
Submitted by
Michael MORITZ, BSc

Submitted at
Institute of Business
Informatics - Data &
Knowledge Engineering

Supervisor
o. Univ.-Prof. Dipl.-Ing.
Dr. techn. Michael Schrefl

Co-Supervisor
Ilko Kovacic, MSc

October 2020

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at

Prototype of a Tool for
Managing and Executing
OLAP Patterns

Master Thesis

to obtain the academic degree of

Master of Science

in the Master’s Program

Business Informatics

Sworn Declaration

I hereby declare under oath that the submitted Master Thesis has been written solely by me
without any third-party assistance, information other than provided sources or aids have not been
used and those used have been fully documented. Sources for literal, paraphrased and cited quotes
have been accurately credited.

The submitted document here present is identical to the electronically submitted text document.

Place, Date Signature

i

Michael MORITZ
Schreibmaschinentext
Linz, 12.10.2020

Kurzfassung

Der OLAP-Patternansatz ermöglichen es generische Strategien zur Komposition von OLAP-
Abfragen zur Befriedigung spezifischer Informationsbedarfstypen zu dokumentieren. Durch solche
OLAP-Pattern können bewährte Praktiken dokumentieren werden, die innerhalb und über Domänen
oder Organisationen hinweg genutzt und in zukünftigen Abfragekompositionen wiederverwendet
werden können. Die notwendigen Schritte um ein OLAP-Pattern zu definieren als auch zu
verwenden werden durch den OLAP-Patternansatz spezifiziert. Der Definitionsprozess beschreibt,
wie ein neues Muster definiert werden kann, während der Nutzungsprozess beschreibt, wie ein
OLAP-Pattern an eine spezifische Analysesituationen angepasst werden kann.

In dieser Arbeit wird ein Repository zur Unterstützung dieser Prozesse prototypisch umgesetzt.
Dieses Repository für OLAP-Patterns soll als zentraler Zugriffspunkt innerhalb von Organisationen
dienen und die Definition, Speicherung und Nutzung von OLAP-Patterns unterstützen. Die
Kommunikation mit den Benutzer*innen erfolgt über die Eingabe von Befehlen, welche einer
vordefinierten Sprache zur Definition und Verwendung von OLAP-Patterns folgen. Dabei unter-
stützt das Repository auch Definition von multidimensionalen Datenmodellen und den darauf
aubauenden Geschäftsbegriffen, welche als Grundlage für den OLAP-Patternansatz dienen. Ein
multidimensionales Datenmodell erlaubt es ein konkretes Data Warehouse einer Organisation
konzeptuell abzubilden, während Geschäftsbegriffe das notwendige Geschäftsvokabular zur Bes-
chreibung von Informationsbedarfen abbilden. Des Weiteren stellt das Repository Strukturierungs-
und den Zugriffsmöglichkeiten bereit um einerseits OLAP-Patterns, Geschäftsbegriffen und multidi-
mensionalen Modellen logisch zu strukturieren und andererseits nach ihnen zu suchen. Schließlich
unterstützt das Repository die Anpassung von OLAP-Patterns an spezifische Informationsbedarfe
und die Ausführung von vollständig angepassten OLAP-Patterns zum Zwecke der Generierung der
benötigten OLAP Abfrage.

ii

Abstract

The OLAP pattern approach allows to document generic strategies for composing OLAP queries to
satisfy specific types of information needs. Such OLAP patterns can document best practices for
the (re)use within and across domains or organizations in future query compositions. The necessary
steps to define and use an OLAP pattern are specified by the OLAP pattern approach. The
definition process describes how a new pattern can be defined, while the usage process describes
how an OLAP pattern can be adapted to a specific analysis situation.

In this thesis a repository to support these processes is prototypically implemented. This repository
for OLAP patterns should serve as a central access point within organizations and support the
definition, storage and usage of OLAP patterns. Communication with users is done by entering
commands that follow a predefined language for defining and using OLAP patterns. The repository
also supports the definition of multidimensional data models and business terms based on them,
which serve as the basis for the OLAP pattern approach. A multidimensional data model allows
to conceptually map a concrete data warehouse of an organization, while business terms map
the necessary business vocabulary to describe information needs. Furthermore, the repository
provides structuring and access options to logically structure OLAP patterns, business terms and
multidimensional models and to search for them. Finally, the repository supports the adaptation of
OLAP patterns to specific information needs and the execution of fully customized OLAP patterns
for the purpose of generating the required OLAP query.

iii

Contents

1 Introduction 1
1.1 Preface . 1
1.2 Problem Statement . 4
1.3 Running Example . 5
1.4 Outline . 5

2 Fundamentals 6
2.1 Enriched Multidimensional Model . 6
2.2 OLAP Patterns . 8
2.3 Repositories . 12
2.4 Language Processing . 14

3 Analysis 17
3.1 Task Description . 17
3.2 Requirements . 29

4 Design 45
4.1 Architecture . 45
4.2 Data Structure . 46
4.3 Repository Application . 50
4.4 Editor Application . 70

5 Implementation 71
5.1 Repository Application . 72
5.2 Editor Application . 82

6 Evaluation 83
6.1 Repository Requirements . 83
6.2 System Requirements . 84
6.3 User Requirements . 85

7 Conclusion 95

Bibliography 97

iv

A OLAP pattern language 99

B Macro language 103

C JSON response 104

D Template Expression 107

E Generated OLAP Query 108

v

List of Figures

1.1 Pattern usage process following [1] . 3
1.2 Use cases for an OLAP pattern repository . 4

2.1 Fragment of the Austrian Milk Company’s MDM 6
2.2 Fragment of the Austrian Milk Company’s eMDM 8
2.3 Language processing [18, p. 10] . 14
2.4 AST for mathematical expression . 15

3.1 Use cases defining user requirements . 30

4.1 Top-level architecture of the OLAP pattern repository 46
4.2 Class hierarchy as generated by the language processor 46
4.3 MDMElement class diagram . 47
4.4 Context class diagram . 48
4.5 Constraint class diagram . 49
4.6 Class diagram for Context Descriptions . 49
4.7 Repository application architecture . 50
4.8 Generic repository architecture following Sommerville [20, p.160] 50
4.9 Communication interfaces of repository application components 51
4.10 PatternEvent class diagram . 52
4.11 TermEvent class diagram . 53
4.12 MDMEvent class diagram . 53
4.13 OrganizationElementEvent class diagram . 53
4.14 SearchEvent class diagram . 54
4.15 Controller Interface . 54
4.16 Procedure for processPattern method . 56
4.17 Activity diagram for processPatternInstantiation method 57
4.18 Exemplary activity diagram for Catalogues in the processOrganizationElement method 58
4.19 Activity diagram for processShowStatement method 59
4.20 Language processor’s arcitecture . 59
4.21 language processor interface . 60
4.22 Tokens of the "Jersey Breed" context (Listing 3.7) 61
4.23 AST of the "Jersey Breed" context (Listing 3.7) . 62
4.24 Object representing the Jersey unary dimension predicate’s context (Listing 3.7) . . . 62

vi

4.25 Data storage interface . 63
4.26 Class diagram of required and provided data storage interfaces 64
4.27 KBS interface . 65
4.28 Template preprocessor interface . 66
4.29 Procedure behind the executePattern method . 67
4.30 AST created by the MacroParser . 68
4.31 Procedure behind the expr method . 69
4.32 Procedure behind the dimKey method . 69
4.33 Interface provider’s interface . 70
4.34 Interface of the editor application . 70

5.1 Deployment diagram . 71
5.2 Repository application packages . 73
5.3 Semantic analysis steps for the "Jersey Breed" business term 75
5.4 VariableBuilder class diagram . 75
5.5 Process for persisting objects using Hibernate . 78
5.6 Semantic analysis steps for the template expression in Figure 4.30 79
5.7 GUI of the editor application . 82

6.1 Create "Austrian Milk Models" repository . 85
6.2 Create "Dairy Precision Farming" MDM . 85
6.3 Create "Time" dimension . 86
6.4 Create "Feeding" cube . 86
6.5 Create "Dairy Business Terms" glossary . 87
6.6 Create "Jersey" business term context . 87
6.7 Create "Jersey" business term template . 87
6.8 Create "Jersey" business term description . 88
6.9 Search for catalogues . 88
6.10 Create new catalogue "Dairy OLAP Patterns" . 89
6.11 Create new pattern "Breed-Specific Subset-Subset Comparison" 89
6.12 Add template to a pattern . 90
6.13 Add description to a pattern . 90
6.14 Instantiate "Breed-Specific Subset-Subset Comparison" pattern 91
6.15 Execute "Austrian Milk Custom Breed-Specific Subset-Subset Comparison" pattern . 91
6.16 Show "Dairy OLAP Patterns" catalogue . 92
6.17 Search for patterns containing "Subset" in their names 92
6.18 Show "Breed-Specific Subset-Subset Comparison" patterns 93
6.19 Delete catalogue . 93
6.20 Show deleted pattern . 94

vii

List of Tables

2.1 Pattern description . 9
2.2 Pattern template . 10
2.3 Requirements for content in repositories [16] . 13
2.4 Requirements repositories . 13

3.1 User- and System-Requirements . 31

6.1 Evaluation of general repository requirements following Shahzad et al. [16] 83

viii

Listings

2.1 Grammar for simple mathematical expressions 15
3.1 Create statements regarding organizational structures 18
3.2 Delete Statement for the catalogue "Dairy OLAP Patterns" 19
3.3 Search statement for catalogues . 19
3.4 Show statement for a catalogue path . 19
3.5 Create “Time" dimension statement . 20
3.6 Create “Feeding" cube statement . 21
3.7 Business term context for "Jersey Breed" . 22
3.8 Business term description for "Jersey breed" . 22
3.9 Business term template for "Jersey Breed" . 23
3.10 Pattern context for “Breed-Specific Subset-Subset Comparison" taken from [1]

with authors permission . 24
3.11 Pattern description for “Breed-Specific Subset-Subset Comparison" taken from [1]

with authors permission . 25
3.12 Delete statement for "Breed-Specific Subset-Subset Comparison" 26
3.13 Delete Statement for"Breed-Specific Subset-Subset Comparison"’s templates and

descriptions . 26
3.14 String search for business terms . 27
3.15 String search for business terms with multiple search terms 27
3.16 Show statement for a business term . 27
3.17 Instantiation of "Breed-Specific Subset-Subset Comparison" Pattern taken from [1]

with authors permission . 28
3.18 Execute "Austrian Milk Custom Breed-Specific Subset-Subset Comparison" pattern 28
4.1 Uninstantiated template expression . 68
5.1 Excerpt of the pattern mapping . 77
5.2 JsonObjectBuilder usage . 80
5.3 AsyncResponse for responding to the editor . 80
5.4 RepositoryApplication class . 81
5.5 execute command . 81
A.1 Syntax of the OLAP pattern language . 99
B.1 Syntax of the macro language . 103
C.1 JSON representation of the Jersey business term 104
D.1 Template Expression for Jersey business term 107

ix

E.1 Generated OLAP query . 108

x

Chapter 1
Introduction

This section briefly introduces the basic concepts relevant for this thesis in the preface, the research
gap is pointed out in the problem statement, followed by an outline of the structure of this thesis.

1.1 Preface

Strategic decision making is one of the most complex and challenging tasks in any organization
and requires rational actions from the management, which is why there is a strong demand for
decision support [2]. Therefore, managers answering business questions must be provided the
necessary information in an appropriate level of detail [3]. Operational databases, as implemented
in many companies, can hardly satisfy such a need for information for a number of reasons [4]:
First of all, the data in large organizations must be located within a system of many independent
databases which are widely distributed. This makes data gathering a time consuming task especially
as operational databases do not perform well on operations joining many tables [5]. Secondly,
the data must be integrated due to inconsistencies such as different semantics, encoding, and
units of measurements. Thirdly, the data stored in operational databases is usually available on
a too detailed level of granularity. Following Reichmann [3], a data summary however is more
appropriate and user-friendly for decision making. Lastly, operational databases typically do not
include historical data which does not allow to track changes in values over time [4]. For a strategic
decision however, the trend is often more important than the current data.

Employing a data warehouse addresses the restrictions of operative databases as, according to
Inmon [4], a data warehouse (DWH) "is a subject-oriented, integrated, time-variant and non-
volatile collection of data in support of management’s decision making process". Thus, a data
warehouse focuses on analytical operations performed on subjects of interest. Real world business
events typically represent such subjects of interest, e.g., a sale in the retail domain. In contrast,
operational databases are focused on supporting a company’s applications with regard to business
operations, e.g., recording a sale by storing the order along with the ordering positions for a specific
customer. DWHs integrate data from multiple sources to form one globally consistent, physical
data image, i.e., depending on the actual data this entails a process of converting, reformatting,
summarizing, and transforming data before it can actually be stored. The time-variant aspect of a
DWH is considered by associating each occurrence of a business event with the point in time it is
recorded. Lastly, a DWH is non-volatile as the data stored is usually not updated, rather new data
is added to capture additional occurrences of the business event.

1

A multidimensional data model (MDM) is used to conceptually represent a DWH [6]. An MDM
represents business events in an n-dimensional data space, also denoted as a multidimensional
cube. The business events represented in such a multidimensional cube, are called measures, facts,
or data points. Each dimension in a MDM consists of multiple levels ordered in a granularity
hierarchy. For example, for the time dimension, this may be the relationship from day to week and
from week to month. Additionally, dimensions may have attributes that add descriptions to levels.
Dimension can be used in multiple roles, called dimension roles, within one cube, e.g., to represent
order- and shipping date with the same time dimension. These conceptual foundations allow
decision makers, or more generally, every kind of domain expert, to view historical occurrences of
business events and aggregate them along the dimensions for analyzing purposes.

DWH users follow the paradigm of online analytical processing (OLAP) to answer business
questions; depending on the implementation as multidimensional or relational data warehouse,
literature distinguishes between relational OLAP (ROLAP) and multidimensional OLAP (MOLAP)
[5]. OLAP defines a set of operations that allow to analyze the data in a cube along its dimensions.
These operations are roll-up (increase the aggregation level), drill-down (decrease the aggregation
level), slice (restricting a single dimension), and dice (restricting multiple dimensions) [7].

For gathering and providing information to the management, reports are defined that are based on
underlying OLAP queries [8]. These reports are often provided at regular intervals to monitor the
effects of decisions [2]. However, reports cover only 60-80% of the information needed, which
is why ad-hoc queries are additionally required [9]. The composition of ad-hoc OLAP queries,
however, is a challenging task in general as it requires comprehensive knowledge. According to
Allen & Parsons [10] the composition of queries from scratch consist of three steps. First, one
needs to formulate the information demand in natural language. Second, the information demand
needs to be adapted to fit the MDM to be considered. Third, the adapted information demand is
translated into the desired query language. To perform these steps one requires beside expertise in
the domain also necessary query language capabilities as well as knowledge about the underlying
conceptual model of the data warehouse and it’s implementation.

Working on ad-hoc OLAP queries in different domain specific projects, Schuetz et al. [11] and
Kovacic et al. [8] recognized that repeating information demands can be identified and abstracted
to types of information demands. Inspecting the queries composed to satisfy these information
demands showed that in most cases very similar solutions, i.e., composed OLAP queries, were
used. This insight led to the development of the OLAP pattern approach that provides a mean to
document a strategy for OLAP query composition with regard to a specific type of information
demand to be satisfied [8]. Using OLAP patterns prevents from writing similar queries from scratch
over and over again. In addition, OLAP patterns could help to avoid faulty queries that result
from adapting existing ones [10]. To this end, OLAP patterns record best practices, which enables
them to be shared within and across organizations and domains.

Employing OLAP patterns requires business terms to be defined conceptually on top of MDMs [1].
OLAP queries – either composed ad-hoc or underlying a report – contain representations of business
terms used in day-to-day interactions, i.e., the business terms are mapped to corresponding query
expressions. For example, when analyzing low-income customers, a domain expert has a special
group of customers with certain characteristics in mind, which can be represented by limiting the
dimensions accordingly; the realization in a target query language may be a restriction of the

2

customers turnover. Multidimensional models that are enriched by conceptual representations of
business terms are denoted as enriched multidimensional models (eMDM) [1].

Every OLAP pattern follows the same structure consisting of a descriptive and a formal part [1].
The descriptive part contains aliases, the type of information demand considered, the solution to
be followed, related patterns, and exemplified applications [1]. The formal part contains pattern
variables, i.e., pattern parameter and derived elements, in addition to constraints, templates, and
local cubes of a local multidimensional model; pattern variables, constraints, and local cubes
are also referred to as the pattern’s context. For derived elements a corresponding derivation
rule defines how the name to be bound can by determined, thus, avoiding the specification of
additional pattern parameters. Pattern parameters and derived elements allowing for adaptation
of constraints, templates, and local cubes. Constraints define conditions that need to be fulfilled
in order to apply the pattern. Pattern templates represent the core OLAP query – following the
solution described – as an incomplete implementation, where pattern variables and macros are
interspersed [1]. Finally, local cubes allow for describing, e.g. the result of subqueries in templates,
that is, local cubes are provided by the underlying templates. This is why patterns – especially
domain-independent OLAP patterns – once defined can cover a large range of specific information
demands.

A set of OLAP patterns, i.e., a pattern catalogue, can be defined to support future information
demands [1]. Data warehouse experts are typically authors of such pattern catalogues as they
provide a profound knowledge concerning the query language, the composition of queries, and the
eMDM available. In contrast, domain experts use OLAP patterns in a specific analysis situation, i.e.,
a business context, when an information demand is occurring in the context of a decision-making
process. To compose the desired OLAP query, domain experts select an appropriate pattern
according to their information demand and generate the corresponding query by following the
process defined by Kovacic et al. [1] consisting of pattern instantiation, pattern grounding, pattern
execution, and OLAP query processing as in Figure 1.1.

Figure 1.1: Pattern usage process following [1]

During pattern instantiation, values are bound to parameters in the pattern definition in order to
either receive an partial-instantiated or a parameter-free pattern; the names bound correspond to
elements of a domain-specific vocabulary, i.e., names of eMDM elements [1]. Derived elements
are resolved during pattern grounding by considering the bound parameters and the associated
eMDM along with existing local cubes yielding a ground pattern – derived elements are thus
replaced in the pattern definition with the names determined [1]. The grounded pattern can be
executed to obtain the OLAP query if it is applicable in the context of the eMDM; a ground
pattern is applicable (valid) if eMDM elements or local cubes can be identified matching the
bound names that further satisfy all constraints. During the execution of ground patterns the
pattern’s template(s) are processed by resolving macros taking into account the eMDM, resulting

3

in an executable OLAP query. Finally, this query can be processed by the DWH system just as
any other query designed from scratch to determine analytical results from a data warehouse.

1.2 Problem Statement

The goal of this thesis is to develop a OLAP pattern repository application that provides means
for storing and accessing OLAP patterns that are grouped to catalogues, cubes and dimensions
that are grouped in MDMs, and business terms that are grouped in vocabularies. In addition,
language statements should be processed allowing to define and use OLAP patterns as well as
eMDM elements. The OLAP pattern repository application shall support the communication of
both user groups, i.e., data warehouse experts that represent pattern authors and domain experts
representing pattern users. A definition-centric view has to be provided to pattern authors – who
currently miss a way to efficiently manage the definition and organization of patterns over language
commands – allowing them to execute create, retrieve, update, and delete (CRUD) statements. A
usage-centric view has to be provided to domain experts – who currently miss support to easily
instantiate, ground, and execute patterns over language statements – allowing them to execute
pattern usage statements. The communication of both user group views shall be based on existing
language definitions (see details in the Appendix of Kovacic et al. [1]).

Figure 1.2: Use cases for an OLAP pattern repository

A simple command line tool, i.e., editor application, shall therefore be developed to enable the
interaction between the users and the repository application (see Figure 1.2). This thesis covers
the elicitation of requirements to develop a design that can finally be realized by a corresponding
implementation yielding the following components:

• A repository application that is capable of processing and interpreting language statements
that allows for the definition and usage of OLAP patterns and eMDM elements.

• An editor application that provides a simple interface to interact with the repository applica-
tion.

The process of pattern definition and pattern usage as well as the definition of cubes, dimensions,
and business terms has to follow the steps described in Kovacic et al. [1]. It is worth noting that
both the implementation of pattern grounding as well as the check whether a pattern is applicable
with respect to an (e)MDM are not part of this thesis, that is, they are treated as black boxes to
be used.

4

1.3 Running Example

This thesis builds upon a running example from the precision dairy farming domain allowing to
illustrate the concepts of the OLAP pattern approach as well as the functionality of the repository
application. It should be noted that the example is only intended to make the explanations
comprehensible but does not restrict the repository application’s functionality to this domain. The
fictional dairy company, following the example of Kovacic et al. [1], is called the Austrian Milk
Company and produces milk for dairy products in various farms all over the country. To improve
both efficiency and animal health the farm employs a wide range of sensors to monitor the herd.
For example, the consumed feed is captured and integrated into the company’s relational data
warehouse; a Feeding cube stores the measured daily consumed feeding information, i.e., consumed
(roughage in Kilogram), per cattle and farm. Built upon this data warehouse, multiple reports are
regularly generated; however, these reports cannot satisfy all information demands that may arise
in future analysis situations, that is, the composition of ad-hoc OLAP queries will be necessary.
To minimize future efforts in composing ad-hoc OLAP queries the Austrian Milk Company want
to employ the OLAP pattern approach.

1.4 Outline

The structure of this thesis is as follows: Section 2 introduces the theoretical foundations of this
thesis. Section 3 covers a requirements analysis based on the given detailed task description.
Section 4 describes the design of the overall architecture and its components, i.e., the editor,
controller, language processor, repository component, template processor, and the knowledge based
system. Section 5 details the implementation of these components, while Section 6 evaluates the
design and implementation. Finally, a summary and a conclusion of the thesis is given.

5

Chapter 2
Fundamentals

The fundamentals section presents the theoretical foundations of this thesis. First of all the enriched
multidimensional model is described and exemplified using the running example introduced in
section 1.3, followed by an insight into OLAP patterns. Subsequently, the state of the art for
repositories and language processing is detailed. It should be noted that the description of the
enriched multidimensional model and OLAP patterns is primarily based on the work of Kovacic et
al. [1].

2.1 Enriched Multidimensional Model

Data warehouses (DWHs) are commonly used information sources in the strategic decision making
process integrating data from distributed sources to provide a corporate view on data [4, p. 19].
The schema of a DWH is conceptually documented by a multidimensional model (MDM) depicting
a multidimensional data space in which the data, i.e., the business events are entered. This
multidimensional data spaces are referred to as cubes describing the occurrence of business events
with measures and dimensions. Cubes can contain multiple dimensions which consist of a level
hierarchy and allow to view the measures in detailed and aggregated form. In addition, attributes
may be part of dimensions offering descriptions to specific levels. Dimensions may occupy different
roles in one cube using different dimension roles. In general terms, cubes and dimensions are
referred to as entities whereas dimension roles, measures, levels, and attributes are denoted as
properties. Other properties have a value range which is defined for measures, levels, and attributes
using value sets and for dimension roles using the dimension; value sets further define the values
semantics [1]. Thus, only values which are part of the respective value set are valid values for
measures, levels, and attributes [1].

Farm Id:
Farm Code

Town Id:
Zip Code

Province:
Province Name

Farm Main Breed:
Breed Name

Animal

Dam:
Animal Code

Enterprise Id:
Ssn

Animal:
Animal Code

Town: Town Name

State:
State Name

Date Of Birth:
Date

Animal Name:
Name

 Feed Consumption : Roughage In Kilogram

Feeding

Cattle

Farm

Date:
Date

Month:
Month No

Year:
Year No

Time
Month Label:
Month Name

Feeding Time

Figure 2.1: Fragment of the Austrian Milk Company’s MDM

6

In Figure 2.1 a fragment from the MDM of the Austrian Milk Company is depicted. A Feeding
cube represents daily feeding information per animal by the measure property Feeding Consumption.
The value set Roughage in Kilogram determines the value type for this measure, i.e., the allowed
values and their semantics. The cube further comprises a dimension role Cattle referencing
the dimension Animal, as well as the dimension roles Farm and Feeding Time referencing the
corresponding dimensions Farm respectively Time. Accordingly, a business event for this cube
represents a feeding of a specific animal, on a specific farm at a certain point in time. These
business events can be aggregated along the level hierarchies for each dimension; for example, one
can aggregate feedings along the Time dimension from the most detailed Date level, over the
Month to the Year level.

In addition, to multidimensional model elements business terms are defined. Business terms, are
means to represent domain-specific concepts conceptually along with corresponding expressions
required during the composition of OLAP queries [1]. According to the OLAP pattern approach, a
business term has a business term type, reflecting the entity type it is applicable to, i.e., cubes or
dimensions, the arity, i.e., the number of context parameters, and the functionality, i.e., predicate,
grouping, ordering, or derived measure functionality. Business terms consists of implicitly defined
context parameters (the business term type defines whether one or two cubes or dimensions are
expected), constraints, descriptions, and templates [1]. Context parameters provide means to state
entities to which the terms should be applied. Constraints restrict the applicability of terms by
stating conditions that must hold true for the entities bound to the context parameters. Type
constraints ensure that constantly defined entities of a certain type are available. A property
constraint ensures that an entity referenced by the context parameter has a property of a given
type. Domain constraints ensure, the entity referenced by a context parameter has a property with
the given domain. It is worth noting that for business terms representing calculated measures a
return type is specified.

For each business term descriptions define the semantics and provide general information on the
business term and the concept it represents. A description consists of the description language,
alias names of the term (if available), and the description text itself. Expression templates are
representations of the business term in a specific query language and dialect. Thus, business term
templates comprise language and dialect attributes, as well as an expression, which is the query
snippet representing the term.

An MDM enriched by business terms is denoted as an enriched multidimensional model (eMDM).
Upon the MDM fragment depicted in Figure 2.1, business terms for the dairy industry used by
the Austrian Milk Company are defined. The business term named Average Feed Consumption
represents a unary calculated measure that returns a measure with value from Roughage in
Kilogram. It has one <ctx> parameter defining the cube to which it is applied. A property
constraint restricts the cube to be bound to <ctx> parameter to one with a measure named Feed
Consumption. A domain constraints restricts the cube to be bound to the <ctx> parameter to
one with a measure property Feed Consumption of the type Roughage In Kilogram. As shown in
the template, the term is represented by the average aggregation function applied to this measure.
The other business terms in Figure 2.2 apply to dimensions, which is why each of them has a
<ctx> parameter of the Dimension type. For the business term Per Farm a domain constraint
restricts the applicability to dimensions with a level Farm Id which must be of the type Farm Code.

7

<ctx>

<ctx>."Farm Id":"Farm Code"

<ctx>."Farm Id"

<ctx>:Dimension

Per Farm
 <ctx>."Date Of Birth":"Date"

trunc((SYSDATE–<ctx>.

"Date Of Birth")/365.25)<3

<ctx>:Dimension

Young Cattle

Farm Id:
Farm Code

Town Id:
Zip Code

Province:
Province Name

Farm
Main Breed:
Breed Name

Animal

Dam:
Animal Code

Enterprise Id:
Ssn

Animal:
Animal Code

Town: Town Name

State:
State Name

Date Of Birth:
Date

Animal Name:
Name

Cattle

Farm

Date:
Date

Month:
Month No

Year:
Year No

Time
Month Label:
Month Name

Feeding Time

 <ctx>."Date":"Date"

TO_CHAR(<ctx>.DATE, 'YYYYMMDD')

= '19600607'

<ctx>:Dimension

2020.06.07
<ctx>

<ctx>

 <ctx> has Measure "Feed Consumption",
<ctx>."Feed Consumption":

"Roughage In Kilogram"

AVG(<ctx>."Feed Consumption")

<ctx>:Cube

Average Feed Consumption

"Roughage In Kilogram"

<ctx>

1

1

 Feed Consumption : Roughage In Kilogram

Feeding

1

1

Figure 2.2: Fragment of the Austrian Milk Company’s eMDM

The Young Cattle term is applicable to every dimension with a level Date Of Birth of type Date.
Lastly, the 2020.06.07 business term, representing a specific day, applies to all dimensions with a
Date level of the Date type.

2.2 OLAP Patterns

The idea of defining patterns for a domain can be traced back to the work of Alexander [12] who
first introduced patterns for construction processes. He describes a pattern as a general solution
to a problem frequently occurring in our environment [12, p. X]. Hence, patterns can be seen
as reusable templates that allow to solve similar problems in different contexts based on existing
knowledge. In order for Alexander’s patterns to be share- and comparable he introduced a uniform
structure for describing and documenting patterns. This structure consists of five elements, namely
a unique pattern name, a context in which it can be applied, a description of the problem it solves,
the generic solution to the problem and references to similar patterns [12, p. XI]. Alexander finally
published a set of patterns that are applicable to various problems during the design phase of
cities and buildings [12].

The notion of patterns, however, is not restricted to the architectural domain, but rather can be
applied to other domain’s problems as well. There are numerous works introducing patterns in
various domains such as the software engineering domain. Gamma et al. [13], also referred to as
the Gang of Four, introduced the notion of patterns in the context of object-oriented programming
to provide solutions to frequently occurring conceptual problems to software developers. These
patterns are referred to as software design patterns and can be divided into creational [13, p.
94], structural [13, p. 155], and behavioral [13, p. 249] patterns. Creational software design
patterns focus on solutions on how to create objects independently of their representations, whereas
structural patterns provide solutions for depicting relations between objects. Lastly, behavioral
software design patterns provide solutions for complex control flows. As a software design pattern
only describes general solution strategies, each of these patterns can be applied in any software
engineering project independently of the used programming language, as long as it is an object
oriented.

8

The idea of defining patterns for the composition of OLAP queries is shaped by Kovacic et al.
[1], [8] and Schuetz et al. [11], [14]. In the context of data warehouses the use of reports
is widespread to extract information and satisfy information demands. Still these reports only
cover 60-80% of the actually demanded information, which is why the remaining demand must
be covered using ad-hoc queries [9]. For ad-hoc query composition there are two predominant
methods; either queries are composed from scratch or by adapting existing queries from previous
projects. Apparently, neither is satisfying, as composing from scratch is very time consuming,
whereas adapting existing queries is error prone and results in significantly worse results [10]. So,
in the context of OLAP a possibility to effectively reuse existing knowledge and best practices was
missing.

Schuetz et al. [14] were facing similar issues in a project concerning the dairy industry. Even
though they had worked on numerous OLAP projects they were missing means to reuse the gained
knowledge. Additionally, domain experts where uncertain which queries needed to be implemented;
a tight schedule however did not allow to postpone query composition to the end of the project.
Thus, they came up with the idea to formulate query composition strategies, i.e., OLAP patterns,
that provide generic solutions for different types of information demands which were identified.
Once a generic solution for a type of information demand is formulated, one can apply these
solutions to specific analysis problems. This allowed to implement domain-independent OLAP
queries which could be later easily adapted to specific analysis situations. Therefore, Kovacic et al.
[8] define OLAP patterns as " an instruction on how to compose an OLAP query that satisfies the
information need in a specific analysis situation". The following sections will further discuss how
such OLAP patterns are defined and used.

2.2.1 Pattern definition

A pattern is defined considering an associated eMDM, that is, the available entities, properties,
business terms, and corresponding types, represent the vocabulary to be used. The definition
of patterns is twofold comprising a system-independent and a system-specific part. The system-
independent part consists of a pattern context and one or more textual definitions called pattern
descriptions. A pattern description consists of a predefined structure allowing users to compare
patterns and decide on the applicability to their specific information demand (see Table 2.1). This
structure consists of a list of possible alternative pattern names (aliases), a problem description,
the solution idea behind the pattern, an example as well as other patterns that are related [1].

Element Name Comment

1 Name A distinctive name within the pattern
2 Language Description’s language like English, German etc.
3 Alias Other names by which the pattern is known
4 Problem Information demand the pattern aims to satisfy
5 Solution How the information demand is satisfied
6 Related Other patterns this is related to
7 Example Exemplary usage situation

Table 2.1: Pattern description

9

A pattern context consists of a unique pattern name as well as definitions of pattern parameters,
derived elements, constraints, and local cubes [1]. Parameters allow to adapt patterns to specific
information demands. Derived elements follow a derivation rule and are constructed from parameters
regarding a specific eMDM; the derivation rule is either based on the domain of an entity’s property
or the return type of a business term. It is not necessary to include derived elements in a pattern
context, however, they simplify the usage as less parameters need to explicitly specified. Constraints
are means to define relationships between parameters, derived elements, and constant values that
must hold true for an eMDM or the local cubes in order for the pattern to be applicable [1].
Besides type, property, and domain constraints, return and applicable-to constraints can be defined
in a pattern, where return constraints define the expected return type of a calculated measure and
applicable-to constraints define business terms to be applicable to certain entities [1]. Local cubes
of a pattern’s allow to represent the result of subqueries provided by the template(s), i.e., these
elements are not actually part of the eMDM but are available solely within the pattern [1]. This
allows, for example, to define the application of parameters that refer to business terms to the
interim result obtained by those subqueries.

Element Name Comment

1 Name A distinctive name within the pattern
2 Language The expression’s query language, e.g., SQL
3 Dialect The language dialect, e.g., PostgreSQL
4 Expression The basic query structure of the pattern

Table 2.2: Pattern template

The pattern context, as well as the pattern description, is independent of any system or query
language and thus, makes the approach, just like software design patterns, applicable in different
contexts [1]. In contrast to software design patterns, OLAP patterns, however, additionally offer a
system-specific part, namely the pattern templates. Templates are incomplete implementations
of OLAP queries representing the realization of the solution strategy while considering a specific
target language, system, and data model; pattern templates can be seen as blueprints for writing
actually applicable queries [1]. A template definitions includes the query language, language dialect,
and an expression [1] (see Table 2.2). Expressions are the actual representation of the pattern in
the specific language and dialect, containing placeholders for parameters and derived elements as
well as macros making them adaptable to related information demands. Macros in the context of
OLAP patterns are small functions used in the template expressions that are called during the
execution to gain and substitute a code snippet [1]. Multiple templates allow a pattern to be used
for either different languages, modeling paradigms such as star- or snowflake-realizations, data
models such as MOLAP or ROLAP, or database management systems.

2.2.2 OLAP Pattern Usage

A pattern, once defined, is a documentation of a solution strategy to compose OLAP queries that
satisfy a certain type of information demand. To apply an OLAP pattern to a specific analysis
situation, however, additional steps are required. For this reason the pattern usage process is
defined allowing for the adaptation to specific analysis situations (Figure 1.1). Accordingly, to use
an OLAP pattern in a specific analysis situation the steps of instantiation, grounding, execution,

10

and query processing must be followed [1].

During the instantiation of an OLAP pattern, names are bound to the pattern’s parameters [1].
These names represent the names of eMDM elements of an associated eMDM. For example, if the
value bound to a parameter of type cube is "Feeding", then the eMDM must provide a cube
named "Feeding".

The result of the instantiation of a pattern is a new more specific pattern, that is, a pattern with
less unbound parameters. Pattern instantiations do not require to bind names to all parameters; if
names are only bound to a subset of parameters, a partially instantiated pattern is obtained [1]. In
such a partially instantiated pattern only a subset of parameters is left for the user to be specified,
thus the pattern is more specific and can only be adapted to a smaller number of information
demands [1]. This allows to create specialization hierarchies of patterns reaching from abstract
to specific as further describes in subsection 2.2.3. However, to continue the pattern usage, the
pattern must be fully instantiated, meaning that no parameters are left unbound.

Grounding a parameter-free pattern is an optional step, as it is required only if derived elements are
defined in the pattern context [1]. It refers to the process of evaluating derivation rules considering
the associated eMDM along with the pattern’s local cubes in order to obtain the names to be
bound to the derived elements [1]. If derivation rules cannot be evaluated in the context the
associated eMDM and the pattern’s local cubes, the pattern cannot be applied.

OLAP patterns where names are bound to all parameters and derived elements are denoted as
ground patterns that can be executed [1]. The execution converts one or all of the pattern’s
templates to an executable OLAP query. The pattern execution starts with performing a validation
that ensures that the pattern can actually be applied to the eMDM while considering the pattern’s
local cubes; if the pattern is not applicable, the process ends at this point. A ground pattern is
considered applicable (valid), if the names in constraints can be matched to eMDM elements or
the pattern’s local cubes that fulfill all pattern constraints. The macro calls within the template(s)
are then being processed, aiming to get an expression snippet corresponding to the language and
dialect used in the pattern template. The expression snippet obtained is adapted considering the
parameters provided, and substitutes the corresponding macro call in the template.

The two macros that can be distinguished are the $dimKey and $expr macro. The $dimKey
takes a dimension’s name as parameter and returns the corresponding base level; a level which no
other level rolls up to. The $expr macro on the other hand obtains the expression of the business
term referred to by the first parameter, and replaces the context parameters in the expression
according to the values bound in the $expr macro call; hence, it has multiple parameters including
the business term name, and the values for its parameters [1]. As a result the macro returns
the term’s expression that is free of parameters and thus adapted to the analysis situation in the
matching language for the template. If the business term does not include an expression template
in the same language and dialect as the pattern template to be executed, the execution fails.

2.2.3 Pattern Organization

OLAP patterns are generic instructions to compose OLAP queries satisfying a certain information
demand. Nevertheless, by instantiating the patterns it is possible to further specify them and
construct pattern hierarchies from generic to specific. Hence, patterns can reach from domain-

11

independent, which is the most generic form, to organisation-specific. The border between the
hierarchy levels however is not a clear cut but rather a fluent transition [1].

A generic or domain-independent pattern is characterized by a wide range of applicability [1].
That is, a domain-independent pattern provides solutions for information demands that frequently
occur across domains. The idea behind OLAP patterns is, that such generic solutions can be
adapted to solve similar domain- or organisation-specific problems in the future. As an example a
pattern comparing two subsets ("Subset-Subset Comparison Pattern") is something that can
be applied in any domain on any two subsets to be compared [1].

In contrast to domain-independent patterns, domain-specific patterns are either instantiated or
defined in such a way, that makes them only applicable for a certain domain [1]. Within this
domain the patterns are however still flexible enough to be applied in different organisations. Just
as described in subsection 2.2.1 for the definition, the eMDM also determines the vocabulary
to be used in the instantiation. That is, through a targeted selection of the eMDM’s terms,
one can shape a generally applicable pattern to be restricted to a certain domain. Consider
the Austrian Milk Company using the "Subset-Subset Comparison Pattern" in the form of a
"Feeding Subset-Subset Comparison". If the pattern is restricted to analyze a Feeding cube,
its applicability is restricted to the domain of animal owners; i.e., it can also be applied to a zoo.
In addition, if the subsets are restricted to Cattle, the pattern is still domain specific, as it can be
applied to all cow holders, but more restrictive as it is not applicable to zoos anymore.

The most specific patterns are represented by organization-specific patterns [1]. A pattern can
be deemed organization-specific if it is (fully) instantiated using the elements contained in an
organization’s specific MDM, however, the pattern can still be used for different applications within
this organization. Considering an instantiation of the "Feeding Subset-Subset Comparison
Pattern" that compares the set of Jersey cattle with the set of Highland cattle, one can imagine,
that such a specific pattern will be applicable to hardly any other company than the Austrian Milk
Company. Within the Austrian Milk Company the pattern can however be use in one application
to compare the breeds regarding feed consumption and in another regarding milk yield.

2.3 Repositories

In order to create and persist patterns and their hierarchies a central point of storage is needed,
that allows to define, access, and use OLAP patterns. This section thus describes the concept of
a repository as a generic approach for storing and accessing arbitrary data objects.

In the field of business process modelling a repository is a state of the art approach to support the
reuse and administration of process models [15], [16]. Repositories are defined on a very abstract
level as a "...central component for storing, managing and changing process knowledge" [15]. In
order to gain maximum advantage from using a repository, Shahzad et al. [16] introduce generally
applicable requirements that need to be fulfilled. These requirements concern on the one hand the
repository itself and on the other hand the content it stores. For any data object it needs to be
clarified at first whether or not the criteria formulated for content shown in Table 2.3 are fulfilled.

12

Table 2.3: Requirements for content in repositories [16]

Requirement Description

1 Reusable Content is reusable if it can be used for multiple purposes
either with or without modifying and adapting it.

2 Language independent The content stored in the repository must be independent of
the target languages it should be used for. In the context of
business processes this means that process models must be
independent of modelling languages.

3 Domain and organisation
independent

This requirement describes the general usability of repositories
for content coming from various application fields.

Re-usability states that users must be able to retrieve the repository’s content and make it
applicable to similar contexts by modification and adaption [16]. Language independence is more
specific to the initial focus on process models, however it can also be interpreted the necessity for
technology- or system-independent content [16]. Domain- and organisation-independent states
that the repository must not restrict the usability of its content, e.g., as process models are
generally applicable, a repository must not be restricted to a specific domain’s process models [16].

Besides the requirements for the content to be stored in an repository, Shahzad et al. [16] introduce
six requirements for repositories. By exploring the functionality of numerous existing repositories
the generally applicable requirements stated in Table 2.3 could be identified.

Table 2.4: Requirements repositories

Requirement Description

1 Extensible A repository must allow to add and modify content to include
new knowledge.

2 Flexible Within the repository multiple versions of content must be
allowed. This refers to the need of adapting and storing content
which apply to certain contexts.

3 Openness Being open means that the repository should be unrestrictedly
available to any possible user.

4 Accepting A repository should allow to structure its content according to
business needs following different schemes.

5 Usable The access of the repository’s content should be allowed via a
easy-to-use, usually graphical, interface.

6 Navigable It should be possible to browse and search for content.

Extensibility means to provide methods to add content, i.e., repositories must consider that future
situations may require to add new knowledge. As the content itself must be reusable, the repository
must also allow to persist these adapted or modified versions, which is what the authors define as
flexible. Openness, is a feature that allows users to perform Create-/Update-/Delete- (CRUD)
operations without any need for permission. Accepting for repositories states that one should
be free to organize the content in a way that best suits the users. Usability means that using
the repository must be considered easy by the user. Hence, this requirement includes a certain
subjectivity, as it does not determine the term "easy". Finally, a navigable repository must enable
the user to search the content using search criteria.

13

2.4 Language Processing

A repository for OLAP patterns shall be maintained using textual commands following a predefined
OLAP pattern language (see section 1.2). Languages are defined by a grammar, which is a
set of rules that determines how compliant statements must look like. Processing language
statements regularly consists of three steps, i.e., lexical, syntactical, and semantic analysis [17].
These steps are typically applied in compilers, where language processing is an intermediate step
in the transformation of program code to an executable program [18]. For this thesis, however,
the process depicted in Figure 2.3 is sufficient, taking the statement and the grammar as input to
generate an abstract syntax tree (AST) as output.

Figure 2.3: Language processing [18, p. 10]

To make this process comprehensible the Listing 2.1 depicts an example grammar for simple
mathematical expressions containing only one-digit numbers and trigonometric functions. The
rule in line 1 states, that an expression consists of numerous terms connected by a "+" or "-"
operator. A term, as stated in line 6, aggregates any number of Factors connected by a "*" or
"/" operator. Factors (line 11) are either one-digit numbers, parenthesized sub-expressions or
function names with parenthesized sub-expressions. The function rule (line 17) depicts which
function names are valid for the language, i.e. "sin", "cos" and "tan".

Processing, for example, the mathematical expression 5 + 8 ∗ 9 requires the consideration of the
steps depicted in Figure 2.3. During the lexical analysis the input statement, which is only a
sequence of character symbols at this time, is aggregated in form of tokens. "A lexical token is a
sequence of characters that can be treated as a unit in [...] the language" [18, p. 24]. That is,
anything under quotation marks in Listing 2.1 is a token in the example grammar. The aim during
the lexical analysis task however, is not to find any matching token, but the longest possible.
Using this approach avoids unmatched character sequences at the end of the process, i.e., if any
character in the input statement could not be matched, it is not a valid statement. For this
example the following tokens are recognized: "5", "+", "8", "*", "9", i.e., the statement is
valid and consists of five tokens with one character. If the statement included, e.g., a logical
operator like "&", which is not a valid sign in a mathematical expression, the result of the lexical
analysis would be that the whole statement is invalid.

14

1 Expression:

2 Expression "+" Term |

3 Expression "-" Term |

4 Term;

5

6 Term:

7 Term "*" Factor

8 Term "/" Factor

9 Factor;

10

11 Factor:

12 "0" | "1" | "2" | "3" | "4" |

13 "5" | "6" | "7" | "8" | "9" |

14 Function "(" Expression ")" |

15 "(" Expression ")";

16

17 Function:

18 "sin" | "cos" | "tan";

Listing 2.1: Grammar for simple mathematical expressions

In a second step the lexically correct and tokenized input sequence is further syntactically analysed;
this process is also referred to as parsing. Therefore, the token sequences are analysed to check
whether expressions can be formed that correspond to grammar rules, i.e., to form valid expressions
the tokens must appear in the same order as defined in a grammar rule. Corresponding to the
rules in the grammar, the matched token sequences form a hierarchy that is regularly visualized as
an abstract syntax tree (AST). Every leaf in such an AST refers to one token generated in the
previous lexical analysis step; every other node refers to a rule name respectively.

Figure 2.4: AST for mathematical expression

An example AST can be found in Figure 2.4 visualizing the mathematical example expression.
There is only one mathematical expression included matching the rule in line 2, i.e., an addition.
Regarding the left side of the addition, the expression rule in line 4 is matched, i.e., it just consists
of a term. Further, the term is matched to the rule in line 9, hence the expression consists only
of one factor, which is "5". Equivalently the right side of the addition is matched with the

15

corresponding rules. In the context of parsing a distinction between contextual and context-free
grammars is necessary; in contextual grammars tokens surrounding a certain token sequence
determine the rule to be applied, whereas for context free grammars the surrounding tokens are
not considered. For this work, however, the focus is on context-free grammars only, as the OLAP
pattern grammar can be classified as such.

Finally, a semantic analysis is performed on the AST by iterating over the nodes, which generate the
output of the process (Figure 2.3), i.e., an attributed AST. In this step attributes, further describing
the nodes, are generated and added to the tree like, e.g., a data type [19, p. 153]. However, it not
only adds attributes but also checks for correct usage. In the context of mathematical expressions
semantic analysis checks, e.g., that there is no division by zero. Other than Waite & Goos [19],
Appel [18, p. 94] describes that the output of a semantic analysis need not be an AST again but
rather a simpler structure suitable for further processing.

Irrespective of whether the output is an AST or not, the language processing task provides a
syntactically and semantically correct structure representing the statement allowing for further
processing. The processing steps however strongly depend on the task and cannot be generalized.
For a mathematical statement it could be, e.g, the conversion of the expression into post-fix
notation, but also to solve the expression like in a calculator.

16

Chapter 3
Analysis

This section analyses which functionality a repository application must provide, considering the
fundamentals (chapter 2) and the problem statement (section 1.2). Therefore, the task description
(section 3.1) analyses the OLAP pattern language (Appendix A) and the necessary statements
the repository must process. Further, the requirements in section 3.2 depict scenarios describing
how the repository application must support the users and system requirements stating what is
necessary to provide this functionality; the requirements mirror the functionality described by
Kovacic et al. [1]. It is worth noting that the functionality of the editor is not detailed, as it should
represent a plain user interface without any functionality.

3.1 Task Description

The goal of this thesis is to develop a repository application that supports both domain and data
warehouse experts in the management and usage of OLAP patterns and eMDMs (business terms
as well as MDMs). Thus, it is intended to be a central point of storing and accessing patterns
within an organization. Such a repository application must consist of both organization elements
and content elements. Organization elements should provide means to structure the content and
are represented by repositories containing catalogues, glossaries, and MDMs. Content elements
are represented by OLAP pattern definitions, business terms definitions, cube and dimension
definitions (the actual information necessary to compose OLAP queries). A pattern definition
consists of a pattern context representing pattern parameters, derived elements, constraints and
local cubes, one or more pattern templates representing the generic query structure and one or
more pattern description providing useful information. Consequently, a business term consists
of a business term context (defining the context parameters and constraints), templates and
descriptions. A cube definition comprises the specification of cube properties, i.e. dimension
roles which reference dimensions and measures that are restricted to a type using value sets.
Dimension definitions contain the specification of levels and attributes as well as the relationships
between these elements, i.e. "roll-up" relations between two levels and "described-by" relations
between levels and attributes. The tasks concerning operations for organization elements are
described in subsection 3.1.1. How the repository content should be created, retrieved, updated,
deleted, and used is described in subsection 3.1.2. Since the communication with the repository
application should be via OLAP pattern language commands (section 1.2) each subsection depicts
corresponding example statements the repository application must be able to process.

17

3.1.1 Organization Elements: Repositories, Catalogues, Glossaries, and MDMs

The repository application developed in this work must be able to group content elements inside
repositories that comprise MDMs, glossaries and catalogues. That is, the repository should provide
a structure for each type of content, i.e. cubes and dimensions, business terms and patterns.
Cubes and dimensions should be grouped by the repository, using multidimensional models; they
depict the conceptualization of an actual data warehouses used by an organization. The groupings
for business terms that must be supported are called glossaries and should represent the wording
used in a specific domain or organization. Further, a repository should allow to organize patterns in
catalogues, which are sets of patterns that are frequently used, for example, by a certain department.
The names inside an organization elements must be unique, as all elements should be referenced
solely by name. The according tasks for the repository application, namely creating, retrieving and
deleting (section 3.1.1) organization elements are specified in the subsequent sections.

Defining Organization Elements

The definition of organization elements should be supported using the corresponding language
statements determined by the OLAP pattern language (Appendix A). Each statement starts with
the CREATE keyword, followed by the structure element’s designation to be created, i.e., the type of
the structure element, and a path expression. For the repository – the top level structure element
– the path only consists of its name. For all other organization elements the path consists of the
repository name, a slash and the actual name for the element to be created. To allow names
containing white spaces the whole language is based on quoted identifiers. It is worth noting, that
no means for restructuring are intended, i.e., once a catalogue, glossary, or MDM is created inside
a repository, it cannot be moved to another repository.

1 CREATE REPOSITORY "Austrian Milk Models" ;

2 CREATE CATALOGUE "Austrian Milk Models"/"Dairy OLAP Patterns";

3 CREATE GLOSSARY "Austrian Milk Models"/"Dairy Business Terms";

4 CREATE MULTIDIMENSIONAL_MODEL "Austrian Milk Models"/"Dairy Precision Farming";

Listing 3.1: Create statements regarding organizational structures

Listing 3.1 depicts the statements used to create a repository structure for the Austrian Milk
Company. That is, the task to be fulfilled by the repository application is to create a repository
structure named "Austrian Milk Models" containing an empty catalogue called "Dairy OLAP
Patterns", an empty glossary "Dairy Business Terms", and an empty MDM "Dairy Precision
Farming".

Deleting Organization Elements

Deleting organization elements describes the task for the repository application to support the OLAP
pattern language (Appendix A) statements for removing organization elements. These statements
are characterized by the DELETE keyword at the beginning; subsequently, the organization element
designation and its path can be stated. Thus, the task for the repository is to check whether an
element specified by the path exists and if so, to delete it and all the contained content elements.

18

1 DELETE CATALOGUE "Austrian Milk Models"/"Dairy OLAP Patterns";

Listing 3.2: Delete Statement for the catalogue "Dairy OLAP Patterns"

In Listing 3.2, the catalogue with the name "Dairy OLAP Patterns" in the repository "Austrian
Milk Models" should be deleted. Further, the task includes to delete all patterns, i.e. their
contexts, descriptions and templates, comprised in the catalogue.

Retrieving Organization Elements

The task for retrieving organization elements is to support the corresponding OLAP pattern
language statements namely search and show statements. Search statements should allow the user
to perform a simple string search, i.e., find all organization elements (search target) containing
the search string (search term) in their name (search scope). Hence, a search statement starts
with SEARCH keyword and allows the user to subsequently state a search target, an optional search
space, i.e., a path where to search in, a search term and the search scope. An exemplary statement
can be seen in Listing 3.3

1 SEARCH CATALOGUE IN "Austrian Milk Models" CONTAIN "Dairy" IN NAME;

Listing 3.3: Search statement for catalogues

The statement in Listing 3.3 should provide the user with all catalogues (search target) in the
"Austrian Milk Models" repository (search space) containing the word "Dairy" (search term)
in their names (search target).

Besides search operations for concrete element types, it might be useful to just gain an overview
of the elements included in a path. This means, the user should be able to just state a path of
interest in form of SHOW statements as defined in the OLAP pattern language, to gain a list of
comprised elements.

1 SHOW "Austrian Milk Models"/"Dairy OLAP Patterns";

Listing 3.4: Show statement for a catalogue path

In Listing 3.4 a statement to explore a catalogue is depicted. For this example, the task for the
repository application is to find any pattern included in this path and provide a list with their
names. Accordingly, if the target is an MDM, all cubes and dimensions are to be listed, whereas
the business terms must be listed for glossaries.

3.1.2 Content Elements: OLAP Patterns, Business Terms, Cubes, and
Dimensions

Within the repository application four types of content elements are distinguished, namely OLAP
patterns, business terms, cubes and dimensions. These elements provide the actual information
that should enable the repository application to automatically generate OLAP queries that satisfy
the users information demands. This means, users must be able to create, retrieve, update, and

19

delete content elements following the definition process in subsection 2.2.1. Further, it must be
possible to instantiate and execute both business terms and patterns following the steps of the
usage process (subsection 2.2.2).

Defining Content Elements

Inserting content is a central task for an OLAP pattern repository application, which must enable
the user to add business terms, patterns, cubes and dimensions to the corresponding organization
elements. The repository application therefore must support commands allowing to state the
definition of these content elements following the OLAP pattern language, i.e. CREATE commands.

The structure for all these commands consist of a starting and an end line, which are inde-
pendent of the content element, and a midsection, which is content-element specific. Ba-
sically, the starting line of a CREATE statement consists of the CREATE keyword, the content
element designation, and a path. The element designation in fact represents the available
content element PATTERN, CUBE, DIMENSION, and for business term the business term types
UNARY_DERIVED_MEASURE, BINARY_DERIVED_MEASURE, CUBE_ORDERING, UNARY_CUBE_PREDICATE,
BINARY_CUBE_PREDICATE, UNARY_DIMENSION_PREDICATE, BINARY_DIMENSION_PREDICATE, DIMEN-
SION_GROUPING, and DIMENSION_ORDERING [1]. The structure of the path consists of the repository
name, the name of a MDM, glossary or, catalogue, and the name of the actual content element
to be created. The end line of each statement consists of the END keyword and the element
designation and indicates that the definition is over. The middle section of the statements and
thus the task is element dependent and is thus described in detail for each type of content element
in the following.

1 CREATE OR REPLACE DIMENSION "Austrian Milk Models"/"Dairy Precision

↪→ Farming"/"Time" WITH

2 LEVEL PROPERTIES

3 "Date":"Date";

4 "Month":"Month No";

5 "Year":"Year No";

6 END LEVEL PROPERTIES;

7

8 ATTRIBUTE PROPERTIES

9 "Month Label":"Month Name";

10 END ATTRIBUTE PROPERTIES;

11

12 CONSTRAINTS

13 "Date" ROLLS_UP_TO "Month";

14 "Month" ROLLS_UP_TO "Year";

15 "Month" DESCRIBED_BY "Month Label";

16 END CONSTRAINTS;

17 END DIMENSION;

Listing 3.5: Create “Time" dimension statement

Firstly, for dimensions one should be able to define any number of dimension properties, i.e., levels
and attributes, and their relationships. The relations to be distinguished are "roll-up" relations
(a level can roll up to another level) and "described-by" relations (an attribute describes a level).
Further, for any level and attribute it should be possible to associate a value set, i.e., define the

20

type of its values. The task for the repository application is to read the information contained in
the statement and add the dimension to the MDM stated by the user.

In Listing 3.5 a statement to define an example "Time" dimension inside the "Dairy Precision
Farming" MDM of the "Austrian Milk Models" repository is depicted. The levels and the
corresponding value sets separated by a ":" are stated in the lines 3, 4 and 5. For example, the
level "Year" is restricted to the "Year No" value set. Equivalently, attributes and their ranges as
in line 9 must be processed. Lastly, the "roll-up" and "described-by" relationships from the lines
13, 14 and 15 relate levels and attributes. Levels may be related to other levels to form "roll-up"
hierarchies using the ROLLS_UP_TO keyword; the Date rolls up to the Month level. In addition,
levels may be related to attributes describing them using the DESCRIBED_BY keyword; the Month
level is described by the attribute Month Label.

Secondly, users should be enabled to create cubes containing both measure and dimension role
properties. For measures it should be possible to restrict their values by associating them with
value sets inside the MEASURE PROPERTIES block. For dimension roles, one should be able to
associate the name of a previously defined dimension inside the DIMENSION_ROLE PROPERTIES

block. That is, if no dimension with the name already exists in the MDM, the repository must not
create the cube. Otherwise, the repository should persist the cube within the MDM stated by the
user.

1 CREATE OR REPLACE CUBE "Austrian Milk Models"/"Dairy Precision

↪→ Farming"/"Feeding" WITH

2 MEASURE PROPERTIES

3 "Feed Consumption":"Roughage In Kilogram";

4 END MEASURE PROPERTIES;

5

6 DIMENSION_ROLE PROPERTIES

7 "Farm":"Farm";

8 "Feeding Time":"Time";

9 "Cattle":"Animal";

10 END DIMENSION_ROLE PROPERTIES;

11 END CUBE;

Listing 3.6: Create “Feeding" cube statement

In Listing 3.6 the CREATE statement corresponding to the "Feeding" cube for the Austrian
Milk Company introduced in section 2.1 is depicted. The repository must therefore create a
cube named "Feeding" in the "Dairy Precision Farming" MDM comprised by the "Austrian
Milk Models" repository (1). In the MEASURE PROPERTIES block (lines 2, 3 and 4) the "Feed
Consumption" measure is defined, which is restricted to "Roughage In Kilogram" values.
Inside the DIMENSION_ROLE PROPERTIES block from lines 6 to 10 three dimension roles are defined,
i.e. the "Farm", "Feeding Time" and "Cattle" dimension roles are defined, referencing the
"Farm", "Time" and "Animal" dimensions.

Thirdly, the user should be enabled to create business terms by consecutively creating a term
context, description, and a template. Although context, description, and template conceptually
occur only in combination, the repository should allow to define them separately to enable users
to define definitions in various languages and templates for different systems. Thus, the OLAP

21

pattern language grammar defines statements for the three components of the pattern definition,
which the repository needs to support.

To define a business term context, a corresponding CREATE statement must be supported, where
parameters and constraints can be defined. Users should be able to state the type of the business
term and various constraints. Thus, the statements include a CONSTRAINTS block, where domain-
and property constraints are formulated to restrict the context parameter values.

1 CREATE UNARY_DIMENSION_PREDICATE "Austrian Milk Models"/"Dairy Business

↪→ Terms"/"Jersey" WITH

2 CONSTRAINTS

3 <ctx >."Main Breed":"Breed Name";

4 END CONSTRAINTS;

5 END UNARY_DIMENSION_PREDICATE;

Listing 3.7: Business term context for "Jersey Breed"

In Listing 3.7 a create statement for the "Jersey" breed is provided. In contrast to other
statements the repository must recognize the type of the business term from line 1, i.e., the
UNARY_DIMENSION_PREDICATE designation represents a business term of the respective type. Fur-
ther, an implicit context parameter (<ctx>) must be created according to the business term type;
e.g. a UNARY_DIMENSION_PREDICATE indicates a <ctx> parameter restricted to the "DIMEN-
SION" value set. In the CONSTRAINTS block a domain constraint in line 3 restricts the "Main
Breed" level of <ctx> to be of the type "Breed Name".

It should further be possible to add one or more business term descriptions to an existing business
term context, hence, the corresponding OLAP pattern language statements need to be supported
as well. As the description only includes text, the task for the repository is simple, that is, to
persist the included textual attributes.

1 CREATE TERM DESCRIPTION FOR "Austrian Milk Models"/"Dairy Business

↪→ Terms"/"Jersey" WITH

2 LANGUAGE = "English";

3 ALIAS = "Cattle Breed Jersey";

4 DESCRIPTION = "Restriction of result to cattle of main breed Jersey";

5 END TERM DESCRIPTION;

Listing 3.8: Business term description for "Jersey breed"

In Listing 3.8 the corresponding command to the English description for the Jersey business term
states the term’s alias name is "Cattle Breed Jersey" and provides a description text for the
users.

The creation of business term templates must also be possible using OLAP pattern language
commands. Generally, the task for templates is the same as for descriptions, as only textual
attributes are included, that is, language, dialect, and expressions are strings the repository should
persist. The task for the repository however does not include to check the expression in any way
as the correctness of the query snippet must be ensured by the user. Note that the code of the
target language must be wrapped using "*{}*", in contrast, macro calls are outside these wrapping

22

structures. By defining the grammar this way, the expression can include strings of arbitrary target
languages without incorporating their languages’ grammars.

1 CREATE TERM TEMPLATE FOR "Austrian Milk Models"/"Dairy Business

↪→ Terms"/"Jersey" WITH

2 LANGUAGE = "SQL" ;

3 DIALECT = "ORACLEv11" ;

4 EXPRESSION = "*{ <ctx >.""Main Breed"" = ""Jersey"" }*";

5 END TERM TEMPLATE;

Listing 3.9: Business term template for "Jersey Breed"

In Listing 3.9 the representation of the SQL statement in the Oracle version 11 dialect is stated in
the expression.

In addition to cubes, dimensions, and business terms, users should be able to define patterns just
like terms by defining context, description, and template separately. Basically, a pattern definition
is similar to the definition of a business term, except that the attributes of the definitions differ
and the context also includes derived elements, additional constraints, and local cubes. Thus,
the following will focus on tasks originating from these elements particularly. The creation of
templates is not detailed again, as it mirrors the business term template creation, except that
the data model (relational or multidimensional) and implementation variant (star or snowflake
schema) are captured.

In a pattern context, the repository must additionally be able to process the DERIVED ELEMENTS

block containing further variables and their derivation rules. It is worth noting, that for this
prototype the derived variables need not be evaluated in the usage process (subsection 2.2.2), thus
type checks for the rules are not part of the task as this is performed by the pattern grounding
component. In the context of patterns, the repository does have to support three additional
constraints, namely return constraints as well as unary and binary applicable-to constraints.
Further, patterns also offer local cubes of a pattern’s local multidimensional model provided by
the template (subsection 2.2.1), which is represented in the same forms as constraints concerning
multidimensional model elements, i.e., type, property, and domain local cubes. Hence, the task for
extracting information from the local cubes stated in the LOCAL CUBES block is equivalent to the
constraints of the same name.

An example statement can be seen in Listing 3.10, which is the "Breed-Specific Subset-Subset
Comparison" that can be used in the context of the Austrian Milk Company’s eMDM. In the
DERIVED ELEMENTS block, one can see the formulation of derivation rules starting from line 17 to
line 19. The meaning behind derivation rules in e.g. line 17 is, that the name of the dimension
<compDim> is the name of the dimension referenced by the <compDimRole> dimension role
of the <sourceCube> parameter, whereas line 19 defines that the name of the number value
set <cubeMeasureDom> is the name of the return type of the <cubeMeasure> unary derived
measure. Further, in the CONSTRAINTS block, e.g. in the line 42 a unary applicability constraint
restricts the values of the <animalBreedSlice> parameter, to be a business term which must be
applicable to the MDM element "Animal".

23

1 CREATE PATTERN "Austrian Milk Models"/"Dairy OLAP Patterns"/"Breed -Specific

↪→ Subset -Subset Comparison" WITH

2

3 PARAMETERS

4 <sourceCube >:CUBE;

5 <baseCubeSlice >: UNARY_CUBE_PREDICATE;

6 <animalBreedSlice >: UNARY_DIMENSION_PREDICATE;

7 <compDimRole >: DIMENSION_ROLE;

8 <iDimSlice >: UNARY_DIMENSION_PREDICATE;

9 <cDimSlice >: UNARY_DIMENSION_PREDICATE;

10 <joinDimRole >: DIMENSION_ROLE;

11 <groupCond >: DIMENSION_GROUPING;

12 <cubeMeasure >: UNARY_DERIVED_MEASURE;

13 <compMeasure >: BINARY_DERIVED_MEASURE;

14 END PARAMETERS;

15

16 DERIVED ELEMENTS

17 <compDim >: DIMENSION <= <sourceCube >.<compDimRole >;

18 <joinDim >: DIMENSION <= <sourceCube >.<joinDimRole >;

19 <cubeMeasureDom >: NUMBER_VALUE_SET <= <cubeMeasure >. RETURNS;

20 END DERIVED ELEMENTS;

21

22 FRAGMENTS

23 "interestCube":CUBE;

24 "interestCube" HAS MEASURE <cubeMeasure >;

25 "interestCube".<cubeMeasure >:<cubeMeasureDom >;

26 "comparisonCube":CUBE;

27 "comparisonCube" HAS MEASURE <cubeMeasure >;

28 "comparisonCube".<cubeMeasure >:<cubeMeasureDom >;

29 END FRAGMENTS;

30

31 CONSTRAINTS

32 <sourceCube > HAS DIMENSION_ROLE "Cattle";

33 <sourceCube > HAS DIMENSION_ROLE <compDimRole >;

34 <sourceCube >."Cattle":"Animal";

35 "Animal" HAS LEVEL "Main Breed";

36 "Animal"."Main Breed":"Breed Name";

37

38 <sourceCube >.<compDimRole >:<compDim >;

39 <sourceCube >.<joinDimRole >:<joinDim >;

40 <cubeMeasure > RETURNS <cubeMeasureDom >;

41

42 <animalBreedSlice > IS_APPLICABLE_TO "Animal";

43 <baseCubeSlice > IS_APPLICABLE_TO <sourceCube >;

44 <iDimSlice > IS_APPLICABLE_TO <compDim >;

45 <cDimSlice > IS_APPLICABLE_TO <compDim >;

46 <groupCond > IS_APPLICABLE_TO <joinDim >;

47 <cubeMeasure > IS_APPLICABLE_TO <sourceCube >;

48 <compMeasure > IS_APPLICABLE_TO ("interestCube","comparisonCube");

49 END CONSTRAINTS;

50 END PATTERN;

Listing 3.10: Pattern context for “Breed-Specific Subset-Subset Comparison" taken from [1] with
authors permission

24

Regarding pattern descriptions, the task for the repository is to persist the corresponding string
attributes to be able to provide information to the users. These attributes differ from the ones used
in business term descriptions and include, language, alias name(s), problem description, solution
idea, an example and related pattern name(s).

1 CREATE PATTERN DESCRIPTION FOR "Austrian Milk Models"/"Dairy OLAP

↪→ Patterns"/"Breed -Specific Subset -Subset Comparison" WITH

2 LANGUAGE = "English";

3 ALIAS = "Breed -Specific Comparison";

4 PROBLEM = "Aggregated measure values for two specified groups of facts

↪→ relating to a

5 specific breed from a single source cube should be compared in a

↪→ meaningful way.";

6 SOLUTION = "...";

7 RELATED = "Breed -Specific Subset -Subset Side -By-Side Comparison";

8 EXAMPLE = "....";

9 END PATTERN DESCRIPTION;

Listing 3.11: Pattern description for “Breed-Specific Subset-Subset Comparison" taken from [1]
with authors permission

The exemplified information to the "Breed-Specific Subset-Subset Comparison" pattern can
be taken from Listing 3.11. Accordingly, it is an English description, which states the alias name, i.e.
"Breed-Specific Comparison" and describes the analysis situations to which it can be applied.
For the sake of brevity the solution as well as the example text are not detailed. However, based
on the existing information, it can be deemed similar to the "Breed-Specific Subset-Subset
Side-By-Side Comparison".

Updating Content Elements

The OLAP pattern language grammar defines the updating of patterns or eMDM elements to be a
CREATE OR REPLACE statement. Hence, update statements are just the same as create statements
with the exception that the CREATE at the beginning is replaced by the CREATE OR REPLACE

keyword. Thus, updating content elements for the repository application is to be implemented as
delete and re-insert process. Accordingly, it is not the task of the repository application to support
more specific update like renaming variables or reformulating constraints for business term- or
pattern contexts.

Deleting Content Elements

For deleting content elements simple delete statements are predefined by the OLAP pattern
language which are similar to DELETE statements for organization elements. Thus, structure of
all delete statements follows the same schema: the DELETE keyword is followed by the element
designation, followed by the path of the element to be deleted. The task for the repository is to
identify the corresponding element and perform a cascading delete, e.g., if a pattern should be
deleted, all associated descriptions and templates must be deleted as well. Delete statements in
the context of this work however regard elements only, not their components; so it is not possible
to formulate statements to delete e.g. a specific constraint from a pattern. Consequently, such
statements are not part of the task for this work either.

25

1 DELETE PATTERN "Austrian Milk Models"/"Dairy OLAP Patterns"/"Breed -Specific

↪→ Subset -Subset Comparison";

Listing 3.12: Delete statement for "Breed-Specific Subset-Subset Comparison"

In Listing 3.12 the "Breed-Specific Subset-Subset Comparison" pattern, as defined in List-
ing 3.10 should be deleted. That is, the repository application must remove the pattern from the
"Dairy OLAP Patterns" catalogue in the "Austrian Milk Models" repository. Further, the
description added to the "Breed-Specific Subset-Subset Comparison" pattern in Listing 3.11
must also be removed.

1 DELETE PATTERN TEMPLATE FOR "Austrian Milk Models"/"Dairy OLAP

↪→ Patterns"/"Breed -Specific Subset -Subset Comparison" WITH

↪→ DATA_MODEL="Relational", VARIANT="Star -Schema", LANGUAGE="SQL",

↪→ DIALECT="Oraclev11";

2

3 DELETE PATTERN DESCRIPTION FOR "Austrian Milk Models"/"Dairy OLAP

↪→ Patterns"/"Breed -Specific Subset -Subset Comparison" WITH

↪→ LANGUAGE="English";

Listing 3.13: Delete Statement for"Breed-Specific Subset-Subset Comparison"’s templates and
descriptions

The deletion of templates and descriptions of business terms require further arguments for the
delete operation. In Listing 3.13 the "Breed-Specific Subset-Subset Comparison" pattern’s
templates are deleted that were defined for the relational data model, following a star schema
realization considering SQL with an "Oraclev11" dialect. If arguments are omitted completely,
then all templates are deleted, while omitting some arguments leads to the deletion of all templates
matching those arguments. Similarly, descriptions require additional arguments for the delete
operation, i.e., the language.

Retrieving Content Elements

To actually use the content, both eMDM elements and patterns must be retrievable. Hence, the
repository must offer means enabling users to search for certain content elements that potentially
satisfy their needs. The OLAP pattern language defines two types of SEARCH statements that
allow for the user to search for content fulfilling certain criteria. The basic search statements aim
at string searches, i.e., the statements are equivalent to the search statements for organization
elements except that the search scope can be specified to section of a description (if available
otherwise only the name) (section 3.1.1). Accordingly, the structure consists of the keyword
SEARCH and subsequently contains a search target (pattern, business term, cube or dimension), an
optional search space (the path to search in), a search term (the string to search for) and a search
scope (name and sections available in descriptions), hence, possible search scopes for a pattern
or term are all attributes included in the description, i.e. the language, solution, alias names etc,
while for cube and dimension searches, the name is the only semantically reasonable scope.

26

1 SEARCH TERM IN "Austrian Milk Models"/"Dairy Business Terms" CONTAIN "Subset"

↪→ IN NAME , ALIAS;

Listing 3.14: String search for business terms

The Listing 3.14 depicts an example on how to search for business terms. The task for the
repository is to extract the case-insensitive search string, i.e., "Subset", and find all business
terms containing it in their names and alias names. Additionally, the business terms must be part
of the "Dairy Business Terms" glossary, to be part of the search result.

More advanced search statements also allow to have multiple combinations of search terms and
search scopes.

1 SEARCH TERM IN "Austrian Milk Models"/"Dairy Business Terms" CONTAIN "Subset"

↪→ IN NAME , ALIAS CONTAIN "English" in LANGUAGE;

Listing 3.15: String search for business terms with multiple search terms

The Listing 3.15 is an extended version of the Listing 3.14 statements, that further restricts the
search results to business terms having an English description.

Further, the repository application must support to retrieve content elements using SHOW statements.
In contrast to organization elements, a show statement for a content element must provide the
user with the initial definition statement. Accordingly, the repository application must be capable
of creating OLAP pattern language definitions for content elements. The regarding structure
consists of two parts beginning with the SHOW keyword, followed by a content element’s path.

1 SHOW TERM IN "Austrian Milk Models"/"Dairy Business Terms"/"Jersey";

Listing 3.16: Show statement for a business term

For the statement in Listing 3.16 the repository therefore must provide the user with the definition
of the Jersey business term (Listing 3.7).

Using Content Elements

Corresponding to the usage process (subsection 2.2.2), the last part of the task for an OLAP
pattern repository is to support users in the practical application of patterns. Therefore, in a first
step the repository must support the instantiation of any previously defined patterns. Following
the OLAP pattern language an INSTANTIATE PATTERN statement consists of a path that defines
the pattern to instantiate, a path of for the new instantiated pattern and one or more binding
expressions. Therefore, the BINDINGS block allows to assign values to any parameter defined in
the pattern context by using the "=" operator. Thus, the task for the repository is to create and
persist a new pattern, which is a copy of the initial pattern, and replace the instantiated variables
with the corresponding values.

27

1 INSTANTIATE PATTERN "Austrian Milk Models"/"Dairy OLAP

↪→ Patterns"/"Breed -Specific Subset -Subset Comparison" AS

2 "Austrian Milk Models"/"Dairy OLAP Patterns"/"Austrian Milk Custom

↪→ Breed -Specific Subset -Subset Comparison" WITH

3 BINDINGS

4 <sourceCube > = "Feeding",

5 <animalBreedSlice > = "Jersey",

6 <baseCubeSlice > = "Low Daily Feed Consumption",

7 <compDimRole > = "Cattle",

8 <iDimSlice > = "Young Cattle",

9 <cDimSlice > = "Old Cattle",

10 <joinDimRole > = "Farm",

11 <groupCond > = "Per Farm",

12 <cubeMeasure > = "Average Feed Consumption",

13 <compMeasure > = "Average Feed Consumption Ratio"

14 END BINDINGS;

Listing 3.17: Instantiation of "Breed-Specific Subset-Subset Comparison" Pattern taken from [1]
with authors permission

In Listing 3.17 the pattern defined in Listing 3.10 is instantiated. The Breed-Specific Subset-
Subset Comparison is the one to be instantiated, whereas the Austrian Milk Custom Breed-Specific
Subset-Subset Comparison is the name for the new, more specific pattern. The newly returned
pattern is only a more specific version of the existing one, except that the pattern parameters
removed and replaced by the name bound in the derivation rules, constraints and local cubes.

Fully instantiated patterns, where all parameters are bound to parameters, shall be able to be
executed to get an executable OLAP query. The task for the repository application, hence is to
process EXECUTE commands. The execution command, in its simplest form, only consists of one
line, if the user intends to execute all available templates of a pattern. Specific templates are
selected by specifying the sections of a pattern template, that is, DATA_MODEL, VARIANT, LANGUAGE,
and DIALECT. The basic structure of the EXECUTE statements for executing all pattern templates
includes the path to a pattern, followed by the paths to the MDM and the glossary. For executing
specific templates, the statement is extended by the template sections to be considered.

1 EXECUTE PATTERN "Austrian Milk Models"/"Dairy OLAP Patterns"/"Austrian Milk

↪→ Custom Breed -Specific Subset -Subset Comparison" FOR "Austrian Milk

↪→ Models"/"Dairy Precision Farming" USING "Austrian Milk Models"/"Dairy

↪→ Business Terms";

2

3 EXECUTE PATTERN "Austrian Milk Models"/"Dairy OLAP Patterns"/"Austrian Milk

↪→ Custom Breed -Specific Subset -Subset Comparison" FOR "Austrian Milk

↪→ Models"/"Dairy Precision Farming" USING "Austrian Milk Models"/"Dairy

↪→ Business Terms" WITH TEMPLATE DATA_MODEL="Relational", VARIANT="Star

↪→ Schema", LANGUAGE="SQL", DIALECT="ORACLEv11";

Listing 3.18: Execute "Austrian Milk Custom Breed-Specific Subset-Subset Comparison" pattern

The task for the repository, considering Listing 3.18 line 1, is to execute all templates of the
"Austrian Milk Custom Subset-Subset Comparison" pattern in the context of the "Dairy

28

Precision Farming" MDM enriched by the "Dairy Business Terms". In contrast, in line 3 the
task is only to execute the specific template, i.e., the template for a relational data model in the
star schema in the "ORACLEv11" dialect of the SQL language. Either way, the goal is to get an
executable query, generated from the template(s), adapted to the eMDM.

3.2 Requirements

The requirements in this section define how the OLAP pattern repository application must be
implemented in order to be useful in practice. Therefore, it is split into two parts following the
idea of Sommerville [20, p. 94], describing the requirements resulting from the section 3.1 as a
combination of user and system requirements. The user requirements describe, in the form of
user scenarios following [20, p. 105], how the repository application is intended to be used in
practice. The aim is to formulate user requirements in a way that they are understandable for
someone without technical knowledge [20, p. 94]. In a second step the corresponding system
requirements are derived. Following Sommerville [20, p. 94] system requirements are expanded
user requirements, describing how the system should provide the functionality and thus can be
considered the starting point for the design. The system requirements for this work deviate from
this definition by avoiding redundancy and only focus on how functionality should be provided. It
is noteworthy, that also the general requirements for repositories as depicted in section 2.3 are
considered important for this work.

3.2.1 User requirements

User requirements formulate, in a non-technical way, how the OLAP pattern repository is intended
to be used in practice. To make these requirements comprehensible, they are be formulated as
scenarios following the schema of Sommerville [20, p. 105]. Accordingly, scenarios "are descriptions
of example interaction sessions" [20, p. 105] and thus for this work are built around the language
statement depicted in the task (section 3.1). Each scenario should include an initial assumption, a
regular flow, exceptions and a goal state [20, p. 106]. Based on the problem statement groups
of user requirements can be formed, i.e., requirements regarding create, retrieve, update, delete,
and execute operations. The user requirements can further be classified according the OLAP
pattern approach in the ones regarding the definition, building a definition-centric view, and the
ones regarding the usage process, building the usage-centric view. Each group of requirement
can additionally be associated with one or both of the user groups. In Figure 3.1 an overview of
requirement groups is provided, where each is classified and associated with a user role.

Table 3.1 provides an overview of the specific requirements for this work, where a classification
concerning the element type is made. Hence, there are requirements for organization and for
content elements. The focus of the user requirements clearly lies on create-, instantiate-, and
execute-operations, which are separately defined for each type of organization and content element.
The reason for this is that they differ significantly depending on which element is involved, whereas
update-, delete-, search-, and show-requirements are basically identical for every content or
organization element, respectively.

In the following, all scenarios regarding patterns, eMDM elements, and organization elements
are described (see Table 3.1). At first, requirements for organization elements are defined in

29

Figure 3.1: Use cases defining user requirements

section 3.2.1, followed by four sections on content element requirements. That is, in section
two requirements for patterns are stated, whereas section three covers business-term-specific and
section four cube- and dimension-specific requirements. Lastly, section five defines general content
specific requirements, i.e., concerning update-, delete-, search-, and show-operations.

User Requirements for Organization Elements

This subsection introduces requirements originating from organization elements and thus build
upon the regarding language statement described in the task (section 3.1).

Create Repository Requirement (CRR): Creating a repository is a scenario that refers to
setting up a new organization structure within the repository application. This requirement applies
to situations where a DWH expert wants to define a new space to maintain content elements for,
e.g., an independent unit in an organization like a subsidiary.

• Initial state: A new organization structure needs to be set up, however, there are no
pre-conditions concerning the repository or its content.

• Regular flow: A unique name for the repository must be defined. Therefore, the user may
want to follow the SOER to search for existing repositories having the same or similar names.
In case that there is no existing repository with the exact same name, the corresponding
CREATE statement (see Listing 3.1) is formulated and executed.

• Exception cases: (i) The command to execute includes syntactical errors; a detailed error
message should help the user to correct the statement. (ii) The given repository name
already exists; an error message must prompt the user to find a new name.

• Goal state: The repository element is added and the success message of the procedure is
provided to the user.

30

User Requirements for Organization Elements

Create Repository Requirement (CRR)
Create Catalogue Requirement (CCR)
Create Glossary Requirement (CGR)
Create MDM Requirement (CMR)
Delete Organization Element Requirement (DOER)
Search Organization Element Requirement (SOER)
Show Organization Element Requirement (SOLR)

User Requirements for Content Elements: Patterns

Create Pattern Requirement (CPR)
Create Pattern Context Requirement (CPCR)
Create Pattern Template Requirement (CPTR)
Create Pattern Description Requirement (CPDR)
Instantiate Pattern Requirement (IPR)
Execute Pattern Requirement (EPR)

User Requirements for Content Elements: Business Terms

Create Business Term Requirement (CBR)
Create Business Term Context Requirement (CBCR)
Create Business Term Template Requirement (CBTR)
Create Business Term Description Requirement (CBDR)

User Requirements for Content Elements: Cubes and Dimensions

Create Cube Requirement (CCR)
Create Dimension Requirement (CDR)

User Requirements for Content Elements

Update Content Element Requirement (UCER)
Delete Content Element Requirement (DCER)
Search Content Element Requirement (SCER)
Show Content Element Requirement (SCDR)

System Requirements

Language Statement Processing Requirement (LSPR)
Extensibility Requirement (EXTR)
Object Representation Requirement (ORR)
Interchangeability Requirement (ICR)

Table 3.1: User- and System-Requirements

31

Create Catalogue Requirement (CCR): The CCR is a scenario of the definition-centric view
that corresponds to the need for adding a new catalogue to an existing repository. That is, the
DHW expert wants to create a new set of patterns, e.g., for a department of an organization.

• Initial state: The repository application contains at least one repository element, which
must be extended by a new catalogue.

• Regular flow: A unique name for the catalogue within the repository must be defined. To
find a unique name the user may want to follow the SOER once he/she already has a name
in mind, to find out if there is an existing catalogue with that name. In case that there is
no existing catalogue with the intended name, the corresponding CREATE statement (see
Listing 3.1) is formulated and executed.

• Exception cases: (i) The command to be execute includes syntactical errors; a detailed
error message should help the user to correct the statement. (ii) The given catalogue
name already exists; an error message must prompt the user to find a new name. (iii) The
repository does not exist; the user must be informed to specify an existing repository.

• Goal state: The catalogue element is added to the repository and the user is confirmed of
success of the procedure.

Create Glossary Requirement (CGR): Creating a glossary applies to situations where a new
glossary of business terms should be set up in the repository application. Hence a new glossary
must be added to an existing repository organization element.

• Initial state: The repository application contains at least one repository element, which
must be extended by a new glossary.

• Regular flow: A unique name for the glossary within the repository must be defined. To
find a unique name the user may want to follow the SOER once he/she already has a name
in mind, to find out if there is an existing glossary with that name. In case that there
is no existing glossary with the intended name, the corresponding CREATE statement (see
Listing 3.1) is formulated and executed.

• Exception cases: (i) The command to be execute includes syntactical errors; a detailed
error message should help the user to correct the statement. (ii) The given glossary name
already exists; an error message must prompt the user to find a new name. (iii) The
repository does not exist; the user must be informed to specify an existing repository.

• Goal state: The glossary element is added to the repository and the success of the procedure
is confirmed to the user.

Create MDM Requirement (CMR): Creating a MDM refers to the need of depicting a new
organizational or reference MDM within the repository application. Hence a new MDM must be
added to an existing repository organization element.

• Initial state: The repository application contains at least one repository element, which
must be extended by a new MDM.

32

• Regular flow: A unique name for the MDM within the repository must be defined. To find
a unique name the user may want to follow the SOER once he/she already has a name in
mind, to find out if there is an existing MDM with that name. In case that there is no
existing MDM with the intended name, the corresponding CREATE statement (see Listing 3.1)
is formulated and executed.

• Exception cases: (i) The command to be executed includes syntactical errors; a detailed
error message should help the user to correct the statement. (ii) The given MDM name
already exists; an error message must prompt the user to find a new name. (iii) The
repository does not exist; the user must be informed to specify an existing repository.

• Goal state: The MDM element is added to the repository and the success of the procedure
is confirmed to the user.

Delete Organization Element Requirement (DOER): Deleting organization elements is a
requirement of data warehouse experts wanting to clean up the repository application. It might
be necessary to delete organization elements if the contained content is not needed any longer.
For all organization elements all contained content elements must be removed as well, i.e., a
cascading delete is to be performed. The reason, why there is only a generic delete requirement
for all organization elements is, that the scenarios and language statements (see section 3.1) are
identical for every element. However, deleting elements is to be treated with caution as for this
version no backups are intended.

• Initial state: An organization element which should be removed is persisted in the repository.

• Regular flow: The element to be deleted needs to be identified (e.g., by following SCER or
SCDR), that is, the name and location must be known. A DELETE statement (see Listing 3.2)
is formulated and executed.

• Exception cases: (i) The command to be executed includes syntactical errors; a detailed
error message should help the user to correct the statement. (ii) The user may provides
either an element name or a path that does not actually exist; an error message should state
that the path is incorrect.

• Goal state: The organization element and its content have been removed from the repository,
leaving it in a consistent state. The user receives a success message.

Search Organization Element Requirement (SOER): Searching for organization elements
containing a specific string is a scenario, that can be connected to both user roles and is classified
as part of the definition-centric view. Both user groups may need to retrieve an organization
element in course of another scenario, or just want to inspect the current organization structure.
The goal of a search statement is to construct and return a machine interpretable representation
of the organization element and the included content, allowing for a reasonable visualization.

• Initial state: One has a certain type of organization element in mind, that should be found,
e.g., a catalogue. Additionally, a search string the user knows or assumes to occur in the
organization element’s name is known.

33

• Regular flow: Initially, a path may be chosen, to narrowed the search further, e.g. for a
catalogue one can state the repository it must be contained in. Therefore, the user may want
to discover possible paths following the SOLR. Finally the corresponding SEARCH statement
(see Listing 3.3) is formulated and executed.

• Exception cases: (i) The command to be execute includes syntactical errors; a detailed
error message should help the user to correct the statement.

• Goal state: The set of organization elements meeting the search criteria is returned to the
user.

Show Organization Element Requirement (SOLR): Showing an organization element is a
scenario that allows the user to view a path of interest to explore which elements are included.
That is, for a repository, one can, for example, find the names of the comprised catalogues, MDMs
and, glossaries.

• Initial state: The repository application includes at least one organization structure that
can be discovered.

• Regular flow: The path to be shown is stated in a SHOW (see Listing 3.4) statement which
is further executed. Thus, this scenario may include an iteration, that is, one can start from
the root and discover the structure all the way to, e.g., a pattern (SCDR).

• Exception cases: (i) The command to be execute includes syntactical errors; a detailed
error message should help the user to correct the statement. (ii) The path provided in the
statement does not exist; the user must be informed by an error message.

• Goal state: A textual representation of the elements within the path is offered.

User Requirements for Content Elements: Patterns

This subsection describes the user scenarios that concern patterns, their contexts, templates,
and descriptions. That is, this section will focus on peculiarities of patterns regarding creation,
instantiation, and execution.

Create Pattern Requirement (CPR): The create pattern scenario is a part of the definition-
centric view and describes the need for automatizing creation of new patterns. The scenario includes
the identification, design, and creation of a pattern corresponding to a recurring information
demand. Hence, it is an aggregation of the CPCR, CPTR and CPDR scenario that are subsequently
described.

• Initial state: The data warehouse expert has identified a new recurring information demand,
that is not covered by any existing pattern. Thus, the goal is to formulate a best practice
solution that can be reused for future occurrences of that type of information demand.

• Regular flow: The DWH expert starts by defining the pattern context, i.e., following the
CPCR scenario. Once the context is persisted in the repository, it can be continued to
formulate a corresponding template as described in the CPTR scenario. Subsequently, a
description as in CPDR must be provided, to complete the pattern definition.

34

• Exception cases: (i) Every error that occurs during one of the three sub-scenarios.

• Goal state: Pattern context, descriptions and templates are persisted in the repository
keeping it in a consistent state. The UI confirms the success to the user.

Create Pattern Context Requirement (CPCR): This scenario is the first sub-scenario of the
CPR to be executed. It depicts the process that is necessary for a DWH expert to add a pattern’s
context to the repository.

• Initial state: The initial state as for CPR.

• Regular flow: Depending on the flexibility to be provided (domain-independent, domain-
specific, or organization-specific) pattern parameters can be declared with respect to an
associated eMDM. Derived elements can be defined by formulating derivation rules upon
these parameters, constants, and other derived elements. Upon the parameters and derived
elements, constraints can be defined that restrict the applicability to the intended situations.
Lastly, local cubes can be defined specifying fragments of the local multidimensional model
that is provided by the pattern’s templates. Additionally, a unique pattern name must be
chosen; therefore the users may want to inspect the catalogue he/she wants to add the
pattern to. That is, one can follow the steps described in the SCDR, to see which names are
already taken. The CREATE PATTERN command (see Listing 3.10) is formulated that depicts
the pattern context. Finally, the command is sent to the repository which must persist the
provided information.

• Exception cases: (i) The user may provides either a repository or a catalogue name that
does not actually exist; an error message should state that the path is incorrect. (ii) The
command to be execute includes syntax errors; a detailed error message should help the
user to correct the statement. (iii) The pattern is semantically incorrect, e.g., parameters in
constraints are used but never defined; the user must be informed in an error message.

• Goal state: The new pattern and its context are persisted in the repository. The user does
receive a confirmation.

Create Pattern Template Requirement (CPTR): Creating a template is the second step to
define a pattern, describing the need of domain experts to add a generic query structure to a
pattern that is interspersed with placeholders for variables and macro calls. It also applies to
fully defined patterns, which need templates in additional query languages, dialect, data model or
variant.

• Initial state: The repository contains at least one pattern context that needs a template to
be fully instantiated or that needs to be extended by further templates.

• Regular flow: In a first step, the data model, variant, query language, and dialect for the
template needs to be specified. The query structure representing the pattern in the specific
query language is constructed, including placeholders for variable values and necessary macro
calls. The pattern context to be extended needs to be identified (e.g. by following SCER
to find specific patterns or SOLR to find all patterns in a certain catalogue), that is, the

35

pattern’s name and location must be known. In the next step a CREATE TEMPLATE statement
(see Listing 3.10) needs to be executed adding the template to the specified pattern context.

• Exception cases: (i) The user may provides a path that does not actually exist; an error
message should state that the path is incorrect. (ii) The command to be execute includes
syntax errors; a detailed error message should help the user to correct the statement. (iii)
Placeholders or macros that not actually exist may be added to the expression, however, it
is not required to identify this kind of error.

• Goal state: The template is persisted in the repository and was added to the respective
pattern. The user does receive a confirmation.

Create Pattern Description Requirement (CPDR): This requirement refers to the third step
in the pattern definition and describes the scenario of adding a description to a pattern. Note that
the process is the same, if a description. in another language should be added to a fully defined
pattern.

• Initial state: The repository contains at least one pattern that needs to be extended by
descriptions. That is, a pattern context and template already exist in the repository, but
need to be described.

• Regular flow: At first, the language needs to be specified, i.e., a pattern can have numerous
different descriptions in different languages. Further, meaningful textual descriptions need
to be found for the description attributes. The pattern context to be extended needs to be
identified (e.g. by following SCER to find specific patterns or SOLR to find all patterns in a
certain catalogue), that is, the pattern’s name and location must be known. In the next
step a CREATE DESCRIPTION statement (see Listing 3.11) needs to be executed adding the
template to the specified pattern context.

• Exception cases: (i) The user may provides a path that does not actually exist; an error
message should state that the path is incorrect. (ii) The command to be execute includes
errors; a detailed error message should help the user to correct the statement.

• Goal state: The description is persisted in the repository and is added to the respective
pattern. The user does receive a confirmation.

Instantiate Pattern Requirement (IPR): Instantiating a pattern is a more specific form of a
creation (CPR), i.e., it also adds a pattern to a repository. However, the instantiation follows the
process introduced in subsection 2.2.2, that is, the new pattern is a copy of an existing one with
some or all variables replaced by values. Thus, it allows to generate a specific pattern from a
generic one.

• Initial State: The repository contains a nonempty set of generic patterns, i.e., all or at
least some variables are unbound. Further, there is a need to adapt one of these patterns to
a more specific situation.

36

• Regular flow: The domain expert searches for the name and location of the pattern to be
instantiated (e.g. by following the SCER) and explores the context to find the variables
that need to be instantiated (e.g. following the SCDR). The values for the variables must
be determined in such a way, that they depict the analysis situation, while considering the
assocaited eMDM. The INSTANTIATE PATTERN statement (see Listing 3.17) is formulated
and executed.

• Exceptions: (i) The user may provides a path that does not actually exist; an error message
should state that the path is incorrect. (ii) The command to be execute includes syntactical
errors; a detailed error message should help the user to correct the statement. (iii) One or
more of the parameters in the statement are not defined for the chosen pattern; an error
message should inform the user.

• Goal State: A new pattern is created in the repository which includes all derived elements
with corresponding derivation rules, local cubes, and constraints as well as templates from
the initial pattern and additionally associates some/all variables with the bound values. The
user receives a confirmation message.

Execute Pattern Requirement (EPR): An execution scenario refers to the last two steps
(grounding with validity checking and the actual execution) in the pattern usage process, i.e., it
includes all necessary steps to generate an executable query from a fully instantiated pattern. The
users have the possibility to state the context for both the grounding and the execution by stating
an MDM and a glossary path following the usage process in subsection 2.2.2. Further users can
choose to execute all templates associated with a pattern, or just the ones meeting specific criteria
as depicted in the task section 3.1;

• Initial State: The repository contains a nonempty set of fully instantiated patterns, i.e.,
parameter-free patterns, as well as an associated eMDM.

• Regular flow: The domain expert searches for the name and location of the pattern to
be executed, e.g., by following the SCER scenario. Optionally, the data model, variant,
language, and dialect can be stated. Further, the location of an MDM and a glossary must
be explored, the pattern should be executed for (e.g. by using the SCER again). An EXECUTE

PATTERN command (see Listing 3.18) is formulated and executed for the MDM using the
glossary.

• Exceptions: (i) The user may provides either a pattern template name or a path that
does not actually exist; an error message should ask the user to correct the input. (ii) The
command to be execute includes syntactical errors; a detailed error message should help the
user to correct the statement. (iii) The pattern is not applicable to the eMDM; an error
message should inform the user.

• Goal State: The user receives the desired query, satisfying the information demand.

User Requirements for Content Elements: Business Terms

This subsection describes the user scenarios concerning business terms, their contexts, templates,
and descriptions. Even though these requirements are very similar to the ones for patterns, there are

37

some important differences, that demand autonomous requirements. However, the requirements
in this section regard the same operations as for patterns, i.e., updating, deleting, searching, and
showing business terms.

Create Business Term Requirement (CBR): This scenario is a part of the definition-centric
view and describes the need for automatizing creation of new business terms. The scenario includes
the identification, design, and creation of a business term that represents a regularly used term in
a specific domain. Hence, it is an aggregation of the CBCR, CBTR, and CBDR scenarios that are
subsequently described.

• Initial state: The data warehouse expert has identified a term used in a specific domain
which is not depicted in the glossary. Thus, the goal is to formulate a business term that
can be used to provide a corresponding query snippet for future query composition.

• Regular flow: The DWH expert starts by defining the business term context, i.e., following
the CBCR scenario. Once the context is persisted in the repository, it can be continued to
formulate a corresponding template as described in the CBTR scenario. Subsequently, a
description as in CBDR must be provided, to complete the pattern definition

• Exception cases: (i) Every error that occurs during one of the three sub-scenarios.

• Goal state: Business term context, descriptions, and templates are persisted in the repository
keeping it in a consistent state. The UI confirms the success to the user.

Create Business Term Context Requirement (CBCR): This scenario is the first sub-scenario
of the CBR to be executed. Hence, the process that is necessary for a DWH expert to add a
business term’s context to the repository is depicted. In contrast to the CPCR, the CBCR does
not include steps to add derived elements or local cubes, as both are not include in the conceptual
definition of business terms.

• Initial state: The initial state as for CBR.

• Regular flow: Firstly, the user must determine which type of business term is needed;
the business term type implicitly determines the context parameters and their types, that
allow for an application of the business term to specific entities. Constraints can be defined
that restrict the applicability to certain MDM entities. Additionally, a unique name must
be chosen; therefore the users may want to inspect the glossary he/she wants to add the
business term to. That is, one can follow the steps described in the SCDR, to see which
names are already taken. The CREATE command (see Listing 3.7) is formulated that depicts
the term context. Finally, the command is sent to the repository application which must
persist the provided information.

• Exception cases: (i) The user may provides a path that does not actually exist; an error
message should state that the path is incorrect. (ii) The command to be execute includes
syntax errors; a detailed error message should help the user to correct the statement. (iii)
The business term is semantically incorrect, e.g., parameters in constraints are used but
never defined; the user must be informed in an error message.

38

• Goal state: The new business term and its context are persisted in the repository. The user
does receive a confirmation.

Create Business Term Template Requirement (CBTR): Creating a template is the second
step in defining a business term, describing the need of domain experts to add a generic query
snippet to a business term that includes placeholders for variables. It also applies to fully defined
business terms, which need templates in additional query languages.

• Initial state: The repository contains at least one business term context that needs a
template to be fully instantiated or that needs to be extended by further templates.

• Regular flow: In a first step, the query language and dialect for the template needs
to be specified, e.g., following the DWH system used in an organization. The query
snippet representing the business term in the specific query language, i.e. the expression,
is constructed, including placeholders for variable values. The business term context to be
extended needs to be identified (e.g. by following SCER to find specific business terms or
SOLR to find all business terms in a certain glossary), that is, the name and location must
be known. In the next step a CREATE TEMPLATE statement (see Listing 3.9) needs to be
execute adding the template to the specified business term context.

• Exception cases: (i) The user may provides either a path that does not actually exist; an
error message should state that the path is incorrect. (ii) The command to be execute
includes syntax errors; a detailed error message should help the user to correct the statement.
(iii) Placeholders or macros that not actually exist may be added to the expression, however,
it is not required to identify this kind of error.

• Goal state: The template is persisted in the repository and was added to the respective
business term. The user does receive a confirmation.

Create Business Term Description Requirement (CBDR): This requirement refers to the
third step in the definition, i.e. the CBR and describes the scenario of adding a description to a
business term. Note that the process is the same, if a description in another language should be
added to a fully defined business term.

• Initial state: The repository contains at least one business term that needs to be extended
by further descriptions. That is, a business term context and a template already exist in the
repository, but need to be described.

• Regular flow: At first, the language needs to be specified, i.e., a business term can have
numerous descriptions in different languages. Further, meaningful textual descriptions need
to be found for the description attributes. The business term context to be extended needs
to be identified (e.g., by following SCER to find specific business terms or SOLR to find
all business terms in a certain catalogue), that is, the name and location must be known.
In the next step a CREATE DESCRIPTION statement (see Listing 3.8) needs to be execute
adding the template to the specified business term context.

39

• Exception cases: (i) The user may provides a path that does not actually exist; an error
message should state that the path is incorrect. (ii) The command to be executed includes
errors; a detailed error message should help the user to correct the statement.

• Goal state: The description is persisted in the repository and is added to the respective
business term. The user does receive a confirmation.

User Requirements for Content Elements: Cubes and Dimensions

This subsection focuses on the requirements that originate from the creation of cubes and
dimensions.

Create Cube Requirement (CCR): Creating a cube is a scenario that is connected to the role
of the DWH expert who wants to depict a cube, for an organization’s MDM or a reference MDM
in the repository application.

• Initial state: The repository application contains at least one MDM that must be extended
by a new cube.

• Regular flow: Firstly, the user must determine of which measures and dimension roles the
cube must consist. Step two is to define the value sets for the measures and the dimensions
for the dimension roles. Additionally, a unique name (within the MDM) must be chosen;
therefore the users may want to inspect the MDM, to see which names are already taken.
That is, one can follow the steps described in the SCDR. Subsequently, the CREATE command
(see Listing 3.6) is formulated that depicts the cube. Finally, the command is sent to the
repository application which must persist the provided information.

• Exception cases: (i) The user may provides a MDM name that does not actually exist; an
error message should state that the path is incorrect. (ii) The command to be executed
includes syntax errors; a detailed error message should help the user to correct the statement.
(iii) The given cube name is already taken; a message must ask the user to provide a unique
name.

• Goal state: The new cube is persisted in the MDM. The user does receive a confirmation.

Create Dimension Requirement (CDR): Creating a cube is a scenario that is connected to
the role of the DWH expert who wants to depict a dimension, for an organization’s MDM or a
reference MDM in the repository application.

• Initial state: The repository application contains at least one MDM that must be extended
by a new dimension.

• Regular flow: Firstly, the user must determine of which levels and attributes the dimension
must consist. Step two is to define the relationship between these elements, i.e., define
"roll-up" relations between different levels and "described-by" relations between levels and
attributes. Additionally, a unique name (within the MDM) must be chosen; therefore the
users may want to inspect the MDM, to see which names are already taken. That is, one can

40

follow the steps described in the SCDR. Subsequently, the CREATE command (see Listing 3.5)
is formulated that depicts the dimension. Finally, the command is sent to the repository
which must persist the provided information.

• Exception cases: (i) The user may provides a MDM name that does not actually exist; an
error message should state that the path is incorrect. (ii) The command to be executed
includes syntax errors; a detailed error message should help the user to correct the statement.
(iii) The given dimension name is already taken; a message must ask the user to provide a
unique name.

• Goal state: The new dimension is persisted in the MDM. The user does receive a confirma-
tion.

User Requirements for Content Elements

This subsection defines requirements for scenarios which are almost identical for all kinds of
content elements, i.e, business terms, patterns, cubes, and dimensions. Thus, the following covers
requirements originating from update-, delete-, search-, and show-operations for these four types
of content elements. Furthermore, some of these requirements apply to templates and descriptions
as well.

Update Content Element Requirement (UCER): Updating content elements refers to the
need of adapting to new situations by changing or extending the currently persisted element, like
adding new parameters for patterns or business terms.

• Initial state: The repository application includes a nonempty set of content elements, where
one of the elements must be updated.

• Regular flow: The data warehouse expert identifies necessary changes and provides an
alternative structure for the respective content element. Hence, for updating a content
element, the same procedure as for creating it must be applied. The only difference in any
case is, that instead of a CREATE, a CREATE OR REPLACE keyword is used at the beginning
of the statement.

• Exception cases: (i) The language statement is syntactically incorrect or is incomplete;
the command needs to be corrected and re-executed. (ii) Changes should be applied to a
not existing element; in this case the statement is interpreted as a regular CREATE command.
(iii) Potentially, the update can be applied to a wrong element; this work is not intended to
correct such errors, that is, there is no backup. (iv) The last potential error is a not existing
path which should be identified and result in an error message.

• Goal state: The changes have been persisted within the repository and are confirmed to
the user.

Delete Content Element Requirement (DCER): Deleting content elements is a requirement
of data warehouse experts wanting to clean the repository application. It might be necessary
to delete content elements if there are other, similar elements or it is not needed any longer.

41

The reason, why there is only a generic delete requirement is, that the scenarios and language
statements (see section 3.1) are identical for all content element (expect for the deletion of
descriptions and templates that require additional arguments). However, deleting elements is to
be treated with caution as for this version no backups are intended.

• Initial state: Content elements that are unnecessary, redundant or faulty are persisted
in a repository structure and need to be removed. For each type of content element, all
associated elements (templates and descriptions) must be removed as well, i.e., a cascading
delete is to be performed.

• Regular flow: The element to be deleted needs to be identified (e.g. by following SCER),
that is, the name and location must be known. A DELETE statement (see Listing 3.12)
is formulated and executed (see also arguments for deleting descriptions and templates
Listing 3.13).

• Exception cases: (i) The user may provides a path that does not actually exist; an error
message should state that the path is incorrect. (ii) The command to be execute includes
syntactical errors; a detailed error message should help the user to correct the statement.

• Goal state: The elements have been removed from the repository structure, leaving it in a
consistent state. The process is confirmed to the user.

Search Content Element Requirement (SCER): The SCER corresponds to the need of DWH
and domain experts to search for patterns, business terms, cubes, and dimension containing a
certain string in, e.g., the name. Searching for a specific or a group of content elements is often
part of the regular flow of other scenarios, e.g. to decide which patterns/business terms to execute.
The goal of a search statement is to construct and return a machine interpretable representation
of the content element.

• Initial state: One has a certain type of content element in mind, that should be found.
Additionally, one ore more search string the user know or assumes to occur in one of the
elements attributes must be determined.

• Regular flow: Initially, a path may be chosen, to narrowed the search further, otherwise all
organization structures within the repository application are searched. Therefore, the user
may want to discover possible paths following the SOLR. Finally the corresponding SEARCH

statement (see Listing 3.14) is formulated and executed.

• Exception cases: (i) The command to be execute includes syntactical errors; a detailed
error message should help the user to correct the statement.

• Goal state: The set of content elements meeting the search criteria is returned to the user.

Show Content Element Requirement (SCDR): Showing a content element is a scenario that
allows the user to view its structure. That is, the user is provided with the initial create statement
corresponding to the content element.

42

• Initial state: The repository application includes at least one content element that can be
discovered.

• Regular flow: Initially, one needs to identify the content element to be shown, by either
following the SOER or by a show scenario for a organization element (SOLR). The path to
be shown is stated in a SHOW statement (equivalent to Listing 3.4) which is further executed.

• Exception cases: (i) The command to be execute includes syntactical errors; a detailed
error message should help the user to correct the statement. (ii) The path provided in the
statement does not exist; the user must be informed by an error message;

• Goal state: A CREATE statement for the elements within the path is offered.

3.2.2 System Requirements

Examining the user requirements one can derive system requirements for the repository application,
in order to fulfill expectations. System requirements for this work are a mean to transfer the func-
tional user requirements into high level implementation needs. The following system requirements
can be discovered:

Language Statement Processing Requirement (LSPR): Both the task in section 3.1 and
the user requirements in subsection 3.2.1 depict how statements following the OLAP pattern
language (Appendix A) are intended to be used as a mean to communicate with the repository
application. To extract the information for further processing steps, the repository application
must implement a language processing functionality following section 2.4. Hence, the repository
application must include a unit that provides the corresponding features, i.e., take the statement
as an input and generate a reasonable output (e.g. a semantically correct AST). That is, the
repository application must implement a lexer, parser and semantic analyser capable of processing
OLAP pattern language statements.

Extensibility Requirement (EXTR): The repository application to be developed should further
be extensible to support extensions of the OLAP pattern approach as described by Kovacic et al.
in their conclusion [1]. For example, collection and optional variables should be considered in the
design.

Object Representation Requirement (ORR): The data concerning the OLAP pattern ap-
proach must centrally be stored in the repository application in any kind of database structure.
However, a repository application needs an internal, more efficient way to be able to process the
content (see IPR, EPR). This means, that in order to perform execution of a pattern in the context
of a glossary and an MDM, it is deemed more efficient to iterate an internal object representation
of the elements rather than having a large amount of database accesses. Further, in context of
search requirements (SOER and SCER) the aim is to create a machine readable representation of
the resulting elements, i.e., an object. So, the repository application must implement a mean to
build an object structure depicting the actually persisted elements for processing and must also be
able to persist newly generated objects in the database.

43

Interchangeability Requirement (ICR): The OLAP pattern repository application is a proto-
type and hence should be able to be flexible to try different technologies in further research. For
example, it should be able to test different storage methods on their applicability for the task. Thus,
the repository application must be a composition of different highly individual components, that
do not effect each other. Accordingly, if one component is replaced through another component,
doing the same work in a different way, the overall functionality should not be affected.

44

Chapter 4
Design

This section introduces a design for an OLAP pattern repository that solves the issues discovered
in the problem statement (section 1.2), while considering general repository requirements from
section 2.3 and specific requirements originating from the OLAP pattern approach (chapter 3). The
proposed design is documented using the Unified Modeling Language (UML)1, a very commonly
used notation, which allows to depict the application architecture in an implementation independent
way. In section 4.1 an overview of the architecture is provided based on two main components,
i.e., the editor and the repository application. Section 4.2 introduces a common data structure
shared by both, editor and repository application. Further, section 4.3 introduces the repository
application, while section 4.4 goes into detail on the editor application.

4.1 Architecture

The architecture for an OLAP pattern repository is widely determined by the problem statement
in section 1.2 and therefore consists of two top-level components, i.e., an editor application and a
repository application. The repository application is designed to be the central point for storing
and accessing the content elements within an organisation structure, whereas the client application
allows users to access the repository via OLAP pattern language statements. Since in modern
organisations possible users may be locally distributed, it can be assumed, that the communication
between repository application and editor application regularly takes place over the network. Hence,
the architecture follows the client-server architecture as introduced by Sommerville [20, p. 488],
i.e., a client running on a local computer accesses a server on a remote computer. In the OLAP
pattern repository architecture the client is named editor application and the server repository
application respectively. The editor sends OLAP pattern language commands to the repository
application over local network or the internet to receive the server’s response as depicted in
Figure 4.1. A response may either be a success/error message or an object following the data
structure (section 4.2).

The editor therefore provides a textual input field to formulate a command – that follows the
predefined grammar – a send button and a response field. It thus contains no logic to process the
statement in any kind, that is, the editor application is a thin client [20, p. 492] It follows that the
business logic to provide to implement the requirements must be implemented by the repository
application, allowing the user to issue any command introduced in the task (section 3.1).

1http://uml.org/

45

http://uml.org/

Figure 4.1: Top-level architecture of the OLAP pattern repository

4.2 Data Structure

The data structure that is presented in this section represents the organization and content elements
described in the task (section 3.1) on a conceptual level (see also ORR) using UML class diagrams.
Such a class diagram allows to depict classes, their comprised properties and relations to other
classes. Basically, the data structure consists of four organization and four content elements, that
form composition relationships. As per convention in many programming languages the names for
all classes start with a capital letter. The classes for the organization elements are Repository,
MDM, Vocabulary, and Catalogue. These organization elements comprise the corresponding four
content elements, namely the Cube, Dimension, Term. and Pattern classes. Figure 4.2 provides
an overview of these classes and their relationships.

Figure 4.2: Class hierarchy as generated by the language processor

The Repository class has a composition relationship to the classes MDM, Glossary, and Catalogue.
A Repository object must therefore contain one or more MDM, Glossary, and Catalogue objects.
Each of these MDM, Glossary, and Catalogue objects on the other hand can only be part of one
Repository object. Further, any organization element consists of two properties, namely a name
and an id property. The class that comprises Patterns is the Catalogue class, which means its
objects contain a non-empty set of Pattern objects. The same applies to Glossary objects which
contain a non-empty set of Term objects. MDM objects in contrast contain three non-empty sets,
i.e., one that comprises Cube objects, one that comprises Dimension objects, and a third one
that comprises ValueSet objects. It is worth noting, that all these relationships are compositions,
hence, an object may only exist as long as its containing object exists. A Cube object, for example,

46

cannot exist without an associated MDM object.

Considering the structure of an MDM in section 2.1, two types of elements, i.e., entities and
properties, can be distinguished (see Figure 4.3). Hence, the class hierarchy consists of the common
super class MDMElement, which has two specializations, namely the classes MDMProperty and
MDMEntity. The Cube and Dimension classes are subsumed under the class MDMEntity, while
the CubeProperty and the DimensionProperty are subsumed under the MDMProperty class.

Figure 4.3: MDMElement class diagram

The subclasses of the CubeProperty class are the Measure and the DimensionRole class, while the
DimensionProperty class subsumes both the Level and Attribute class. According to the MDM
structure in section 2.1, a Cube object is related to Measure and DimensionRole objects, while a
Dimension object contains multiple Level and Attribute objects as shown in Figure 4.3. Following
the task (section 3.1) both MDMEntity and MDMProperty classes contain a name property,
which is used to explicitly identify their objects. The relationships between Cube and Measure
objects and respectively between Cube and DimensionRole object represent compositions, that is,
neither a Measure nor a DimensionRole object can exist outside a Cube object. The same applies
for Level and Attribute objects within a Dimension object. The ValueSet super class allows to
define value types, i.e., NumberValueSet and StringValueSet objects, that can be associated to
the Measure, Level, and Attribute object over the domain relationship. For DimensionRole objects
the domain is represented by a Dimension object.

Besides MDM elements, the eMDM (section 2.1) consists of business terms, which are represented
by the Term class (see Figure 4.3). As terms and patterns share a widely similar structure, one
can benefit from a common super class in the class hierarchy. Therefore, both the Term class
representing business terms and the Pattern class representing OLAP patterns are specializations
of the generic Context class. A Context class (see Figure 4.4) has a name and an id property,
and comprises classes representing variables, constraints, local cubes etc. This design allows to
easily extend a business term to the same functionality as a pattern (if needed in the future) and
thereby takes into account the extensibility of the application as formulated in the EXTR.

47

Figure 4.4: Context class diagram

The Context is composed of a set of Targets; a Target represents either a Variable or a Value;
basically, a Target might occur as part of a Constraint or LocalCube. Each Target is identified by
an id property and contains a kind property (discriminator attribute) stating whether it represents
a "VARIABLE" or "VALUE". A Variable represents a parameter or derived element in a pattern or
term context, whereas a Value may be part of a constraint or is assigned to a Variable. Variables
consist of a name, the position in the context (-1 for a calculated), a variable role which is either
"PARAMETER" or "CALCULATED", a value kind and an optional property. The value kind and
optional property refers to extensions of the basic pattern approach described by Kovacic et al.
[1]; value kind allows to distinguish variables representing a single value and those representing
multiple values, i.e., Tuples, whereas the optional property allows to label parameters that need
not be instantiated. Further extensions from Kovacic et al. [1] that have been considered in the
design phase are collection variables, represented by ArrayVariables and a MapVariables, besides
the regular SingleVariables. Consequently, MapVariableEntries and ArrayVariableEntries represent
values assigned to a MapVariable or an ArrayVariable respectively; both collection variables may
have multiple values assigned. Another extension that was considered in the design is the distinction
of SingleValues and TupleValues, whereby a SingleValues represents only one value and TupleValue
can be composed of one or more values.

Constraints depict an abstract constraint class, which consists only of an id and a constraintType
property. Following section 2.2, constraints can be distingusihed into TypeConstraints, DomainCon-
straints, PropertyConstraints, UnaryApplicableToConstraints, BinaryApplicableToConstraints, and
ReturnConstraints. Each Constraint sub-class references one or more Target objects as depicted

48

for the PropertyConstraint class in Figure 4.4. In Figure 4.5 the Constraint structure is depicted
in more detail focusing on the Target references.

Figure 4.5: Constraint class diagram

A PropertyConstraint references three Targets referred to as entity, (property) type, and property
(Figure 4.5). DomainConstraints also include three Target references, i.e., entity, property, and
domain, whereas a TypeConstraint only references two Target objects, i.e., element and type.
UnaryApplicableToConstraints include two Target references, i.e., the term and the entity to be
applied to, while BinaryApplicableToConstraints include three Target references, i.e., the term
and the two entities to be applied to. Lastly, ReturnConstraints include two Target references,
i.e., the term and the number value set returned.

LocalCubes specifying local cubes mirror the structure of Constraints and thus have an id
and a localCubeType property (Figure 4.3). Also the sub-classes are alike, that is, there is a
TypeLocalCube, PropertyLocalCube, and a DomainLocalCube, which also have identical Target
references.

The last class, which is related to the Context is the Template class, representing templates as
described in section 2.2. As the template for both, patterns, and business terms includes an
expression, language and dialect property, it is reasonable to relate it to the common super class.

Figure 4.6: Class diagram for Context Descriptions

Even though a business term or pattern comprises already most components by specializing the
Context, there is one that it is missing – the description. Descriptions however are not identical
(see section 2.2), which is why a TermDescription and a PatternDescription are distinguished and
related to the Term and Pattern class respectively (Figure 4.6). Nevertheless, they share common
properties, i.e., id, language, and aliases, which can be grouped in the super class BasicDescription.
The TermDescription class extends this basic version of a description only by the description

49

property, while the PatternDescription class extends it by four additional properties, namely the
problem, solution, example, and the related patterns.

4.3 Repository Application

The architecture of the repository application follows the component-based approach as described
in Sommerville [20, p. 452]; that is, a software is a composition of independent components that
offer interfaces for communication (see also ICR). Considering the task description (section 3.1) an
architecture containing six main components is proposed by this work, namely a interface provider,
language processor, data storage, knowledge based system, template processor, and a controller.
The UML component diagram in Figure 4.7 depicts how these components build up the OLAP
pattern repository. Component diagrams are contained in the UML specifications and allow to
determine the components comprised by an architecture.

Figure 4.7: Repository application architecture

The interface provider offers an interface to the editor, receives OLAP pattern language commands
and hands them over to the language processor. A language processor is needed to extract the
information from the language statements and provide it in form of an internal object representation
(see also LSPR). The data storage provides an interface to a database allowing to persist, delete,
and retrieve organization and content elements. Checking whether or not a pattern is applicable
to an eMDM or whether a term is applicable to a MDM or to a pattern’s local cube respectively
is the task for the knowledge based system (KBS). To execute a pattern, the template processor
performs the language processing steps (Figure 2.3) on the template’s expression to identify and
substitute the macro calls with the respective code snippets. The controller contains the business
logic to decide how to process an object representation of a statement which is generated by
the language processor, that is, it delegates tasks to the respective component. In addition, the
controller generates a response that is sent to the editor, which is either a success or error message,
a machine readable search result, or an executable query.

Figure 4.8: Generic repository architecture following Sommerville [20, p.160]

50

In terms of communication between the components, Sommerville [20, p. 159] introduces a
repository reference architecture, which is applicable to any software, where large data needs to
be centrally stored and accessed by various components. According to that, each component
implements a business functionality and reads and/or writes to a central storage, called repository,
independently of all other components. That is, the communication between components takes
place only via the repository as depicted in Figure 4.8. For the repository application to be
designed, however, this is not deemed suitable, as method calls are deemed necessary between
various components e.g. between template processor executing patterns and the KBS validating
them. For that reason, the communication within the repository application is handled using
interfaces leading to the detailed repository application architecture as depicted in Figure 4.9.

Figure 4.9: Communication interfaces of repository application components

The interface of the components are split into required and provided interfaces as specified
by the UML component diagram. A required interface (semicircle icon) describes functionality
that is needed by the component and must thus be provided by another component in the
repository architecture. Provided interfaces (lollipop icon) describe functionality offered to other
components, i.e., interfaces the component implements. In the following, the components are
detailed by describing the necessary data structure, the interfaces they require and provide, and the
behaviour implemented behind the provided interfaces. Initially, the controller design is detailed in
subsection 4.3.1. Following the language processing (subsection 4.3.2) is introduced; the data
storage is described in subsection 4.3.3. Finally, subsection 4.3.5 covers the template processor.

51

4.3.1 Controller

The controller encapsulates the business logic in the repository application, that is, the controller
takes object representations generated by the language processor (event objects) and orchestrates
the methods made available by required interfaces to ensure that both content and organization
elements can be created as determined by the task (section 3.1). Consequently, the controller also
orchestrates the functionality necessary to delete, search and show both types of elements in the
same way. For patterns, the controller also includes the logic allowing to instantiate them. The
grounding and execution logic, as contained in the pattern usage process (Figure 1.1), however, is
the only behavior that is implemented in the template processor (subsection 4.3.5). Even though
the controller also receives the object representations regarding executions, the actual logic to
generate OLAP queries is contained in the template processor – the execution task therefore is
completely delegated to the template processor. The following gives an overview of the event
objects the controller is able to process in the structure section, describes specific interfaces
provided by the controller and the behavior to implement the comprised methods.

Structure

This section focuses on the event objects the controller receives from the language processor
and hence must be further processed. In general, six types of events, regarding pattern-, term-,
mdm-, organisation-element-, search- and show-statements can be distinguished. Accordingly,
a PatternEvent (Figure 4.10) is generated by the language processor in terms of create, delete,
instantiate, and execute commands regarding pattern contexts, templates, and descriptions.

Figure 4.10: PatternEvent class diagram

PatternEvents therefore comprise a Pattern object, a path, and an action. The action enumeration
indicates the operation to be performed, including CREATE, DELETE, INSTANTIATE and
EXECUTE; the path determines the Catalogue holding the Pattern. The Pattern object follows
the data structure in section 4.2 and comprises the necessary information on the pattern context,
description, or template. It consist of the name, parameters, derived elements, constraints and
local cubes, if a pattern context should be created; if the pattern should be deleted, it solely
contains the name. In terms of a parsed create-statement for pattern templates and descriptions,
the Pattern object contains a name and a PatternDescription or Template object comprising
the corresponding text properties. A PatternEvent informing observers about an instantiation,
however, contains a pattern object consisting solely of Parameters, which are associated with the
bound values. If a PatternEvent is created for an execution, the contained Pattern only includes
the name of a fully instantiated pattern to be executed and optionally contains a Template object
if one or more specific template should be executed.

The TermEvent offers the same information as the PatternEvent with the distinction that it is related
to business-term-specific statements; it notifies the controller that an OLAP pattern language
statement containing a business term context, template or description is parsed. Consequently,

52

the class diagram is similar as well (see Figure 4.11), with one main distinction, i.e., it does not
include INSTANTIATE or EXECUTE actions.

Figure 4.11: TermEvent class diagram

A TermEvent therefore consists of a Term object with a path to the containing Glossary and and
action enumeration indicating whether it represents a create- or delete-statement. The TermEvent’s
related Term comprises the term name, Parameter, and Constraint objects if a term context is to
be created. In case of a description/template to be created, the Term object contains a name and
a corresponding TermDescription/Template object. For delete-statements regarding the entire
term, the Term object consists of the term’s name only, whereas for descriptions/templates a
TermDescription/Template is included determining the object(s) to be deleted.

MDMEvents are generated by the language processor once a Cube or a Dimension is parsed. It
also comprises the action to be performed, the MDMEntity to be created or deleted and the path
to the MDM (see Figure 4.12).

Figure 4.12: MDMEvent class diagram

For a parsed create statement regarding a cube the MDMEntity to be related is a Cube object
that comprises Measures and DimensionRole objects. Correspondingly, for a create dimension
statement, an MDMEvent, related to a Dimension object, is created by the language processor;
this Dimension object contains Level and Attribute objects and the corresponding RollUpRelations
and DescribedByRelations.

Figure 4.13: OrganizationElementEvent class diagram

An OrganizationEvent (Figure 4.13) is an object corresponding to a create- or delete statement
for organization elements, namely repositories, catalogues, glossaries and MDMs. The Action
enumeration therefore contains two states, CREATE and DELETE. For repositories the path
property is empty, as they represent the root elements of organization hierarchies; for catalogues,
glossaries and MDMs the path specifies the containing repository. The OrganizationElement

53

included is an object representing the element to be created/deleted and in both cases only contains
the name.

Figure 4.14: SearchEvent class diagram

A SearchEvent is an object providing all parameters included in a search statement. Accordingly,
there is a searchTarget representing the content or organisation element type to search for (e.g.
"PATTERN"), the optional search space determined by the searchSpace parameter, and map
(searchStrings) connecting search terms with the search scopes defined in the statement.

Lastly, a ShowEvent depicts a regarding show statement which only contains the string of the
path to be shown. Hence, the ShowEvent also contains only one property, i.e. the path property,
containing this path.

Interface

The controller’s interface consists of six provided and two required interfaces. Specifically,
the controller implements all observer interfaces that are required by the language processor
(subsection 4.3.2) as depicted in Figure 4.15. That is, the language processor can notify the
controller once any language statement is parsed, to further process the contained information.

Figure 4.15: Controller Interface

The PatternListener interface allows for other components (in particular for the language pro-
cessor in this work) to pass the information necessary to create, delete, instantiate or execute

54

a pattern. A PatternListener must therefore implement three methods, namely processPattern,
processPatternInstantiation and processPatternExecution method. The language processor
calls the processPattern methods to signal, that a pattern must be persisted or deleted; this pattern
is depicted by the PatternEvent parameter. Respectively, the processPatternInstantiation method
indicates, that a new instantiation of a pattern must be created, providing the path of the pattern
to be instantiated (toInstantiate) and the bindings (PatternEvent). The processPatternExecution
method signals that an OLAP query must be generated from a pattern, taking three parameters,
namely the MDM and glossary paths as well as a PatternEvent representing the pattern.

Consequently, the TermListener, MDMListener and OrganizationElementListener allow to pass
TermEvents, MDMEvents and OrganizationEvents that represent create or delete statements.
The TermListener interface defines only one method, i.e., the processTerm method, allowing
the language processor to inform about a term that must be created or deleted. The same
holds true for the processMDMElement and the processOrganizationElement methods within the
MDMListener and the OrganizationElementListener, i.e., both methods are used by the language
processor to inform about an element that must be created or deleted.

Search statements are passed to the controller via the processShowStatement method within
the SearchListener interface; show statements via the processSearchStatement method of the
ShowListener respectively. Both methods take a corresponding event object as the only parameter.

In terms of required interfaces, the controller needs access to a StorageUnit and a PreprocessorUnit
interface. That is, to process CREATE, DELETE, INSTANTIATE, SEARCH and SHOW statements for
content and organization elements the controller uses the regarding methods provided by a
StorageUnit. On the other hand, tasks concerning EXECUTE statements require the functionality
as provided by a PreprocessorUnit. The specific methods for these interfaces can be taken from
subsection 4.3.3 for the StorageUnit or subsection 4.3.5 for the PreprocessorUnit.

Behavior

The behavior describes the basic logic behind the provided interfaces, i.e. it introduces how event
objects representing a language statement are processed. Therefore, the methods comprised by
each interface as depicted in Figure 4.15 are implemented by the controller

Regarding the SearchListener interface, one method, namely processSearchStatement, must be
implemented. The behavior behind a search operation is however database specific and thus
provided by the storage unit, that is, the controller simply delegates search tasks.

Considering the PatternListener interface the controller implements the processPattern, processPat-
ternInstantiation and processPatternExecution methods. As the logic regarding executions is
determined by the template processor, the controller does only delegate the PatternEvent within
the processPatternExecution. The processPattern method is designed to process PatternEvents
comprising information to create or delete Patterns, PatternDescriptions, and PatternTemplates.
The specific steps can be taken from the procedure in Figure 4.16. It is worth noting, that this
process is basically the same for the processTerm method contained in the TermListener interface
and for the processMDMElement in the MDMListener interface, since all these methods aim to
create or delete a content element within an organization element.

55

Figure 4.16: Procedure for processPattern method

The processPattern method checks in a first step, whether an element should be created or deleted.
In case of a create, a subsequent check determines if a Pattern, Template or PatternDescription is
the object to be added to the storage. For a pattern, the next step is to retrieve the catalogue it
should be persisted in, by using the getCatalogue method provided by the StorageUnit interface.
Further it must be assess if the catalogue already contains an equivalent pattern, that is, the
getPattern method of the StorageUnit is called. It is worth noting, that a pattern is deemed
equivalent, if it has the same name. If no existing pattern was found, the new pattern can be
added to the catalogue’s set of patterns; otherwise the existing pattern must be removed first
(using the deletePattern method) to subsequently add the new version of the pattern. Finally, the
changes must be persisted by calling the persistCatalogue method.

This process is in principle the same for the Template and PatternDescription objects as well.
Instead of retrieving a catalogue, one however needs to retrieve a pattern (getPattern) to check if
the comprised set of Templates/PatternDescriptions contains an identical element. If not, the
Template/PatternDescription can be added, otherwise the existing one needs to be removed first
(deletePatternTemplate or deletePatternDescription). Finally, the pattern with its updated set of
Template/PatternDescription objects is persisted in the database using the persistPattern method.

If the check for the operation identified a delete-operation, the subsequent action to be performed

56

is a check for the element type es well. Again, if a pattern must be deleted, step two is to
retrieve the containing catalogue (getCatlogue). Consecutively, the pattern must be removed
from the catalogue and deleted from the storage using the deletePattern method provided by the
StorageUnit.

To delete a Template or PatternDescription object, the procedure differs, as the delete-statements
for these elements may demand to remove multiple objects from the data storage. However, the
StorageUnit offers the deletePatternTemplates respectively deletePatternDescriptions methods
that search and delete the intended objects.

For processing pattern instantiations, the controller implements the processPatternInstantiation
method included in the PatternListener interface. This method is called by the language processor
in case an INSTANTIATE PATTERN statement was parsed and has two parameters, i.e. the path
of the pattern to be instantiated (in the following referred to as the generic pattern) and a
PatternEvent, containing the Pattern object with all the variables and their values (referred to as
specific pattern). To instantiate a pattern and to persist the resulting more specific pattern the
controller implements the process in Figure 4.17.

Figure 4.17: Activity diagram for processPatternInstantiation method

Firstly, the pattern to be instantiated, which is determined by the toInstantiate parameter, must be
retrieved (i) using the getPattern method provided by the StorageUnit. Subsequently, the specific
pattern (ii) must be extended by all targets, constraints, derived elements and local cubes which are
contained in the pattern to be instantiated and not already included in the specific pattern. This
refers to the usage process (subsection 2.2.2), according to which a specific pattern is equivalent
to the generic one but with values bound to the variables. Hence, the "add derivation rules" action
refers to a loop that generates a copy of every DerivationRule comprised by the pattern being
instantiated and adds it to the specific pattern. The same applies for the "add targets" "add
constraints" and "add local cubes" actions for Target, Constraint respectively LocalCube objects.
As there is no natural order to these four steps, they are visualized as parallel in Figure 4.17.
In a following step, the templates (iii) from the pattern being instantiated are also copied and
added to the specific pattern, as, due to the equivalent variables, these are applicable to both.
The descriptions of the pattern being implemented, however, cannot be applied to the specific
pattern, considering that by instantiating a pattern e.g. the applicability changes. Finally, the
newly generated, specific pattern must be persisted in the data storage.

The processOrganizationElement method is implemented by the controller as it provides the

57

OrganisationListener interface; this method is called by the language processor whenever a
statement concerning a repository, MDM, catalogue or glossary was parsed. Even though the
processOrganizationElement method basically performs similar operations (i.e. creating and
deleting objects) as the processPattern method, the steps are slightly different (see Figure 4.18).

Figure 4.18: Exemplary activity diagram for Catalogues in the processOrganizationElement method

Initially, the action comprised by the OrganizationEvent parameter is checked, to distinguish
between create and delete operations. Afterwards, a type check is performed on the Organiza-
tionElement included in the OrganizationEvent; the example in Figure 4.18 visualizes the process
for a Catalogue only, since the sequence is similar for Repository, MDM or Glossary objects. If
it was determined, that a Catalogue must be added to the repository, the controller retrieves
the Repository defined by the OrganizationEvent’s path parameter. Thereafter, the Repository ’s
catalogues are browsed, to find out whether there is already a Catalogue included, having the
same name. In case such a Catalogue already exists, the process ends at this point, as re-creating
organisation elements is pointless, otherwise, the new Catalogue is added to the Repository
which is then persisted. If a Catalogue must be deleted instead, it is sufficient to simply call the
deleteCatalogue method as provided by the StorageUnit.

The provision of the ShowListener interface requires the controller to implement the pro-
cessShowStatement method, which is used by the language processor to inform about a parsed
show statement. For this purpose the process in Figure 4.19 is implemented.

In a first step, the Repository, determined by the first part in the path, is retrieved; if the
path contains only one part, the Repository representation is subsequently returned. As a show
statement does not include an element designation, the process basically includes a try and error
procedure. That is, whether the second part of the path is a MDM, glossary or catalogue can only
be decided by trying to retrieve all types of elements. If the path is an MDM path and consists only
of two parts the corresponding representation is returned, otherwise, the next step is to determine
if the third part is a cube or dimension name. Again, it must be tried to retrieve both, to decide
which representation is to be returned. If the second part of the path states a catalogue name
instead, the subsequent step to be performed for a path containing two parts is to return the
catalogue representation. Otherwise, the third part specifies a pattern name, which is retrieved to
return its definition. It is worth noting, that the procedure for showing catalogues and glossaries
respectively patterns and business terms are identical. Hence, the procedure in Figure 4.19 is a
simplified version, not including the redundant steps for glossaries and business terms.

58

Figure 4.19: Activity diagram for processShowStatement method

4.3.2 Language Processor

The language processor encapsulates the functionality which is necessary for processing OLAP
pattern language statements and represent them in form of event objects (see subsection 4.3.1).
It provides the functionality of language processing as described in section 2.4, thus, it consists of
the three sub-components lexer, parser, and semantic analyzer. The architecture of the language
processor is as depicted in Figure 4.20.

Figure 4.20: Language processor’s arcitecture

Considering, that the aim is to create an object representation, the language processor follows the

59

approach of Appel [18, p. 94] and does not create another AST in the semantic analysis. The
language processor takes a language statement following the task in section 3.1, generates an
object representation (section 4.2), and passes the result on to interested components. Therefore,
the language processor is designed to be a subject as defined in the observer pattern (also known
as listener pattern) following Gamma et al. [13, p. 326]. A subject in this context is considered
to be an object, which notifies a list of observers (listeners) about any state changes via specific
events. The following describes the interfaces to provide these events, and the behavior behind
the interface.

Interface

The language processor provides only one interface, namely the LanguageProcessingUnit interface,
which determines necessary methods for processing OLAP pattern language statements. To provide
this interface, the language processor must implement all contained methods depicted in Figure 4.21.

Figure 4.21: language processor interface

In the LanguageProcessingUnit seven methods are comprised, six of which allow to register a
listener component. This means, that e.g. addPatternListener takes a PatternListener, which is
informed about any parsed statement regarding patterns from that moment on. The key function
for the LanguageProcessingUnit however is the process method, which takes a string containing a
OLAP pattern language statement, generates an event object and informs the registered listeners.

From other components, i.e., the observers (listeners), the language processor requires six interfaces,
to be implemented. It is worth noting, that from the language processor’s perspective, it is not
important if there is one component providing all seven interfaces (like the controller) or if there are
seven components providing one interface each. However, the language processor requires to access
one PatternListener, TermListener, MDMListener, OrganizationElementListener, SearchListener
and ShowListener interface. The interfaces correspond to the event objects introduced for the
controller (see also subsection 4.3.1) and hence allow for the language processor to inform the
controller about a parsed statement. The behavior implemented by the observers (the controller),
is not important to the language processor, as it is not further involved into processing the object

60

representations. Generally, a component that provides the PatternListener interface is able to
process PatternEvent objects, whereas TermListeners are able to process TermEvent objects.
MDMListeners offer logic to process Cube and Dimension withing MDMEvent objects, while
OrganizationElementListeners provide functionality to process Repository, Catalogue, Glossary,
and MDM objects comprised by OrganizationEvents. The functionality to retrieve any kind of
element is provided by SearchListeners and ShowListeners respectively.

Behaviour

The behavior of the language processor is determined by the language processing steps introduced
section 2.4. That is, (i) the Lexer is responsible for tokenizing the input statements according to
the OLAP pattern language (Appendix A). Tokens that are defined by the grammar are basically
the keywords described in the task (section 3.1) as well as strings, numbers, or special symbols
("/", "=", ";", etc.). Basically, tokens subsume keywords for the operation names, such as CREATE,
DELETE, and INSTANTIATE, keywords for organisation and content elements, such as REPOSITORY,
CUBE, and PATTERN, as well as keywords indicating blocks within a statement, such as PARAMETERS,
LEVELS, and MEASURES. Strings, as used for element and variable names, are quoted identifiers
and can contain white-spaces, numbers that comprise one or more digits, and special symbols,
such as "=", "<", ">", and "/".

Figure 4.22: Tokens of the "Jersey Breed" context (Listing 3.7)

Accordingly, line 1 in Listing 3.7 is tokenized as depicted in Figure 4.22 by the blue squares. The
three keywords in capital letters in Figure 4.22 are CREATE, UNARY_DIMENSION_PREDICATE, and
WITH. Further, the line contains a path consisting of the three strings "Austrian Milk Models",
"Dairy Business Terms", and "Jersey", which are separated by two special symbols, i.e. the "/".

Once a statement is tokenized, (ii) the Parser tries to match token sequences to the grammar
rules – defined by the OLAP pattern language grammar – and generates a corresponding AST.

An incomplete tree for the tokens detected in Figure 4.22 is visualized in Figure 4.23. It is
worth noting that the recognized tokens are highlighted in blue, in contrast to the white squares
containing the matched rule names. At the top of the AST the base rule (emdm_stmt) is matched,
which is the case for any valid OLAP pattern language statement. For this example, a create
statement (c_stmt) is recognized which always consists of the CREATE keyword, and an element
specific create-rule, in this case the one for a business term creation is ct_stmt. Further, the
ct_stmt rule is matched to be a term definition (t_def), which is abbreviated for this section and
therefore only consists of a term type (t_type), a term name (t_name), and the key word WITH.
The type is matched to the UNARY_DIMENSION_PREDICATE keyword, the name however corresponds
to the last name of a path (path_exp). Any path in context of the OLAP pattern language
consists of multiple element names (elem_name), i.e., strings, which are separated by "/" symbols.
The path_exp in Figure 4.23 comprises three strings and the two special symbols recognized by
the Lexer. In the context of a term, the first string "Austrian Milk Models" is the repository
name, string two "Dairy Business Terms" is the glossary name and the third string "Jersey" is
the term name.

61

Figure 4.23: AST of the "Jersey Breed" context (Listing 3.7)

During the semantic analysis, (iii) the language processor must transform the AST into an object
representation corresponding to the data structure introduced in section 4.2. Therefore, the
assignment of the tokens to the rules are analysed to generate the corresponding objects, set the
correct values for the properties and depict the relationships between the objects. Further more,
logical constraints need to be checked, such as checking whether the constraints only contain
parameters available in the context, or where a path expression contains the right number of steps
to identify a location that is valid for the content element to be created.

Figure 4.24: Object representing the Jersey unary dimension predicate’s context (Listing 3.7)

In Figure 4.24 the object representing the "Jersery" business term’s context is visualized. The
parser needs to create an empty Term object first, to subsequently add its type and name. The
type also determines the implicit term parameter(s) and type constraint(s) that must be added; in
this case one <ctx> Variable restricted to a "DIMENSION" Value. Further Constraint objects
are added while iterating over the rules regarding the CONSTRAINTS block in the AST; the parser

62

creates new Value and Constraint objects and adds them to the respective sets. The context
also consists of a domain constraint, that is, a DomainConstraint object needs to be created,
that references the <ctx> variable as its entity, a SingleValue ("Main Breed") as property, and
another SingleValue ("Breed Name") as its domain. Lastly, the language processor must inform
all observers, and provide them with the final object representation. Therefore, a TermEvent is
created comprising the Term object from Figure 4.24, the path ("Austrian Milk Models"/"Dairy
Business Term") and the CREATE action. This TermEvent is passed to the observers by calling
the proccessPattern method of the PatternListener interface.

4.3.3 Data Storage

The data storage provides, database functionality allowing to create, delete, and retrieve both
organization and content elements. It encapsulates a database in the background and provides an
interface that allows for other components to only work with objects following the data structure in
section 4.2. For that reason the design does not determine which type of database must be used,
that is, the data storage enables an application design which is decoupled from the implementated
database technology (see also ICR). Hence, there is no predefined behavior for this component, as
CRUD operations on databases highly differ based on the implemented technology; therefore this
section only describes the provided interface.

Interface

The interface of the data storage consists of only one provided interface, namely the StorageUnit

interface. There are no required interfaces, as the data storage should be open to adapt to any
kind of database. In Figure 4.25 there is an unspecified interface between the database and data
storage, visualizing that the data storage must work with any interface provided by the database.

Figure 4.25: Data storage interface

The StorageUnit interface on the other side, clearly defines which methods the data storage
offers for other components to access the persisted content and organization elements. Basically,
there are methods to create, delete, and retrieve any type of element; update functions are not
included, as following the UCER an update is to be performed as a re-creation.

Figure 4.26 depicts the detailed methods comprised by the StorageUnit interface. With the
openSession method, components can start a regular database session, which opens a database
connection and enables to access the database content. Respectively, the closeSession method
is intended to be called by a component, once the database actions are completed, to close the
database connection. That is, the following methods are intended to be used while a session is
open.

To create content and organization elements within the database, the StorageUnit interface
provides six persist methods, i.e. persistRepository, persistCatalogue, persistGlossary,
persistMDM, persistPattern, and persistTerm. Therefore, each method has got one parameter
which is an object to be persisted. However, it should be noted, that persist-methods only store

63

Figure 4.26: Class diagram of required and provided data storage interfaces

the given object in the database, that is, the data storage does not take care of inserting the
objects into the organizational structure. To insert a pattern into the organization structure, one

64

would first want to retrieve a catalogue, add the pattern to this catalogue if possible and than call
the persistCatalogue to persist the changes.

In contrast, the delete-methods allow to remove objects from the database. Specifically, the inter-
face offers delete-methods for organization elements, i.e., deleteRepository, deleteCatalogue,
deleteMDM and deleteGlossary, for patterns, i.e. deletePattern, deletePatternDescription,
and deletePatternTemplate, for business terms, i.e., deleteTerm, deleteTermDescription,
and deleteTermTemplate, and for MDM entities, i.e. deleteCube and deleteDimension. For
each delete-method there are two different versions, one that allows pass the object to be deleted,
and one that allows to pass the path. In context of a pattern, for example, the path to be passed
to the deletePattern method consists of a repository, catalogue, and pattern name.

For retrieving elements the StorageUnit interface provides get-methods allowing for other com-
ponents to access specific elements within the database. Therefore, one must pass the path and
the unique element name to the StorageUnit and in return gets the intended object. Get methods
are available for every type of element, which is why the following specific methods are comprised:
getRepository, getCatalogue, getGlossary, getMDM regarding organization elements, getCube,
getDimension, getTerm, getPattern. Additionally, the getType-method allows to retrieve the
type of a term. For objects without unique name – PatternTemplates and TermTemplates – one
must provide a path and a Template object that determines the database entry to be returned.

Lastly, the search-methods allow to retrieve elements matching the search criteria corresponding
to search statements as introduced in section 3.1. Hence, the searchEvent parameter allows to
provide the search target, the search space, and the search terms with the regarding search scopes.
That is, the data storage is able to process search events as created by the language processor.

4.3.4 Knowledge-based System (KBS)

The Knowledge Based System (KBS) implements the necessary functionality to decide whether a
pattern is applicable to a eMDM or not. Therefore it checks if the values bound to the parameters
do represent business terms or MDM entities that are actually part of the eMDM, and if the
constraints defined for each parameter hold true for the instantiated pattern. However, the KBS is
not implemented in the course of this work, which is why no behavior is introduced either. Instead,
this work defines an interface it must implement, so that it can be considered in the design of
other components.

Interface

A ValidatorUnit provides the necessary functionality to decide whether a pattern is applicable
for a MDM using a specific glossary. Thus, it consists of one method only, namely the validate
method as shown in Figure 4.27.

Figure 4.27: KBS interface

65

This method allows to validate a pattern in the context of a specific MDM enriched by a certain
glossary. A boolean return value indicates if an execution with these parameters is possible or not.
As the parameters are object representations of the pattern, MDM and glossary, the KBS can
directly perform all necessary checks and hence does not require any other interface to implement
the intended knowledge.

4.3.5 Template Processor

The template processor implements the grounding and execution steps as comprised by the usage
process and therefore creates executable OLAP queries from pattern templates. In the course
of this, the template processor contains the functionality to resolve derivation rules (pattern
grounding) and to resolve macro calls within template expressions. For template expressions, an
island grammar (Macro Grammar, Appendix B) defines rules to distinguish between query code
and macro calls and further allows to identify the macro’s parameters. That is, the template
processor must implement the language processing functionality as described in section 2.4 and
therefore consist of similar sub-components as the language processor (subsection 4.3.2), namely
a macro lexer, macro parser and a semantic macro analyzer. It further communicates with a
ValidatorUnit, as implemented by the KBS, in order to carry out an applicability check. The
following sections describe the interface of the template processor the behavior needed to provide
this interface.

Interface

The interface of the template processor subsumes two provided and two required interfaces
(Figure 4.28).

Figure 4.28: Template preprocessor interface

Firstly, the PreprocessorUnit interface is provided, comprising the executePattern method to
execute an instantiated pattern following the subsection 2.2.2. It expects a MDM path, a glossary
path, a Pattern object, and the pattern path as parameters in order to return an executable query.
If every pattern’s template must be executed, the pattern object should only contain the pattern’s
name, however, if specific templates should be executed, a Template object must be included that
determines the templates to be executed by specifying the attributes, i.e., language, dialect, data
model, and variant.

The second interface provided is the MacroResolver interface which contains the necessary
functionality for the execution of macro calls ($dimKey- and $expr- macro calls), that is, an expr-
and a dimKey-method. The dimKey-method, accordingly takes a dimension name (dimName) as a

66

parameter and returns the name of its base level. The expr-method allows to pass a term name
as well as the language and dialect of the template to be executed, and the arguments to be
bound to term’s parameters in the term’s template. With these parameters, the aim is to gain the
query snippet representing the term’s template in the demanded query language and dialect by
substituting the <ctx> placeholders with the passed arguments.

Required interfaces on the other hand are the StorageUnit and the ValidatorUnit. The
StorageUnit is required to gain access to the necessary eMDM elements and patterns for both
the execution and the resolving of macros. Therefore the template processor only requires a subset
of the provides StorageUnit methods, i.e., the get-methods. This means, the template processor
does neither create nor delete elements from the storage.

A ValidatorUnit is needed to determine whether a pattern can be executed in the context of
a certain eMDM. Accordingly, the interface requires to pass three parameters to the validate-
method, i.e. the Pattern, MDM, and the Glossary object. The returned boolean value allows to
decide whether an execution can be performed or has to be aborted by returning an error message.

Behavior

The template processor implements a separate behavior for each method it provides through the
PreprocessorUnit and MacroResolver interface. The executePattern method allows for other
components to pass a MDM and a glossary path providing the context and a Pattern object
and a pattern path to specify which template(s) must be executed. By following the procedure
depicted in Figure 4.29, the template processor implements the necessary functionality to transform
template expressions of fully instantiated patterns into executable OLAP queries.

Figure 4.29: Procedure behind the executePattern method

First of all, (i) the MDM, Glossary and Pattern must be retrieved from the StorageUnit. It is
worth noting, that even though one can pass a Pattern object, this is not the actual Pattern to
be processed, but rather an object that was created by the language processor (Figure 4.20) to
represent the execute statement. As there is no particular order in which the MDM, Glossary
and Pattern should be retrieved these actions can be executed in parallel. Subsequently, (ii) one
needs to ground the Pattern to get the values for the derived elements. The grounding procedure,
however, is not part of this work and thus only a call of an internal method of the template
processor. Once the Pattern is grounded, (iii) an applicability check is performed to assure it
can be applied in the context of the MDM and Glossary. That is, the validate method of the
ValidatorUnit (implemented by the KBS) is called, returning true if it is applicable and false if
not. In the next step (iv) templates to be executed need to be identified, which are determined by
the Pattern object. The Pattern object may contain a Template which includes the information
about the templates the user wants to execute, i.e. the language, dialect, data model, and variant.

67

If no Template is contained, all available templates of the corresponding Pattern are executed. For
every template (v) the first step is to replace the variable-placeholders in its expression with the
values assigned to them during the instantiation, or for derived elements, with the values derived
during the grounding process.

1 *{ SELECT *

2 FROM <sourceCube > s

3 WHERE}* $expr(<cubeSlice >, s)

Listing 4.1: Uninstantiated template expression

Considering the example expression in Listing 4.1, the placeholder substitution consists of replacing
the "<sourceCube>" as well as the "<cubeSlice>" placeholders by the bound values. After
this step, the expression only consists of query code and macro calls. Hence, the last step (vi) is to
execute the macros calls and substituted them by their results to gain the executable query. To do
so, the template processor performs language processing on the template’s expression by applying
the macro grammar (see Appendix B). Following the language processing (section 2.4) steps, the
MacroLexer identifies tokens, which the MacroParser puts into a tree structure, the AST. For the
sake of brevity the lexical and syntactical analysis for an expression are not demonstrated at this
point, as both follow the explanations of section 2.4. To demonstrate the semantic analysis, the
placeholders in the expression from Listing 4.1 are substituted; specifically, the <sourceCube>
placeholder with the value "Feeding" and the <cubeSlice> placeholder with "Jersey". Lexical
and semantic analysis of the thus instantiated template result in the AST depicted in Figure 4.30.

Figure 4.30: AST created by the MacroParser

There is one query text part (txt) and one macro call (macro_call) contained in the AST.
The txt node contains the query code, in this example SQL code, surrounded by "*{" and
"}*". The macro call consists of the macro to be executed (macro_name) and its arguments
(macro_call_arguments). Based on this AST, the SemanticMacroAnalyzer, is responsible for
generating an actual query from the expression. In contrast to the language processor (subsec-
tion 4.3.2), the goal for the semantic analysis is not to generate an object representation, but
rather to generate a new, modified version of the initial statement. Accordingly, the SemanticMac-
roAnalyzer removes the surrounding "*{" and "}*" of txt nodes, and replaces the macro calls
by their results to generate a query code that is free of any OLAP pattern specific symbols or
function calls. For the macro call in the example expression, the SemanticMacroAnalyzer identifies
an $expr macro, that should return the query snippet representing the "Jersey" business term with

68

the <ctx> parameter bound to the value "s". Hence, the expr method of the MacroResolver
interface is called with "Jersey" as the term name, the language and dialect identical to the
pattern template (in this example "SQL" language and "Oraclev11" dialect) and "s" as the only
argument. As a result, the "$expr(Jersey, s)" call in the initial template is replaced by the
instantiated Jersey snippet, i.e. "s."Main Breed" = "Jersey"".

Besides the behavior regarding the execution of patterns, the template processor also implements
functionality regarding the MacroResolver interface; it implements a method to execute a $expr
and $dimKey macro. The expr function, corresponding to the $expr macro, allows to pass a
term name for which the query snippet determined by the language and dialect parameters is
executed by binding the arguments parameters to the <ctx> variable. This process is detailed in
Figure 4.31.

Figure 4.31: Procedure behind the expr method

First of all, (i) one needs to retrieve the Term object to be executed, by calling the corresponding
method offered by the StorageUnit. As the expr method is only intended to be called in terms
of an execution process, the term path is determined by the execution Glossary. Consequently,
the PreprocessorUnit and the MacroResolverUnit interfaces must be implemented by the same
component and are only split for explanation purposes. From the retrieved term, (ii) the associated
template in the given language and dialect needs to be found; if there is no such template available,
the expr method returns an error. Step three (iii) is to preprocess the template by replacing
the <ctx> placeholders with the corresponding values of the arguments parameters; if <ctx>
is a collection variable, the first argument is substituted for <ctx>[1], the second for <ctx>[2]
respectively. Finally, the preprocessed template (iv) is returned to the calling component.

In terms of the dimKey method, corresponding to the $dimKey macro, the name of a Dimension
can be passed, to get the name of the base level in return. To get the base level of a dimension,
the procedure in Figure 4.32 must be followed.

Figure 4.32: Procedure behind the dimKey method

Accordingly, the first action (i) is to retrieve the Dimension object specified by the dimName
parameter. As for the expr method, the path for the dimension is determined by the execution
context, in this case by the MDM. After retrieving the dimension (ii) a loop over all contained
Level objects is performed to check whether it is a base level or not. That is, the RollUpRelations
objects are inspected to check for each Level if they occur as a parent in any RollUpRelation.
Lastly, if a Level is found (iii), which not a parent in any RollUpRelation its name is returned to
the calling component.

69

4.3.6 Interface Provider

The interface provider supplies external components with an interface to use the functionality of
the repository application. At the same time it allows, in the course of the ICR, to change between
different interface implementations or technologies without influencing any other component.

The interface consists of one provided (Command Interface) and one required interface (Language-
ProcessingUnit) as in Figure 4.33.

Figure 4.33: Interface provider’s interface

The Command Interface consists of only one method (executeCommand) and allows for other
components to pass a OLAP pattern language statement. The interface provider takes this
command and passes it to language processor to analyze the statement using the process method;
further, it provides the controller with the information about the sender, so that it can create and
send an appropriate response messages.

4.4 Editor Application

The editor application provides a graphical user interface (GUI) to access the repository application
and thus is the access point for DWH and domain experts to the OLAP pattern repository.
According to the problem statement (section 1.2) it enables the user to write OLAP pattern
language statements (Appendix A) to define and use OLAP patterns. However, this work does
primarily focus on the repository application, which is why the editor is designed to be only a
very basic text editor. That is, the user is provided with a simple text input field allowing to
write statements, which does not offer any kind of support regarding the formulation of these
statements. Further, the user is provided with a send button allowing to transfer the statement to
the repository application for execution. Lastly, the the GUI provides a result field showing success
and error messages as well as search and show results (object representations). Hence, beside the
graphical UI the editor application provides, it also requires an interface to transmit statements to
the repository application (see Figure 4.34).

Figure 4.34: Interface of the editor application

In this course, the editor uses the Command Interface which offers the executeCommand method,
taking an OLAP pattern statement as a parameter and returns a response (success message, error
message or object representations). The Graphical UI is however not determined by this work and
can be implemented in any way so that possible users can benefit from.

70

Chapter 5
Implementation

This section introduces a prototypical implementation of the design (chapter 4), covering both the
implementation of the editor and the repository application. It is accessible on both, the enclosed
CD or the public repository which is available at BitBucket1. As detailed in the design section a
client-server architecture is followed, that is, the repository application is implemented as a Java
server application (version 1.8.0_231) that is accessed via the editor, which is implemented as an
Angular web application (version 8.3.21). In Figure 5.1 an overview of execution environments
is provided showing which components run in which environment. The following will give a
brief introduction of the overall implementation technologies used before the choice and the
implementation details are further discussed in separate sections per component.

Figure 5.1: Deployment diagram

The server side is represented by two different execution environments, namely the Application
Server and the PostgeSQL Server. The Application Server basically comprises the components
as introduced in section 4.3 regarding the repository application (Figure 5.1); the description of
the interfaces which are provided and consumed by the components are not shown here (details
can be found in section 4.3). The PostgreSQL Server hosts a database allowing to persist both
organization and content elements.

1https://bitbucket.org/mimo16/olappatternrepository/src/master/

71

https://bitbucket.org/mimo16/olappatternrepository/src/master/

To implement the logic for components on the application server – a Glassfish 4.1.12 server – the
regular functionality of the Java programming language is extended by several software libraries.
First of all, one needs a data format to transfer information between server and client; for this
purpose the JavaScript Object Notation (JSON)3, which is a common format to transfer data
over a network, was chosen. Using the Jackson Core library (version 2.9.8)4 allows to easily
convert a regular Java object into the JSON notation and create a new object by specifying
properties and their values. However, it should be pointed out that the data format to transfer
information between the client and the server does not influence the overall functionality, which is
why any other format would be equally appropriate. In order to process OLAP pattern language
statements, the ANTLR45 parser generator library allows to generate both lexer and parser from
an existing grammar. Accordingly, both the language processor and the template processor must
only implement the semantic analysis. The last library to be added for the components in the
application server is the Hibernate library (version 5.4.11)6 allowing to map Java objects to
relational database tables. That is, a relational database appears as if it contained objects rather
than tuples.

The client-side is represented by the Client Browser execution environment, in which the Angular
web application is running. In this context it is not important whether the editor is loaded from
a server or locally stored on the client device. Regarding functionality, the standard framework
provided by Angular is extenden by one library, namely the ngx-json-viewer (version 2.4.0)7. This
library provides a component for graphical user interfaces, that allow for users to inspect JSON
objects in form of drop-down lists.

The following sections go into detail on how these libraries are used to implement the components
as intended by the design; the implementation of the components’ behavior using standard java
syntax is not discussed here. Section 5.1 describes implementation details for the repository
application on the server-side, followed by section 5.2 introducing the editor implementation on
the client-side.

5.1 Repository Application

The repository application is the central point for storing, maintaining and using OLAP patterns
within an organization. It is implemented as a Java server application running on a Glassfish 4.1.1
application server which can be accessed from distributed clients. Note that every other object
oriented programming language allowing to implement server application is equally reasonable as
well, however, Java provides a big community with numerous helpful and maintained libraries.

The at.dke.olappattern package contains the implementation of the repository application and is
further divided into the four main packages data, language, macro and repository_app (Figure 5.2).
That is, only the last package is specific to the repository application, whereas the previous three
packages – regarding the data structure and classes for processing both grammars – are general
purpose and can also be used for other implementations. The data package contains all classes

2https://www.oracle.com/middleware/technologies/glassfish-server.html
3https://www.json.org/json-en.html
4https://github.com/FasterXML/jackson
5https://www.antlr.org/
6https://hibernate.org/
7https://www.npmjs.com/package/ngx-json-viewer

72

https://www.oracle.com/middleware/technologies/glassfish-server.html
https://www.json.org/json-en.html
https://github.com/FasterXML/jackson
https://www.antlr.org/
https://hibernate.org/
https://www.npmjs.com/package/ngx-json-viewer

Figure 5.2: Repository application packages

that correspond to the data structure (section 4.2) and thus be used in other applications
regarding OLAP patterns as well. In eight sub-packages the numerous classes are further organized;
accordingly theconstraint package contains the Constraint class and all available specializations.
The localcube, variable and value packages contain the LocalCube, Variable and Value class
hierarchies respectively and cover the remaining elements contained in patterns or terms. Both
pattern and terms however are comprised by individual packages also including their descriptions,
i.e., the pattern and term package, and are in dependency relationships with the variable, constraint,
localcube and value packages. Besides that, the MDM package contains both the MDMEntity
and MDMProperty classes. The repository sub-package groups organization elements and is
consequently related to the pattern, term and MDM package.

The second main package included is the language package which comprises the necessary classes
to implement language processing for OLAP pattern statements. That is, classes regarding lexer
and parser, as well as the semantic analyzer for generating an object representation are included.
It is worth noting, that the lexer and parser can also serve as basis for further semantic analyzers.
The same holds true for the macro package which also includes lexer, parser and semantic analyzer,
that provide functionality for parsing the macro island grammar. Finally, the repository_app
package, contains all classes corresponding to the repository application’s components as well as
the interfaces they implement (introduced in section 4.3).

5.1.1 Language Processor

The language processor is responsible for analysing any OLAP pattern language statement which
is sent to the repository application and thus provides the LanguageProcessingUnit interface. The
process method contained therein, takes a string (the statement), generates a object representation,
packs it into an event and notifies the registered observers (listeners). Therefore, the behavior
described in subsection 4.3.2 must be implemented, i.e. the statement must be processes using a
lexer, parser and semantic analyzer.

73

Even though manually implementing all three components is the most flexible way, it still is a
time consuming task. Common parser generator on the other hand provide almost as flexible
implementation scopes and at the same time enable a significantly faster development [21].
Accordingly, the ANTLR4 (Another tool for language recognition) parser generator is used as a
base for the language processor implementation. The choice for a parser generator is determined by
the OLAP pattern language’s format, the ANTLR4 specific .g4 format and ANTLR4’s popularity,
gained through the use in well-known organizations like Twitter or in projects like Appache Hadoop.
From a technological perspective any other parser generator can be used equivalently, which
potentially requires a translation of the grammar into another format. To prevent potential errors
and pitfalls during a transformation process, it is therefore most reasonable to stay with ANTLR4.

Based on a .g4 -grammar-file, the ANTLR4 library allows to generate a number of classes and
interfaces, which basically provide all the functionality for lexical and syntactic analysis for a
corresponding language statement. The provided classes and interface are named after the grammar
name as declared in the grammar file, which is emdml for the OLAP pattern language. Hence, the
lexer and parser generated for the language processor are called EMDMLLexer and EMDMLParser
respectively. To enable a semantic analysis of an AST generated by the EMDMLParser, a listener
([13, p. 326]) as well as a visitor pattern ([13, p. 366]) can be applied. Both provide methods,
that are called whenever the respective rule is found during an iteration over the AST; the main
difference between listener and visitor is basically, that the visitor methods are called only when a
sub-tree is entered, whereas for the listener enter and exit methods inform when a sub-tree is entered
and left respectively. For both purposes, the ANTLR4 parser generator provides an interface,
namely EMDMLListener and EMDMLVisitor, as well as classes providing empty implementations
for both interfaces called EMDMLBaseListener and EMDMLBaseVisitor. That is, one can decide
to implement an interface (and therefore all its methods) or extend the respective base class (and
therefore override only the methods that are actually needed) in the semantic analyzer. Considering
the EXTR the listener is chosen over the visitor, as the combination of enter and exit methods
provide more flexibility concerning future extensions. Further, the SemanticAnalyzer class overrides
the EMDMLBaseListener so that only required methods must be implemented.

Based on the listener methods for the OLAP pattern language (Appendix A) the following
introduces how the language processor is implemented to convert an example AST into an object
representation, realizing the behavior introduced in the design (subsection 4.3.2). Therefore, the
context of the Jersey business term is taken as example, however other elements are transformed
similarly. Initially the EMDMLLexer and EMDMLParser automatically generate an AST as depicted
in Figure 4.23, which is subsequently run through in a loop to visit all nodes. In Figure 5.3 the
steps, i.e. the implemented methods, to semantically analyze the Jersey business term context and
generate a corresponding TermEvent are visualized in form of a non-deterministic finite automaton
(NEA).

Starting from the initial state q0, the first method to be implemented is the enterT_def listener
method; it resets all internal variables of the SemanticAnalyzer, so that no previous states are
carried forward and creates a new Term object. The result state q1 represents an empty Term
containing no information. The enterT_type method is called once the corresponding node is
visited in the AST, that is, it initiates the transition to state q2. The method is implemented
to add a Type object to the term and to create the corresponding context variable(s) with

74

Figure 5.3: Semantic analysis steps for the "Jersey Breed" business term

their type declaration (type constraints). For the Jersey business term a SingleVariable named
<ctx> and a TypeConstraint restricting it to "DIMENSION" are added. Subsequently, the
enterT_name method allows to react to the term’s name node in the AST, containing the glossary
path and the actual term name. In the case of the Jersey term the path is split up into the
actual term name ("Jersey"), which is added to the Term, and the glossary path ("Austrian
Milk Models"/"Dairy Business Terms") which is stored as path of the TermEvent respectively.
The next methods processes constraint definitions. In the case of the Jersey term statement
(Listing 3.7) a domain constraint, restricting the <ctx> parameter has to be considered. Following
the grammar, a domain constraint consists of three element expressions (elem_expr), which are
either variables (var_exp) or constants (const_name); in terms of the data structure (section 4.2)
an element expression refers to a Target, which is also either a Value or Variable. As this structure
is similar for all other constraints as well, the implementation of the enterSv_cstr_decl creates an
empty list of Targets – tempTargets – allowing to collect the information regarding one constraint.
Accordingly, from state q4 both a enterVar_exp or an enterConst_name call are valid to move on
to state q5 or q6, respectively. In case of a constant, the enterConst_name method creates a new
SingleValue and stores it internally in order to add it to the Term’s targets and to the tempTargets
in the exitElem_expr to transit to q9. In case of a variable, the enterVar_exp method creates a
new instance of the VariableBuilder class (see Figure 5.4), i.e., a class that allows to aggregate
the information of a variable to finally create an appropriate Variable object.

Figure 5.4: VariableBuilder class diagram

75

All listener methods called between enterVar_exp and exitVar_exp add information to the
VariableBuilder, as for example enterVar_name. The reason for using a VariableBuilder is that
the type of a collection variable should be determined by a symbol like "*" or "[]" at the end of
the variable expression, i.e., indicating maps and arrays. As a result, it is not possible to create a
Variable object before the end of the definition, which raises a demand to aggregate the information
meanwhile. Once the variable expression is analyzed (in q6) the subsequent exitElem_expr call
creates a Variable object and adds it to the tempTargets list. Considering the Jersey business term,
the tempTargets therefore contain three Targets, a SingleVariable (<ctx>), and two SingleValues
("Main Breed" and "Breed Name"), before the exitDom_cstr_decl is called (in q9),. The last
step of processing a domain constraint statement is the call of the exitDom_cstr_decl method,
which creates a DomainConstraint object. Therefore, it is checked if the Variable included in the
tempTargets list actually occur in the Term; that is, only previously defined variables can be used
in constraints. If the check concludes that all variables are valid, a DomainConstraint is created,
where the first target is set to be the entity, the second to be the property and the third to be
the domain. State q10 therefore represents the Term object as depicted in Figure 4.24, i.e. the
final representation of the statement. The SemanticAnalyzer gets back into the initial state after
the exitT_def listener method was called. In this final method, the listeners are informed about
the result, that is, a new TermEvent is created, comprising the Term, the path and an Action set
to CREATE. This TermEvent is than passed to the TermListeners by calling their processTerm
methods.

5.1.2 Data Storage

The data storage is the component that allows to save OLAP pattern related data in a database. It
is part of the repository application which is hosted on the application server execution environment
and provides the StorageUnit interface which allows for other components to work with object
representations only. That is, the data storage communicates with the database, but hides that
communication from other components. The database behind the data storage, however, is not
part of the repository application instead it is located on a stand-alone PostgreSQL server. Hence,
the implementation is based on a relational data model provided by a PostgreSQL database. Even
though the design would allow to use any kind of database, the sophisticated, free and open-source
tool support for relational databases makes it a reasonable choice for a first prototype. There are
many relational databases available, that would all be equally sufficient for what is implemented
in here. However, for the implementation of the KBS, even though not provided by this thesis,
Datalog is deemed to be used in future extensions. Given these considerations, PostgreSQL
databases enable the easiest integration of datalog for the future development of the repository
application.

Independent of the database technology used, the data storage component is responsible for
encapsulating the actual database accesses and enable the other components to work with objects
instead. This means e.g. whenever a getPattern method is called, the data storage must query
the database to retrieve the contained information regarding context, templates and descriptions,
generate an object representation and return it to the caller. Consequently, for every persist call,
the data storage needs to write the information contained in the objects into the respective tables
and columns and, in terms of e.g. a pattern, reference the catalogue it should be contained in. For

76

these purposes the concept of object-relational mapping (ORM) was introduced, i.e. a database
schema is mapped to a class schema [22]. The first implementation of ORM was introduced with
the Java library Hibernate, which is available on an open source licence [22]. For that reason and
because of its comprehensive documentation, Hibernate (in version 5.4.11) is the selected ORM
library for the implementation of this thesis.

Basically, Hibernate allows two different mapping forms, i.e. XML mapping or mapping by
annotations [22]. Whereas with annotations, the mapping is included in the respective class files,
XML mapping allows to separate the mapping information into an XML file. For that reason,
and for the fact that XML mapping is slightly more flexible, it is chosen over the maybe more
prominent annotations mapping. Further, one can argue that using annotations violates the ICR
requirement, as it entangles the data structure with the database in the background. An excerpt
of the XML mapping regarding patterns can be found in Listing 5.1.

1 <hibernate -mapping >

2 <class name="at.dke.olappattern.data.term.Term" table="term">

3 <id name="id" type="integer" column="id">

4 <generator class="identity"></generator >

5 </id>

6

7 <property name="name" type="string" column="name"/>

8 <property name="returnType" type="string" column="return_type"/>

9

10 <many -to-one name="type"

class="at.dke.olappattern.data.term.Type" column="type"

cascade="save -update" not -null="true"

11 fetch="select" lazy="false"/>

12

13 <set name="templates" table="term_template" cascade="all"

lazy="false" fetch="select">

14 <key column="term" not -null="true"/>

15 <one -to-many entity -name="TermTemplate"/>

16 </set>

17

18 </class>

19

20 </hibernate -mapping >

Listing 5.1: Excerpt of the pattern mapping

Mappings are provided within the <hibernate-mapping> tag, which further contains the classes
identified by the <class> tag. For every class, the name of the java class and the table it should
be mapped to are stated; this means the Term class is mapped to the term table in this example.
Thereafter, the properties comprised can be mapped by stating the name (name of the java
property), a column (name of the database column) and the data type. That is, the java property
identified by the name is persisted in the defined column. The id for the database table is mapped
using the <id> tag and stating both name and column; additionally, a generator can be provided,
enabling Hibernate to automatically create id values. Besides simple properties, many to one
relationships can be mapped using the equally named tag. Therefore, name and column are stated,

77

with the data type set to the class which is related; for this example a Term is associated with a
type. Furthermore, one can define additional properties to specify the relationship; in the example
the type is not-null (terms must have a type), with cascade set to "save-update" (there is no
cascading delete). Defining fetch type "select" and lazy as false, ensures that the type is always
loaded from the database once the Term is loaded.

For the mapped classes, the Hibernate framework provides methods to persist and load objects.
Therefore, it allows to open sessions to communicate with the database and provides means to
handle transactions as depicted in Figure 5.5.

Figure 5.5: Process for persisting objects using Hibernate

Accordingly, before an object can be persisted, (i) a SessionFactory must be initialized, which
means that the mappings must be loaded. The SessionFactory object provides an openSession
method (ii) that must be called to open a database session, represented by a Session object
returned. Once a session is open, (iii) a new transaction can be started using the Session’s
beginTransaction method; in case of an error, these transactions provide a rollback function to
automatically reverse any changes. Within the transaction (represented by a Transaction object),
one has the choice between multiple operations provided by the Session object, that allow to persist
an object in the database. For this work the saveOrUpdate method (iv) is deemed sufficient as it
automatically decides whether an insert or update operation must be performed on the database.
This means, by just calling this method and passing the object to be persisted, Hibernate does
create all necessary SQL statements. Subsequently, (v) the changes can be committed using the
commit method provided by the Transaction. Lastly, (vi) the session must be closed again.

The same procedure applies to all delete methods as well, except that Hibernate’s delete method is
called instead. There is however one exception where the automatically created delete statements
cause problems, namely for context classes (patterns and terms). As both variables and values are
included in a context’s targets, Hibernate does not recognize, that some variables reference values.
Due to that fact the values can only be delete once they are not referenced by variable any more;
values and variables must be deleted manually to solve these issues.

Lastly, for retrieving objects, hibernate allows to formulate SQL-like queries; these queries contain
the names of the mapped classes and their properties rather than table names and comprised
columns. Hibernate queries are however just as powerful as regular SQL queries and allow to use
SQL functions, like avg, max etc., as well.

5.1.3 Template Processor

The template processor, responsible for the transformation of templates to executable OLAP queries,
is part of the java components hosted on the application server. It provides the PreprocessingUnit
interface comprising the executePattern method which executes one or more pattern templates.
Therefore, the template processor loads the MDM and glossary providing the context, as well as
the pattern, from the data storage to subsequently process the pattern’s template(s). For analysing
the templates language processing based on lexical, syntactical and semantic analysis must be

78

performed. In terms of the implementation it therefore builds upon the ANTLR4 library (like the
language processor) to process the templates underlying the island grammar (Appendix B). Hence,
given the grammar notation in the ".g4" format, a lexer and a parser are automatically generated.
The SemanticMacroAnalyzer builds upon these components and overrides the corresponding
MacroBaseListener to implement all methods necessary to substitute macro calls during the
iteration of an AST.

Before macros can be substituted the Pattern, MDM and glossary are loaded, the stub meth-
ods for grounding and validation are called, and the templates to be executed are determined
using the getTemplates method of the data storage. Subsequently, an internal method, i.e.
processTemplates, iterates over all templates and prepares them for the language processing steps.
Therefore it passes every template to another internal method (substituteTemplatePlaceholders)
that substitutes the variable placeholders. In the next step the processTemplates method initiates
the language processing steps for the templates. Considering the example AST in Figure 4.30, the
SemanticMacroAnalyzer implements the processing steps in Figure 5.6.

Figure 5.6: Semantic analysis steps for the template expression in Figure 4.30

Initially the enterMacrol listener method is implemented, which sets the only public property of
the SemanticMacroAnalyzer, namely the query property, to be an empty string. To get from state
q1 to q2, the enterTxt method is implemented, which removes the surrounding "*{" and "}*"
symbols from the query text and adds it to the query string. Subsequently, for the transition
to q3 the enterMacro_call method creates a new list (macroArguments) allowing to store the
parameters of the macro call. The following enterMacro_name sets an internal enumeration
allowing to store the macro to be called; i.e. the macro enumeration is set to EXPR. In every of the
following enterMacro_argument calls, the string argument is added to macroArguments list; for
the example expression the arguments are "Jersey" and s. Lastly, in the exitMacro_call method,
the respective macro method as provided by the MacroResolver interface is executed. That is,
for the example expression, the expr method for the Jersey term is called with s as value for the
<ctx> parameter; the result of the expr method is consequently added to the query parameter.
Accordingly, in q6 the query parameter includes the executable OLAP query.

If more than one template is to be executed, the template processor creates aggregates the results
of the SemanticMacroAnalyzer in form of a single string with empty lines between the queries.
Finally, the string containing the query/queries is returned to the controller, which generates and
sends a response to the editor.

79

5.1.4 Controller

The controller, also running within the application server environment, is a java component that
orchestrates the functionality of the data storage and template processor and thus depicts the
business logic. In terms of implementation it therefore realizes the methods and the underlying
logic as introduced in subsection 4.3.1; as this realization does not differ from the initial design,
it is not covered again in this section. Besides that, the controller is responsible for creating a
response for the editor application, which can be transmitted over a network connection. That is,
the success and error messages, as well as the result lists of search operations are converted into a
JSON object. Using the Jackson Core library one therefore is provided with the JsonObjectBuilder
class. An instance of this class allows to add properties to it, by stating the property name and
and its value; finally one can call build to receive a JSON object (see Listing 5.2). For a resulting
JSON object of a catalogue, refer to Appendix C.

1 JsonObjectBuilder job = Json.createObjectBuilder ();

2 job.add("result", str);

3 JsonObject j = job.build();

Listing 5.2: JsonObjectBuilder usage

The structure of the response objects created by the controller is always the same and includes
only one property, namely the result. In Listing 5.2 the string (str) value added to the result
property therefore may be an error or success message or a previously generated JSON string
representing a search result, i.e. organization or content elements.

1 response.resume(Response.ok().entity(result).

2 header("Access -Control -Allow -Origin", "*")

3 .header("Access -Control -Allow -Credentials", "true")

4 .header("Access -Control -Allow -Headers",

5 "origin , content -type , accept")

6 .header("Access -Control -Allow -Methods","POST").build());

Listing 5.3: AsyncResponse for responding to the editor

To be able to respond to the editor application, the controller needs information about the sender.
This information is provided by the InterfaceProvider, which generates an AsyncResponse object
(see Listing 5.3). An AsyncResponse provides a resume function, which takes a Response object as
a result and transmits it to the sender; the Response corresponds to a HTTP response and includes
a status, headers and in this case the created JSON object. The header settings in Listing 5.3
correspond to the openness requirement defined by Shahzad et al. [16] and allow access for all
applications.

5.1.5 Interface Provider

The implementation of the interface provider provides a REST interface for the repository
application, that allows for the editor to send OLAP pattern language commands using HTTP
post messages. The interface provider, just like all other components of the repository application,
corresponds to a java class hosted on the application server. It allows to send JSON objects to the

80

server using the following resource: url/repository ; the url depends on the address of the server
it is hosted on. The command must therefore be packed into a JSON object with one property,
namely command, which is associated with the OLAP pattern statement.

For implementing such an REST interface, the Java API for RESTful Web Services (JAX-RS)
is version 2.1 is used. A JAX-RS Application, must include one class overriding the provided
Application super class, which is the RepositoryApplication in Listing 5.4, that can be hosted on a
server – the glassfish server in this case. This class does not contain any logic but states which
resources the user can access, i.e. the /repository resource hidden behind the interface provider.

1 @ApplicationPath("/")

2 //The java class declares root resource and provider classes

3 public class RepositoryApplication extends Application{

4 @Override

5 public Set <Class <?>> getClasses () {

6 HashSet h = new HashSet <Class <?>>();

7 h.add(IntefaceProvider.class);

8 return h;

9 }

10 }

Listing 5.4: RepositoryApplication class

The InterfaceProvider class in contrast contains the executeCommand method (Listing 5.5) for
processing statements; in terms of JAX-RS it must be annotated with @Path("/repository")
to declare the path. As determined by the design, the executeCommand method extracts the
OLAP pattern statement from the HTTP request. Subsequently, it provides the controller with
an AsyncResponse object enabling it to respond to the editor, and passes the statement to the
language processor.

1 @POST

2 @Produces(MediaType.APPLICATION_JSON)

3 @Consumes(MediaType.APPLICATION_JSON)

4 public void executeCommand(final JsonObject operation , @Suspended final

AsyncResponse response) {

5 String command = operation.getString("command");

6

7 controller.setResponse(response);

8 try{

9 Initializer.languageProcessingUnit.process(command);

10 }

11 catch (Exception e){

12 Initializer.controller.respond(e.getMessage ());

13 }

14 }

Listing 5.5: execute command

To signalise JAX-RS that executeCommand is responsible for handling post request for /repository,
one needs to annotate it with @POST. Additionally, by adding @Consumes and @Produces, it can

81

be signalized to the clients, which formats the information in the request and the response must
have.

5.2 Editor Application

The editor application corresponds to the client of the OLAP pattern repository and is implemented
as an Angular web application. Consequently, it is executed in the client device’s browser, whereby
almost every device can be considered a possible client. The Figure 5.7 gives an impression on the
editors graphical user interface (GUI).

Figure 5.7: GUI of the editor application

Accordingly, the editor GUI consists of three elements, a text field to enter commands, a send
button and a response field. The send button generates a JSON object in the form "command" :
"SEARCH ...", i.e it includes a command property, which is associated with the statement in the
text field, and sends it to the repository application using a HTTP post message. Additionally, it
registers a listener method which visualizes the response, as generated by the repository application’s
controller, in the response field. Therefore it is distinguished between message- (success and error
messages) and object responses; whereas messages are shown using the HTML label element,
objects are visualized using the ngx-json-viewer, the latter allows to view JSON objects in form of
drop-down list as in Figure 5.7 That is, for the SERACH statement in the command field, one
repository object was returned, with the id 1 and the name "Austrian Milk Models". By clicking
on the catalogues, glossaries or mdm arrays, one would further be able to see more details and
even the comprised content elements.

82

Chapter 6
Evaluation

In this chapter the implementation (chapter 5) as well as the design (chapter 4) is evaluated
by checking whether general repository requirements (Table 2.4) and system- (subsection 3.2.2)
and user-specific (subsection 3.2.1) requirements are met. Therefore, in section 6.1 it is detailed
how the requirements following Shahzad et al. [16] are fulfilled. Subsequently, in section 6.2 it is
shown how the system requirements are met by the application design. Finally, in section 6.3 it is
demonstrated how the user requirements are met, that is, how users are supported by the OLAP
pattern repository in their practical work.

6.1 Repository Requirements

This section evaluates whether the requirements as introduced by Shahzad et al. [16] are met by
the OLAP pattern repository. Table 6.1 provides an overview of the general repository requirements
with the degree of realization, i.e., whether the requirement is implemented exhaustively, partially,
or not at all.

Table 6.1: Evaluation of general repository requirements following Shahzad et al. [16]

Requirement Realization

1 Extensible exhaustive
2 Flexible partly
3 Openness exhaustive
4 Accepting partly
5 Usable partly
6 Navigable exhaustive

First, the OLAP pattern repository is extensible considering organisation as well as content
elements. By supporting CREATE statements it is possible to add new organization structures and
to insert content into existing ones. Second, flexibility is partly provided as OLAP patterns can be
instantiated yielding different versions (see also the organization of patterns in subsection 2.2.3).
Even though considered by design, the implementation does not allow to instantiate business terms
in the current version, consequently, the degree of realization is classified only as partially. Third,
there is no differentiation between users or groups of users, that is, the implementation provides
sufficient openness. In addition, openness is also fostered by providing a REST interface, allowing
any application, other than the editor, to access the repository application’s functionality as well.

83

Fourth, the requirement concerning accepting can be met only partially. While it is possible to
structure the repository’s content (using organization elements), the users may only chose from a
set of predefined organization elements (repositories, MDMs, catalogues or glossaries). That is,
users cannot define custom structures even though it might be more beneficial to them. Fifth, this
work focuses on the provision of all necessary functionality to realize the OLAP pattern language
statements and not on providing a sophisticated user interface, consequently, the degree of usability
realization can only be claimed partially. Although the OLAP pattern repository does provide a GUI
as suggested by Shahzad et al. [16] a future work must determine how the usability is considered
by practitioners. Finally, the OLAP pattern repository is navigable, as the implementation of
SEARCH and SHOW statements allow for users to find specific elements as well as get an impression
of which content is comprised by organisation elements.

6.2 System Requirements

In this section the system requirements are evaluated by taking the design and the implementation
into account. It is discussed how certain requirements are covered by the design respectively the
implementation of the repository application.

The design is based on a component-based architecture to meet the interchangeability requirement
(ICR). Interfaces are defined grouping a set of functionality that one component has to implement
in order to provide it to other components. In turn, components using an interface only need
to know the comprised methods, their parameters and results, but not how it is implemented
nor which component implements it. This enables the replacement of components by other
components that implement the same interface.

In addition, the design defines classes organized in hierarchies that represent the data models
(section 4.2) of organization and content elements. The object representation requirement (OOR)
is met as these classes follow an object-orientated notion.

The data models already take into account complex and collection types, even though, the
prototypical implementation does not rely on them. This, however, allows to easily extend the
current implementation by collection variables as described by Kovacic et al. [1], which meets the
extensibility requirement (EXTR). It should be noted that these extensions are considered in the
logical schema of the database as well. The OLAP pattern language (Appendix A) also already
contains all necessary rules concerning these extension elements. Only the SemanticAnalyzer
must be adapted to fully integrate the extensions into the repository application. By using the
ANTLR4 parser generator, the remaining task would be to simply override the corresponding
listener methods.

Finally, language statement processing requirement (LSPR) is fulfilled by the language processor
and the template processor as both components perform all three steps necessary to process
language statements. This means, they perform a lexical and syntactic analysis to generate and
AST from an input language statement; based on the AST both components perform a semantic
analysis. According to their tasks the results of the language processing differs, i.e. the language
processor generates an object representation of the statement, whereas the template processor
substitutes macro calls.

84

6.3 User Requirements

In this section it is demonstrated how the user requirements are fulfilled by the OLAP pattern
repository application. Hence, the focus is especially set on how data warehouse (DWH) and
domain experts are supported in the definition and usage of patterns. To this end the steps of a
DWH expert to create a catalogue, to add a pattern, and to search for a specific pattern and for a
domain expert the steps of instantiating and executing a specific pattern are demonstrated in the
following section. For each step the input statement, e.g., the OLAP pattern language statement
defined in the Listings of section 3.1, and the output messages, e.g., success messages, executable
queries, object representations, are depicted. Each statement is entered in the "Command" text
field and is sent to the repository application using the below "Send" button (see Figure 5.7).
The output is depicted in the text area below the "Send" button, which visualizes the responses
received from the repository application. The running example introduced in section 1.3 is used to
demonstrate the implementation.

Firstly, a new repository structure must be created by the DWH expert using the command in
Figure 6.1. Thereby, a new organization structure is initialized, allowing to depict the eMDM
of the Austrian Milk Company in the subsequent steps. The "Repository created!" message
confirms the success of the operation; it therefore covers the requirement CRR.

Figure 6.1: Create "Austrian Milk Models" repository

Within the repository structure, the Austrian Milk Company’s MDM must be depicted. Hence, the
statement in Figure 6.2 is executed by the DWH expert, creating a new, empty MDM following
Listing 3.1 line 4. The repository application returns "MDM created!" which assures that the
new MDM is persisted in the repository structure. That is, the CMR is fulfilled.

Figure 6.2: Create "Dairy Precision Farming" MDM

85

Inside the MDM, in a first step the DWH expert needs to create the dimensions, which can further
be used in the cube definitions. That is to create the "Time" dimension as described in Listing 3.5
the DWH expert must execute the corresponding statement (see Figure 6.3). "Dimension
created!" is visualized in the response field once the dimension is created fulfilling the CDR.

Figure 6.3: Create "Time" dimension

Based on the "Time"- and other dimensions, the DWH expert can define the "Feeding" cube
(see Listing 3.6) as depicted in Figure 6.4. Therefore, the requirement regarding the creation of
cubes, namely the CCR is fulfilled.

Figure 6.4: Create "Feeding" cube

Once the cubes and dimensions are comprised in the MDM, the domain’s vocabulary can be
depicted within a glossary. Accordingly, the statement to create a new glossary (see Listing 3.1
line 3) must be executed as in Figure 6.5. The OLAP pattern repository therefore meets the CGR.

86

Figure 6.5: Create "Dairy Business Terms" glossary

Subsequently, the DWH expert is able to add business terms to the glossary. Thus, in a first step
a context must be added; for the Austrian Milk Company, the Jersey business term is deemed
important (see Listing 3.7) and used as an example here. The DWH expert therefore executes
the command as depicted in Figure 6.6. "Term created!" states, that the term’s context was
successfully created; in consequence, the CBCR is fulfilled.

Figure 6.6: Create "Jersey" business term context

Thereafter a template for the business term must be added; for the Jersey breed one can see a
SQL template in Listing 3.9. Accordingly, the DWH expert uses the corresponding statement (see
Figure 6.7). This means, that the OLAP pattern repository also meets the CBTR.

Figure 6.7: Create "Jersey" business term template

87

Lastly, the Jersey business term must be completed by adding a description, as depicted in
Listing 3.8. That is, the DWH expert formulates a description adding information to the business
term context and template (see Figure 6.7). Supporting this functionality, the CBDR is fulfilled,
furhter the combination of the CBCR, CBTR and CBDR provides the functionality as described in
CBR.

Figure 6.8: Create "Jersey" business term description

From this point on, it is assumed that the entire eMDM (see section 2.1) of the Austrian Milk
Company is depicted within the repository application. Therefore, the DWH expert can start
to define reasonable OLAP patterns. The first step of the DWH expert to be considered is the
creation of a new catalogue named "Diary OLAP Patterns" in the "Austrian Milk Models"
repository. Before creating a catalogue, the DWH expert, however checks whether the catalogue
to be created already exists. The search statement in Listing 3.3 is therefore executed (satisfying
the search organization element requirement (SOER)). As shown in Figure 6.9 no catalogue exists
containing this search term as its name, which is indicated by the returned message "No entries
found for the given parameters".

Figure 6.9: Search for catalogues

Once it is assured, that the catalogue does not already exist, the DWH expert creates the catalogue
by executing the statement in Listing 3.1 line 2 (Figure 6.10). A "Catalogue created!" message
is returned signalizing that the statement is syntactically correct and the operation is successfully
executed (satisfying the create catalogue requirement (CCR)).

After the catalogue is successfully created, patterns can be added. The DWH expert has identified
a new recurring type of information demand and an OLAP query composition strategy to satisfy

88

Figure 6.10: Create new catalogue "Dairy OLAP Patterns"

it, leading to the "Breed-Specific Subset-Subset Comparison". The statement to create the
"Breed-Specific Subset-Subset Comparison" and add it to the previously defined catalogue is
depicted in Listing 3.10. The returned message "Pattern created!" in Figure 6.11 indicates that
the pattern was successfully added to the newly created catalogue (satisfying the create pattern
context requirement (CPCR)). It should be noted that this functionality also allows to fulfill the
update content element requirement (UCER), as an update corresponds to a re-creation of a
content element.

Figure 6.11: Create new pattern "Breed-Specific Subset-Subset Comparison"

To complete the "Breed-Specific Subset-Subset Comparison" pattern definition, the DWH
experts subsequently adds a template, which is depicted in Figure 6.12. For the sake of brevity,
only the first part of the template’s expression in Figure 6.11 is shown, for the full expression refer
to Appendix D. The returned message "Pattern template created!" in Figure 6.11 informs that
the pattern is successfully added (satisfying the create pattern template requirement (CPTR)).

Subsequently, the DWH expert formulates an English problem description and a solution allowing
for domain experts to judge the pattern’s applicability to a certain problem. Therefore, the
description statement (Listing 3.11) is entered in the command field (see Figure 6.13), sent to the
repository application which acknowledges with the "Pattern description created!" message
(satisfying the create pattern description requirement (CPDR)). This completes the definition of

89

Figure 6.12: Add template to a pattern

the "Breed-Specific Subset-Subset Comparison" pattern (satisfying the create pattern repository
requirement (CPR)).

Figure 6.13: Add description to a pattern

After the "Breed-Specific Subset-Subset Comparison" pattern has been defined, it can be used. A
domain expert uses a pattern need to be adapted to the his/her current analysis situation. Therefore,
names of eMDM elements bound to all pattern parameters, i.e., parameters are bound to the
names of the cubes, dimensions, and business terms contained in the "Dairy Precision Farming"
MDM and the "Dairy Business Terms" glossary. The domain expert’s analysis situation is
depicted by the instantiation statement in Listing 3.17. The pattern thus created should be stored
in the "Dairy OLAP Patterns" catalogue of the "Austrian Milk Models" repository, under
the name "Austrian Milk Custom Breed-Specific Subset-Subset Comparison". The success
of the instantiation is confirmed by the "Pattern instantiated!" message (Figure 6.14), which

90

also confirms that the instantiate pattern requirement (IPR) is successfully implemented by the
OLAP pattern repository.

Figure 6.14: Instantiate "Breed-Specific Subset-Subset Comparison" pattern

The "Austrian Milk Custom Breed-Specific Subset-Subset Comparison" pattern is parameter-
free as all parameters were bound in the course of the instantiation, that is, it can be executed.
The domain expert formulates the statement in Listing 3.18 to execute the pattern and thus
receive all queries representing the analysis problem. The resulting queries are visualized in the
response area (Figure 6.15). As only one template, representing the patterns structure in SQL,
was defined the result contains a single OLAP query in SQL respectively. It should be noted that
Figure 6.15 only depicts a snippet of the query generated by the repository application, nevertheless
it can be seen that, for example, "Feeding" was inserted as <sourceCube> in the expression
(see Appendix E for the whole generated query). Thus, the execute pattern requirement (EPR) is
satisfied as far as intended for this work, i.e., the behavior for the grounding is not implemented.

Figure 6.15: Execute "Austrian Milk Custom Breed-Specific Subset-Subset Comparison" pattern

91

The repository application also allows to gain an overview of patterns in the "Dairy OLAP
Patterns" catalogue. To this end a domain or DWH expert can formulate a SHOW statement to
retrieve the names of all patterns included. The result is a representation showing the catalogue
name, followed by the list of comprised patterns, which is in this case the "Breed-Specific
Subset-Subset Comparison" and "Austrian Milk Custom Breed-Specific Subset-Subset
Comparison" pattern (see Figure 6.16). Accordingly, the implementation also fulfills the show
organization element requirement (SOLR).

Figure 6.16: Show "Dairy OLAP Patterns" catalogue

In addition to get an overview of patterns in a catalogue, the repository application also support the
search for specfic patterns. To find a pattern that allows to handle subsets, i.e., the name attribute
contains the search term "Subset", a domain or DWH expert can formulate the statement in
Figure 6.17. The repository application provides the object representation of the patterns matching
the search criteria. For the current search, the previously defined "Breed-Specific Subset-Subset
Comparison" and its instantiation "’Austrian Milk Custom Breed-Specific Subset-Subset
Comparison" are returned as JSON objects (Satisfying the search content element requirement
(SCER)).

Figure 6.17: Search for patterns containing "Subset" in their names

The repository application also allows to get the detailed definitions of specific patterns by for-
mulating corresponding SHOW statements. The definition of the "Breed-Specific Subset-Subset

92

Comparison" can be obtained by a domain or DWH expert by formulating the corresponding
SHOW statement in Figure 6.18. The returned definition in in Figure 6.18 shows that the show
content element requirement (SCDR) is satisfied by the repository application.

Figure 6.18: Show "Breed-Specific Subset-Subset Comparison" patterns

Finally, the repository application also support the removal of catalogues. To delete the created
catalogue "Dairy OLAP Patterns" a DWH expert can formulate the statement in Listing 3.2.
The repository application responds with "Catalogue deleted!" informing that the operation
is successfully executed (see Figure 6.19). It is worth noting that any pattern, pattern template
or pattern description contained has been deleted as well. Consequently, the delete organization
element requirement (DOER) is fulfilled as delete statements for other organisation elements follow
the same process.

Figure 6.19: Delete catalogue

The DHW expert can check whether the catalogue is delete by formulating a subsequent show
(and equivalently a search) statement regarding one of the comprised patterns. As depicted in
Figure 6.20 the formulated show statement results in error; the repository application responds
with "Path not found". This shows that the patterns were deleted as well (cascading delete),

93

which demonstrates that the delete content element requirement (DCER) is also fulfilled.

Figure 6.20: Show deleted pattern

Accordingly, all user requirements as defined in subsection 3.2.1 to support both domain and
DWH experts can be fulfilled by the design and implementation as proposed in this work. A
demonstration with potential users, was not the aim of this demonstration. Nevertheless, a user
study is crucial for future development of the OLAP pattern repository, to obtain a detailed
assessment of potential users regarding the benefits of the application.

94

Chapter 7
Conclusion

This thesis proposes a repository application for OLAP patterns supporting both their definition and
usage within organizations. Accordingly, the OLAP pattern repository application provides all the
functionality necessary to define generic, best practice solutions for OLAP queries, adapt them to
certain analysis situations, and automatically generate a specific, executable OLAP query satisfying
the user’s needs. To this end, the definition language is analyzed to define requirements that must
be fulfilled in order to support users in their work with patterns. From these requirement, a general,
component-based repository design is derived. In addition a prototypical implementation of the
OLAP pattern repository – following the design – allows for users to depict the multidimensional
data models used by their organizations consisting of cubes and dimensions and the vocabulary from
the organization’s domain in form of business terms. Based on these enriched multidimensional
model elements, users can define, instantiate, and execute OLAP patterns. Besides the definition
of patterns, both design and implementation also consider OLAP pattern extensions to be added in
future evolution steps. Furthermore, the repository application allows for DWH experts to maintain
the content by providing means of structuring as well as update and delete functionalities.

Considering the novelty of the approach and the fact that practical experience regarding the use of
OLAP patterns is rare, numerous future tasks can be identified. The editor application currently
provides a simple (command line) interface to send commands (text) to the repository application
and to output the result. This is a sufficient way to support users in executing any operation in
context of the OLAP pattern approach, however, leaves room for further improvements. One
possible extension could be to orientate towards existing, similar tools available and take over
prominent functions from these applications. For example, similar to tools for writing database
queries, the editor application introduced in this work can be extended by features such as syntax
highlighting and auto-completion which could make writing statements more comfortable and
less error prone. Thus, these features may be worth adding in a future expansion stage. Another
possible way of extending the editor application might be to offer a grapfical user interface, enabling
the user to depict MDMs and create patterns and terms using the graphical notation introduced
with the OLAP pattern approach. This means that users could define cubes, dimensions, business
terms, and patterns by adding graphical items instead of formulating textual commands. Since
several extensions are conceivable, it would nevertheless be reasonable to continue research by
conducting a study on which functionality is expected by practitioners. Regarding the repository
application, the most obvious task is the integration of the KBS component to be developed.
For the comprehensiveness, the extensions to the basic OLAP pattern approach – introduced

95

by Kovacic et al.[1] – might be worth adding to the implementation such as complex types and
collections and generic business terms. Finally, to support data warehouse implementations that
do not follow the naming of the conceptual representation, mapping tables could be considered
allowing to match logical and conceptual elements.

96

Bibliography

[1] I. Kovacic, C. G. Schuetz, B. Neumayr and M. Schrefl, ‘OLAP Patterns: A Pattern-Based
Approach to Multidimensional Data Analysis’, Arbeitspapier am Institut für Wirtschaftsin-
formatik - Data & Knowledge, 2020.

[2] T. W. Guenther, ‘Conceptualisations of ‘controlling’in German-speaking countries: ana-
lysis and comparison with Anglo-American management control frameworks’, Journal of
Management Control, vol. 23, no. 4, pp. 269–290, 2013.

[3] T. Reichmann, ‘Controlling mit Kennzahlen und Management-Tools’, Die systemgestützte
Controlling-Konzeption, vol. 7, 2006.

[4] W. H. Inmon, Building the data warehouse, 3. ed., ser. Wiley computer publishing Timely,
practical, reliable. New York, N.Y.: Wiley, 2002, isbn: 0-471-08130-2.

[5] A. A. Vaisman and E. Zimányi, ‘Data Warehouse Systems - Design and Implementation’,
Data-Centric Systems and Applications, 2014. doi: 10.1007/978-3-642-54655-6. [Online].
Available: https://doi.org/10.1007/978-3-642-54655-6.

[6] M. Golfarelli, D. Maio and S. Rizzi, ‘The dimensional fact model: A conceptual model
for data warehouses’, International Journal of Cooperative Information Systems, vol. 7,
no. 02n03, pp. 215–247, 1998.

[7] S. Chaudhuri and U. Dayal, ‘An Overview of Data Warehousing and OLAP Technology’,
SIGMOD Rec., vol. 26, no. 1, pp. 65–74, 1997. doi: 10.1145/248603.248616. [Online].
Available: https://doi.org/10.1145/248603.248616.

[8] I. Kovacic, C. G. Schuetz, S. Schausberger, R. Sumereder and M. Schrefl, ‘Guided Query
Composition with Semantic OLAP Patterns’, in Proceedings of the Workshops of the
EDBT/ICDT 2018 Joint Conference (EDBT/ICDT 2018), Vienna, Austria, March 26, 2018,
N. Augsten, Ed., ser. CEUR Workshop Proceedings, vol. 2083, CEUR-WS.org, 2018, pp. 67–
74. [Online]. Available: http://ceur-ws.org/Vol-2083/paper-11.pdf.

[9] W. Eckerson, ‘Pervasive business intelligence Techniques and Technologies to Deploy BI on
an Enterprise Scale’, TDWI Best Practices Report, 2008.

[10] G. Allen and J. Parsons, ‘Is Query Reuse Potentially Harmful? Anchoring and Adjustment in
Adapting Existing Database Queries’, Inf. Syst. Res., vol. 21, no. 1, pp. 56–77, 2010. doi:
10.1287/isre.1080.0189. [Online]. Available: https://doi.org/10.1287/isre.1080.0189.

97

https://doi.org/10.1007/978-3-642-54655-6
https://doi.org/10.1007/978-3-642-54655-6
https://doi.org/10.1145/248603.248616
https://doi.org/10.1145/248603.248616
http://ceur-ws.org/Vol-2083/paper-11.pdf
https://doi.org/10.1287/isre.1080.0189
https://doi.org/10.1287/isre.1080.0189

[11] C. G. Schuetz, S. Schausberger, I. Kovacic and M. Schrefl, ‘Semantic OLAP Patterns:
Elements of Reusable Business Analytics’, in On the Move to Meaningful Internet Systems.
OTM 2017 Conferences - Confederated International Conferences: CoopIS, C&TC, and
ODBASE 2017, Rhodes, Greece, October 23-27, 2017, Proceedings, Part II, H. Panetto,
C. Debruyne, W. Gaaloul, M. P. Papazoglou, A. Paschke, C. A. Ardagna and R. Meersman,
Eds., ser. Lecture Notes in Computer Science, vol. 10574, Springer, 2017, pp. 318–336. doi:
10.1007/978-3-319-69459-7_22. [Online]. Available: https://doi.org/10.1007/978-3-319-
69459-7%5C_22.

[12] C. Alexander, A pattern language: towns, buildings, construction. Oxford university press,
1977.

[13] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns – Elements of Reusable
Object-Oriented Software, 1st ed. Amsterdam: Addison-Wesley Longman, 1995, 37. Reprint
(2009), isbn: 0201633612.

[14] C. G. Schuetz, S. Schausberger and M. Schrefl, ‘Building an active semantic data warehouse
for precision dairy farming’, J. Organ. Comput. Electron. Commer., vol. 28, no. 2, pp. 122–
141, 2018. doi: 10.1080/10919392.2018.1444344. [Online]. Available: https://doi.org/10.
1080/10919392.2018.1444344.

[15] M. Elias, K. Shahzad and P. Johannesson, ‘A business process metadata model for a process
model repository’, in Enterprise, Business-Process and Information Systems Modeling,
Springer, 2010, pp. 287–300.

[16] K. Shahzad, B. Andersson, M. Bergholtz, A. Edirisuriya, T. Ilayperuma, P. Jayaweera and
P. Johannesson, ‘Elicitation of Requirements for a Business Process Model Repository’, in
Business Process Management Workshops, BPM 2008 International Workshops, Milano,
Italy, September 1-4, 2008. Revised Papers, D. Ardagna, M. Mecella and J. Yang, Eds.,
ser. Lecture Notes in Business Information Processing, vol. 17, Springer, 2008, pp. 44–55.
doi: 10.1007/978-3-642-00328-8_5. [Online]. Available: https://doi.org/10.1007/978-3-
642-00328-8%5C_5.

[17] D. Spinellis, ‘Notable design patterns for domain-specific languages’, J. Syst. Softw., vol. 56,
no. 1, pp. 91–99, 2001. doi: 10 . 1016/S0164 - 1212(00)00089 - 3. [Online]. Available:
https://doi.org/10.1016/S0164-1212(00)00089-3.

[18] A. W. Appel, Modern compiler implementation in C. Cambridge university press, 2004.

[19] W. M. Waite and G. Goos, Compiler construction. Springer Science & Business Media, 2012.

[20] I. Sommerville, Software engineering, 9th ed. Boston: Pearson, 2011, isbn: 9780137053469.

[21] T. J. Parr and R. W. Quong, ‘ANTLR: A Predicated- LL(k) Parser Generator’, Softw.
Pract. Exp., vol. 25, no. 7, pp. 789–810, 1995. doi: 10.1002/spe.4380250705. [Online].
Available: https://doi.org/10.1002/spe.4380250705.

[22] E. J. O’Neil, ‘Object/Relational Mapping 2008: Hibernate and the Entity Data Model
(Edm)’, ser. SIGMOD ’08, Vancouver, Canada: Association for Computing Machinery, 2008,
pp. 1351–1356, isbn: 9781605581026. doi: 10.1145/1376616.1376773. [Online]. Available:
https://doi.org/10.1145/1376616.1376773.

98

https://doi.org/10.1007/978-3-319-69459-7_22
https://doi.org/10.1007/978-3-319-69459-7%5C_22
https://doi.org/10.1007/978-3-319-69459-7%5C_22
https://doi.org/10.1080/10919392.2018.1444344
https://doi.org/10.1080/10919392.2018.1444344
https://doi.org/10.1080/10919392.2018.1444344
https://doi.org/10.1007/978-3-642-00328-8_5
https://doi.org/10.1007/978-3-642-00328-8%5C_5
https://doi.org/10.1007/978-3-642-00328-8%5C_5
https://doi.org/10.1016/S0164-1212(00)00089-3
https://doi.org/10.1016/S0164-1212(00)00089-3
https://doi.org/10.1002/spe.4380250705
https://doi.org/10.1002/spe.4380250705
https://doi.org/10.1145/1376616.1376773
https://doi.org/10.1145/1376616.1376773

Appendix A
OLAP pattern language

In Listing A.1 the grammar definition of the OLAP pattern language is depicted. For a detailed
description of the grammar please refer to the publication Kovacic et al. [1].

1 grammar emdml;

2

3 emdm_stmt: ((c_stmt | d_stmt | g_stmt | i_stmt | x_stmt | s_stmt | f_stmt)

↪→ ';')* ;

4

5 /****** CREATE STATEMENTS *******/

6 c_stmt: CREATE (OR REPLACE)? (cp_stmt | ct_stmt | cm_stmt | cr_stmt) ;

7 cp_stmt: PATTERN (p_def | p_descr | p_temp) ;

8 ct_stmt: t_def | (TERM (t_descr | t_temp));

9 cm_stmt : cube_def | dim_def;

10 cr_stmt : r_exp;

11

12 /****** DELETE STATEMENTS *******/

13 d_stmt: DELETE (p_del | t_del | m_del | r_exp) ;

14

15 /****** EXECUTE STATEMENTS *******/

16 x_stmt : EXECUTE (p_exec);

17

18 /****** INSTANTIATE STATEMENTS *******/

19 i_stmt : INSTANTIATE (p_inst);

20

21 /****** EVALUATE STATEMENTS *******/

22 g_stmt : GROUND (p_grnd);

23

24 /********** SHOW STATEMENTS *********/

25 s_stmt : SHOW path_exp;

26

27 /********** SEARCH STATEMENTS *********/

28 f_stmt: SEARCH s_trgt (IN path_exp)? s_exp+ ;

29 s_trgt: REPOSITORY | CATALOGUE | GLOSSARY | MULTIDIMENSIONAL_MODEL | PATTERN

↪→ | TERM | CUBE | DIMENSION;

30 s_exp: CONTAIN s_str IN (s_sct (',' s_sct)*)+;

31 s_sct: NAME | LANGUAGE | ALIAS | PROBLEM | SOLUTION | EXAMPLE | RELATED ;

32

33 /********** REPOSITORY RELATED STATEMENTS *********/

34 r_exp: (REPOSITORY | CATALOGUE | GLOSSARY | MULTIDIMENSIONAL_MODEL) s_name ;

99

35

36 /********** PATTERN RELATED STATEMENTS **********/

37 p_def: p_name WITH

38 (PARAMETERS param_decl+ END PARAMETERS COL)?

39 (DERIVED ELEMENTS derv_decl+ END DERIVED ELEMENTS COL)?

40 (LOCAL CUBES lc_decl+ END LOCAL CUBES COL)?

41 (CONSTRAINTS cstr_decl+ END CONSTRAINTS COL)? END PATTERN;

42 p_descr: DESCRIPTION FOR p_name WITH

43 ((LANGUAGE '=' lang_name

44 | ALIAS '=' alias_name (',' alias_name)*

45 | PROBLEM '=' prob_txt

46 | SOLUTION '=' sol_txt

47 | EXAMPLE '=' ex_txt

48 | RELATED '=' p_loc_name (',' p_loc_name)*) COL

49)+ END PATTERN DESCRIPTION;

50 p_temp: TEMPLATE FOR p_name WITH temp_elem+ END PATTERN TEMPLATE;

51 p_inst: PATTERN p_name AS p_name WITH BINDINGS?

52 binding_exp (',' binding_exp)*

53 (END BINDINGS)?

54 (FOR path_exp)?;

55 p_del: PATTERN (p_del_descr | p_del_temp | p_name) ;

56 p_del_descr: DESCRIPTION FOR p_name (WITH LANGUAGE '=' lang_name)? ;

57 p_del_temp: TEMPLATE FOR p_name (WITH

58 (temp_elem_meta)+

59 (',' temp_elem_meta)*)?;

60 p_grnd: PATTERN p_name AS p_name FOR mdm_name;

61 p_exec: PATTERN p_name FOR mdm_name USING voc_name

62 (WITH TEMPLATE

63 (temp_elem_meta)+ (',' temp_elem_meta)*

64)?;

65

66 /********** TERM RELATED STATEMENTS **********/

67 t_def: t_type t_name WITH

68 (PARAMETERS param_decl+ END PARAMETERS COL)?

69 (CONSTRAINTS cstr_decl+ END CONSTRAINTS COL)?

70 (RETURNS value_set_name COL)? END t_type ;

71 t_descr: DESCRIPTION FOR t_name WITH (

72 (LANGUAGE '=' lang_name

73 | ALIAS '=' t_name (',' t_name)*

74 | DESCRIPTION '=' descr_txt) COL)+

75 END TERM DESCRIPTION ;

76 t_temp: TEMPLATE FOR t_name WITH temp_elem+ END TERM TEMPLATE;

77 t_del: TERM (t_del_descr | t_del_temp | t_name) ;

78 t_del_descr: DESCRIPTION FOR t_name (

79 WITH LANGUAGE '=' lang_name)? ;

80 t_del_temp: TEMPLATE FOR t_name (WITH

81 (temp_elem_meta)+ (',' temp_elem_meta)*)?;

82

83 /********** PATTERN AND TERM RELATED STATEMENTS **********/

84 temp_elem: (temp_elem_meta | EXPRESSION '=' temp_txt) COL ;

85 temp_elem_meta:

86 DATA_MODEL '=' model_name

87 | VARIANT '=' variant_name

88 | LANGUAGE '=' lang_name

100

89 | DIALECT '=' dialect_name;

90 param_decl: var_decl COL;

91 derv_decl: var_decl

92 (for_exp var_exp)? '<=' elem_exp '.' (elem_exp | RETURNS) COL;

93 for_exp: FOR (var_exp

94 | '(' var_exp (',' var_exp)+ ')') IN var_exp WITH;

95 var_decl : var_exp ':' type op_exp ?;

96

97 /* CONSTRAINT DECLARATIONS */

98 cstr_decl: (sv_cstr_decl | mv_cstr_decl) COL ;

99 mv_cstr_decl: for_exp sv_cstr_decl(',' sv_cstr_decl)*;

100 sv_cstr_decl: type_cstr_decl | dom_cstr_decl | prop_cstr_decl |

↪→ return_cstr_decl | app_cstr_decl | scope_cstr_decl | rollup_cstr_decl |

↪→ descr_cstr_decl | term_cstr_decl ;

101 type_cstr_decl: elem_exp ':' type;

102 dom_cstr_decl: elem_exp '.' elem_exp ':' elem_exp;

103 prop_cstr_decl: elem_exp HAS m_prop_type elem_exp;

104 return_cstr_decl: elem_exp RETURNS elem_exp;

105 app_cstr_decl: elem_exp IS_APPLICABLE_TO

106 (elem_exp | '(' elem_exp ',' elem_exp ')');

107 scope_cstr_decl: (var_exp WITH)? scope_exp (',' scope_exp)*;

108 scope_exp: var_exp IN var_exp;

109 rollup_cstr_decl: elem_exp '.' elem_exp ROLLS_UP_TO elem_exp '.' elem_exp;

110 descr_cstr_decl: elem_exp '.' elem_exp DESCRIBED_BY elem_exp '.' elem_exp;

111 term_cstr_decl: TERM elem_exp WITH

112 (EXPECTED PARAMETERS param_decl+ END EXPECTED PARAMETERS COL)?

113 (EXPECTED CONSTRAINTS (sv_cstr_decl COL)+ END EXPECTED CONSTRAINTS COL

114)? END TERM ;

115

116 /* FRAGMENT DECLARATIONS */

117 lc_decl: (sv_lc_decl | mv_lc_decl) COL;

118 mv_lc_decl: for_exp sv_lc_decl (',' sv_lc_decl)* ;

119 sv_lc_decl: type_lc_decl | dom_lc_decl | prop_lc_decl ;

120 type_lc_decl: const_exp ':' type;

121 dom_lc_decl: elem_exp '.' elem_exp ':' (elem_exp);

122 prop_lc_decl: elem_exp HAS m_prop_type elem_exp;

123 rollup_frag_decl: elem_exp '.' elem_exp ROLLS_UP_TO elem_exp '.' elem_exp;

124 descr_frag_decl: elem_exp '.' elem_exp DESCRIBED_BY elem_exp '.' elem_exp;

125 binding_exp: var_exp '+'? '=' val_exp;

126 val_exp: sv_exp | mv_exp;

127 sv_exp: const_exp

128 | ('(' elem_acc_exp (',' elem_acc_exp)+ ')');

129 mv_exp: '{' sv_exp (',' sv_exp)* '}';

130 elem_acc_exp: const_exp | var_acc_exp;

131

132 /* MULTI -VALUED EXPRESSIONS */

133 var_acc_exp:

134 '<' var_label '>'

135 ('()' tuple_acc_exp?)?

136 (array_acc_exp | map_simple_acc_exp)? ;

137 array_acc_exp: '[' idx_no ']';

138 map_simple_acc_exp: '*' '['

139 (idx_name | ('(' idx_name (',' idx_name)+ ')')) ']' ;

140 tuple_acc_exp: '.[' idx_no ']';

101

141 elem_exp: const_exp | var_exp;

142 var_exp: '<' var_label '>' tuple_exp? (map_exp | array_exp)?;

143 tuple_exp: ('()' tuple_acc_exp?

144 | '(' (idx_exp (',' idx_exp)+)? ')');

145 array_exp: ('[]' | array_acc_exp);

146 map_exp: '*' map_acc_exp ?;

147 map_acc_exp: '[' idx_exp ']';

148 idx_exp: idx_name | idx_no | sv_exp | var_exp ;

149 const_exp: const_name;

150 op_exp: IS_OPTIONAL;

151 path_exp: elem_name ('/' elem_name)*;

152

153 /********** MULTIDIMENSIONAL MODEL RELATED STATEMENTS **********/

154 cube_def:

155 CUBE cube_name WITH MEASURE PROPERTIES meas_decl+ END MEASURE PROPERTIES COL

156 DIMENSION_ROLE PROPERTIES dim_role_decl+ END DIMENSION_ROLE PROPERTIES COL

157 END CUBE;

158 dim_def: DIMENSION dim_name WITH (

159 (LEVEL PROPERTIES lvl_decl+ END LEVEL PROPERTIES COL) |

160 (ATTRIBUTE PROPERTIES attr_decl+ END ATTRIBUTE PROPERTIES COL) |

161 (CONSTRAINTS (roll_up_rel_decl | descr_by_rel_decl)+ END CONSTRAINTS

↪→ COL)

162)+ END DIMENSION;

163 m_del: (CUBE cube_name | DIMENSION dim_name);

164 meas_decl: meas_name ':' val_set_name COL;

165 dim_role_decl: dim_role_name ':' dim_loc_name COL;

166 lvl_decl: lvl_name ':' val_set_name COL;

167 attr_decl: attr_name ':' val_set_name COL;

168 roll_up_rel_decl: lvl_name ROLLS_UP_TO lvl_name COL;

169 descr_by_rel_decl: lvl_name DESCRIBED_BY attr_name COL;

170

171 /********** AVAILABLE TYPES **********/

172 type: m_entity_type | m_prop_type | t_type | v_type | a_type;

173 t_type: UNARY_CUBE_PREDICATE | BINARY_CUBE_PREDICATE |

↪→ UNARY_CALCULATED_MEASURE | BINARY_CALCULATED_MEASURE | CUBE_ORDERING |

↪→ UNARY_DIMENSION_PREDICATE | BINARY_DIMENSION_PREDICATE |

↪→ DIMENSION_GROUPING | DIMENSION_ORDERING;

174 m_entity_type: CUBE | DIMENSION;

175 m_prop_type: MEASURE | DIMENSION_ROLE | CUBE_PROPERTY | LEVEL | ATTRIBUTE |

↪→ DIMENSION_PROPERTY;

176 v_type: NUMBER_VALUE_SET | STRING_VALUE_SET | val_set_name;

177 a_type: BINARY_TUPLE | TERNARY_TUPLE | QUARTERNARY_TUPLE;

Listing A.1: Syntax of the OLAP pattern language

102

Appendix B
Macro language

The Listing B.1 depicts the island grammar design to analyse the expression of a pattern template
following [1].

1 grammar macrol3;

2

3 macrol: (macro_call | txt)* ;

4 txt: QUERY_TEXT ;

5 macro_call: macro_name '(' macro_call_arguments ')'

6 ('{' macro_body '}')?;

7 macro_name: DIMKEY | EXEC ;

8 macro_body: macrol;

9 macro_call_arguments: macro_call_argument

10 (',' macro_call_argument)* ;

11 macro_call_argument: QUOTED_NAME | UNQUOTED_NAME;

Listing B.1: Syntax of the macro language

103

Appendix C
JSON response

Listing C.1 depicts a JSON response sent to the controller if a search statement for the Jersey
business term is performed.

1 {

2 "result": [

3 {

4 "constraints": [

5 {

6 "id": 50,

7 "constraintType": "DOMAIN_CONSTRAINT",

8 "entity": {

9 "id": 89,

10 "kind": "SINGLE_VARIABLE",

11 "name": "ctx",

12 "position": 1,

13 "variableRole": "CONTEXT_PARAMETER",

14 "valueKind": "SINGLE",

15 "optional": "N",

16 "value": null

17 },

18 "property": {

19 "id": 88,

20 "kind": "SINGLE_VALUE",

21 "value": "\" Main Breed \""

22 },

23 "domain": {

24 "id": 87,

25 "kind": "SINGLE_VALUE",

26 "value": "\" Breed Name \""

27 }

28 },

29 {

30 "id": 49,

31 "constraintType": "TYPE_CONSTRAINT",

32 "element": {

33 "id": 89,

34 "kind": "SINGLE_VARIABLE",

104

35 "name": "ctx",

36 "position": 1,

37 "variableRole": "CONTEXT_PARAMETER",

38 "valueKind": "SINGLE",

39 "optional": "N",

40 "value": null

41 },

42 "type": {

43 "id": 90,

44 "kind": "SINGLE_VALUE",

45 "value": "DIMENSION"

46 }

47 }

48],

49 "derivationRules": [],

50 "targets": [

51 {

52 "id": 89,

53 "kind": "SINGLE_VARIABLE",

54 "name": "ctx",

55 "position": 1,

56 "variableRole": "CONTEXT_PARAMETER",

57 "valueKind": "SINGLE",

58 "optional": "N",

59 "value": null

60 },

61 {

62 "id": 88,

63 "kind": "SINGLE_VALUE",

64 "value": "\" Main Breed \""

65 },

66 {

67 "id": 90,

68 "kind": "SINGLE_VALUE",

69 "value": "DIMENSION"

70 },

71 {

72 "id": 87,

73 "kind": "SINGLE_VALUE",

74 "value": "\" Breed Name \""

75 }

76],

77 "templates": [

78 {

79 "id": 19,

80 "dataModel": null ,

81 "language": "\"SQL\"",

82 "dialect": "\" ORACLEv11 \"",

83 "variant": null ,

84 "expression": "\"*{ <ctx >.\"\" Main Breed \"\" =

105

\"\" Jersey \"\" }*\""

85 }

86],

87 "fragments": [],

88 "id": 19,

89 "name": "\" Jersey \"",

90 "type": {

91 "id": 2,

92 "name": "UNARY_DIMENSION_PREDICATE"

93 },

94 "returnType": null ,

95 "descriptions": [

96 {

97 "id": 19,

98 "language": "\" English \"",

99 "aliases": [

100 "\"Cattle Breed Jersey\""

101],

102 "description": "\" Restriction of result to cattle of

main breed Jersey \""

103 }

104]

105 }

106]

107 }

Listing C.1: JSON representation of the Jersey business term

106

Appendix D
Template Expression

Listing D.1 depicts a the expression for the "Breed-Specific Subset-Subset Comparison pattern
in the Oracle version 11 SQL dialect [1].

1 *{ WITH baseCube AS (

2 SELECT *

3 FROM <sourceCube > sc JOIN

4 ""Animal"" a ON sc.""Cattle"" = a.}* $dimKey(""Animal"")*{

5 WHERE }* $expr(<baseCubeSlice >, sc) *{ AND }*

6 $expr(<animalBreedSlice >, a)*{),

7

8 interestCube AS (

9 SELECT }* $expr(<groupCond >, jd)*{,

10 }* $expr(<cubeMeasure >, bc)*{ AS <cubeMeasure >

11 FROM baseCube bc JOIN

12 <joinDim > jd ON bc.<joinDimRole >=jd.}* $dimKey(<joinDim >)*{ JOIN

13 <compDim > cd ON bc.<compDimRole >=cd.}* $dimKey(<compDim >)*{

14 WHERE }*$expr(<iDimSlice >, cd)*{

15 GROUP BY }*$expr(<groupCond >, jd)*{),

16

17 comparisonCube AS (

18 SELECT }*$expr(<groupCond >, jd)*{,

19 }*$expr(<cubeMeasure >, bc)*{ AS <cubeMeasure >

20 FROM baseCube bc JOIN

21 <joinDim > jd ON bc.<joinDimRole >=jd.}* $dimKey(<joinDim >)*{ JOIN

22 <compDim > cd ON bc.<compDimRole >=cd.}* $dimKey(<compDim >)*{

23 WHERE }*$expr(<cDimSlice >, cd)*{

24 GROUP BY }*$expr(<groupCond >, jd)*{)

25

26 SELECT }*$expr(<groupCond >, ic)*{,

27 ic.<cubeMeasure > AS ""Group of Interest"",

28 cc.<cubeMeasure > AS ""Group of Comparison"",

29 }*$expr(<compMeasure >, ic, cc)*{ AS <compMeasure >

30 FROM interestCube ic JOIN

31 comparisonCube cc ON }*$expr(<groupCond >, ic)*{ = }*

$expr(<groupCond >, cc)"

Listing D.1: Template Expression for Jersey business term

107

Appendix E
Generated OLAP Query

Listing E.1 depicts an OLAP query as generated for the "Austrian Milk Custom Breed-Specific
Subset-Subset Comparison".

1 WITH baseCube AS (

2 SELECT *

3 FROM "Feeding" sc JOIN

4 "Animal" a ON sc."Cattle" = a."Animal"

5 WHERE sc."Feed Consumption" < 80 AND a."Main Breed" = "Jersey"),

6

7 interestCube AS (

8 SELECT jd."Farm Id" ,

9 AVG(bc."Feed Consumption") AS "Average Feed Consumption"

10 FROM baseCube bc JOIN

11 "Farm" jd ON bc."Farm"=jd."Farm Id" JOIN

12 "Animal" cd ON bc."Cattle"=cd."Animal"

13 WHERE trunc((SYSDATE - cd."Date Of Birth")/365.25) < 3

14 GROUP BY jd."Farm Id"),

15

16 comparisonCube AS (

17 SELECT jd."Farm Id" ,

18 AVG(bc."Feed Consumption") AS "Average Feed Consumption"

19 FROM baseCube bc JOIN

20 "Farm" jd ON bc."Farm"=jd."Farm Id" JOIN

21 "Animal" cd ON bc."Cattle"=cd."Animal"

22 WHERE trunc((SYSDATE - cd."Date Of Birth")/365.25) >= 3

23 GROUP BY jd."Farm Id")

24

25 SELECT ic."Farm Id" ,

26 ic."Average Feed Consumption" AS "Group of Interest",

27 cc."Average Feed Consumption" AS "Group of Comparison",

28 ic."Average Feed Consumption")/cc."Average Feed Consumption" AS

"Average Feed Consumption Ratio"

29 FROM interestCube ic JOIN

30 comparisonCube cc ON ic."Farm Id" = cc."Farm Id"

Listing E.1: Generated OLAP query

108

	Introduction
	Preface
	Problem Statement
	Running Example
	Outline

	Fundamentals
	Enriched Multidimensional Model
	OLAP Patterns
	Repositories
	Language Processing

	Analysis
	Task Description
	Requirements

	Design
	Architecture
	Data Structure
	Repository Application
	Editor Application

	Implementation
	Repository Application
	Editor Application

	Evaluation
	Repository Requirements
	System Requirements
	User Requirements

	Conclusion
	Bibliography
	OLAP pattern language
	Macro language
	JSON response
	Template Expression
	Generated OLAP Query

