp with a date

picker component (Requirement 2.2.3).

ElementLoadWindow The ElementLoadWindow is opened when the user clicks

one of the buttons in the DescriptiveCreateView. This class

shows all available concepts for one facet and allows the

user to select one of them.

controller The controller package contains one class that processes

each click and selection made in the described views.

MetadataController This class includes the implementation of the connection

between the described views and the model to create the

interest specification based on the selected values.

Furthermore, each button click for choosing a concept for

one specific facet or for removing the chosen concept is

processed in this class.

Table 5.5: MVC packages – metadata

April 21, 2021 Brigitte Andorfer-Plainer, BSc 74/105

Some code snippets of the classes in the metadata MVC packages are described below, to show

how the selection of concepts and building up an interest specification with the use of the

Container Description Service works.

When the user clicks on one of the search buttons for one of the facets the ElementLoadWindow

is opened, which shows a list of all available concepts for this specific facet. Therefore, the method

searchForConcept is called, for which a part of the source code is shown in Listing 5.12. The

switch statement only contains a case for the data model, as the code for the other facets is the

same, except for the last part of the unified resource identifier (URI).

1 private void searchForConcept(String id, String ontoUri) {

2 List<String> conceptList = null;

3 switch (id) {

4 case "searchDataModel":

5 conceptList = model.selectConceptForFacet(ontoUri

 + "#DataModel");

6 break;

7 ...

8 default:

9 }

10 if (conceptList != null && !conceptList.isEmpty()) {

11 elw.setTable(conceptList);

12 }

13 }

Listing 5.12: MetadataController – searchForConcept

Based on the given id parameter the corresponding facet URI is constructed by adding the

ontology URI with the symbol # and the facet’s name. Line 5 in Listing 5.12 shows that the last

part of the URI for the data model facet is DataModel, whereas, for example, for the aircraft facet

it would be AircraftFacet or SpatialFacet for the spatial facet. The facet URI is used as paramenter

for the method selectConceptForFacet of the MetadataModel, which then calls the corresponding

method of the Container Description Service. The returned list of concepts is then, in case it is not

empty, shown as a table in the ElementLoadWindow to enable the user to select one

(Lines 10-12).

By clicking on one of the items shown in the created table in the ElementLoadWindow, the method

itemClick of the MetadataController is called. As before, a part of the source code is given in

Listing 5.13, as the code for each of the facets is similar. The table in the ElementLoadWindow

has an id which is the same as the button id before, to know the facet the concept belongs to.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 75/105

1 public void itemClick(ItemClickEvent itemClickEvent) {

2 Table table = (Table) itemClickEvent.getComponent();

3 TextField field = null;

4 Button removeButton = null;

5 String value = itemClickEvent.getItem().toString();

6 switch (table.getId()) {

7 case "searchDataModel":

8 dataModelConcept = value;

9 field = descriptiveCreateView.getTfDataModel();

10 removeButton = descriptiveCreateView.getRemoveDataModel();

11 break;

12 ...

13 default:

14 }

15 if (field != null) {

16 field.setReadOnly(false);

17 String valueShortForm = value.substring(

 value.lastIndexOf("#") + 1,value.length()-1);

18 field.setValue(valueShortForm);

19 field.setDescription(value.substring(1,value.length()-1));

20 field.setReadOnly(true);

21 checkFilter();

22 removeButton.setEnabled(true);

23 }

24 navUI.removeWindow(elw);

25 }

Listing 5.13: MetadataController – itemClick

Lines 7-11 in Listing 5.13 show the source code for the data model facet, where the chosen

concept (variable value), the appropriate text field, and the button to remove the concept of this

facet are stored. After the switch statement the value of the text field, is set to the short form of

the selected concept and the whole URI is set as description (Lines 16-20). To allow the user to

remove previously selected concepts, each facet has a button to remove the concept again. This

button is only available when there is already a concept for the specific facet. Therefore, this button

is enabled when a concept is selected (Line 22) and will be disabled again if the user removes the

concept. The checkFilter method in Line 21 is only relevant for the spatial and temporal facets.

The user is not allowed to select a concept for the temporal interval facet as long as he/she has

not selected a concept for the temporal filter facet, analogous for the spatial facet and the spatial

filter facet.

After the user has selected all the relevant concepts and creates a data container, the createClick

method of the CreateController (Listing 5.9) is called, which then needs the interest specification.

In Line 5 in Listing 5.9, the method buildInterestSpec of the MetadataController is called, which

processes each of the facets to build a complete interest specification. Depending on the facet,

different methods of the MetadataModel are called, as the concepts have to be integrated in

different positions of the interest specification.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 76/105

An interest specification consists of a NotamSetMetaInformationPropertyType containing meta

information and a IntersectionInterestType containing semantic, spatial, and temporal interests.

The NotamSetMetaInformationPropertyType contains meta information, such as the data model,

data type, or temporal and spatial filter types, whereas the other facets are part of the

IntersectionInterestType. The source code for the method setGeneralInterestData, that is used for

semantic, spatial, and temporal facets, is shown in Listing 5.14.

1 public void setGeneralInterestData(String ontologyUri, String

conceptUri) {

2 if (ontologyUri != null && conceptUri != null) {

3 String generalInterestPropertyXML =

 ContainerDescriptionWS.getInterestFromConcept(ontologyUri,

 conceptUri.substring(1,conceptUri.length()-1));

4 if(generalInterestPropertyXML!=null){

5 InterestPropertyType interestProp =

 XMLUnmarshaller.unmarshalGeneralInterestData(

 generalInterestPropertyXML);

6 intersectionInterest.getHasMember().add(interestProp);

7 }

8 }

9 }

Listing 5.14: MetadataModel – setGeneralInterestData

In Line 3 in Listing 5.14, the interest representation for the given concept is stored, which is then

transformed to an InterestPropertyType by the XMLUnmarshaller. With the method

getHasMember called for the intersection interest the list of interests is retrieved and the interest

property can be added to the list. By calling the method setGeneralInterestData for each facet, an

intersection of all interests for the selected concepts is created.

For adding the meta information, i.e., data model, data type, temporal and spatial filter, to the

interest specification the method setGeneralMetadata is called, which is shown in Listing 5.15.

1 public void setGeneralMetadata(String prop, String conceptUri) {

2 String value = null;

3 if(conceptUri!=null) {

4 value = conceptUri.substring(conceptUri.lastIndexOf("#")

 + 1,conceptUri.length()-1);

5 }

6 switch(prop) {

7 case "dataModel":

8 if(value!=null) {

9 metaInfo.setDataFormat(value);

10 }

11 break;

12 case "dataType":

13 if(value!=null) {

14 metaInfo.setDataType(value);

15 }

16 break;

April 21, 2021 Brigitte Andorfer-Plainer, BSc 77/105

17 case "temporalFilter":

18 CodeTemporalRelevanceType temporalRelevance =

 CodeTemporalRelevanceType.NONE;

19 if(value!=null) {

20 if("ActiveTime".equals(value)) {

21 temporalRelevance =

 CodeTemporalRelevanceType.ACTIVE_TIME;

22 } else if("ValidTime".equals(value)) {

23 temporalRelevance =

 CodeTemporalRelevanceType.VALID_TIME;

24 }

25 }

26 relevanceOption.setTemporalRelevanceRules(

 temporalRelevance);

27 break;

28 case "spatialFilter":

29 CodeSpatialRelevanceType spatialRelevance =

 CodeSpatialRelevanceType.NONE;

30 if(value!=null) {

31 if("GmlShape".equals(value)) {

32 spatialRelevance = CodeSpatialRelevanceType.SHAPE;

33 } else if("BoundingBox".equals(value)) {

34 spatialRelevance =

 CodeSpatialRelevanceType.BOUNDING_BOX;

35 }

36 }

37 relevanceOption.setSpatialRelevanceRules(spatialRelevance);

38 break;

39 default:

40 }

41 }

Listing 5.15: MetadataModel – setGeneralMetadata

In Lines 7-16 in Listing 5.15, the selected concepts of the two facets data model and data type are

added to the meta information by calling the corresponding method of the class MetaInfoType.

This class is part of the package com.frequentis.semnotam, where the data model term of this

thesis is referred to as data format. The meta information for the temporal and spatial filter is a bit

different as these facets are realized with the enumerations CodeTemporalRelevanceType and

CodeSpatialRelevanceType. If the user did not select a concept for the temporal filter the default

relevance type is NONE, which is shown in Line 18. If a concept is selected it is checked if the

valid time or the active time should be used, and the according enumeration value, VALID_TIME

or ACTIVE_TIME, is set (Lines 19-24). For the spatial filter facet the according enumeration value

is set analogously, with the values NONE, BOUNDING_BOX, and SHAPE.

As already mentioned above, the creation of a new data container uses methods of the Container

Description Service. The three services of the Container Description Service, which are also used

for the integration of the SemNOTAM Briefing Application, are described in the next section.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 78/105

5.4 Container Description Service

To enable the Container Management Application and the SemNOTAM Briefing Application to use

the same interfaces for selecting concepts of an ontology and creating a corresponding interest

specification the Container Description Service is developed. This project is set up as Maven

project with according dependencies for Apache CXF, OWL API, and Hermit reasoner in the

pom.xml file.

The implementation of the Container Description Service is structured in five main packages:

 aero.aixm

 at.jku.dke.containerDescription.ws

 com.frequentis.semnotam

 net.opengis

 org

The package at.jku.dke.containerDescription.ws contains the source code written during this

thesis, whereas the other packages were provided for enabling the usage of the SemNOTAM Web

Service and to make use of the Java structure of interest specifications and DNOTAMs. As

described before, the Container Management Application has a package that allows the

communication with the Container Description Service. The classes in this package are generated

by Apache CXF 3.1.8 and provide all the services of the Container Description Service. The three

services selectConceptForFacet, getInterestFromConcept, and getMostSpecificSuperset are

developed in the class ContainerDescriptionService and are described in the next sections.

5.4.1 selectConceptForFacet

Listing 5.16 shows the method selectConceptForFacet, which has one input parameter that

defines the facet for which the list of concepts shall be returned (Requirement 3.1.1). As described

in Section 5.3.3, each time the user clicks on the search button of one facet this method is called

to provide the user the list of available concepts.

1 public List<String> selectConceptForFacet(String facetUri) {

2 String ontoUri = facetUri.substring(0,

 facetUri.lastIndexOf('#'));

3 loadOntology(ontoUri);

4 List<String> result = new ArrayList<>();

5 OWLClass facetClass = factory.getOWLClass(facetUri);

6 Stream<OWLClass> concepts = reasoner.subClasses(

 facetClass, false);

7 concepts.forEach(c -> {

8 if (!"owl:Nothing".equals(c.toString())) {

9 result.add(c.toString());

10 }

11 });

12 return result;

13 }

Listing 5.16: ContainerDescriptionService – selectConceptForFacet

April 21, 2021 Brigitte Andorfer-Plainer, BSc 79/105

In Line 2 in Listing 5.16, the URI of the ontology for the given facet is stored to load the

corresponding ontology in Line 3. Via the OWL API the OWLClass for the facet is retrieved in

Line 5 and all available subclasses, i.e., the concepts for this facet, are stored in a stream to

process them iteratively. To receive all possible concepts (Requirement 3.1.2) the second

parameter of the method subClasses is set to false, so that also indirect subclasses are included

in the result. Each of the concepts, except the class owl:Nothing, is added to the result list

(Lines 7-11) and in the end, the list with all concepts is returned.

5.4.2 getInterestFromConcept

As described before, the concepts of the facets are part of the interest specification for the data

container. Therefore, each concept stores its interest representation as annotation in the ontology,

to enable the creation of an interest specification based on the concepts. The source code to get

the corresponding interest representation for a specific concept is implemented in the method

getInterestFromConcept, which is shown in Listing 5.17. This method has two input parameters,

first the URI of the ontology and second the URI of the concept for which the interest

representation shall be returned (Requirement 3.2.1).

1 public String getInterestFromConcept(String ontologyUri,

 String conceptUri) {

2 loadOntology(ontologyUri);

3 interest = null;

4 OWLClass concept = factory.getOWLClass(conceptUri);

5 Stream<OWLAnnotationAssertionAxiom> annotations =

 owl.annotationAssertionAxioms(concept.getIRI());

6 annotations.forEach(annotation -> {

7 if ("interestRepresentation".equals(

 annotation.getProperty().getIRI().getShortForm())) {

8 interest = annotation.getValue().asLiteral()

 .get().getLiteral();

9 }

10 });

11 return interest;

12 }

Listing 5.17: ContainerDescriptionService – getInterestFromConcept

Listing 5.17 shows that first the ontology, where the concept is stored, needs to be loaded (Line 2)

and the corresponding OWLClass needs to be retrieved (Line 4). With the method

annotationAssertionAxioms all annotations of this OWLClass are stored in the stream in Line 5.

All annotations are processed and the value of the annotation concerning the interest

representation is stored in the variable interest, which is returned at the end (Requirement 3.2.2).

An interest representation contains the information of the concept described in XML, to include it

in the whole interest specification and enable the use of the SemNOTAM Web Service, which

expects an interest specification as input.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 80/105

5.4.3 getMostSpecificSuperset

As described in the approach in Section 4.1, the SemNOTAM Web Service provides an evaluation

method to the SemNOTAM Briefing Application where only an interest specification is expected.

The data set that shall be used for filtering needs to be discovered using a reasoner. Therefore,

the SemNOTAM Web Service calls the method getMostSpecificSuperset of the Container

Description Service, which returns the data set of the most specific superset for the given interest

specification. The method getMostSpecificSuperset needs an interest specification as input and

returns the feature collection of the identified superset data container (Requirement 3.3.1). The

source code of this method is shown in Listing 5.18

1 public FeatureCollectionType getMostSpecificSuperset(

 InterestSpecificationType interestSpecification) {

2 loadOntology();

3 OWLClass container = factory.getOWLClass(DEFAULT + "#"

 + interestSpecification.getId());

4 if (owl.containsClassInSignature(container.getIRI())) {

5 OWLIndividual dataSource = getDataSource(container);

6 if (dataSource != null) {

7 return getDataSet(dataSource);

8 }

9 } else {

10 mapInterestSpecification(container, interestSpecification);

11 }

12 saveOntology();

13 OWLIndividual mostSpecificSuperset = null;

14 try {

15 mostSpecificSuperset = findMostSpecificSuperset(container);

16 } catch (Exception e) {

17 e.printStackTrace();

18 } finally {

19 removeContainer(container);

20 }

21 return getDataSet(mostSpecificSuperset);

22 }

Listing 5.18: ContainerDescriptionService – getMostSpecificSuperset

At first the default ontology is loaded (Line 2) and a temporary data container for the given interest

specification, i.e., with the corresponding id, is created (Requirement 3.3.3). As this temporary

data container might already exist in the ontology, Listing 5.18 shows that the existence of the

data container is checked (Line 4) and if there is already a data source defined for this data

container (Line 6), the feature collection of this data container is returned. If the data container

does not exist, the interest specification needs to be mapped back to the concepts of the facets to

enable the reasoning based on the descriptive metadata. Therefore, the method

mapInterestSpecification is called, which finds the corresponding concept for each facet based on

parts of the interest specification (Requirement 3.3.2). The meta information, i.e., data model, data

type, temporal filter, and spatial filter, can be easily mapped from the enumerations back to the

concepts.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 81/105

The other facets must be identified based on the annotated interest representations in the

ontology. Therefore, the single interests are extracted of the interest specification. For each facet

the method getConceptForInterest, that is shown in Listing 5.19, is called with the corresponding

InterestPropertyType that needs to be transformed to a string representation (Line 2).

1 private OWLClass getConceptForInterest(String facet,

 InterestPropertyType interest) {

2 String interestString = getStringForInterest(facet, interest);

3 conceptForInterest = null;

4 OWLClass facetClass = factory.getOWLClass(DEFAULT + "#"

 + facet);

5 reasoner.subClasses(facetClass, false).forEach(concept -> {

6 owl.annotationAssertionAxioms(concept.getIRI())

 .forEach(annotation -> {

7 if ("interestRepresentation".equals(

 annotation.getProperty().getIRI().getShortForm())) {

8 String annotatedInterest =

 annotation.getValue().asLiteral().get().getLiteral();

9 if (idEquals(interestString, annotatedInterest)) {

10 conceptForInterest = concept;

11 }

12 }

13 });

14 });

15 return conceptForInterest;

16 }

Listing 5.19: ContainerDescriptionService – getConceptForInterest

Based on the OWLClass representing the facet, the subclasses, i.e., concepts of this facet, are

processed. The id of the string representation of the given interest is compared to the id of the

annotation concerning the interest representation (Line 9), and if the same id is found, this concept

is returned. The returned concepts of the facets are used to create an axiom for the temporary

data container as description of the descriptive metadata (Requirement 3.3.3). The ontology is

saved (Listing 5.18, Line 12) so that the reasoner has the needed information for the reasoning

process. In Line 15 in Listing 5.18, the method findMostSpecificSuperset is called which returns

the OWLIndividual representing the most specific superset. The source code for the method

findMostSpecificSuperset, which needs the temporary data container as input, is shown in

Listing 5.20.

1 private OWLIndividual findMostSpecificSuperset(

 OWLClass container) {

2 Object[] superClasses =

 reasoner.equivalentClasses(container).toArray();

3 OWLClass[] toBeChecked;

4 if (superClasses.length == 2) {

5 if (container.equals(superClasses[0])) {

6 return factory.getOWLNamedIndividual(

 (OWLClass) superClasses[1]);

April 21, 2021 Brigitte Andorfer-Plainer, BSc 82/105

7 } else {

8 return factory.getOWLNamedIndividual(

 (OWLClass) superClasses[0]);

9 }

10 } else if (superClasses.length > 2) {

11 toBeChecked = new OWLClass[superClasses.length - 1];

12 int j = 0;

13 for (int i = 0; i < superClasses.length; i++) {

14 if (!container.equals(superClasses[i])) {

15 toBeChecked[j] = (OWLClass) superClasses[i];

16 j++;

17 }

18 }

19 return checkAdministrativeMetadata(toBeChecked);

20 }

21 superClasses = reasoner.superClasses(

 container, true).toArray();

22 if (superClasses.length == 1) {

23 return factory.getOWLNamedIndividual(

 (OWLClass) superClasses[0]);

24 } else {

25 return checkAdministrativeMetadata(

 (OWLClass[]) superClasses);

26 }

27 }

Listing 5.20: ContainerDescriptionService – findMostSpecificSuperset

The most specific superset is either a data container with exactly the same descriptive metadata,

i.e., an equivalent class, or it is a direct superclass (Requirement 3.3.4). In Line 2 in Listing 5.20,

an array of all equivalent classes of the given OWLClass are selected, which has at least one

entry as the given OWLClass will also be returned. If the array contains two entries, the entry that

is not the given data container is the most specific data container (Lines 4-9), whereas if the array

has more than two entries (Lines 10-20), the administrative metadata needs to be compared

(Requirement 3.3.5). If the array only contains one entry, the direct superclasses are selected in

Line 21, indicated by the second parameter of the method superClasses set to true. If there is only

one direct superclass, the individual of this class is returned, whereas if more superclasses exist,

again the administrative metadata is checked (Requirement 3.3.5).

For the decision which data container to use as superset, the administrative metadata is

considered in the following order: updatedTill, lastChange, lastCheck, and dataVolume. The data

container with the highest freshness, indicated by the three timestamps, or with the minimal data

volume is returned as the most specific superset. After the identification of the most specific

superset the corresponding data set is returned as shown in Line 21 in Listing 5.18

(Requirement 3.3.4).

April 21, 2021 Brigitte Andorfer-Plainer, BSc 83/105

6 Demonstration

In this section, the usage of the implemented system is demonstrated. As described in Section 1.1,

two different roles exist, producers and consumers. Producers can define data containers by

describing the content to be published, while consumers specify the information necessary for a

task to be fulfilled. The applications that are used by these two roles are shown in Figure 1.2. To

ensure the producers and consumers have the same understanding of the shared information, the

common vocabulary needs to be defined in the Container Ontology. The producers can describe

and provide their data containers by using the Container Management Application by using the

provided concepts of the Container Ontology. The consumers describe their tasks in the

SemNOTAM Briefing Application by also using the concepts of the Container Ontology, which is

then evaluated by the SemNOTAM Web Service based on the most specific superset the

Container Description Service infers.

This section is structured as followed. Section 6.1 describes the usage of the Container Ontology,

which consists of the management of the concepts for the different facets, e.g., the definition of

the temporal concept to describe data containers with DNOTAMs of a specific year. Afterwards,

Section 6.2 shows the usage of the Container Management Application, which can be used by

producers to manage the existing data containers and also to create new data containers based

on existing ones or on new data sets. In Section 6.3, the briefing application, i.e., the task-based

retrieval service, is demonstrated, which allows a consumer to receive relevant DNOTAMs for a

specific task, in this case a flight from Vienna to Frankfurt.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 84/105

6.1 Container Ontology

The Container Ontology is used to define concepts for the description of data containers. When

defining a new concept, the user must add a subclass to the corresponding facet. For example, to

define the concept Year2019 a new subclass of the TemporalIntervalFacet is created.

Furthermore, an equivalent axiom needs to be defined to describe the concept and the interest

representation of the concept is annotated. The whole definition of the concept as it looks like in

Protégé is shown in Figure 6.1.

Figure 6.1: Container Ontology – Year2019

The equivalent axioms allow the reasoner to perform the subsumption reasoning accordingly.

Alternatively, the hierarchical relationships between concepts can be directly modeled in the

ontology, by adding the new concept as subclass of an existing concept of the facet. For example,

the concept January2017 could have been defined as subclass of Year2017 explicitly. In

Section 5.2.1, it was shown that the subsumption hierarchy between these two concepts is defined

with the time intervals defined as equivalent axioms.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 85/105

Figure 5.6 lists the predefined data properties that can be used for the description of concepts.

When the user wants to create a new concept that needs to be described by other characteristics,

or if an existing concept should be described in more detail, a new data property needs to be

defined. For example, if a new concept for aircrafts with four or more aircraft turbines should be

created, then the data property hasAircraftTurbine has to be defined first. Afterwards, the concept

AircraftWithManyTurbines can be created, as shown in Figure 6.2, which is defined that it has at

least four aircraft turbines.

Figure 6.2: Container Ontology – AircraftWithManyTurbines

In the Container Ontology it is also possible to define object properties and individuals, however,

this is not needed for defining concepts for facets. Data containers are not created directly in the

Container Ontology, as it is more complex to define a data container. The user has to define the

concepts for each facet explicitly and create the punned individual with all the possible timestamps

as well as the corresponding files, i.e., the interest specification and the data set. For creating and

maintaining data containers the Container Management Application is developed, which is

demonstrated in the next section.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 86/105

6.2 Container Management Application

In Section 4.2 the technology layer of the application was shown. The Container Management

Application is deployed on a Jetty server and the Container Description Service and the

SemNOTAM Web Service are deployed on a Tomcat 9. The port of the Tomcat server needs to

be set to 8081 and the Jetty server is running at port 8080. As the Container Management

Application and the Container Description Service are developed as Maven projects, Maven needs

to be installed, and the system variables JAVA_HOME and MAVEN_HOME need to be set

correctly. Furthermore, the Container Management Application and the Container Description

Service contain a settings file, where the path of the repository needs to be configured.

When importing the two projects, which are part of this thesis, the Maven repository needs to be

cleaned and the projects need to be updated, so that all needed dependencies are up to date.

After deploying the Container Description Service and the SemNOTAM Web Service on the

Tomcat server at port 8081 and starting the Container Management Application with a Maven

build and the goal set to jetty:run, the application is accessible at localhost:8080.

The Container Management Application has a home view that provides the user all the information

about the application. It describes where to find specific information and on which tabs the user

can view, modify, delete, create, or refresh data containers. This home view is shown in Figure 6.3.

Figure 6.3: Container Management Application – Home view

April 21, 2021 Brigitte Andorfer-Plainer, BSc 87/105

By switching to the tab List of containers a table with the descriptive metadata of all existing data

containers in the ontology is shown. The list of possible data containers in the current ontology is

shown in Figure 6.4.

Figure 6.4: Container Management Application – List of containers

In the top of Figure 6.4, the selection of the repository can be made. However, as described in

Section 3.4, in this thesis only one repository is available. Next to the repository, a filter possibility

is provided to the user. The entered text does not only filter the data container’s name, but also all

descriptive metadata. For example, when the user enters Year in this field, the table is filtered to

those entries that have the temporal interval with the term Year in it, as shown in Figure 6.5.

Figure 6.5: Container Management Application – Filtered list of containers

By clicking on one of the entries in the table, the user can view the details of this data container.

Therefore, the application switches to the tab Container details and loads all metadata of the

ontology. Figure 6.6 shows the details of the data container DNOTAM_AT_2017, which is a

primary data container. Furthermore, the user has three buttons to either delete, modify, or refresh

the data container.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 88/105

Figure 6.6: Container Management Application – Container details

When the user clicks the delete button a message opens that warns the user that this data

container may act as data source for other data containers. As shown in Figure 6.7, the user once

more needs to click the delete button to permanently delete this data container.

Figure 6.7: Container Management Application – Delete a data container

The second button in Figure 6.6 shows, that the user can modify some of the information. As

defined in Requirement 2.3.1, the user is able to modify the refresh interval and the refresh until

timestamp. By clicking the modify button, the corresponding fields are enabled, and the user can

change the values. Furthermore, the toolbar at the bottom changes, as shown in Figure 6.8, so

that the user can either save or cancel the changes.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 89/105

Figure 6.8: Container Management Application – Modify a data container

The last button allows the user to initiate a refresh of the selected data container. For primary data

containers the user needs to upload the file with the new data items, and therefore, the upload

window in Figure 6.9 is shown to the user.

Figure 6.9: Container Management Application – Refresh a data container

When a secondary data container is refreshed, the corresponding service of the Container

Description Service to build the interest specification is called and forwarded to the SemNOTAM

Web Service. The SemNOTAM Web Service returns the new data set, which is stored in the

repository. When the refresh of a data container, primary or secondary data container, was

successful, the success message of Figure 6.10 is shown to the user.

Figure 6.10: Container Management Application – Successful refresh

April 21, 2021 Brigitte Andorfer-Plainer, BSc 90/105

The left side of the details view (Figure 6.6) shows a hierarchical representation of all existing data

containers. This subsumption hierarchy is independent of the defined data sources of the

secondary data containers. It merely shows how data containers are subsumed by each other

based on the descriptive metadata. The current subsumption hierarchy is shown in Figure 6.11.

By clicking on one of the data containers in the subsumption hierarchy the details of this data

container are loaded and presented.

Figure 6.11: Container Management Application – Subsumption hierarchy

The last tab Create a new container provides the user the functionality to create new data

containers, primary as well as secondary data containers. On the left side, again the hierarchical

view of the existing data containers is shown. The remaining part of the tab Create a new container

is separated in descriptive and administrative metadata. For the descriptive metadata a concept

can be chosen for each facet, whereas for the administrative metadata three text fields and one

date field can be filled. The structure of this page is shown in Figure 6.12.

Figure 6.12: Container Management Application – Create a new container

April 21, 2021 Brigitte Andorfer-Plainer, BSc 91/105

In the part with the descriptive metadata of Figure 6.12 the name for the new data container has

to be specified. For each facet a search button is available and by clicking one of these buttons

the getConceptForFacet method of the Container Description Service is called. A separate window

opens, where the user can choose one of the existing concepts for the specific facet. For example,

when the user clicks on the search button of the temporal filter facet the list of available concepts

is loaded as shown in Figure 6.13.

Figure 6.13: Container Management Application – Concepts for temporal filter facet

When the user has selected concepts for the relevant facets of the new data container, the creation

view shows all the selected concepts. Figure 6.14 shows the filled form for the creation of the data

container DNOTAM_AT_Jan2017_717-200. For the relevant facets, a specific concept is chosen,

and the administrative metadata is filled.

Figure 6.14: Container Management Application – DNOTAM_AT_Jan2017_717-200

April 21, 2021 Brigitte Andorfer-Plainer, BSc 92/105

Figure 6.14 shows at the bottom, that the user can decide, whether the new data container is a

primary data container or a secondary data container. When clicking on the button for creating a

primary data container, a window for uploading the data set opens, shown in Figure 6.15.

Figure 6.15: Container Management Application – Create a primary container

Whereas, when the user wants to create a secondary data container, a list of possible data source

containers is provided to the user. In the top left corner of Figure 6.16 the user can switch between

the most specific supersets and all possible supersets. The table shows all information of the data

containers, the descriptive and administrative metadata, as the refresh interval and freshness

timestamps are most relevant for the decision of the data source. In this case, two data containers

are shown in the list of most specific data containers. For the data container

DNOTAM_AT_2017_717 only the temporal interval facet differs from the new data container,

whereas for the data container DNOTAM_AT_Jan2017 only the aircraft facet differs from the new

data container. Therefore, the user can decide which of these data containers shall be used as

data source.

Figure 6.16: Container Management Application – Create a secondary container

After the user has chosen one of the data containers by clicking on it, a new window opens where

the user can select the service that is used for filtering. As exemplified shown in Figure 6.17, the

user selects SemNOTAM as a service. By clicking the button Continue the service is called and

the resulting data set is stored in the repository.

Figure 6.17: Container Management Application – Select service

April 21, 2021 Brigitte Andorfer-Plainer, BSc 93/105

When the creation of the new data container was successful, a success message is shown to the

user and the subsumption hierarchy is refreshed. As mentioned before, the subsumption hierarchy

does not show the data source relationships, but the superclass/subclass relationship based on

the descriptive metadata. After creating the data container of Figure 6.14 the new subsumption

hierarchy has two new entries for this data container. The new hierarchy is shown in Figure 6.18.

Figure 6.18: Container Management Application – Updated subsumption hierarchy

To recap, the Container Management Application is an application for producers that want to share

their information, combined in data containers in the SWIM environment. These data containers

are then available for each consumer that wants to fulfill a specific task. The process of how the

consumer gets the relevant information and the integration with a briefing application, i.e., a task-

based retrieval service, is demonstrated in the next section.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 94/105

6.3 Task-Based Retrieval Service

The prototype developed in this thesis can be integrated with a briefing application, such as the

SemNOTAM system, to provide the consumers the possibility to retrieve all the relevant

information for a specific task. Therefore, a use case flight from Vienna to Frankfurt is introduced

and the process from describing the task of the consumer to the retrieving of the set of relevant

DNOTAMs is demonstrated.

As described before, the consumer can use the SemNOTAM Briefing Application to describe

his/her interest, respectively the task. In this use case a pilot needs to fly from Vienna to Frankfurt

on June 17th, 2019 with an A380. For the pilot briefing, he/she wants to retrieve all relevant

DNOTAMs concerning this task.

In the briefing application the user has to define a general interest based on the available

vocabulary, i.e., the Container Ontology defined in Section 6.1. Additionally, the specific flight plan

can be described in a specific interest. Therefore, the time frame for the flight, each segment of

the flight path, and the used aircraft can be specified. This part needs to be implemented in the

briefing application and is not part of this thesis.

The first communication between the briefing application and the Container Description Service

happens, when the user wants to choose a concept for one of the facets. Therefore, the application

calls the selectConceptForFacet service, which returns the list of all possible concepts. By using

the same ontological concepts as producers do in the Container Management Application

(Section 6.2), the creation of the subsumption hierarchy and hence, retrieving the most specific

superset of DNOTAMs is possible.

For this use case flight from Vienna to Frankfurt the temporal concept Year2019, which was

introduced in Section 6.1, can be used. As the flight is done with an A380 this Aircraft type shall

be used in the aircraft facet. The concept for the spatial facet should at least include Austria,

Czech, and Germany, as the flight crosses each of these flight information regions. With the filter

facets the consumer needs to define on which level the temporal and spatial filtering shall be

performed. In this case, we want to have the most precise filtering based on the active time and

the actual shape. For the facets data model and data type the concepts AIXM and DNOTAM have

to be used. The concrete flight plan is stored in the specific interest facet. This only has effect on

the subsumption result if there already exists a data container for exactly this flight.

When the user has specified his/her task with the ontological concepts the getInterestForConcept

method of the Container Description Service is called, to build the interest specification, i.e. the

task description. Afterwards the interest specification is forwarded to the evaluation method of the

SemNOTAM Web Service, which returns the evaluated interest specification with all relevant

DNOTAMs. In this evaluation method the getMostSpecificSuperset method of the Container

Description Service is called which evaluates the combination of the concepts to find the most

specific data container. This data container is used as input in the filtering method of the

SemNOTAM Web Service to evaluate the user’s task. Figure 6.19 shows the process of the task-

based retrieval with the SemNOTAM Briefing Application.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 95/105

Figure 6.19: Task-Based Retrieval

The consumer is interacting with the SemNOTAM Briefing Application to describe the task for

which he/she wants to retrieve the relevant information. In Figure 6.19 the process of this task-

based retrieval is shown, where the briefing application first communicates with the Container

Description Service. This ensures that the consumer uses the same concepts for the description

of his/her task. Afterwards the evaluation method of the SemNOTAM Web Service is called, which

returns the relevant information to the user. The retrieval of the most specific superset data

container is only relevant for the filtering process to minimize the data set. In the end, the consumer

retrieves the evaluated interest specification with all relevant DNOTAMs and their annotations.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 96/105

7 Conclusion

Due to the increasing number of DNOTAMs, which results in an information overload, an intelligent

and fine-grained filtering of DNOTAMs is an important aspect of air traffic safety. The SemNOTAM

system addresses that need. This thesis supplements the system by the specification of an

ontology, that is needed to ensure a common understanding in the SWIM environment.

Furthermore, a web application for managing the data containers of this environment is

implemented, which allows producers to provide data containers, that are described by a semantic

label referring to concepts of the shared ontology. For the integration of a briefing application and

the SemNOTAM system, three services, that enable linking to the ontology and find the most

specific superset based on the metadata, are provided. One service allows the user to define

his/her task (selectConceptForFacet), the second service is needed to build the corresponding

interest specification (getInterestFromConcept), and the last service allows to find the most

specific superset for the given task (getMostSpecificSuperset).

Besides giving a theoretical background, this thesis analyzes and defines requirements for the

three implementation parts based on the task description. For the Container Ontology the

requirements for the concept of data containers, descriptive metadata and administrative

metadata are extracted. The requirements for the Container Management Application are

structured based on the functionality it provides to the user. The requirements for the Container

Description Service concern information about the inputs and outputs of the three services. The

identified requirements are used to develop an approach for building the ontology and the

applications.

This thesis covers the implementation of an ontology for managing a vocabulary to describe data

containers by semantic labels, a web application for managing these data containers, and services

that serve this application and enable task-based retrieval of DNOTAMs by briefing application.

Important aspects of the implementation, such as the refreshing of data containers, or the selection

of a superset data container, are described in more detail. Furthermore, the usage of the Container

Ontology and the Container Management Application is demonstrated. The management of

concepts in the facets and the definition of new data properties are covered by the ontology. All

the functionality of the Container Management Application is demonstrated by using simple

concepts and small data containers concerning Europe, and especially Austria.

Concluding, all identified requirements, except the already mentioned restrictions, are

implemented. The implemented prototype covers an important aspect for the ATM communication

in combination with the SWIM vision and helps to overcome the information overload in pilot

briefings. Future work can be conducted to implement the distinction between public and private

repositories as defined by Requirement 2.2.8. Moreover, other filtering services can be included

in the Container Management Application, to allow the user to filter the superset’s data set with

additional services.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 97/105

Bibliography

[1] EUROCONTROL, “EUROCONTROL Seven-Year Forecast February 2017: Flight
Movements and Service Units 2017-2023,” Feb. 2017.
http://www.eurocontrol.int/sites/default/files/content/documents/official-
documents/forecasts/seven-year-flights-service-units-forecast-2017-2023-Feb2017-1.pdf
(accessed Jan. 02, 2018).

[2] EUROCONTROL, “EUROCONTROL Seven-Year Forecast September 2017: Flight
Movements and Service Units 2017-2023,” Sep. 2017.
http://www.eurocontrol.int/sites/default/files/content/documents/official-
documents/forecasts/seven-year-flights-service-units-forecast-2017-2023-Sep2017.pdf
(accessed Jan. 02, 2018).

[3] “What is air traffic management? | Eurocontrol.” https://www.eurocontrol.int/articles/what-air-
traffic-management (accessed Nov. 26, 2017).

[4] “Digital NOTAM (Phase 3 P-21) | Eurocontrol.” http://www.eurocontrol.int/articles/digital-
notam-phase-3-p-21 (accessed Nov. 26, 2017).

[5] EUROCONTROL, “Digital Notam - The Digital Age,” Jun. 2010.
http://www.eurocontrol.int/sites/default/files/publication/files/20100601-digitalnotam-
brochure.pdf (accessed Jan. 07, 2018).

[6] EUROCONTROL and Federal Aviation Administration, “Digital Notam Event Specification,”
Oct. 2010. http://www.eurocontrol.int/sites/default/files/content/documents/information-
management/20101010-digitalnotam-event-specification-increment1.pdf (accessed Jan. 07,
2018).

[7] J. Meserole and J. Moore, “What is System Wide Information Management (SWIM)?,” IEEE
Aerosp. Electron. Syst. Mag., vol. 22, no. 5, pp. 13–19, 2007, doi:
10.1109/MAES.2007.365329.

[8] “System Wide Information Management (SWIM) | Eurocontrol.”
https://www.eurocontrol.int/swim (accessed Nov. 26, 2017).

[9] I. Kovacic et al., “Ontology-based data description and discovery in a SWIM environment,”
Apr. 2017, p. 5A4-1-5A4-13, doi: 10.1109/ICNSURV.2017.8011928.

[10] “SemNOTAM: Ontology-based representation and semantic querying of Digital Notices to
Airman.” http://dke.jku.at/research/projects/details.xq?name=SemNotam (accessed Mar. 25,
2018).

[11] Federal Aviation Administration, “Web Service Description Document - Federal NOTAM
Service (FNS) - NOTAM Distribution Service (NDS),” 2003.
http://notamdemo.aim.nas.faa.gov/fnshelp/AIMMS1_FNS_NDS_WSDD.pdf.

[12] F. Burgstaller, D. Steiner, M. Schrefl, E. Gringinger, S. Wilson, and S. van der Stricht,
“AIRM-based, fine-grained semantic filtering of notices to airmen,” Apr. 2015, pp. D3-1-D3-
13, doi: 10.1109/ICNSURV.2015.7121222.

[13] D. Steiner, I. Kovacic, F. Burgstaller, M. Schrefl, T. Friesacher, and E. Gringinger, “Semantic
enrichment of DNOTAMs to reduce information overload in pilot briefings,” Apr. 2016, p.
6B2-1-6B2-13, doi: 10.1109/ICNSURV.2016.7486359.

[14] “Extensible Markup Language (XML).” https://www.w3.org/XML/ (accessed Jul. 26, 2018).
[15] “BEST - SESAR.” http://www.project-best.eu/ (accessed Mar. 25, 2018).
[16] E. Gringinger et al., “The Semantic Container Approach: Techniques for ontology-based

data description and discovery in a decentralized SWIM knowledge base,” presented at the
Proceedings of the SESAR Innovation Days 2018 (SID 2018), Salzburg, Austria, 2018,
Accessed: May 18, 2019. [Online]. Available:
https://www.sesarju.eu/sites/default/files/documents/sid/2018/papers/SIDs_2018_paper_78.
pdf.

[17] B. Neumayr, E. Gringinger, C. G. Schuetz, M. Schrefl, S. Wilson, and A. Vennesland,
“Semantic data containers for realizing the full potential of system wide information
management,” Sep. 2017, pp. 1–10, doi: 10.1109/DASC.2017.8102002.

[18] BEST Consortium, “BEST - Final Project Results.” 2016, [Online]. Available: http://project-
best.eu/downloads/D6.3%20Final%20Report.pdf.

[19] R. Studer, V. R. Benjamins, and D. Fensel, “Knowledge engineering: Principles and
methods,” Data Knowl. Eng., vol. 25, no. 1, pp. 161–197, Mar. 1998, doi: 10.1016/S0169-
023X(97)00056-6.

[20] T. R. Gruber, “Toward principles for the design of ontologies used for knowledge sharing?,”
Int. J. Hum.-Comput. Stud., vol. 43, no. 5, pp. 907–928, 1995.

April 21, 2021 Brigitte Andorfer-Plainer, BSc 98/105

[21] “Digital NOTAM Specification - Digital NOTAM - AIXM Confluence.”
https://ext.eurocontrol.int/aixm_confluence/display/DNOTAM/Digital+NOTAM+Specification
(accessed Nov. 26, 2017).

[22] “AIXM.” http://www.aixm.aero/ (accessed Nov. 26, 2017).
[23] EUROCONTROL and Federal Aviation Administration, “AIXM 5 - Temporality Model,” 2010.

http://aixm.aero/sites/aixm.aero/files/imce/AIXM51/aixm_temporality_1.0.pdf.
[24] “Geography Markup Language | OGC.” http://www.opengeospatial.org/standards/gml

(accessed Jul. 26, 2018).
[25] M. Endsley, “Endsley, M.R.: Toward a Theory of Situation Awareness in Dynamic Systems.

Human Factors Journal 37(1), 32-64,” Hum. Factors J. Hum. Factors Ergon. Soc., vol. 37,
pp. 32–64, Mar. 1995, doi: 10.1518/001872095779049543.

[26] EUROCONTROL and Federal Aviation Administration, “Aeronautical Information Exchange
Model (AIXM) - Exchange model goals, requirements and design,” 2006.
http://aixm.aero/sites/aixm.aero/files/imce/AIXM50/aixm_5_proposal_20060620_whitepaper
_.pdf.

[27] S. Kendal and M. Creen, An introduction to knowledge engineering. Springer-Verlag London,
2007.

[28] C. Beierle and G. Kern-Isberner, Methoden wissensbasierter Systeme: Grundlagen
Algorithmen Anwendungen, 3rd ed. Friedr. Vieweg & Sohn Verlagsgesellschaft, 2006.

[29] “Ontologien — Enzyklopaedie der Wirtschaftsinformatik.” http://www.enzyklopaedie-der-
wirtschaftsinformatik.de/lexikon/daten-
wissen/Wissensmanagement/Wissensmodellierung/Wissensreprasentation/Semantisches-
Netz/Ontologien (accessed Mar. 30, 2017).

[30] “Ontology,” Philosophy Terms, Oct. 30, 2016. https://philosophyterms.com/ontology/
(accessed May 03, 2019).

[31] S. Staab and R. Studer, Eds., Handbook on Ontologies. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009.

[32] J. Sequeda, “Introduction to: Open World Assumption vs Closed World Assumption,”
DATAVERSITY, Nov. 30, 2012. https://www.dataversity.net/introduction-to-open-world-
assumption-vs-closed-world-assumption/ (accessed May 18, 2019).

[33] Stefano Ceri, Georg Gottlob, and Letizia Tanca, “What you Always Wanted to Know About
Datalog (And Never Dared to Ask).,” ResearchGate.
https://www.researchgate.net/publication/3296132_What_you_Always_Wanted_to_Know_A
bout_Datalog_And_Never_Dared_to_Ask (accessed Oct. 18, 2020).

[34] C. Hartshorne, P. Weiss, and A. W. Burks, Collected Papers of Charles Sanders Peirce, vol.
1. Harvard University Press Cambridge, 1931.

[35] “Definition: nicht monotones Schließen,” Gabler Wirtschaftslexikon.
https://wirtschaftslexikon.gabler.de/definition/nicht-monotones-schliessen-39223/version-
262637 (accessed May 16, 2019).

[36] “Definition: monotones Schließen,” Gabler Wirtschaftslexikon.
https://wirtschaftslexikon.gabler.de/definition/monotones-schliessen-39447/version-262855
(accessed May 16, 2019).

[37] “WIN DKE.” http://www.dke.uni-linz.ac.at/index.html (accessed Jun. 01, 2019).
[38] “Frequentis AG,” Frequentis.com. https://www.frequentis.com/de (accessed Jun. 01, 2019).
[39] E. Gringinger, D. Eier, and D. Merkl, “NextGen and SESAR moving towards ontology-based

software development,” in 2011 Integrated Communications, Navigation, and Surveillance
Conference Proceedings, May 2011, pp. H3-1-H3-10, doi:
10.1109/ICNSURV.2011.5935286.

[40] R. Bobrow, “Intelligent Semantic Query of Notices to Airmen (NOTAMs),” BBN
TECHNOLOGIES CAMBRIDGE MA, 2006.

[41] N. Zimmer, J. Schiefele, K. Bayram, T. Hankers, S. Frank, and T. Feuerle, “Rule-based
NOTAM Weather notification,” in 2011 Integrated Communications, Navigation, and
Surveillance Conference Proceedings, May 2011, pp. O1-1-O1-9, doi:
10.1109/ICNSURV.2011.5935352.

[42] BEST Consortium, “BEST - Project Summary.” 2016, [Online]. Available: http://project-
best.eu/downloads/The_BEST_project_summary.pdf.

[43] M. Fernández-López, A. Gómez-Pérez, and N. Juristo, “Methontology: from ontological art
towards ontological engineering,” 1997, Accessed: Jan. 09, 2017. [Online]. Available:
http://oa.upm.es/5484/1/METHONTOLOGY_.pdf.

[44] “Punning - OWL.” https://www.w3.org/2007/OWL/wiki/Punning (accessed Mar. 30, 2017).

April 21, 2021 Brigitte Andorfer-Plainer, BSc 99/105

[45] “Web Application - Design Patterns.” http://researchhubs.com/post/computing/web-
application/design-pattern.html (accessed Sep. 30, 2018).

[46] “Model View Controller Pattern Definition & Erklärung | Datenbank Lexikon,” Datenbanken -
für Anfänger und Profis. http://www.datenbanken-verstehen.de/lexikon/model-view-
controller-pattern/ (accessed Sep. 30, 2018).

[47] “Vaadin - Framework,” Vaadin. https://vaadin.com/framework (accessed Nov. 17, 2017).
[48] “Advanced Application Architectures | Vaadin Framework 8 | Vaadin 8 Docs,” Vaadin.

https://vaadin.com/docs/v8/framework/introduction/intro-goals.html (accessed May 02,
2019).

[49] “The ArchiMate® Enterprise Architecture Modeling Language | The Open Group.”
http://www.opengroup.org/subjectareas/enterprise/archimate-overview (accessed Jul. 26,
2018).

[50] “Enterprise Architecture | The Open Group.”
http://www.opengroup.org/subjectareas/enterprise (accessed Jun. 25, 2018).

[51] M. Lankhorst, Enterprise Architecture at Work: Modelling, Communication and Analysis, 3rd
ed. Berlin Heidelberg: Springer-Verlag, 2013.

[52] The Open Group, “ArchiMate Specification.” Jun. 2016.
[53] “OWL - Semantic Web Standards.” https://www.w3.org/OWL/ (accessed Apr. 27, 2017).
[54] “protégé.” http://protege.stanford.edu/ (accessed Apr. 27, 2017).
[55] “Erfahren Sie mehr über die Java-Technologie.” https://java.com/de/about/ (accessed Apr.

30, 2019).
[56] “Overview | Vaadin Framework 8 | Vaadin 8 Docs,” Vaadin.

https://vaadin.com/docs/v8/framework/introduction/intro-overview.html (accessed May 02,
2019).

[57] “Technological Background | Vaadin Framework 8 | Vaadin 8 Docs,” Vaadin.
https://vaadin.com/docs/v8/framework/introduction/intro-goals.html (accessed May 02,
2019).

[58] “Themes | Vaadin Framework 8 | Vaadin 8 Docs,” Vaadin.
https://vaadin.com/docs/v8/framework/themes/themes-overview.html (accessed May 02,
2019).

[59] “Apache CXF -- Index.” http://cxf.apache.org/ (accessed Nov. 17, 2017).
[60] “JAX-WS.” https://javaee.github.io/metro-jax-ws/ (accessed May 02, 2019).
[61] “Building Web Services with JAX-WS - The Java EE 6 Tutorial.”

https://docs.oracle.com/javaee/6/tutorial/doc/bnayl.html (accessed May 02, 2019).
[62] “TabSheet | Vaadin Framework 8 | Vaadin 8 Docs,” Vaadin.

https://vaadin.com/docs/v8/framework/layout/layout-tabsheet.html (accessed Nov. 02, 2020).

April 21, 2021 Brigitte Andorfer-Plainer, BSc 100/105

List of Figures

Figure 1.1: System Wide Information Management (SWIM) Vision [8] .. 2

Figure 1.2: Producer vs. consumer ... 4

Figure 1.3: Overview of applications ... 6

Figure 2.1: Geographic information in NOTAMs/DNOTAMs ...10

Figure 2.2: Schematic structure of expert systems [28] ..13

Figure 2.3: Semiotic triangle [31] ...14

Figure 2.4: Open World Assumption vs. Closed World Assumption ...15

Figure 2.5: Reasoning process [12] ...18

Figure 2.6: SemNOTAM Settings and Components [12] ..18

Figure 2.7: Data Container Hierarchy [9] ..23

Figure 2.8: Semantic Label – Metadata [9] ...23

Figure 2.9: Data Container – Subsumption hierarchy ...24

Figure 3.1: Decentralized refresh strategy – Pull vs. Push ...31

Figure 3.2: Centralized refresh strategy ...32

Figure 4.1: Overview of Application Functionality ...34

Figure 4.2: Communication patterns between the systems ..35

Figure 4.3: Service-oriented structure in ArchiMate [51] ...41

Figure 4.4: ArchiMate Elements – Service, Function, Process [52] ..41

Figure 4.5: ArchiMate Elements – Device, System Software, Node, Artifact, Path [52]42

Figure 4.6: Client Application – Part of the Technology Layer ..43

Figure 4.7: ArchiMate Elements – Application Component [52] ..43

Figure 4.8: Client Application – Part of the Application Layer ...44

Figure 4.9: ArchiMate Elements – Business Actor, Business Role [52]45

Figure 4.10: Client Application – Part of the Business Layer ..45

Figure 4.11: Client Application – Part of the Business Layer (Briefing Application)46

Figure 4.12: Server Application – Part of the Technology Layer ...47

Figure 4.13: Server Application – Part of the Application Layer ..48

Figure 5.1: Container Ontology – Facets..51

Figure 5.2: Container Ontology – Subconcepts ..52

Figure 5.3: Container Ontology – Year2017 ...53

Figure 5.4: Container Ontology – January2017 ..53

Figure 5.5: Container Ontology – Data properties for concept description54

Figure 5.6: Container Ontology – Object Properties, Data Properties ..54

Figure 5.7: Data Container DNOTAM_AT_Jan2017 – Reasoning Result56

Figure 5.8: Package Structure containerManagement ...57

Figure 6.1: Container Ontology – Year2019 ...84

Figure 6.2: Container Ontology – AircraftWithManyTurbines..85

Figure 6.3: Container Management Application – Home view ..86

Figure 6.4: Container Management Application – List of containers ...87

Figure 6.5: Container Management Application – Filtered list of containers87

Figure 6.6: Container Management Application – Container details ...88

Figure 6.7: Container Management Application – Delete a data container88

Figure 6.8: Container Management Application – Modify a data container89

Figure 6.9: Container Management Application – Refresh a data container89

Figure 6.10: Container Management Application – Successful refresh89

Figure 6.11: Container Management Application – Subsumption hierarchy90

April 21, 2021 Brigitte Andorfer-Plainer, BSc 101/105

Figure 6.12: Container Management Application – Create a new container90

Figure 6.13: Container Management Application – Concepts for temporal filter facet.................91

Figure 6.14: Container Management Application – DNOTAM_AT_Jan2017_717-20091

Figure 6.15: Container Management Application – Create a primary container92

Figure 6.16: Container Management Application – Create a secondary container92

Figure 6.17: Container Management Application – Select service..92

Figure 6.18: Container Management Application – Updated subsumption hierarchy93

Figure 6.19: Task-Based Retrieval ...95

April 21, 2021 Brigitte Andorfer-Plainer, BSc 102/105

List of Tables

Table 5.1: MVC packages – containerManagement ...59

Table 5.2: MVC packages – containerList ..63

Table 5.3: MVC packages – containerDetails ..65

Table 5.4: MVC packages – containerCreation ..69

Table 5.5: MVC packages – metadata ...73

April 21, 2021 Brigitte Andorfer-Plainer, BSc 103/105

List of Listings

Listing 2.1: Textual NOTAM - Runway Closure ... 8

Listing 2.2: Textual NOTAM - Additional Temporal Information ... 9

Listing 2.3: GML surface ..11

Listing 2.4: Simple Interest - Aircraft ..19

Listing 2.5: Simple Interest - Period of Interest ...19

Listing 2.6: Complex Interest - Intersection ..20

Listing 2.7: Complex Interest - Union ...20

Listing 2.8: Business Term – AerodromeConcept [12] ...21

Listing 2.9: Relevance Rules – Wingspan Rule [12] ...21

Listing 5.1: Data Container DNOTAM_AT_2017 – Semantic Label ..55

Listing 5.2: Data Container DNOTAM_AT_Jan2017 – Semantic Label56

Listing 5.3: NavigatorUI – init ...59

Listing 5.4: OntologyService – loadContainer ..60

Listing 5.5: OntologyService – loadContainerHierarchy ...61

Listing 5.6: OntologyService – addChildItem ..62

Listing 5.7: ListController – select ..63

Listing 5.8: DetailsController – buttonClick ...67

Listing 5.9: CreateController – createClick ...70

Listing 5.10: CreateController – itemClick ..71

Listing 5.11: CreateController – callService ...72

Listing 5.12: MetadataController – searchForConcept ...74

Listing 5.13: MetadataController – itemClick ..75

Listing 5.14: MetadataModel – setGeneralInterestData ..76

Listing 5.15: MetadataModel – setGeneralMetadata ..77

Listing 5.16: ContainerDescriptionService – selectConceptForFacet ...78

Listing 5.17: ContainerDescriptionService – getInterestFromConcept ..79

Listing 5.18: ContainerDescriptionService – getMostSpecificSuperset80

Listing 5.19: ContainerDescriptionService – getConceptForInterest ...81

Listing 5.20: ContainerDescriptionService – findMostSpecificSuperset82

April 21, 2021 Brigitte Andorfer-Plainer, BSc 104/105

Acronyms

Acronym Meaning

ATM Air Traffic Management

NOTAM Notice to Airmen

SWIM System Wide Information Management

BEST Achieving the BEnefits of SWIM by making smart use of Semantic Technologies

EUROCONTROL European Organization for the Safety of Air Navigation

ATC Air Traffic Control

ATFM Air Traffic Flow Management

AIS Aeronautical Information Services

AIM Aeronautical Information Management

DNOTAM Digital NOTAM

AIXM Aeronautical Information Exchange Model

FAA Federal Aviation Administration

GML Geography Markup Language

FNS-NDS Federal NOTAM Service and NOTAM Distribution Service

XML eXtensible Markup Language

OWL Web Ontology Language

CWA Closed World Assumption

OWA Open World Assumption

SESAR Single European Sky ATM Research Program

NextGen Next Generation Air Transportation System

AIRM ATM Information Reference Model

METAR METeorological Aerodrome Report

IRI Internationalized Resource Identifier

API Application Programming Interface

MVC Model-View-Controller

MVP Model-View-Presenter

HTTP Hypertext Transfer Protocol

W3C World Wide Web Consortium

RDF Resource Description Framework

HTML Hypertext Markup Language

CSS Cascading Style Sheet

JAX-WS Java API for XML Web Services

SOAP Simple Object Access Protocol

WXXM Weather Information Exchange Models and Schema

UI User Interface

URI Unified Resource Identifier

April 21, 2021 Brigitte Andorfer-Plainer, BSc 105/105

Appendix

