

An OLAP API for Cubes with
Ontology-Valued Measures

MASTERARBEIT

zur Erlangung des akademischen Grades

Master of Science

im Masterstudium

WIRTSCHAFTSINFORMATIK

Eingereicht von:

Michael Schnepf

Angefertigt am:

Institut für Wirtschaftsinformatik – Data &
Knowledge Engineering

Beurteilung:

o.Univ.-Prof. Dr. Michael Schrefl

Mitbetreuung, Mitwirkung:

Dr. Christoph Schütz

Linz, August 2015

Sozial- und Wirtschaftswissenschaftliche
Fakultät

i

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Masterarbeit selbstständig

und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und

Hilfsmittel nicht benutzt bzw. die wörtlich oder sinngemäß entnommenen

Stellen als solche kenntlich gemacht habe. Die vorliegende Masterarbeit ist

mit dem elektronisch übermittelten Textdokument identisch.

Linz, August 2015 Michael Schnepf

ii

Abstract. Traditional OLAP systems operate on numeric values only. Many scenari-

os, however, are represented more appropriately by the use of business model ontolo-

gies. The extension of OLAP systems to support operations on business model ontol-

ogies offers new possibilities in data analytics. We use ontology-valued measures to

support the analysis of non-numeric values. An API is created in order to execute

different OLAP operators on ontology-valued measures.

Kurzfassung. Die Operatoren traditioneller OLAP-Systeme unterstützen lediglich

numerische Werte. Manche Daten können jedoch besser durch Business Model Onto-

logien dargestellt werden. Eine Erweiterung von OLAP-Systemen hinsichtlich der

Unterstützung von Business Model Ontologien bietet neue Möglichkeiten für die

Datenanalyse. Wir verwenden Ontology-Valued Measures um die Analyse von

nicht-numerischen Daten zu ermöglichen. Eine API wird entwickelt um unterschied-

liche OLAP-Operatoren auf Ontology-Valued Measures ausführen zu können.

iii

Content

1 Introduction ... 1

2 Background ... 3

2.1 RDF(S) and SPARQL ... 3

2.2 Contextualized Knowledge Repository .. 4

2.3 Business Model Ontologies .. 4

2.4 Related Work .. 5

3 OLAP Cubes with Ontology-Valued Measures .. 6

3.1 Base Facts and Shared Facts ... 6

3.2 Multidimensional Modelling .. 7

3.2.1 Basic OLAP vocabulary ... 7

3.2.2 Contexts and Modules... 10

3.3 Online Analytical Processing .. 12

4 OLAP Operators ... 14

4.1 Slice/Dice .. 14

4.2 Merge .. 17

4.2.1 Union .. 17

4.2.2 Intersection .. 22

4.3 Abstract ... 23

4.3.1 Abstract By Grouping ... 24

4.3.2 Abstract Property By Grouping .. 30

4.3.3 Abstract Property By Source .. 34

4.3.4 Abstract Literal By Source .. 37

5 Implementation ... 43

5.1 System Architecture .. 43

5.2 Software Architecture ... 45

5.3 SPARQL Updates ... 47

5.3.1 Slice/Dice .. 47

iv

5.3.2 Merge .. 54

5.3.3 Abstract By Grouping ... 62

5.3.4 Abstract Property By Grouping .. 68

5.3.5 Abstract Property By Source .. 69

5.3.6 Abstract Literal By Source .. 74

5.4 Testing Environment ... 76

6 Summary and Future Work ... 77

v

Figures

Figure 1: OLAP cube 1
Figure 2: DFM representation of the Dimensional Model 6
Figure 3: OLAP Slice operator 12
Figure 4: Example dataset for the slice/dice operator 15
Figure 5: Example dataset (a) and result (b) of the merge operator (union) 18
Figure 6: Example dataset (a) and result (b) of the merge operator (union) considering

RDF reification 20
Figure 7: Example dataset (a) and result (b) of the merge operator (intersection) 23
Figure 8: Example dataset for the abstract by grouping operator 25
Figure 9: Resulting dataset after execution of the abstract by grouping operator with

the grouping property set to grouping applied on Figure 8 26
Figure 10: Resulting dataset after execution of the abstract by grouping operator with

the grouping property set to grouping, the selection property set to provide applied on

Figure 8 27
Figure 11: Resulting dataset after execution of the abstract by grouping operator with

the grouping property set to grouping, the selection resource type set to Sale applied

on Figure 8 27
Figure 12: Example dataset including reification information for the abstract by

grouping operator 28
Figure 13: Resulting dataset after execution of the abstract by grouping operator with

the grouping property set and reification enabled applied on Figure 12 29
Figure 14: Example dataset for the abstract property by grouping operator 30
Figure 15: Resulting dataset after execution of the abstract property by grouping

operator with the grouping property set to grouping, the grouped property direction

set to incoming applied on Figure 14 31
Figure 16: Resulting dataset after execution of the abstract property by grouping

operator with the grouping property set to grouping, the grouped property set to

sisterCompanyOf applied on Figure 14 32
Figure 17: Example dataset for the abstract property by source operator 34
Figure 18: Resulting dataset after execution of the abstract property by source

operator with the grouping property set to grouping applied on Figure 17 35
Figure 19: Example dataset for the abstract literal by source operator 38
Figure 20: Resulting dataset after execution of the abstract literal by source operator

with the aggregate function set 38
Figure 21: Resulting dataset after execution of the abstract literal by source operator

with the aggregate function set to SUM, the aggregate property set to revenue applied

on Figure 19 39
Figure 22: Resulting dataset after execution of the abstract literal by source operator

with the aggregate function set to SUM, the selection resource type set to Sale applied

on Figure 19 40
Figure 23: Example dataset including reification information for the abstract literal by

source operator 41

file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283542
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283543
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283544
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283545
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283546
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283547
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283547
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283548
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283549
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283550
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283550
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283551
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283551
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283551
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283552
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283552
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283552
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283553
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283553
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283554
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283554
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283555
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283556
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283556
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283556
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283557
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283557
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283557
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283558
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283559
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283559
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283560
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283561
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283561
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283562
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283562
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283562
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283563
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283563
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283563
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283564
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283564

vi

Figure 24: System architecture of the API 43
Figure 25: Class diagram 46

file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283565
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283566

vii

Listings

Listing 1: Basic OLAP vocabulary 8
Listing 2: Example for OLAP dimensions 9
Listing 3: Example of OLAP dimension attributes 10
Listing 4: Example Module definition 11
Listing 5: Example definition of blank nodes in modules 11
Listing 6: Assertion of context and module 12
Listing 7: Usage of slice/dice operator with dimension attributes Time_All,

Location_Europe and Department_All 16
Listing 8: Usage of merge (union) operator with levels Level_Time_Year,

Level_Location_Continent and Level_Department_Department 21
Listing 9: Usage of abstract by grouping operator considering reification with the

grouping property, selection property and selection resource type set 30
Listing 10: Usage of abstract property by grouping operator with the grouping

property and the grouped property set 33
Listing 11: Usage of abstract property by source operator with the grouping property,

selection property, partition property, grouped property and selection resource type

set 37
Listing 12: Usage of abstract literal by source operator with the aggregate function

and the aggregate property set 42
Listing 13: Knowledge propagation information 44
Listing 14: Update statement for the insertion of contexts and asserted modules with

dimension attributes Department_All, Location_Europe and Time_All 48
Listing 15: Update statement for the insertion of triples from the dimensional model

not related to dimension attributes, levels or modules 50
Listing 16: Update statement for the insertion of dimension attributes related to

Department_All, Location_Europe and Time_All with respective levels and types 51
Listing 17: Update statement for the insertion of contexts related to Department_All,

Location_Europe and Time_All with respective closure information 53
Listing 18: Update statement for the union variant of the merge operator with levels

Level_Department_Department, Level_Location_Continent and Level_Time_Year 55
Listing 19: Update statement to insert reification information for the union variant of

the merge operator with levels Level_Department_Department,

Level_Location_Continent and Level_Time_Year 56
Listing 20: Update statement to delete reification information for the union variant of

the merge operator with levels Level_Department_Department,

Level_Location_Continent and Level_Time_Year 58
Listing 21: Update statement for the intersection variant of the merge operator with

levels Level_Department_All, Level_Location_Continent and Level_Time_All 59
Listing 22: Update statement to insert reification information for the intersection

variant of the merge operator with levels Level_Department_All,

Level_Location_Continent and Level_Time_All 61

file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283567
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283568
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283569
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283570
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283571
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283572
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283573
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283573
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283574
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283574
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283575
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283575
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283576
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283576
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283577
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283577
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283577
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283578
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283578
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283579
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283580
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283580
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283581
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283581
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283582
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283582
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283583
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283583
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283584
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283584
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283585
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283585
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283585
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283586
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283586
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283586
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283587
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283587
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283588
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283588
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283588

viii

Listing 23: Select part of the update statement for the abstract by grouping operator

with grouping property, selection property and selection resource type set 63
Listing 24: Delete/Insert part of the update statement for the abstract by grouping

operator with grouping property, selection property and selection resource type set 64
Listing 25: Select part to query reification information for the abstract by grouping

operator with grouping property, selection property and selection resource type set 66
Listing 26: Delete/Insert part to update reification information for the abstract by

grouping operator with grouping property, selection property and selection resource

type set 67
Listing 27: Delete part to delete reification information for the abstract by grouping

operator with grouping property, selection property and selection resource type set 67
Listing 28: Extension of the abstract by grouping operator for the abstract property by

grouping operator 68
Listing 29: Select part of the update statement for the abstract property by source

operator with grouping property, selection property, partition property, grouped

property and selection resource type set 70
Listing 30: Delete/Insert part of the update statement for the abstract property by

source operator with grouping property, selection property, partition property,

grouped property and selection resource type set 71
Listing 31: Insert part to update reification information for the abstract property by

source operator with grouping property, selection property, partition property,

grouped property and selection resource type set 72
Listing 32: Delete part to delete reification information for the abstract property by

source operator with grouping property, selection property, partition property,

grouped property and selection resource type set 73
Listing 33: Query part for the abstract literal by source operator with aggregate

function, aggregate property and selection resource type set 75
Listing 34: Delete/Insert part for the abstract literal by source operator with aggregate

function, aggregate property and selection resource type set 76

file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283589
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283589
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283590
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283590
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283591
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283591
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283592
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283592
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283592
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283593
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283593
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283594
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283594
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283595
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283595
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283595
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283596
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283596
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283596
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283597
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283597
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283597
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283598
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283598
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283598
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283599
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283599
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283600
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283600

ix

Tables

Table 1: Slice/dice operator methods description 16
Table 2: Merge operator methods description 21
Table 3: Abstract by grouping operator methods description 29
Table 4: Abstract property by grouping methods description 33
Table 5: Abstract property by source methods description 36
Table 6: Abstract literal by source methods description 42

file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283601
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283602
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283603
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283604
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283605
file:///D:/Dropbox/Dropbox/JKU/Semester%209%202014-2015/Masterarbeit/Arbeit/An%20OLAP%20API%20for%20Cubes%20with%20Ontology-Valued%20Measures%20V4.doc%23_Toc428283606

1

Costs
 = 10000

Costs
= 20000

Costs
= 30000

Linz Vienna Tokio

Austria Austria Japan

Europe Asia

Location

Time

Q1-2012

Q2-2012

Q1-2013

2012

2013

Department Sales

Production

Marketing

Figure 1: OLAP cube

1 Introduction

Online Analytical Processing (OLAP) systems are used to analyse data in order to

generate new insights into business. Those systems are able to process data in a way

to support companies in their decision making process. They enable an analyst to

view data within different dimensions and levels and to perform operations on the

base data. The functionality of the system is based on a multidimensional model. This

model stores the dimensional information in a hierarchically structured way to analyse

base data within different dimensions and levels. The combination of the base data

and the dimensional information builds the OLAP cube. Figure 1 shows an example

OLAP cube. The OLAP cube consists of different dimensions Department, Location

and Time. For every dimension there exist different attributes on specific levels which

roll up hierarchically, e.g. Linz (City), Austria (Country) and Europe (Continent) for

the dimension Location. For example, analysts are able to analyse the costs of the

department Production, located in Austria in the year 2013.

2

Conventional OLAP systems operate on numeric values only. Many business sce-

narios cannot be expressed by numeric values. The power of OLAP systems would

increase if they operated on information not only represented by numeric measures.

Those information may be formalized by business model ontologies in order to repre-

sent business scenarios. To enable OLAP operations on business model ontologies the

OLAP cubes need to be extended with ontology-valued measures [1].

We develop an application programming interface (API) to enable OLAP opera-

tions on business models. The remainder of this thesis is structured as follows. Chap-

ter 2 covers the basic concepts used in this thesis and gives an overview about related

work. In Chapter 3 the basic concepts are illustrated which enable multidimensional

modelling with OLAP cubes. In Chapter 4 the developed operators are demonstrated

by the use of different example scenarios. In Chapter 5 the technical implementation

of the API and the operators are illustrated. Chapter 6 summarizes the main points of

the thesis and provides an outlook on future work.

3

2 Background

This chapter covers essential concepts which have been used to implement the API.

The different sections focus only on those aspects of the concepts which are relevant

and do not explain every single detail of the concepts. Specific details of the concepts

will be explained in respective sections. Furthermore, this chapter outlines related

work in order to emphasize the relevance of this thesis.

2.1 RDF(S) and SPARQL

The Resource Description Framework (RDF) [2] is used to define information of the

World Wide Web (WWW) in a standardized form. Therefore, it uses triples which

consist of a subject and an object connected by a predicate, also called property. The

elements of a triple are also called resources. Those resources may be of type Interna-

tionalized Resource Identifier (IRI) whereas the object also can be a literal. Subjects

and objects may also be blank nodes. To enhance readability the IRI may be short-

ened by the use of namespace prefixes which are defined for an IRI. For example, the

IRI http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral may be shortened by

using the namespace prefix rdf: which leads to the shortened use rdf:XMLLiteral.

For RDF resources it is possible to define a data modelling vocabulary with RDF

Schema (RDFS) [3]. With RDFS it is possible to define structure and relationships of

resources by using RDF terms. The basic RDFS concepts are classes and properties.

Classes may be used to group specific resources. Properties are used to define rela-

tionships between classes or resources. For example, the property subClassOf defines

inheritance between RDFS classes, the properties domain and range define the type of

classes a property is able to connect, respectively.

SPARQL 1.1 [4] provides languages and protocols to query and update RDF data.

A SPARQL select query selects tuples and binds them to variables which represent

the result of the query. The result can be printed or may be used to update existing

RDF resources by SPARQL update statements. Another form of SPARQL queries are

ASK queries. Their result is a Boolean value which indicates whether a query pattern

exists or not.

http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral

4

2.2 Contextualized Knowledge Repository

In the WWW there exist big amounts of knowledge represented as RDF datasets host-

ed by services like DBpedia1. An RDF dataset consists of different graphs. There

exists exactly one default graph and an arbitrary number of named graphs. The default

graph has no name whereas named graphs are specified by an IRI. With named

graphs, knowledge may be separated and it is possible to express meta-information

about the graphs [5]. Contextualized Knowledge Repositories (CKR) [6] use named

graphs and add meta-information to define the context within which the knowledge is

valid. Assume that there exists knowledge about all world cup champions. The term

world cup champion is well defined but it cannot be clearly determined without the

use of context, e.g. year and type of sports. For example, Germany (2014) and Spain

(2010) both won the soccer wold cup, whereas Poland (2014) and Italy (2010) won

the volleyball world cup. Without the use of contextual information it is not possible

to determine the soccer world cup champion of 2010.

To add contextual information to the knowledge the context as a box paradigm [6]

is used. This paradigm differentiates between original knowledge located inside the

box and contextual knowledge located outside the box. The contextual knowledge

defines the context in which the original knowledge is valid. Referring to the example

above, the original knowledge inside the box is the definition of the countries as

world cup champions. The contextual knowledge located outside the box are infor-

mation about the year and the type of sport.

In this thesis we use named graphs in order to separate knowledge and to add con-

textual information to them. Furthermore the CKR framework2, in combination with a

custom ruleset provided by FBK3, is used to generate additional knowledge about the

contextual information and the relations between the graphs.

2.3 Business Model Ontologies

In order to enable OLAP systems operating on business scenarios the knowledge of

the business scenarios need to be formalized. Business model ontologies “capture the

complex interdependencies between business objects” [1, p. 514]. They describe the

elements and their relationships which are consumed or produced by a company in

1 http://wiki.dbpedia.org/
2 https://dkm.fbk.eu/technologies/ckr
3 http://www.fbk.eu/

5

order to “generate profitable and sustainable revenue streams” [7, p. 15]. For model-

ling business scenarios the REA business model ontology [8] may be used. It focuses

on Resources, Events and Agents. Internal agents provide resources to external agents

in order to receive resources with a higher value than the one provided. The exchange

of a resource is called event and has to occur in duality with another event. The ex-

ample models in this thesis are inspired by the REA ontology. Note, however, that a

strict representation according to the REA ontology is not intended.

2.4 Related Work

The analysis of business scenarios not boiling down to numeric measures requires

the adaption of traditional OLAP systems. By applying semantic technologies, busi-

ness analysts are able to gain new insights into business. The Semantic Cockpit pro-

ject [9] uses the DFM for multidimensional modelling. By using reasoning capabili-

ties it is possible to formulate OLAP queries and to interpret the results for further

analytics. The API for cubes with ontology-valued measures focuses on the execution

of OLAP operators. They offer several possibilities in configuration to define the

desired level of abstraction based on the multidimensional model. The operators im-

plemented by the API are similar to aggregated RDF views [10]. Roll up operators

need to be configured with dimensional information to return views containing aggre-

gated resources.

Graph OLAP [11] enables the analysis of graphs within different perspectives. It

combines graphs with multidimensional information. The supported informational roll

up and topological roll up are similar to the merge and abstract operators of our intro-

duced API. Graph OLAP uses weighted graphs which are not intended for the repre-

sentation of complex business scenarios [1]. In OLAP systems with ontology-valued

measures, business model ontologies represent business scenarios.

Abelló et al. [12] identify challenges for the enrichment of traditional OLAP sys-

tems with semantic web data and the use of semantic technologies for data integration

for OLAP systems. This leads to Exploratory OLAP systems which should be able to

receive and process different kinds of (semi-) structured data, to combine the data

with multidimensional information and to query using OLAP dimensions. The API

presented in this thesis focuses on the execution of OLAP operators on RDF data,

implemented using SPARQL queries. Such an OLAP system assumes the existence of

already integrated knowledge. The issue of data integration for OLAP systems with

ontology-valued measures will be tackled by future work.

6

3 OLAP Cubes with Ontology-Valued Measures

Conventional OLAP systems need to be adapted in order to operate on non-numeric

measures. For example, a company may be single manufacturer of a specific product

in Austria. To maximize profit the company decides to additionally export the prod-

ucts to all countries of Europe. While there is no competing company in Austria this

may not be true for the other countries. The company needs to include knowledge

from all European countries in order to find potential competitors.

3.1 Base Facts and Shared Facts

In order to analyse base data within different dimensions a dimensional model needs

to be defined. Similar to Schütz et al. [1] the Dimensional Fact Model (DFM) [13] is

used. The example model shown in Figure 2 consists of the fact schema Sales which

represents a specific business scenario formalized by a business model ontology. Fur-

thermore, there are three different dimensions Location, Department and Time. Those

dimensions define the context in which the fact is valid. Every dimension is described

by levels which roll up to each other and are ordered in a hierarchical way from most

to least granular. The directed arrows between the levels represent possible ways of

aggregation, e.g. the Sales fact may be aggregated on the levels Continent, Depart-

ment and Year.

Sales

All

All

AllYearQuarterCityCountryContinent

Department

Location

Department

Time

Figure 2: DFM representation of the Dimensional Model

7

It is necessary to differentiate between different kinds of facts. Facts at finest level

of granularity (base facts) and facts at coarser level of granularity (shared facts). Due

to the hierarchical organization of the dimension attributes and the levels in the DFM

there is also a hierarchical organization of facts. So all information of FactA with the

dimension Location and the dimension attribute Europe is also valid for FactB with

the dimension Location and the dimension attribute Linz. So FactB inherits all infor-

mation from FactA which means that facts at higher levels of granularity may be

called shared facts.

The DFM defines that the base data, also called instances of the fact schema, need

to be present at the most granular level. So it is mandatory that the instance of the fact

schema Sales is defined at level City, Department and Quarter. We use multigranular

cubes similar to multilevel cubes [14] that enable facts at multiple levels of abstrac-

tion. Therefore optional aggregation paths are used which are shown by the directed

arrows marked with a dash. Due to that enhancement of the DFM model it is now

possible that an instance of the fact schema Sales belongs to a whole Continent rather

than to a specific City.

3.2 Multidimensional Modelling

In order to develop a multidimensional model in a way it can be understood and inter-

preted by a machine it needs to be formalized. Therefore we translate the model from

Figure 2 into an RDF representation based on the representation used for the Semantic

Cockpit Project [15].

3.2.1 Basic OLAP vocabulary

The first step of defining a multidimensional model is to formulate the basic

OLAP vocabulary. With this vocabulary it is possible to represent the multidimen-

sional model of Figure 2. Therefore facts need to be defined, quantified by dimension

attribute values at specific levels. The hierarchical organization of both the dimension

attribute values and the levels as well as the assertion of modules to contexts need to

be part of the vocabulary. Listing 1 shows an example vocabulary. DimensionAt-

tributeValue, Level and Fact (Line 1-6) are the main classes which need to be defined

and correspond to the concepts already mentioned in Section 3.1. Due to the fact that

DimensionAttributeValues and Levels are different kind of resources, this needs to be

declared explicitly. This is defined by the statement disjointWith Level (Line 4) and

means that a resource which is a DimensionAttributeValue cannot be a Level. The

8

1 :DimensionAttributeValue

2 rdf:type owl:Class ;

3 rdfs:subClassOf ckr:AttributeValue;

4 owl:disjointWith :Level .

5 :Level rdf:type owl:Class ;

6 :Fact rdfs:subClassOf ckr:Context .

7

8 :rollsUpTo rdf:type owl:ObjectProperty .

9 :directlyRollsUpTo rdf:type owl:ObjectProperty ;

10 rdfs:subPropertyOf :rollsUpTo .

11 :hasAssertedModule rdfs:subPropertyOf ckr:hasModule .

12 :hasDimensionAttributeValue
13 rdf:type owl:ObjectProperty ;

14 rdfs:range :DimensionAttributeValue ;

15 rdfs:domain :Fact .

16 :atLevel rdf:type owl:ObjectProperty ;

17 rdfs:domain :DimensionAttributeValue ;

18 rdfs:range :Level .

Listing 1: Basic OLAP vocabulary

hierarchical organization of both the Levels and the DimensionAttributeValues is de-

fined by the property directlyRollsUpTo, a sub property of rollsUpTo (Lines 8-10). In

order to assert Modules to Facts, the hasAssertedModule property is used which is a

sub property of hasModule (Line 11). DimensionAttributeValues are asserted to Facts

by the use of the property hasDimensionAttributeValue (Lines 12-15). The property

atLevel (Lines 16-18) defines the Level of a DimensionAttributeValue. For example,

the Level of Linz is City and the Level of Europe is Continent.

Listing 2 illustrates the definition of dimensions and properties to assign dimen-

sion attribute values to contexts. Lines 1-9 show an example for the definition of the

dimensions Department, Time and Location. Those classes are defined as subclass of

DimensionAttributeValue. To prevent wrong assignment of individuals to the appro-

priate classes, the disjointWith property prevents that the assertion of same individuals

to different classes. To assign DimensionAttributeValues to Facts the properties

hasDepartment, hasTime and hasLocation (Lines 10-21) are used. The properties are

defined as subproperty of hasDimensionAttributeValue. For the hasDimensionAt-

tributeValue property the domain is defined as Fact. Because the properties

hasDepartment, hasTime and hasLocation define the range as the dimensions De-

partment, Time and Location, respectively, a Fact can thus be assigned to its specific

dimension attribute values. The statement hasDepartment type FunctionalProperty

defines that the property hasDepartment needs to have a unique value for each in-

stance. So it is impossible to define different dimension attributes for the same fact.

9

1 :Department rdf:type owl:Class ;

2 owl:disjointWith :Time, :Location ;

3 rdfs:subClassOf :DimensionAttributeValue .

4 :Time rdf:type owl:Class ;

5 owl:disjointWith :Location ;

6 rdfs:subClassOf :DimensionAttributeValue .

7

8 :Location rdf:type owl:Class ;

9 rdfs:subClassOf :DimensionAttributeValue.

10 :hasDepartment rdf:type owl:FunctionalProperty ,

11 owl:ObjectProperty ;

12 rdfs:range :Department ;

13 rdfs:subPropertyOf :hasDimensionAttributeValue.

14 :hasTime rdf:type owl:FunctionalProperty ,

15 owl:ObjectProperty ;

16 rdfs:range :Time ;

17 rdfs:subPropertyOf :hasDimensionAttributeValue.

18 :hasLocation rdf:type owl:FunctionalProperty,

19 owl:ObjectProperty ;

20 rdfs:range :Location ;

21 rdfs:subPropertyOf :hasDimensionAttributeValue.

Listing 2: Example for OLAP dimensions

Now specific Levels and DimensionAttributeValues need to be defined. This is

done by the use of NamedIndividuals which roll up to each other in order to represent

the hierarchical organization of both Levels and DimensionAttributeValues. Listing 3

shows an example of the DimensionAttributeValues and Levels. Levels are

NamedIndividuals of type Level (Line 1-10) which define the level of the dimension

attribute. The property directlyRollsUpTo defines the hierarchical organization of the

levels, e.g. Level_Location_Continent directlyRollsUpTo Level_Location_All.

NamedIndividuals (Line 11-26) also need to define the NamedIndividuals they roll up

to by the use of the property directlyRollsUpTo. Furthermore, the Level of the Dimen-

sionAttributeValue needs to be defined. For example, the Level of the NamedIndivid-

ual Location_Europe of type Location may be Level_Location_Continent and Loca-

tion_Europe directly rolls up to Location_All. The Level of Location_Austria of type

Location may be Level_Location_City and Location_Austria directly rolls up to Loca-

tion_Europe.

10

1 :Level_Location_All rdf:type :Level ,

2 owl:NamedIndividual .

3 :Level_Location_Continent rdf:type :Level ,

4 owl:NamedIndividual;

5 :directlyRollsUpTo

6 :Level_Location_All .

7 :Level_Location_Country rdf:type :Level ,

8 owl:NamedIndividual ;

9 :directlyRollsUpTo

10 :Level_Location_Continent.

11 :Location_All rdf:type :Location ,

12 owl:NamedIndividual ;

13 :atLevel

14 :Level_Location_All .

15 :Location_Europe rdf:type :Location ,

16 owl:NamedIndividual ;

17 :atLevel

18 :Level_Location_Continent;

19 :directlyRollsUpTo

20 :Location_All .

21 :Location_Austria rdf:type :Location ,

22 owl:NamedIndividual ;

23 :atLevel

24 :Level_Location_Country ;

25 :directlyRollsUpTo

26 :Location_Europe.

Listing 3: Example of OLAP dimension attributes

3.2.2 Contexts and Modules

Note that a context is a specific coordinate in the OLAP cube which contains a fact.

So facts are only valid in a specific context. It is not important to differentiate be-

tween facts and contexts so those terms will be used as synonyms further on.

Contexts are generated by the CKR framework. Therefore, the framework uses a

custom ruleset provided by FBK. The ruleset is based on the materialization calculus

[16] and is able to handle three dimensions Department, Location and Time. The

ruleset needs to be extended in order to handle additional dimensions. The API, how-

ever, supports arbitrary amounts of dimensions.

For every combination of dimension attributes a specific context is generated. The

context is represented by a named graph which contains the concatenated dimension

attributes in its IRI. For example, based on the dimension attributes Department_All,

Location_Austria, Location_Europe, Location_All ,Time_Y2013 and Time_All the

following contexts will be generated: Ctx-Department_All-Location_Austria-

Time_Y2013, Ctx-Department_All-Location_Austria-Time_All, Ctx-Department_All-

11

1 :Module-Department_All-Location_All-Time_All

2 {

3 …

4 }

Listing 4: Example Module definition

1 :Module-Department_All-Location_All-Time_All

2 {

3 :blankNode1 rdf:subject :S;

4 rdf:property :P;

5 rdf:object :O;

6 :count :C;

7 }

Listing 5: Example definition of blank nodes in modules

Location_Europe-Time_Y2013, Ctx-Department_All-Location_Europe-Time_All,

Ctx-Department_All-Location_All-Time_Y2013, Ctx-Department_All-

Location_Europe-Time_All. Furthermore, those contexts are asserted with dimension

attributes by the use of their respective properties to make them queryable.

Modules need to be defined explicitly in the dimensional model. This is done by

defining a named graph for each module. The content are RDF(S) triples which de-

scribe a specific business scenario. To support the understandability of modules and

contexts asserted, the dimension attributes are concatenated into the module name.

Listing 4 shows an example of how a module may be defined.

We introduce a modeling guideline about blank nodes used by the API in order to

represent RDF reification4. Blank nodes may be handled in a different way by differ-

ent frameworks5. A problem arises if blank nodes with equal properties and objects

are inserted into the same named graph. Some frameworks check the properties and

objects of a blank node. If there already exists a blank node with equal properties and

objects, no additional blank node is generated. Other frameworks simply generate

new blank nodes independently of the properties and objects. This problem is solved

by replacing bank nodes by generated IRIs as shown in Listing 5. If there exist more

than one blank nodes with the same IRI, properties and objects, every framework

treats them as same blank nodes.

4 http://www.w3.org/TR/rdf-schema/#ch_reificationvocab
5 http://www.w3.org/TR/rdf11-concepts/#section-blank-nodes

12

1 :Ctx-Department_All-Location_All-Time_All

2 :hasAssertedModule

3 :Module-Department_All-Location_All-Time_All

Listing 6: Assertion of context and module

The last step is to assign the generated context to the defined module as illustrated

in Listing 6. This is done by the property hasAssertedModule. The property hasMod-

ule may not be used for the specific assertion of contexts to modules, because has-

Module is used by the CKR framework. Due to the fact that it is necessary to distin-

guish between explicitly defined knowledge and knowledge generated by the CKR

framework, two different properties need to be used. Listing 6 shows the assertion of

a context to a module on the highest level of granularity.

3.3 Online Analytical Processing

The OLAP API for cubes with ontology-valued measures [1] should provide opera-

tors which make it easy for a potential analyst to generate new insights into business

scenarios. The operators align to traditional OLAP operators like slice, dice and roll

up [17]. In this chapter the operators will be explained and differences to the tradi-

tional operators will be illustrated.

Linz Vienna Tokio

Austria Austria Japan

Europe Asia

Location

Time

Q1-2012

Q2-2012

Q1-2013

2012

2013

Department Sales

Production

Marketing

Figure 3: OLAP Slice operator

13

The first operator slice/dice is very similar to the slice and dice operation of tradi-

tional OLAP systems. The main idea of this operator is to select specific parts of the

base data which are interesting for the analyst. Generally this is done by applying one

or more dimensional attributes to the operator. If only a single dimensional attribute is

applied the operator acts like the slice operator of traditional OLAP systems. Figure 3

shows the selected data if, for example, only the dimension attribute Europe is ap-

plied. If the resulting data should be additionally limited by the Year 2012, all data

which correspond to 2013 will not show up in the result. This is equal to the dice

operation of traditional OLAP system where a specific cube of the base data is select-

ed.

The merge operator is the first possibility to roll up data. Whereas traditional

OLAP systems simply apply aggregation functions on numerical measures in order to

roll them up onto higher levels of abstraction, the merge operator works in a different

way. Facts, which are only valid in a specific context, are associated with modules

which represent different business scenarios. Therefore, also modules are only valid

in a specific context. All modules which are valid in the applied context need to be

merged. Then the merged module needs to be associated with the higher-level con-

text. For example, if the levels Level_Department_All, Level_Time_All and Lev-

el_Location_Continent are parameters for the merge operator, all the modules which

are valid in the context of Location_Continent, but also modules of more specific

contexts need to be merged.

The second possibility to roll up data differs from the merge operator. While the

merge operator seeks to combine all the information of the modules, the abstract op-

erator focuses on a specific module. Due to the fact that those modules cover business

scenarios, which maybe got merged with other modules by the merge operator, the

modules may get very big and confusing. This is why the analyst should be able to

group parts of the content using the abstract operator in order to get a better overview

and to generate new insights into the business scenario.

14

4 OLAP Operators

In this chapter the implemented OLAP operators will be explained from the point of

view of an analyst. Therefore, all operators are illustrated using a running example

specifically developed for each operator in order to explain their functionalities in

detail. Furthermore, the parameters and the usage of the operators will be explained

and documented. The operators have been implemented using Java classes which

provide different methods to configure the operators.

4.1 Slice/Dice

The main idea of this operator is to enable an analyst to select a specific point of in-

terest for further analysis. Basically it is very similar to the slice and dice operators of

traditional OLAP systems where certain parts of the base data are extracted. Therefore

the base data is stored in a base repository and the extracted data is stored in a temp

repository. The base data consists of different modules which need to be extracted.

Furthermore it is important to extract all necessary information which is needed to

perform analysis later on. This means it is not enough only to extract the content of

the modules. It is also necessary to extract the relevant information of the dimensional

model as well as the information generated by the CKR framework.

In the example shown in Figure 4 there exist three different modules asserted with

the respective contexts. For the slice/dice operator the analyst needs to specify the

dimension attributes of interest. If the analyst wants to select only those contexts re-

lated to Department_All, Location_Europe and Time_All the operator extracts con-

texts and their respective modules which are directly asserted to those dimension

attributes or roll up to them. Also the contexts and the modules which exist on higher

level of abstraction need to be extracted.

This means the operator extracts the contexts and their asserted modules Depart-

ment_Sales-Location_Austria-Time_Y2012-Q2 and Department_Sales-

Location_Germany-Time_Y2012-Q2 because Location_Austria and Loca-

tion_Germany roll up to Location_Europe. The module Department_Sales-

Location_Japan-Time_Y2012Q-2 is not considered because Location_Japan does not

roll up to Location_Europe.

15

As already mentioned the slice/dice operator also extracts the specific information

of the dimensional model. If an analyst defines the dimension attribute value Loca-

tion_Europe, all values need to be considered which roll up to Location_Europe, but

also all values which Location_Europe rolls up to. Analogous to the extraction of

modules and contexts explained before, this is necessary because an analyst may de-

fine Location_Europe but also wants to be able to do analysis based on Cities, Coun-

tries, Continents or All. This is why all information related to any of the defined di-

mension attributes also needs to be extracted from the dimensional model.

The CKR framework generates additional information about the dimensional mod-

el, contexts and modules (see Section 5.1 for further details). It needs to be ensured

that these data also only includes information related to the defined dimension attrib-

utes.

Sales

All

All

AllEurope

Location

Department

Time

x:SalesWex:We x:Money
x:provide x:stockflow

x:Department_Sales-Location_Austria-Time_Y2012-Q2

x:SalesOtherCarx:OtherCar x:Money
x:provide x:stockflow

x:SalesFunnyCarx:FunnyCar x:Money
x:provide x:stockflow

x:Department_Sales-Location_Germany-Time_Y2012-Q2

x:Department_Sales-Location_Japan-Time_Y2012-Q2

Figure 4: Example dataset for the slice/dice operator

16

1 SliceDice sd = new SliceDice();

2

3 sd.setCoordinate(

4 configuration.getOlapModelNamespace(),

5 "hasTime",

6 configuration.getOlapModelNamespace(),

7 "Time_All");

8

9 sd. setCoordinate (

10 configuration.getOlapModelNamespace(),

11 "hasLocation",

12 configuration.getOlapModelNamespace(),

13 "Location_Europe");

14

15 sd. setCoordinate (

16 configuration.getOlapModelNamespace(),

17 "hasDepartment",

18 configuration.getOlapModelNamespace()

19 "Department_All");

20

21 sd.execute();

Listing 7: Usage of slice/dice operator with dimension attributes Time_All, Loca-

tion_Europe and Department_All

Table 1 describes the method setCoordinate used to define the coordinates to be

extracted from the OLAP cube. It uses four parameters in order to set the property

namespace, property name, dimension attribute namespace and the dimension attrib-

ute name. For one coordinate the analyst is able to define one dimension attribute for

a specific property. So if the analyst wants to extract data related to different dimen-

sion attributes of the same dimension, e.g. Location_Europe and Location_Asia, the

operator needs to be executed twice. If no dimension attribute for a dimension is de-

fined, it is assumed that the dimension attribute is the most granular one, e.g. Loca-

tion_All. Listing 7 shows some sample code in order to configure the operator with

Method Parameter descrip-

tion

Datatype Mandatory

setCoordinate Property namespace String Yes

setCoordinate Property name String Yes

setCoordinate Dimension attribute

namespace

String Yes

setCoordinate Dimension attribute

name

String Yes

Table 1: Slice/dice operator methods description

17

the dimension attributes Time_All, Location_Europe and Department_All as shown in

Figure 4.

4.2 Merge

This operator is used to merge the content of different modules. Due to the fact that

the slice/dice operator extracts all the relevant information into the temp repository,

this operator only needs to access the temp repository. The advantage of this approach

is that the base data does not get modified because it is isolated in a different reposito-

ry. Two different variations have been implemented in order to do merging which will

be described in the following sections.

4.2.1 Union

The first variation combines different modules independent of their content. This

means that the content of the modules is not relevant for the result. The main idea of

this variation is to merge the knowledge of different modules assigned to given

lower-level contexts into a newly generated module which is then assigned to a high-

er-level context.

In the example shown in Figure 5a there exist different modules which are assert-

ed with the respective contexts. The analyst needs to specify the levels to which the

modules should be rolled up to. If the analyst wants to roll the modules up to the lev-

els Level_Department_Department, Level_Location_Continent and Level_Time_Year

all the modules which are asserted to a context which rolls up to those levels are

merged into a new module. This means that the dimension attributes Loca-

tion_Austria, Location_Germany and Location_Japan are rolled up to their assigned

continent Location_Europe or Location_Asia. Time_Y2012-Q2 is rolled up to

Time_Y2012. As shown in Figure 5b the modules Department_Sales-

Location_Austria-Time_Y2012-Q2, Department_Sales-Location_Germany-

Time_Y2012-Q2 will be merged to the module Department_Sales-Location_Europe-

Time_Y2012 and the module Department_Sales-Location_Japan-Time_Y2012-Q2

will be merged to the module Department_Sales-Location_Asia-Time_Y2012. All

merged modules need to be deleted. So the operator deletes the modules Depart-

ment_Sales-Location_Austria-Time_Y2012-Q2, Department_Sales-

Location_Germany-Time_Y2012-Q2, Department_Sales-Location_Japan-

Time_Y2012-Q2 and also the assertion between the deleted modules and their con-

texts.

18

x:SalesWex:We x:Money
x:provide x:stockflow

x:Department_Sales-Location_Austria-Time_Y2012-Q2

x:SalesOtherCarx:OtherCar x:Money
x:provide x:stockflow

x:Department_Sales-Location_Germany-Time_Y2012-Q2

Sales

All

All

AllYearContinent

Department

Location

Department

Time

x:SalesWex:We x:Money
rea:provide rea:stockflow

x:Department_Sales-Location_Europe-Time_Y2012

x:SalesOtherCarx:OtherCar x:Money
rea:provide rea:stockflow

x:SalesFunnyCarx:FunnyCar x:Money
x:provide x:stockflow

x:Department_Sales-Location_Japan-Time_Y2012-Q2

x:SalesFunnyCarx:FunnyCar x:Money
rea:provide rea:stockflow

x:Department_Sales-Location_Asia-Time_Y2012

a)

b)

Figure 5: Example dataset (a) and result (b) of the merge operator (union)

19

An RDF graph is a set of triples. The result of merged named graphs does not con-

tain possible duplicates. Depending on the type of analysis it may be important to

know the number of duplicates. For the functionality of the abstract literal by source

operator it is important to know the number of duplicate triples containing literals. For

example, the triple We revenue 10 may exist in different modules. As shown in Figure

6a the triple exists in two modules assigned to contexts with different dimension at-

tributes Location_Austria and Location_Germany. This means in both countries there

was a revenue of 10. This knowledge need to be combined in a way the knowledge is

preserved because otherwise the revenue on the level of Level_Location_Continent is

not correct after the union operation.

A way to preserve this knowledge is to use the reification vocabulary of RDF.

With this approach it is possible to save triples in a different representation in order to

add additional information to it. This additional information may be the number of

triples containing literals merged together as described in [10]. This enables to save

the number of equal triples in the newly generated modules in order to preserve the

information of the lower-level modules. As shown in Figure 6b the triple We revenue

10 exists in two different modules which need to be merged. So in the newly generat-

ed module the information is added that this triple existed two times which is dis-

played by the number 2 in square brackets.

The analyst needs to configure the operator with the respective methods listed in

Table 2. The method setGranularity is used to specify the properties of the dimension

attributes and the levels which define the level of abstraction. It uses four parameters

in order to set the property namespace, property name, level namespace and the level

name. To define the namespace for the newly generated module the method setGen

eratedModuleNamespace is used. As already mentioned there exist two different

types of merging. The type needs to be set to UNION or INTERSECTION using the

method setMethod. The concept of RDF reification may not make sense for every

kind of data, so this functionality may be activated or deactivated by the use of the

method setReification.

20

Listing 8 shows sample code in order to configure the operator as shown in Figure

6. The namespace for the newly generated resource is set in Lines 3-4. The levels

Level_Time_Year, Level_Location_Continent and Level_Department_Department are

set in Lines 6-22. The variant of the operator is set to UNION in Line 24. Line 25

configures the operator to support RDF reification.

Sales

All

All

AllYearContinent

Department

Location

Department

Time

x:Department_Sales-Location_Austria-Time_Y2012-Q2

x:Department_Sales-Location_Germany-Time_Y2012-Q2

x:Department_Sales-Location_Europe-Time_Y2012

x:WeSalesx:We
x:provide x:revenue

10

x:WeSalesx:We
x:provide x:revenue

10

x:WeSalesx:We
x:provide x:revenue

10
[2]

a)

b)

Figure 6: Example dataset (a) and result (b) of the merge operator (union) con-

sidering RDF reification

21

1 Merge merge = new Merge();

2

3 merge.setGeneratedModuleNamespace(

4 configuration.getOlapModelNamespace());

5

6 merge.setGranularity(

7 configuration.getOlapModelNamespace(),

8 "hasTime",

9 configuration.getOlapModelNamespace(),

10 "Level_Time_Year");

11

12 merge.setGranularity(

13 configuration.getOlapModelNamespace(),

14 "hasLocation",

15 configuration.getOlapModelNamespace(),

16 "Level_Location_Continent");

17

18 merge.setGranularity(

19 configuration.getOlapModelNamespace(),

20 "hasDepartment",

21 configuration.getOlapModelNamespace(),

22 "Level_Department_Department");

23

24 merge.setMethod(MergeMethod.UNION);

25 merge.setDoReification(true);

26

27 merge.execute();

Listing 8: Usage of merge (union) operator with levels Level_Time_Year,

Level_Location_Continent and Level_Department_Department

Method Parameter de-

scription

Datatype Mandatory

setGranularity Property

namespace

String Yes

setGranularity Property name String Yes

setGranularity Level namespace String Yes

setGranularity Level name String Yes

setGeneratedModuleNamespace Namespace of the

generated module

String Yes

setMethod Method type Enum Yes

setReification Reification Boolean Yes

Table 2: Merge operator methods description

22

4.2.2 Intersection

This variant of the merge operator is similar to the functionality of the Union variant.

In contrast to the Union variant the content of the modules is relevant. The intersec-

tion variant searches the content of the modules to find sets of triples which exist in

every single module. If sets of equal triples are found, they are merged into newly

generated modules.

As shown in Figure 7a there exist two different modules Department_Sales-

Location_Austria-Time_Y2012-Q2 and Department_Sales-Location_Germany-

Time_Y2012-Q2. In both modules there exists a set of equal triples namely We pro-

vide SalesWe and SalesWe stockflow Money. This set of equal triples is merged into

the newly generated module Department_Sales-Location_Europe-Time_Y2012 shown

in Figure 7b.

The RDF reification concept has also been implemented for the intersection vari-

ant. As already mentioned, the focus of this variant is to find sets of triples, which

exist in all modules to be merged. For example, if an analyst wants to figure out

which European companies do have a revenue of 10 it may not make sense for the

analyst to know the number of modules this triple exists in. However, there may be

scenarios where the analyst also wants to consider reification information for the in-

tersection variant so it works analogous to the union variant. The parameters and the

usage of the intersection variant are the same as it is shown in Table 2 and Listing 8.

The only thing that needs to be changed is to set the method to

MergeMethod.INTERSECTION instead of MergeMethod.UNION.

23

4.3 Abstract

The focus of the different abstracts differs from the slice/dice and merge operator.

Abstracts work on specific modules rather than dimension attributes or levels. Within

those modules different grouping operations are executed. It replaces triples by more

abstract triples. This may help an analyst to generate new insights into business.

x:SalesWex:We x:Money
x:provide x:stockflow

x:Department_Sales-Location_Austria-Time_Y2012-Q2

x:SalesOtherCarx:OtherCar x:Money
x:provide x:stockflow

x:Department_Sales-Location_Germany-Time_Y2012-Q2

Sales

All

All

AllYearContinent

Department

Location

Department

Time

x:SalesWex:We x:Money
rea:provide rea:stockflow

x:Department_Sales-Location_Europe-Time_Y2012

x:SalesWex:We x:Money
x:provide x:stockflow

a)

b)

Figure 7: Example dataset (a) and result (b) of the merge operator (intersection)

24

Basically the abstracts can be divided into the types triple-generating, resource-

generating and value-generating. Triple-generating abstracts generate new triples

which were not present in the module before the execution of the abstract. Resource-

generating abstracts generate new resources. This is done by the generation of a

unique identifier to prevent the generation of duplicates. The last type of abstracts are

value-generating abstracts which generate new literals. We only use literals represent-

ing numeric values. Note that a specific abstract may belong to more than one type.

For example, an abstract of type value-generating also generates triples so it also of

type triple-generating. Value-generating abstracts do not generate a unique identifier

for the resources so they are not of type resource-generating.

In the following the different implemented abstracts are described. Note that the

abstract literal by source operates only on literals, whereas the abstract by grouping

abstract property by grouping and abstract property by source operate on resources

represented by an IRI. Another important fact is that the abstracts may be configured

by setting different properties which need to be present in order to execute the opera-

tion. Those properties do not need to be available directly within the corresponding

module as they may are inherited from modules of higher-level contexts. For every

Abstract operator an example dataset is presented. The resulting datasets show the

result of the example dataset after execution of the respective operator.

4.3.1 Abstract By Grouping

With this operator specific resources can be replaced by other resources of the same

module or by resources of inherited modules. This operator is of type triple-

generating because the newly generated triples consist of resources already present

directly in the module or in shared facts and so do not need to be generated.

Figure 8 shows the running example for this operator. Basically this example de-

scribes a business scenario of three different companies We, FunnyCar and OtherCar.

Those companies belong to the same group Company which is specified by the group-

ing property. Note that for all abstracts the triples, containing a grouping property,

remain unchanged. So We grouping Company will not be rolled up to Company

grouping Company. For readability considerations, in the following the grouping

properties are not part of the visualizations. We, FunnyCar and OtherCar all have a

sister company and are a sub company of another company described by the proper-

ties sisterCompanyOf and subCompanyOf. Furthermore, those three companies

25

x:deliversTo

x:receivesFrom

x:grouping

x:grouping

x:grouping

x:sisterCompanyOf
x:sisterCompanyOf

x:provide

rdf:type

rdf:type

x:receive

rdf:type

x:WeSister
Company

x:Car
Producer1

x:FunnyCar
SisterCompany

x:Company

x:We

x:Sales
We

x:Sale

x:FunnyCar

x:Car
Producer3

x:SaleFunny
Car

x:Car
Producer2

x:Sales
FunnyCar

x:Sales
OtherCar

x:OtherCar

x:subCompanyOf

x:OtherCarSister
Company

x:providex:subCompanyOf x:subCompanyOf

x:sisterCompanyOf

Figure 8: Example dataset for the abstract by grouping operator

provide or receive Sales of a specific Type. The properties deliversTo and receives-

From describe properties which exist between We, FunnyCar and OtherCar.

The first example of this operator is to set the grouping property to grouping. All

resources which have the same target resource with the same grouping property de-

fined, should be replaced by the target resource. Figure 9 shows the result after execu-

tion of the operator on the dataset shown in Figure 8. The resources We, FunnyCar

and OtherCar are replaced by Company because they have the same target resource

Company defined by the same grouping property. The next step is to update all the

properties which are incoming or outgoing to the resources which have been grouped.

For example, the triple WeSisterCompany sisterCompanyOf We needs to be updated

to WeSisterCompany sisterCompanyOf Company. Also the properties between the

grouped resources need to be updated, e.g. FunnyCar receivesFrom OtherCar needs

to be updated to Company receivesFrom Company.

The resources which need to be grouped may be specified in a more restrictive way

by setting the selection property in addition to the grouping property. This defines

that not all resources with the same grouping property should be grouped. In order to

be considered the resources need to have the same selection property defined.

Figure 10 shows the result of setting the selection property to provide in addition to

the grouping property. This means that only the resources are replaced by the target of

26

the grouping property for which the provide property is defined. The operator replac-

es the resources We and FunnyCar with Company because for those resources the

provide property is present. Also all incoming and outgoing properties need to be

updated. For OtherCar no property provide exists so this resource is not replaced.

A different way to define the resources to group is to set the selection resource

type. The focus is on the type of the resources connected to the target resources. With

reference to the original dataset of Figure 8, the resource SalesWe needs to have a

specific type in order to group the resource We. Figure 11 shows the result of setting

the selection resource type to Sale in addition to the grouping property. The resources

SalesWe and SalesOtherCar are of type Sale so only the corresponding resources We

and OtherCar are grouped. This is not the case for FunnyCar because the resource

SalesFunnyCar is of type SaleFunnyCar. Furthermore, all incoming and outgoing

properties also need to be updated.

x:Company

x:WeSister
Company

x:FunnyCar
SisterCompany

x:OtherCarSister
Company

x:Car
Producer3

x:Car
Producer2

x:Car
Producer1

x:Sales
OtherCar

x:Sales
FunnyCar

x:Sales
We

x:Sale

x:SaleFunny
Car

x:receive

rdf:type

rdf:type

rdf:type

x:subCompanyOf

x:sisterCompanyOf

x:provide

x:receivesFromx:deliversTo

Figure 9: Resulting dataset after execution of the abstract by grouping operator

with the grouping property set to grouping applied on Figure 8

27

x:Company

x:WeSister
Company

x:FunnyCar
SisterCompany

x:OtherCarSister
Company

x:Car
Producer2

x:Car
Producer1

x:Sales
OtherCar

x:Sales
FunnyCar

x:Sales
We

x:Sale

x:SaleFunny
Car

x:sisterCompanyOf

x:receive

rdf:type

rdf:type

rdf:type

x:subCompanyOf

x:sisterCompanyOf

x:provide

x:deliversTo x:OtherCar

x:receivesFrom

x:Car
Producer3

x:subCompanyOf

Figure 10: Resulting dataset after execution of the abstract by grouping opera-

tor with the grouping property set to grouping, the selection property set to

provide applied on Figure 8

x:Company

x:WeSister
Company

x:OtherCarSister
Company

x:FunnyCar
SisterCompany

x:Car
Producer3

x:Car
Producer1

x:Sales
FunnyCar

x:Sales
OtherCar

x:Sales
We

x:sisterCompanyOf

x:provide

x:provide
x:subCompanyOf

x:sisterCompanyOf

x:receive

x:FunnyCar

x:Car
Producer2

x:subCompanyOf

x:Sale
FunnyCar

rdf:type

x:Sale
rdf:type

rdf:type

x:receivesFrom

x:deliversTo

Figure 11: Resulting dataset after execution of the abstract by grouping operator

with the grouping property set to grouping, the selection resource type set to Sale

applied on Figure 8

28

The abstracts also need to consider sets of equal triples which represent numeric

values. To illustrate this specific case the example from Figure 8 gets extended with

literals which represent numeric values. Figure 12 shows the example dataset includ-

ing reification information. The resource FunnyCar has a revenue of 10 whereas for

the resources We and Company reification information already exists. Those infor-

mation may was defined manually or generated by the merge operator. This means

that the Abstract operator has to be able to handle both types of information in order

calculate the correct number of sets of equal triples containing literals. Figure 13

shows the resulting dataset after execution of the operator on the example dataset. If,

for example the grouping property is set to grouping the resources We, FunnyCar and

OtherCar needs to be replaced by Company. So the right number of literals needs to

be calculated. The triples We revenue 10 and Company revenue 10 both exist two

times whereas FunnyCar revenue 10 exists only once. After the replacement of the

resources by their grouping resource Company, the triple Company revenue 10 exists

five times. Note this behavior is analogous for the other abstracts abstract property by

grouping and abstract property by source so it will only be explained once.

x:deliversTo

x:receivesFrom

x:grouping

x:grouping

x:grouping

x:sisterCompanyOf
x:sisterCompanyOf

x:provide

rdf:type

rdf:type

x:receive

rdf:type

x:WeSister
Company

x:Car
Producer1

x:FunnyCar
SisterCompany

x:Company

x:We

x:Sales
We

x:Sale

x:FunnyCar

x:Car
Producer3

x:SaleFunny
Car

x:Car
Producer2

x:Sales
FunnyCar

x:Sales
OtherCar

x:OtherCar

x:subCompanyOf

x:OtherCarSister
Company

x:providex:subCompanyOf x:subCompanyOf

x:sisterCompanyOf

10
[2]

10
[2]

10

x:revenue x:revenue x:revenue

Figure 12: Example dataset including reification information for the abstract by

grouping operator

29

Table 3 shows the description of the methods provided by the abstract by grouping

operator. In order to execute the operator, it is mandatory to set the grouping property

and the graph. Due to the fact that modules are defined as named graphs, this is equal

to the definition of the model the operator should be executed on. All other properties

do not need to be set. Note that for all abstracts it is possible to use the options in

combination. Listing 9 shows the configuration of the operator considering reification

(Line 4) with the grouping property (Lines 10-12), selection property (Lines 14-16)

and selection resource type (Lines 18-20) set.

x:Company

x:WeSister
Company

x:FunnyCar
SisterCompany

x:OtherCarSister
Company

x:Car
Producer3

x:Car
Producer2

x:Car
Producer1

x:Sales
OtherCar

x:Sales
FunnyCar

x:Sales
We

x:Sale

x:SaleFunny
Car

x:receive

rdf:type

rdf:type

rdf:type

x:subCompanyOf

x:sisterCompanyOf

x:provide

x:receivesFromx:deliversTo

10
[5]

x:revenue

Figure 13: Resulting dataset after execution of the abstract by grouping operator

with the grouping property set and reification enabled applied on Figure 12

Method Parameter description Datatype Mandatory

setGroupingProperty Property namespace String Yes

setGroupingProperty Property name String Yes

setSelectionProperty Property namespace String No

setSelectionProperty Property name String No

setSelectionResourceType Type namespace String No

setSelectionResourceType Type name String No

setGraph Namespace of the mod-

ule

String Yes

setGraph Name of the module String Yes

setReification Reification Boolean No

Table 3: Abstract by grouping operator methods description

30

1 AbstractByGrouping abstrByGrouping =

2 new AbstractByGrouping();

3

4 abstrByGrouping.setReification(true);

5

6 abstrByGrouping.setGraph(

7 configuration.getOlapModelNamespace(),

8 graph);

9

10 abstrByGrouping.setGroupingProperty(
11 "http://www.semanticweb.org/schnepf/ontology#",

12 "grouping");

13
14 abstrByGrouping.setSelectionProperty(
15 "http://www.semanticweb.org/schnepf/ontology#",

16 "provide");

17
18 abstrByGrouping.setSelectionResourceType(
19 "http://www.semanticweb.org/schnepf/ontology#",

20 "Sale");

21
22 abstrByGrouping.execute();

Listing 9: Usage of abstract by grouping operator considering reification with

the grouping property, selection property and selection resource type set

4.3.2 Abstract Property By Grouping

This operator is similar to the abstract by grouping operator but provides more com-

prehensive configuration possibilities. For example, it is possible to explicitly define

properties which should be set to the target resource of the grouping property.

x:deliversTo

x:receivesFrom

x:grouping

x:grouping

x:grouping

x:sisterCompanyOfOc
x:sisterCompanyOf

x:provide

rdf:type

rdf:type

x:receive

rdf:type

x:WeSister
Company

x:Car
Producer1

x:FunnyCar
SisterCompany

x:Company

x:We

x:Sales
We

x:FunnyCar

x:Car
Producer3

x:SaleFunny
Car

x:Car
Producer2

x:Sales
FunnyCar

x:Sales
OtherCar

x:OtherCar
x:subCompanyOf

x:OtherCarSister
Company

x:providex:subCompanyOf
x:ocSubCompanyOf

x:sisterCompanyOf

x:Sale

Figure 14: Example dataset for the abstract property by grouping operator

31

Figure 14 shows the running example for this operator. Basically this example is

similar to the one shown in Figure 8. The differences are the incoming and outgoing

properties of the resource OtherCar. Those specific properties are necessary to show

all functionalities of this operator.

To define the properties which should be set to the target resource of the grouping

property different variations are possible. The first one is to set the direction of the

properties to be grouped. So it is possible to define that only those properties should

be set to the target resource of the grouping property which are incoming or outgoing

using the property grouped property direction. Figure 15 shows the resulting dataset

after execution of the operator on the example dataset with the grouping property

grouping and the grouped property direction set to incoming. The resources We,

FunnyCar and OtherCar are replaced by Company. In contrast to the abstract by

grouping operator only those properties are set to Company which are incoming prop-

erties for the resources We, FunnyCar and OtherCar. All other properties remain

unchanged. This is also possible for the opposite direction in order to group only

those properties which are outgoing of the resources We, FunnyCar and OtherCar. If

no specific direction is set the operator considers both incoming and outgoing proper-

ties.

x:sisterCompanyOfOcx:sisterCompanyOf

x:provide

rdf:type

rdf:type

x:receive

rdf:type

x:WeSister
Company

x:Car
Producer1

x:FunnyCar
SisterCompany

x:Company

x:We

x:Sales
We

x:FunnyCar

x:Car
Producer3

x:SaleFunny
Car

x:Car
Producer2

x:Sales
FunnyCar

x:Sales
OtherCar

x:OtherCar
x:subCompanyOf

x:OtherCar
SisterCompany

x:providex:subCompanyOf x:ocSubCompanyOf

x:deliversTo

x:sisterCompanyOf

x:receivesFrom

x:Sale

Figure 15: Resulting dataset after execution of the abstract property by

grouping operator with the grouping property set to grouping, the

grouped property direction set to incoming applied on Figure 14

32

Another possibility to specify the properties to be grouped is to set a specific

grouped property. Figure 16 illustrates the result after execution of the Abstract oper-

ator on the example dataset. Additionally to the grouping property the grouped prop-

erty is set to sisterCompanyOf. So only the target of this specific property is set to

Company, all other properties remain unchanged.

Table 4 shows the available methods and the parameters of the abstract property by

grouping operator. They are equal to the ones of the abstract by grouping operator

except for the method setGroupedProperty and setGroupedPropertyDirection. Note

that these parameters are not mandatory. Listing 10 illustrates the usage of the opera-

tor by setting the grouping (Lines 8-10) and the grouped (Lines 12-14) property in

order to generate the result shown in Figure 16.

x:sisterCompanyOfOc

x:sisterCompanyOf

x:provide

rdf:type

rdf:type

x:receive

rdf:type

x:WeSister
Company

x:Car
Producer1

x:FunnyCar
SisterCompany

x:Company

x:We

x:Sales
We

x:FunnyCar

x:Car
Producer3

x:SaleFunny
Car

x:Car
Producer2

x:Sales
FunnyCar

x:Sales
OtherCar

x:OtherCar
x:subCompanyOf

x:OtherCarSister
Company

x:providex:subCompanyOf x:ocSubCompanyOf

x:deliversTo

x:sisterCompanyOf

x:receivesFrom

x:Sale

Figure 16: Resulting dataset after execution of the abstract property by grouping

operator with the grouping property set to grouping, the grouped property set to

sisterCompanyOf applied on Figure 14

33

1 AbstractPropertyByGrouping abstrPropByGrouping =

2 new AbstractPropertyByGrouping();

3

4 abstrPropByGrouping.setGraph(

5 configuration.getOlapModelNamespace(),

6 graph);

7

8 abstrPropByGrouping.setGroupingProperty(

9 "http://www.semanticweb.org/schnepf/ontology#",

10 "grouping");

11
12 abstrPropByGrouping.setGroupedProperty(
13 "http://www.semanticweb.org/schnepf/ontology#",

14 "sisterCompanyOf");

15
16 abstrPropByGrouping.execute();

Listing 10: Usage of abstract property by grouping operator with the grouping

property and the grouped property set

Method Parameter description Datatype Mandatory

setGroupingProperty Property namespace String Yes

setGroupingProperty Property name String Yes

setSelectionProperty Property namespace String No

setSelectionProperty Property name String No

setSelectionResourceType Type namespace String No

setSelectionResourceType Type name String No

setGroupedProperty Property name String No

setGroupedProperty Property namespace String No

setGroupedPropertyDirec-

tion

Direction of the re-

sources to be grouped

Enum No

setGraph Namespace of the mod-

ule

String Yes

setGraph Name of the module String Yes

setReification Reification Boolean No

Table 4: Abstract property by grouping methods description

34

4.3.3 Abstract Property By Source

While the abstract by grouping and the abstract property by grouping operator replace

the source of a triple, the abstract property by source replaces the target of a triple.

For example, the target of triples with a source of a specific grouping and specific

properties may be grouped. To group target resources new resources need to be gen-

erated using unique IDs. This abstract is of both types triple-generating and resource-

generating.

Figure 17 shows the running example for this operator. Basically there exist three

different companies We, FunnyCar and OtherCar with the same grouping property as

in the examples before. The companies provide or receive specific Sales of different

types Sale or SaleFunnyCar. Furthermore a relation between the Sales is defined by

the properties relatedToFc and relatedToOc. The sales may generate stock flows

which are represented by the properties stockflow and stockFlowOc.

Figure 18 shows the resulting dataset after executing the operator on the example

dataset with the grouping property set to grouping. There are three companies We,

FunnyCar and OtherCar which have the same grouping. Every single company pro-

vides or receives Sales. So three new resources need to be generated in order to group

all target resources where the sources have the same grouping. The knowledge which

rdf:type

x:receive
rdf:type

x:We

x:Sales
We1

x:FunnyCar

x:SaleFunny
Car

x:Sales
FunnyCar

x:Sale

x:Sales
OtherCar

x:OtherCar

x:provide

x:Sales
We2

x:Sales
We3

x:Sales
We4

x:Money

x:relatedToOc

x:relatedToFc

x:stockflow
x:stockflow

x:provide

x:stockflowOc

rdf:type

x:Companyx:grouping x:grouping

x:grouping

Figure 17: Example dataset for the abstract property by source operator

35

sales are grouped to the newly generated resource should persist. Therefore the ana-

lyst is able to define a property which maps existing sales to the newly generated sale.

Analogous to the already explained abstract variants all incoming and outgoing prop-

erties need to be set to the newly generated resource.

As shown in Table 5 this operator provides the same methods as the abstract vari-

ants already explained. In addition this operator defines two new methods. The first

one is setPartitionProperty in order to map the grouped resources to the newly gener-

ated aggregated resource. In the example shown by Figure 18 the partition property

was set to partOf. The second method is setGeneratedResourceNamespace which

enables the analyst to define a specific namespace for the newly generated resource.

The name of the resource is concatenated by a unique ID and the name of the source.

If the selectionProperty or the groupedProperty is set, the names of those properties

also are concatenated to the name of the newly generated resource. To keep the ex-

amples readable the generated unique ID is not part of the visualization. Analogous to

x:We

x:We
Generatedx:provide

x:OtherCar

x:FunnyCar

x:FunnyCar
Generated

x:OtherCar
Generated

x:provide

x:receive

x:Sale

rdf:type

rdf:type

x:SaleFunny
Car

rdf:type

x:relatedToFc

x:relatedToOc

x:Money
x:stockflow

x:stockflow

x:stockflowOc

x:Sales
We1

x:Sales
We2

x:Sales
We3

x:Sales
We4

x:Sales
FunnyCar

x:Sales
OtherCar

x:partOf

x:partOf

x:partOf

Figure 18: Resulting dataset after execution of the abstract property by

source operator with the grouping property set to grouping applied on Fig-

ure 17

36

the other abstraction variants it is possible to use all properties in combination. Listing

11 shows the usage of the operator. The namespace of the newly generated resource is

set in Lines 8-9. The grouping property, selection property, partition property,

grouped property and the selection resource type are set in Lines 11-29.

Method Parameter de-

scription

Datatype Mandatory

setGroupingProperty Property

namespace

String Yes

setGroupingProperty Property name String Yes

setSelectionProperty Property

namespace

String No

setSelectionProperty Property name String No

setSelectionResourceType Type namespace String No

setSelectionResourceType Type name String No

setGroupedProperty Property name String No

setGroupedProperty Property

namespace

String No

setGroupedPropertyDirection Direction of the

resources to be

grouped

Enum No

setPartitionProperty Property name String Yes

setPartitionProperty Property

namespace

String Yes

setGeneratedResourceNamespace Namespace of the

resource to be

generated

String Yes

setGraph Namespace of the

module

String Yes

setGraph Name of the mod-

ule

String Yes

setReification Reification Boolean No

Table 5: Abstract property by source methods description

37

1 AbstractPropertyBySource abstrPropertyBySource=

2 new AbstractPropertyBySource();

3

4 abstrPropertyBySource.setGraph(

5 configuration.getOlapModelNamespace(),

6 graph);

7

8 abstrPropertyBySource.setGeneratedResourceNamespace(

9 "http://www.semanticweb.org/schnepf/ontology#");

10

11 abstrPropertyBySource.setGroupingProperty(

12 "http://www.semanticweb.org/schnepf/ontology#",

13 "grouping");

14

15 abstrPropertyBySource.setSelectionProperty(

16 "http://www.semanticweb.org/schnepf/ontology#",

17 "provide");

18

19 abstrPropertyBySource.setPartitionProperty(

20 "http://www.semanticweb.org/schnepf/ontology#",

21 "partOf");

22

23 abstrPropertyBySource.setGroupedProperty(

24 "http://www.semanticweb.org/schnepf/ontology#",

25 "stockFlow");

26

27 abstrPropertyBySource.setSelectionResourceType(

28 "http://www.semanticweb.org/schnepf/ontology#",

29 "Sale");

30

31 abstrPropertyBySource.execute();

Listing 11: Usage of abstract property by source operator with the grouping

property, selection property, partition property, grouped property and selec-

tion resource type set

4.3.4 Abstract Literal By Source

This abstract is the only one which operates on literals which represent numeric val-

ues. So this operator generates new literals by executing different aggregate functions

on existing literals. It is of type triple-generating because it generates triples which

did not exist before. It also is of type value-generating because of the generation of

new aggregated literals. Note that this operator is able to handle only literals which

represent numeric values.

Figure 19 shows the running example for this operator. We, FunnyCar and Other-

Car provide different sales with literals asserted by the properties revenue and sales.

With this operator it is possible to define the properties of the literals the operator

should consider and the aggregation function which should be executed on the literals.

38

x:provide
x:We

x:Sales
We

10

20

30

40

x:revenue

x:sales

x:providex:Other
Car

x:Sales
OtherCar

30

40

50

60

x:revenue

x:sales

x:Sale

rdf:type

rdf:type

x:providex:Funny
Car

x:Sales
FunnyCar

1

2

3

4

x:revenue

x:sales

x:Sale
FunnyCar

rdf:type

Figure 19: Example dataset for the abstract literal by source operator

x:provide
x:We

x:Sales
We

30

70

x:revenue

x:sales

x:providex:Other
Car

x:Sales
OtherCar

70

110

x:revenue

x:sales

x:Sale

rdf:type

rdf:type

x:providex:Funny
Car

x:Sales
FunnyCar

3

7

x:revenue

x:sales

x:Sale
FunnyCar

rdf:type

Figure 20: Resulting dataset after execution of the abstract literal by source op-

erator with the aggregate function set

39

The first example illustrated in Figure 20 shows the result after setting the aggre-

gate function to SUM. The operator sums up the numeric values of the literals by their

respective source and property. For example, in reference to the example dataset

shown in Figure 19 the values 10 and 20 are summed up to 30 because of the same

source SalesWe and the same property revenue.

As already mentioned it is also possible to define the literals which should be

summed up in a more specific way. Figure 21 shows the result after executing the

operator on the example dataset with the aggregate property set to revenue and the

aggregate function set to SUM. This has the effect that only the literals with the same

source and a specific property are summed up. The literals of SalesWe with the prop-

erty revenue are summed up to 30 whereas the literals with the property sales remain

unchanged.

x:provide
x:We

x:Sales
We

30

30

40

x:revenue

x:sales

x:providex:Other
Car

x:Sales
OtherCar

70

50

60

x:revenue

x:sales

x:Sale

rdf:type

rdf:type

x:providex:Funny
Car

x:Sales
FunnyCar

3

3

4

x:revenue

x:sales

x:Sale
FunnyCar

rdf:type

Figure 21: Resulting dataset after execution of the abstract literal by source

operator with the aggregate function set to SUM, the aggregate property set to

revenue applied on Figure 19

40

Another way is to set the resource type of the source. Figure 22 shows the result af-

ter executing the operator on the example dataset with the selection resource type set

to Sale and the aggregate function set to SUM. This means that only those literals are

summed up with a source of type Sale. The literals of SalesFunnyCar remain un-

changed because the type of SalesFunnyCar is SaleFunnyCar.

The merge operator and the other abstract variants support the concept of RDF rei-

fication, so they generate knowledge on how often a literal exists instead of simply

overwriting the existing triples. Because of that the abstract literal by source operator

needs to support existing literals as well as literals stored by the use of RDF reifica-

tions. Figure 23 shows the example dataset including reification information. The

triple SalesWe revenue 10 exists multiple times which is defined by the number 2 in

square brackets. If the literals of the resource SalesWe and the property revenue needs

to be summed up, the newly generated literal is 40 instead of 30.

x:provide
x:We

x:Sales
We

30

70

x:revenue

x:sales

x:providex:Other
Car

x:Sales
OtherCar

70

110

x:revenue

x:sales

x:Sale

rdf:type

rdf:type

x:providex:Funny
Car

x:Sales
FunnyCar

1

2

3

4

x:revenue

x:sales

x:Sale
FunnyCar

rdf:type

Figure 22: Resulting dataset after execution of the abstract literal by source

operator with the aggregate function set to SUM, the selection resource type

set to Sale applied on Figure 19

41

Table 6 shows the different properties of the operator. The only properties which

are mandatory are graph and aggregate function. Equal to the other types of abstracts

it is possible to combine the different properties. To generate the result of Figure 20 it

is necessary to configure the operator as shown in Listing 12. In Line 8 the aggregate

function is set to SUM. Lines 10-12 set the aggregate property to revenue.

x:provide
x:We

x:Sales
We

10
[2]

20

30

40

x:revenue

x:sales

x:providex:Other
Car

x:Sales
OtherCar

30

40

50

60

x:revenue

x:sales

x:Sale

rdf:type

rdf:type

x:providex:Funny
Car

x:Sales
FunnyCar

1

2

3

4

x:revenue

x:sales

x:Sale
FunnyCar

rdf:type

Figure 23: Example dataset including reification information for the abstract

literal by source operator

42

1 AbstractLiteralBySource abstrLiteralBySource =

2 new AbstractLiteralBySource();

3

4 abstrLiteralBySource.setGraph(

5 configuration.getOlapModelNamespace(),

6 graph);

7

8 abstrLiteralBySource.setAggregateFunction("SUM");

9

10 abstrLiteralBySource.setAggregateProperty(

11 "http://www.semanticweb.org/schnepf/ontology#",

12 "revenue");

13

14 abstrLiteralBySource.execute();

Listing 12: Usage of abstract literal by source operator with the aggregate

function and the aggregate property set

Method Parameter description Datatype Mandatory

setAggregateFunction Aggregate function

which should be execut-

ed

String Yes

setAggregateProperty Property name String No

setAggregateProperty Property namespace String No

setSelectionResource-

Type

Type namespace String No

setSelectionResource-

Type

Type name String No

setGraph Namespace of the mod-

ule

String Yes

setGraph Name of the module String Yes

setReification Reification Boolean No

Table 6: Abstract literal by source methods description

43

5 Implementation

In this chapter different details of the API are explained. First, the system architecture

is shown by explaining the parts interacting with each other. Secondly, the software

architecture of the API is shown by a class diagram in order to present an overview

about the different classes and their structure. Furthermore, the different SPARQL

queries of the operators are explained. Note that the queries are generated dynamical-

ly depending on the parameters set.

5.1 System Architecture

Figure 24 shows the system architecture of the API. The base data includes the di-

mensional model, the assertion of the contexts to the modules as well as the definition

of the modules. The base data is loaded into the base repository, an instance of the

CKR framework implemented in Sesame. This is where all the information of the

base data is analyzed and new information is generated and saved in a materialized

way. Note that it is not necessary to use the CKR framework here. The API, however,

expects the structure of the base data to be exactly as the base data generated by the

CKR framework. Note that we use the CKR framework in combination with a custom

ruleset provided by Loris Bozzato of the Fondazione Bruno Kessler specifically for

our purposes, based on the materialization calculus for CKR [16].

Base Temp

Base-Data

load

Slice / Dice
Merge

Abstract

Figure 24: System architecture of the API

44

1 generatedGraph closureOf :Ctx-Department_All-

2 Location_Europe-Time_Y2013.

3 generatedGraph derivedFrom :Module-Department_All-

4 Location_Europe-

5 Time_Y2013.

6 generatedGraph derivedFrom :Module-Department_All-

7 Location_All-Time_All.

Listing 13: Knowledge propagation information

Based on the defined dimension attributes of the dimensional model, the CKR

framework generates different contexts for every combination of dimension attributes.

This means that for the dimension attributes Department_All, Location_All, Loca-

tion_Europe, Time_All and Time_Y2013 the contexts Ctx-Department_All-

Location_All-Time_Y2013, Ctx-Department_All-Location_Europe-Time_Y2013, Ctx-

Department_All-Location_Europe-Time_All, Ctx-Department_All-Location_All-

Time_All are generated.

Another important functionality of CKR framework is knowledge propagation. It is

important to know which modules of contexts on higher levels have modules which

are also valid for contexts on lower level of abstraction. This is done by saving infor-

mation about the relation of the modules similar to the relation of the different levels

and dimension attributes. The CKR framework uses the derivedFrom property in

order to define which module derives knowledge from another module of a context on

a higher level of abstraction. The derivedFrom property does not assign contexts to

modules directly. The CKR framework uses the closureOf property to assign a gener-

ated graph to a context. This graph saves all information needed for knowledge prop-

agation. For example, for the Ctx-Department_All-Location_Europe-Time_Y2013 the

statements from Listing 13 are generated. The generatedGraph stands for a graph IRI

which is generated by the CKR framework. As shown in the example it is so possible

to select all the modules which are relevant for a specific context, those who are di-

rectly asserted and those who are assigned to contexts on higher level of abstraction.

The slice/dice operator copies the data from the base repository into the temp re-

pository. The merge and abstract operators are executed on the temp repository so the

data in the base repository remains unchanged.

45

5.2 Software Architecture

Generally the API is a SPARQL-based implementation because all operators have

been implemented using SPARQL update statements only. We use the Apache Jena6

framework to handle those update statements. One important fact while implementing

the API was to design the classes in a way they are independent of the used frame-

work. This has the advantage that the API can be adapted for different frameworks

only by changing few classes. Due to the fact that the operators are SPARQL updates

executed against repositories, in principle all frameworks may be used which support

the execution of SPARQL updates on remote repositories. The suitability of a frame-

work depends on its interpretation of the default graph. It needs to interpret the default

graph as the union of all named graphs. So it is possible to query one single graph in

order to receive data from all named graphs.

Figure 25 shows the structure of the classes in an UML class diagram. In the upper

left corner there is the abstract class Statement containing the method execute. All

operators are specific statements and defined as subclasses of Statement. In those

subclasses the SPARQL updates are generated and executed.

The Statement class uses the class RepositoryConnector in order to connect to spe-

cific repositories where the statements are executed. To enable a Statement to connect

to a repository a RepositoryConnector needs to be set by using the method setReposi-

toryConnector. For every specific type of repository a specific subclass of Reposito-

ryConnector needs to be created. The API is able to connect to repositories of type

Sesame7 and Jena with the respective classes SesameRepositoryConnector and Je-

naRepositoryConnector. Those classes define methods in order to execute statements

directly on the repositories. So if a different repository type needs to be used it is only

necessary to design a new subclass of RepositoryConnector. This class needs to de-

fine methods to execute the statements using a framework which is able to connect to

the specific type of repository. The RepositoryConnector uses the Configuration class

in order to store specific properties. The API offers the possibility to read the proper-

ties from a Java Properties File which stores the properties as key/value pairs. The

class PropertiesFileConfigurationFactory directly reads the properties from a proper-

ties file. The API is able to read the properties from arbitrary sources. If an additional

possibility should be implemented to read the properties from other sources it is only

necessary to design a new subclass of ConfigurationFactory.

6 https://jena.apache.org/
7 http://rdf4j.org/

46

 Figure 25: Class diagram

47

5.3 SPARQL Updates

This section describes how the operators have been implemented using SPARQL

updates. There are a lot of RDF Frameworks which offer different functionalities for

implementation. For example, with Jena it is possible to load RDF graphs into a Jena

Model which then can be parsed and manipulated using Jena API directly. As most

classes in the OLAP API should be independent from the framework used, the focus

was on implementing the operators only by using SPARQL updates. Note that the

slice/dice and merge operators are able to handle arbitrary amounts of dimensions.

5.3.1 Slice/Dice

As already mentioned this operator is used to copy the interesting data from the base

repository into the temp repository. Therefore it uses different updates which will be

explained in the following. Those updates are executed against the temp repository

and are dynamically generated based on the configuration illustrated in Listing 7.

5.3.1.1 Contexts with asserted modules

The update shown in Listing 14 selects all contexts and the content of the asserted

modules in order to insert those triples into the global graph of the temp repository

(Lines 1-6). With the SERVICE statement in Line 8 it is possible to execute the query

against an arbitrary SPARQL endpoint. In this query the base repository is defined as

SPARQL endpoint because the data needs to be fetched from there. The assertion of

contexts and modules is done by the property hasAssertedModule (Line 10). The

modules are defined as graphs, so in Line 11 all triples s p o of those graphs m need to

be selected which represent the content of the modules. Every context is defined by

dimension attributes d0 d1 d2 asserted by the respective properties hasDepartment,

hasLocation and hasTime (Lines 12-14). Lines 15-42 select the dimension attributes

which are related to dimension attributes defined by the analyst. For example, Lines

24-32 query all dimension attributes d1 which roll up to Location_Europe as well as

the d1 which are on higher level of abstraction Location_Europe rolls up to. This is

because an analyst may want to copy all information which is valid in Loca-

tion_Europe but also wants to be able to do further analytics on a higher level of ab-

straction like on Level_Location_All. Lines 16-18 and 20-22 of Listing 14 define in-

dependent subqueries of their own scope joined by the UNION keyword. The braces

used in Line 15 and 23 also define subqueries. So subqueries may be connected by the

48

1 INSERT {

2 GRAPH ckr:global{

3 ?c :hasAssertedModule ?m.

4 }

5 GRAPH ?m { ?s ?p ?o }

6 }

7 WHERE {

8 SERVICE <http://localhost:50000/repositories/Base>{

9 SELECT distinct ?c ?m ?s ?p ?o WHERE {

10 ?c :hasAssertedModule ?m.
11 GRAPH ?m {?s ?p ?o}.
12 ?c :hasDepartment ?d0.
13 ?c :hasLocation ?d1.
14 ?c :hasTime ?d2.
15 {
16 {
17 ?d0 :directlyRollsUpTo* :Department_All.
18 }
19 UNION
20 {
21 :Department_All :directlyRollsUpTo* ?d0.
22 }
23 }
24 {
25 {
26 ?d1 :directlyRollsUpTo* :Location_Europe.
27 }
28 UNION
29 {
30 :Location_Europe :directlyRollsUpTo* ?d1.
31 }
32 }
33 {
34 {
35 ?d2 :directlyRollsUpTo* :Time_All.
36 }
37 UNION
38 {
39 :Time_All :directlyRollsUpTo* ?d2.
40 }
41 }
42 }
43 }
44 }

Listing 14: Update statement for the insertion of contexts and asserted modules

with dimension attributes Department_All, Location_Europe and Time_All

usage of UNION or without any keyword. The difference is that with the UNION

keyword the query engine does not match the values of the resources for equality and

only joins the sets. This is comparable with an outer join in SQL. If the UNION key-

word is not used, the engine checks the values for equality and merges the results

49

where equal resources exist. By the use of SPARQL property paths8, as it is shown by

the property directlyRollsUpTo* (Line 17), it is possible to declare that the subject

does not need to have the object directly assigned by the property, also a transitive

closure is possible. So there may be an arbitrary amount of resources between the

subject and the object assigned by the property directlyRollsUpTo.

5.3.1.2 Meta-information of the dimensional model

Listing 15 illustrates the update statement to insert parts of the dimensional model

into the temp repository. Due to the fact that the analyst is able to define a point of

interest with the slice/dice operator, it is necessary that only the interesting infor-

mation of the dimensional model is extracted. This means that there should not be a

dimension attribute Location_Asia if the analyst specifies Location_Europe. Note that

some parts of the information to be copied depends on dimension attributes specified

by the analyst. Due to the fact that the number of triples depending on dimension

attributes is low, the query selects all dependent triples in Lines 14-32. With the

MINUS statement (Line 13) it is now possible to define that none of the triples select-

ed in Lines 14-32 should be part of the result. So only those triples are part of the

result which are independent from the dimension attributes. For example, all triples s

p o of the global graph (Lines 9-12) which are not asserted to a dimension attribute

(Lines 14-23), level (Lines 25-28) or module (Lines 30-32) should be part of the re-

sult.

8 http://www.w3.org/TR/sparql11-query/#propertypaths

50

1 INSERT {

2 GRAPH ckr:global {

3 ?s ?p ?o

4 }

5 }

6 WHERE {

7 SERVICE <http://localhost:50000/repositories/Base> {

8 SELECT ?s ?p ?o WHERE {

9 GRAPH ckr:global{

10 {
11 ?s ?p ?o.
12 }
13 MINUS{
14 {
15 ?s ?p ?o.
16 ?o rdf:type ?dimAtrVal.
17 ?dimAtrVal rdfs:subClassOf :DimensionAttributeValue.
18 }
19 UNION
20 {
21 ?s rdf:type ?dimAtr.
22 ?dimAtr rdfs:subClassOf :DimensionAttributeValue
23 }
24 UNION
25 {
26 ?s :atLevel ?o.
27 ?o rdf:type :Level
28 }
29 UNION
30 {
31 ?s :hasAssertedModule ?o.
32 }}}}}}

Listing 15: Update statement for the insertion of triples from the dimensional

model not related to dimension attributes, levels or modules

5.3.1.3 Dimension attributes

The main idea of the update shown in Listing 16 is to copy the dimension attributes

which are interesting for the analyst. If the analyst chooses that only data from Loca-

tion_Europe is interesting the dimension attributes which are related to Location_Asia

do not need to be copied. The query part of the update selects the dimension attributes

d1 and the attributes d2 they roll up to (Line 13). Furthermore the type td1 and td2 of

the dimension attributes and the assigned level l1 and l2 are selected (Lines 14-19).

Lines 20-50 select appropriate dimension attributes. For example, Lines 31-40 select

the dimension attributes which roll up to Location_Europe and the dimension attrib-

utes Location_Europe rolls up to. For example, this query may select d1 Loca-

tion_Austria which rolls up to d2 Location_Europe with the appropriate levels l1

Level_Location_Country and l2 Level_Location_Continent.

51

1 INSERT {

2 GRAPH ckr:global{

3 ?d1 :directlyRollsUpTo ?d2.

4 ?d1 :atLevel ?l1.

5 ?d2 :atLevel ?l2.

6 ?d1 rdf:type ?td1.

7 ?d2 rdf:type ?td2.

8 }

9 }

10 WHERE {

11 SERVICE <http://localhost:50000/repositories/Base> {

12 SELECT distinct ?d1 ?td1 ?d2 ?td2 ?l1 ?l2 WHERE {

13 ?d1 :directlyRollsUpTo ?d2.

14 ?d1 :atLevel ?l1.

15 ?d2 :atLevel ?l2.

16 ?d1 rdf:type ?td1.

17 ?td1 rdfs:subClassOf :DimensionAttributeValue.

18 ?d2 rdf:type ?td2.

19 ?td2 rdfs:subClassOf :DimensionAttributeValue.

20 {

21 {

22 ?d1 :directlyRollsUpTo* :Department_All.

23 }

24 UNION

25 {

26 :Department_All :directlyRollsUpTo* ?d1.

27 ?d1 :directlyRollsUpTo* ?d2.

28 }

29 }

30 UNION

31 {

32 {

33 ?d1 :directlyRollsUpTo* :Location_Europe.

34 }

35 UNION

36 {

37 :Location_Europe :directlyRollsUpTo* ?d1.

38 ?d1 :directlyRollsUpTo* ?d2.

39 }

40 }

41 UNION

42 {

43 {

44 ?d1 :directlyRollsUpTo* :Time_All.

45 }

46 UNION

47 {

48 :Time_All :directlyRollsUpTo* ?d1.

49 ?d1 :directlyRollsUpTo* ?d2.

50 }}}}}

Listing 16: Update statement for the insertion of dimension attributes related to

Department_All, Location_Europe and Time_All with respective levels and

types

52

5.3.1.4 Contexts

The update shown in Listing 17 inserts data generated by the CKR framework. This

requires to insert information into the generated graph

infhttp%3A%2F%2Fdkm.fbk.eu%2Fckr%2Fmeta%23global and the different closure

graphs (Lines 1-10). Lines 24-50 query the relevant dimension attributes analogous to

the query in Listing 16. Lines 19-21 query the specific contexts c which are valid for

the dimension attributes d0 d1 d2. For those contexts c all properties p and objects o

need to be selected (Line 14). Lines 15-16 specify that no objects of contexts c assert-

ed by the property hasAssertedModule should be selected. This needs to be done by a

specific update. As already mentioned every context has a closure defined by a graph.

This closures are selected in Lines 17-18 in order to select all triples cls, clp and clo

out of the specific closure.

53

1 INSERT {

2 GRAPH <springles:infhttp%3A%2F%2Fdkm.fbk.eu%2Fckr%2Fmeta%23global>{

3 ?c ?p ?o.

4 ?c ckr:hasModule ?m.

5 ?closure ckr:closureOf ?c.

6 }

7 GRAPH ?closure{

8 ?cls ?clp ?clo

9 }

10 }

11 WHERE {

12 SERVICE <http://localhost:50000/repositories/Base> {

13 SELECT distinct ?c ?p ?o ?closure ?cls ?clp ?clo ?m WHERE {

14 ?c ?p ?o.

15 FILTER NOT EXISTS

16 {?c :hasAssertedModule ?o.}

17 ?closure ckr:closureOf ?c.

18 GRAPH ?closure {?cls ?clp ?clo.}.

19 ?c :hasDepartment ?d0.

20 ?c :hasLocation ?d1.

21 ?c :hasTime ?d2.

22 OPTIONAL

23 { ?c ckr:hasModule ?m.}

24 {

25 {

26 ?d0 :directlyRollsUpTo* :Department_All.

27 }

28 UNION

29 {

30 :Department_All :directlyRollsUpTo* ?d0.

31 }

32 }

33 {

34 {

35 ?d1 :directlyRollsUpTo* :Location_Europe.

36 }

37 UNION

38 {

39 :Location_Europe :directlyRollsUpTo* ?d1.

40 }

41 }

42 {

43 {

44 ?d2 :directlyRollsUpTo* :Time_All.

45 }

46 UNION

47 {

48 :Time_All :directlyRollsUpTo* ?d2.

49 }

50 }

51 }

52 }

53 }

Listing 17: Update statement for the insertion of contexts related to

Department_All, Location_Europe and Time_All with respective clo-

sure information

54

5.3.2 Merge

Generally the basic merge operator was implemented by using different updates for

the two variants union and intersection which will be explained in the following. Op-

tionally the behavior of the operator may be configured to consider the concept of

RDF reification. This behavior was implemented by additional updates which will

also be explained. Note that updates regarding RDF reification always need to be

executed before the original operators. The example updates assume a configuration

of the operator as shown in Listing 8.

5.3.2.1 Union

In contrast to the updates used for the slice/dice operator the updates for this variant

of the merge operator needs to be extended by a part to delete specific data. This is

because if modules are merged to modules on higher level of abstraction, the

lower-level modules need to be deleted. So it is necessary to delete specific triples and

graphs. This is done by the Delete section of the update shown in Listing 18 in Lines

1-9. From the graphs infhttp%3A%2F%2Fdkm.fbk.eu%2Fckr%2Fmeta%23global and

global the assertion of the contexts and the modules need to be deleted as well as the

graph which represent the modules.

Lines 18-30 of Listing 18 basically select all contexts with the respective modules

assigned to lower levels than those configured by the analyst. So those modules first

need to be merged to a new module and deleted later on. For example, Lines 25-27

select the contexts and modules assigned to the same level Level_Location_Continent

regarding the property hasLocation. At first it needs to be figured out which dimen-

sion attributes r1 are on level Level_Location_Continent (Line 27). Then all dimen-

sion attributes d1 with the property directlyRollsUpTo r1 (Line 26) need to be figured

out in order to select the lower-level contexts ctx. Note that also those contexts are

selected directly asserted to the level Level_Location_Continent. One of the last steps

shown in Lines 19-21 is the selection of contexts valid for the levels defined by the

analyst in order to assert the newly generated module. For the generated module a

specific IRI needs to be generated (Lines 31-35). The IRI consists of a namespace, a

specific description ‘UnionModule_’, so the name differs from original modules, and

the concatenated dimension attributes r0 r1 r2. Lines 36-39 simply define that the

query should not select triples with properties like rdf:subject, rdf:property, rdf:object

or :count which represent reification information. Reification information is handled

by separate queries which are described in the following.

55

1 DELETE {

2 GRAPH <springles:infhttp%3A%2F%2Fdkm.fbk.eu%2Fckr%2Fmeta%23global> {

3 ?ctx :hasAssertedModule ?m.

4 }

5 GRAPH ckr:global{

6 ?ctx :hasAssertedModule ?m.

7 }

8 GRAPH ?m {?s ?p ?o}.

9 }

10 INSERT {
11 GRAPH ?u {?s ?p ?o}.
12 GRAPH <springles:infhttp%3A%2F%2Fdkm.fbk.eu%2Fckr%2Fmeta%23global> {
13 ?ctx2 :hasAssertedModule ?u
14 }
15 }
16 WHERE {
17 GRAPH ?m {?s ?p ?o}.
18 ?ctx :hasAssertedModule ?m.
19 ?ctx2 :hasDepartment ?r0.
20 ?ctx2 :hasLocation ?r1.
21 ?ctx2 :hasTime ?r2.
22 ?ctx :hasDepartment ?d0.
23 ?d0 :directlyRollsUpTo* ?r0.
24 ?r0 :atLevel :Level_Department_Department.
25 ?ctx :hasLocation ?d1.
26 ?d1 :directlyRollsUpTo* ?r1.
27 ?r1 :atLevel :Level_Location_Continent.
28 ?ctx :hasTime> ?d2.
29 ?d2 :directlyRollsUpTo* ?r2.
30 ?r2 :atLevel :Level_Time_Year.
31 BIND(IRI(CONCAT('http://dkm.fbk.eu/ckr/olap-model#',
32 'UnionModule_',
33 STRAFTER(STR(?r0),'#'),'-',
34 STRAFTER(STR(?r1),'#'),'-',
35 STRAFTER(STR(?r2),'#'))) AS ?u).
36 FILTER(?p != rdf:subject).
37 FILTER(?p != rdf:property).
38 FILTER(?p != rdf:object).
39 FILTER(?p != :count).

40 }

Listing 18: Update statement for the union variant of the merge operator with

levels Level_Department_Department, Level_Location_Continent and Lev-

el_Time_Year

The first step to handle reification information is to insert the reifications from the

modules into the newly generated module as shown in Listing 19 at Lines 1-9. The

functionality of the Lines 29-44 are the same as explained for the update in

56

1 INSERT{

2 GRAPH ?u

3 {

4 [] rdf:subject ?s;

5 rdf:property ?p;

6 rdf:object ?o;

7 :count ?cntSum.

8 }

9 }

10 WHERE{
11 SELECT * WHERE{
12 {
13 SELECT ?s ?p ?o (sum(?cnt) as ?cntSum) ?u WHERE {
14 GRAPH ?m {
15 ?s ?p ?o.
16 FILTER (?p != rdf:subject).
17 FILTER (?p != rdf:property).
18 FILTER (?p != rdf:object).
19 FILTER (?p != :count).
20 FILTER (isLiteral(?o)).
21 OPTIONAL{
22 ?bn rdf:subject ?s;
23 rdf:property ?p;
24 rdf:object ?o;
25 :count ?c.
26 }
27 }.
28 BIND(IF(!BOUND(?c),1,?c) as ?cnt)
29 ?ctx :hasAssertedModule ?m.
30 ?ctx :hasDepartment ?d0.
31 ?d0 :directlyRollsUpTo* ?r0.
32 ?r0 :atLevel :Level_Department_Department.
33 ?ctx :hasLocation ?d1.
34 ?d1 :directlyRollsUpTo* ?r1.
35 ?r1 :atLevel :Level_Location_Continent.
36 ?ctx :hasTime ?d2.
37 ?d2 :directlyRollsUpTo* ?r2.
38 ?r2 :atLevel :Level_Time_Year.
39 BIND(IRI(CONCAT('http://dkm.fbk.eu/ckr/olap-model#',
40 'UnionModule_',
41 STRAFTER(STR(?r0),'#'),'-',
42 STRAFTER(STR(?r1),'#'),'-',
43 STRAFTER(STR(?r2),'#'))) AS ?u).
44 }
45 GROUP BY ?s ?p ?o ?u
46 }
47 FILTER(?cntSum > 1).
48 }
49 }

Listing 19: Update statement to insert reification information for the union var-

iant of the merge operator with levels Level_Department_Department, Lev-

el_Location_Continent and Level_Time_Year

 Listing 18. In Lines 15-20 of all triples s p o of the modules m are selected but only

those where o is a literal and p is not equal to a property which is used by reification.

This is necessary because without this filter also existing reification information

57

would be selected. In Lines 21-26 the resource c of the reification information, which

counts the existence of specific triples s p o, is selected if there exists one. If no c

exists the resource cnt is set to 1 automatically (Line 28). This is needed if a triple

does not have any reification information so it needs to be recorded that it exists once.

In order to sum up the resource c the result of the query needs to be grouped first

(Line 45). When the result is grouped by the resources s p o it is possible to count the

existence of same triples by summing up the resource cnt and bind the value to the

resource cntSum. Now all information is available in order to insert the reification

information into the new module u. The filter in Line 47 ensures that no reification

information is added into the new module for triples which only exist once. This is

necessary because of the statement in Line 28 the variable cnt may has the value 1.

In the update shown in Listing 20 the reification information of the modules to be

merged has to be deleted. Therefore all triples s p o representing reification infor-

mation of modules m need to be selected (Lines 8-14).

The updates regarding reification cannot be joined to a single query because of the

grouping. The reification Insert statement of Listing 19 groups all triples s p o on the

level of the newly generated module. The statement of Listing 20 needs the

knowledge of the modules which have to be grouped. They operate on different levels

so we decided to split the statements. It is also not possible to join the statement of

Listing 20 with the union statement even though the union statement deletes the

merged modules. This is because the union statement first copies all content of the

modules to the newly generated module and then deletes the merged modules. So the

reification information which should be deleted would always first be copied to the

new module. This is why the Insert/Delete statements which handle reification infor-

mation need to be executed before the original operators.

58

1 DELETE {

2 GRAPH ?m{

3 ?s ?p ?o.

4 }

5 }

6 WHERE {

7 SELECT ?s ?p ?o ?m WHERE {

8 GRAPH ?m {

9 ?s ?p ?o.

10 FILTER (?p = rdf:subject ||
11 ?p = rdf:property ||
12 ?p = rdf:object ||
13 ?p = :count).
14 }
15 ?ctx :hasAssertedModule ?m.
16 ?ctx2 :hasDepartment ?r0.
17 ?ctx2 :hasLocation ?r1.
18 ?ctx2 :hasTime ?r2.
19 ?ctx hasDepartment ?d0.
20 ?d0 :directlyRollsUpTo* ?r0.
21 ?r0 :atLevel :Level_Department_Department.
22 ?ctx :hasLocation ?d1.
23 ?d1 :directlyRollsUpTo* ?r1.
24 ?r1 :atLevel Level_Location_Continent.
25 ?ctx :hasTime ?d2.
26 ?d2 :directlyRollsUpTo* ?r2.
27 ?r2 :atLevel :Level_Time_Year.
28 }

29 }

Listing 20: Update statement to delete reification information for the union

variant of the merge operator with levels Level_Department_Department,

Level_Location_Continent and Level_Time_Year

5.3.2.2 Intersection

This variant of the merge operator is similar to the union variant but it does not simp-

ly merge all triples. It merges only those triples which do exist in every single mod-

ule. As already mentioned in Section 4.2, the support of RDF reification may not

make sense for all kind of scenarios. However, the intersection variant is also able to

support RDF reification.

The Delete section of the update in Listing 21 is almost equal to the one shown in

Listing 18 for the union variant. The only difference is Line 8 where the variables sdel

pdel odel are used instead of s p o. The Insert section is equal for both variants union

and intersection. If different sections of an update statement are equal to parts of a

statement which already got explained the section is marked by the use of three dots

as shown in Line 11.

59

1 DELETE {

2 GRAPH <springles:infhttp%3A%2F%2Fdkm.fbk.eu%2Fckr%2Fmeta%23global>{

3 ?ctx :hasAssertedModule ?m.

4 }

5 GRAPH ckr:global {

6 ?ctx :hasAssertedModule ?m.

7 }

8 GRAPH ?m {?sdel ?pdel ?odel}.

9 }

10 INSERT {
11 …
12 }
13 WHERE {
14 SELECT * WHERE {
15 {
16 SELECT ?s ?p ?o ?ctx2 ?u WHERE {
17 {
18 SELECT distinct ?r0 ?r1 ?r2 (count(*) as ?nrOfModules) WHERE {
19 ?ctx :hasAssertedModule ?m.
20 ?ctx :hasDepartment ?d0.
21 ?d0 :directlyRollsUpTo* ?r0.
22 ?r0 :atLevel :Level_Department_All .
23 ?ctx :hasLocation ?d1.
24 ?d1 :directlyRollsUpTo* ?r1.
25 ?r1 :atLevel Level_Location_Continent.
26 ?ctx :hasTime ?d2.
27 ?d2 :directlyRollsUpTo* ?r2.
28 ?r2 :atLevel :Level_Time_All.
29 } GROUP BY ?r0 ?r1 ?r2
30 }
31 {
32 SELECT distinct ?ctx2 ?r0 ?r1 ?r2 ?s ?p ?o
33 (count(*) as ?nrOfEqualTriples) WHERE{
34 GRAPH ?m {?s ?p ?o}.
35 ?ctx2 :hasDepartment ?r0.
36 ?ctx2 :hasLocation ?r1.
37 ?ctx2 :hasTime ?r2.
38 …
39 } GROUP BY ?r0 ?r1 ?r2 ?s ?p ?o ?ctx2
40 }
41 FILTER(?nrOfEqualTriples = ?nrOfModules).
42 FILTER(?p != rdf:subject).
43 FILTER(?p != rdf:property).
44 FILTER(?p != rdf:object).
45 FILTER(?p != :count).
46 BIND(IRI(CONCAT('http://dkm.fbk.eu/ckr/olap-model#',
47 'IntersectionModule_',
48 STRAFTER(STR(?r0),'#'),'-',
49 STRAFTER(STR(?r1),'#'),'-',
50 STRAFTER(STR(?r2),'#'))) AS ?u).
51 }
52 }
53 {
54 SELECT ?ctx ?m ?sdel ?pdel ?odel WHERE{
55 GRAPH ?m {?sdel ?pdel ?odel}.
56 …
57 }}}}

Listing 21: Update statement for the intersection variant of the merge operator

with levels Level_Department_All, Level_Location_Continent and Level_Time_All

60

The update of Listing 21 is divided into different subqueries. Lines 18-29 basically

follow the concept of selecting contexts with dimension attributes which roll up to a

specific level and was already explained for the union variant. With the grouping

operator shown in Line 29 it is possible to group the results by r0 r1 r2. Modules are

asserted with contexts which do have dimension attributes d0 d1 d2 that directly roll

up to r0 r1 r2 on specific levels. This means that the variable

nrOfModules contains the number of modules which are asserted to contexts.

Lines 32-39 select all contexts with dimension attributes which roll up to r0 r1 r2

similar to Lines 18-29. Furthermore the resources s p o of the modules are selected

(Line 34). With the grouping operator shown in Line 39 it is possible to count the

number of equal triples s p o of modules asserted to the context ctx2 with the asserted

dimension attributes r0 r1 r2 (Lines 35-37) and save it to the variable

nrOfEqualTriples. The filter in Line 41 defines that only those resources should be in

the result where the variable nrOfEqualTriples is equal to nrOfModules. This means

that the resources need to be part of all modules in order to be part of the result.

In Lines 53-57 the triples sdel pdel odel of the modules m asserted to the context

ctx are selected. So the assertion of the contexts ctx and the modules m (Lines 2-7)

with their content (Line 8) can be deleted.

The insertion of the reification information is shown in Listing 22. The update

statement is very similar to the one shown in Listing 21. Additionally it is necessary

to select the count resource c of the reification information if it exists (Lines 22-27). If

it does not exist the variable is set to 1 and bound to the resource cnt (Line 33). This

resource is summed up based on the grouping and bound to the value reif. So now for

all equal triples s p o the final number of equal triples is calculated. It is not necessary

to delete those resources because the whole module is deleted by the intersection vari-

ant later on.

61

1 INSERT {

2 GRAPH ?u {

3 [] rdf:subject ?s;

4 rdf:property ?p;

5 rdf:object ?o;

6 :count ?reif.

7 }

8 }

9 WHERE {

10 SELECT ?s ?p ?o ?ctx2 ?u ?reif WHERE {
11 {
12 SELECT distinct ?r0 ?r1 ?r2 (count(*) as ?nrOfModules) WHERE {
13 …
14 } GROUP BY ?r0 ?r1 ?r2
15 }
16 {
17 SELECT distinct ?ctx2 ?r0 ?r1 ?r2 ?s ?p ?o
18 (count(*) as ?nrOfEqualTriples) (sum(?cnt) as ?reif) WHERE {
19 ?ctx :hasAssertedModule ?m.
20 GRAPH ?m {
21 ?s ?p ?o.
22 OPTIONAL{
23 ?bn rdf:subject ?s;
24 rdf:property ?p;
25 rdf:object ?o;
26 :count ?c.
27 }
28 }.
29 FILTER(?p != rdf:subject).
30 FILTER(?p != rdf:property).
31 FILTER(?p != rdf:object).
32 FILTER(?p != :count).
33 BIND(IF(!BOUND(?c),1,?c) as ?cnt)
34 …
35 } GROUP BY ?r0 ?r1 ?r2 ?s ?p ?o ?ctx2
36 }
37 FILTER(?nrOfEqualTriples = ?nrOfModules)
38 FILTER(isLiteral(?o))
39 BIND(IRI(CONCAT('http://dkm.fbk.eu/ckr/olap-model#',
40 'IntersectionModule_',
41 STRAFTER(STR(?r0),'#'),'-',
42 STRAFTER(STR(?r1),'#'),'-',
43 STRAFTER(STR(?r2),'#'))) AS ?u).
44 }

45 }

Listing 22: Update statement to insert reification information for the inter-

section variant of the merge operator with levels Level_Department_All,

Level_Location_Continent and Level_Time_All

62

5.3.3 Abstract By Grouping

The update statements of the different abstracts are very long so the updates are split

up in different parts for explanation. For the abstracts, knowledge propagation is a

very important part. The core functionality of the abstracts is to check the resources of

a module if there exists a specific structure. For example, if a resource is asserted to a

specific group it needs to be replaced by the group. Those information may be defined

in the same module but it is also possible that the information is inferred by modules

on higher level of abstraction. The theoretical concept and the way the CKR frame-

work handles knowledge propagation has already been explained in Section 5.1. The

updates shown for this operator assume a configuration as shown in Listing 9.

Listing 23 shows an example query for a specific module in Lines 10-18. This part

of the query is used to consider knowledge of a specific module as well as inferred

knowledge. The variable closure is a closure of a context c with an asserted module.

Furthermore with the closure variable it is possible to find all modules which are

directly asserted to the context of the closure or modules which are asserted to context

on higher levels of abstraction. The CKR framework uses the derivedFrom property

not only for modules. So in this context it is necessary to get only modules which

were asserted to contexts with the hasAssertedModule property as shown in Line 14.

With those statements it is possible to access all content of the different modules

bound to the variable m as it is shown in Line 15-17.

The main idea of the query shown in Listing 23 is to select all resources which do

have specific properties and objects. For this example query the grouping property

(Line 16), selection property (Line 27) and a selection resource type (Line 38) have

been configured. Every property needs to be checked in an own subquery. If all the

properties would be checked in the same subquery this would mean that all resources

and properties need to exist in the same module m which may not be true. The filter

(Line 42) ensures that the resources with a specific property (Lines 20-30) and type

(Lines 31-40) are equal.

63

1 …

2 SELECT DISTINCT ?s ?s_g ?p ?o ?o_g ?s_new ?o_new WHERE{

3 GRAPH :Module8{

4 ?s ?p ?o .

5 FILTER (?p != :grouping)

6 }

7 OPTIONAL{

8 SELECT DISTINCT ?s ?s_g WHERE{

9 {

10 SELECT DISTINCT ?s ?s_g WHERE{

11 ?closure ckr:closureOf ?c.

12 ?c :hasAssertedModule :Module8.

13 ?closure ckr:derivedFrom ?m.

14 ?c2 :hasAssertedModule ?m.

15 GRAPH ?m{

16 ?s :grouping ?s_g.

17 }

18 }

19 }

20 {

21 SELECT DISTINCT ?s ?selRes1 WHERE{

22 ?closure ckr:closureOf ?c.

23 ?c :hasAssertedModule :Module8.

24 ?closure ckr:derivedFrom ?m.

25 ?c2 :hasAssertedModule ?m.

26 GRAPH ?m{

27 ?s :provide ?selRes1.

28 }

29 }

30 }

31 {

32 SELECT DISTINCT ?selRes2 WHERE{

33 ?closure ckr:closureOf ?c.

34 ?c :hasAssertedModule :Module8.

35 ?closure ckr:derivedFrom ?m.

36 ?c2 :hasAssertedModule ?m.

37 GRAPH ?m{

38 ?selRes2 rdf:type :Sale

39 }

40 }

41 }

42 FILTER(?selRes1 = ?selRes2)

43 }

44 }

45 OPTIONAL{...}

46 BIND (IF (BOUND(?s_g), ?s_g, ?s) AS ?s_new)

47 BIND (IF (BOUND(?o_g), ?o_g, ?o) AS ?o_new)

48 FILTER (?p != rdf:subject).

49 FILTER (?p != rdf:property).

50 FILTER (?p != rdf:object).

51 FILTER (?p != :count).

52 }

53 …

Listing 23: Select part of the update statement for the abstract by grouping op-

erator with grouping property, selection property and selection resource type

set

64

1 DELETE

2 {

3 GRAPH :Module8

4 {

5 ?s ?p ?o.

6 }

7 }

8 INSERT

9 {

10 GRAPH :Module8
11 {
12 ?s_new ?p ?o_new.
13 }

14 }

15 …

Listing 24: Delete/Insert part of the update statement for the abstract by group-

ing operator with grouping property, selection property and selection resource

type set

The subqueries of Listing 23 are defined Optional because it is not sure that the que-

ried structure actually exists. Line 45 shows a second Optional query which is equal

to the one shown in Lines 7-44 but the variables o and o_g are replaced by s and s_g.

This is because sources or objects may be replaced by the respective grouping de-

fined. The resources s and o (Line 4) are then combined with the resources s and o

queried by the optional subqueries of Line 7 and 45.

The next step is to check if a grouping of a resource exists. This is done by the

statement in Lines 46-47. If s_g or o_g is bound, those values are bound to the re-

sources s_new or o_new. If they are not bound, s or o are bound to s_new or o_new.

So the variables s_new and o_new may be used to insert new data into the module

because the value of the variables is either the original value of the resource or the

grouped resource. It is easy now to delete all original statements s p o and insert the

resources s_new p_new o_new as shown in Listing 24. The filters of Lines 48-51 in

Listing 23 define that reification information should be ignored within this query. The

statements shown in Line 3-6 query the resources s p o from a specific module. The

filter defines that there should be no resources selected where p is a grouping proper-

ty (Line 5). This is because otherwise the information of grouped resources is lost. For

example if there exists the triple We grouping Company the resource We would be

replaced by Company. This should not be done because the information of the

grouped resources should remain unchanged.

65

Listing 25 shows the query needed to consider existing RDF reification infor-

mation. The first subquery (Lines 4-25) checks if reification information for the re-

sources s p o already exists. If there exist no reification information the variable cnt is

set to 1, otherwise it is set to the value of the resource c. Also the grouping needs to

be considered which is done by the statement in Lines 18-21 which is equal to the

statement explained in Listing 23. The grouping in Line 24 makes it possible to

sum up the values of cnt in order to calculate the number of grouped resources. It is

also possible that there already exist reification information for the grouping resource.

So in Lines 26-35 the resource c is selected if it exists for s_g p o. There is no guaran-

tee that reification information exists for the grouping resource, so Lines 36-43 query

if there are already triples with the grouping resource as a subject. If such a triple

exists, the variable cnt is 1. Lines 44-45 calculate the total of the sums. The filter in

Line 46 defines that only resources should be added to the result where total is greater

than 1. This is because no reification information should be added for a triple which

only exists once. Consider that for reification information which are used for literals

representing numeric values, it is only necessary to focus on the subjects which need

to be rolled up. This is because literals themselves can only be objects and so the que-

ries which handle reification only select s s_g and not also o o_g as it is done in other

queries.

The next step is to update reification information selected by the query of Listing

25. This process is divided into two separate update statements. The first one illustrat-

ed in Listing 26 deletes (Lines 1-10) reification information which may exist for the

grouped resource s_g and inserts (Lines 11-20) the new reification information into

the module. The second update statement illustrated in Listing 27 simply deletes all

reification information of the original grouped resources. Therefore all resources of

the graph are selected (Line 9) where the object is a literal (Line 10). For those re-

sources the subject with its properties and objects (Line 11) which stores the reifica-

tion information (Lines 12-14) needs to be selected in order to delete the reification

information (Lines 1-5).

66

1 …

2 SELECT DISTINCT ?bn ?s_g ?p ?o ?cntMeta ?total WHERE{

3 {

4 SELECT DISTINCT ?s_g ?p ?o (sum(?cnt) as ?cntSum) WHERE{

5 {

6 GRAPH :Module8{

7 ?s ?p ?o.

8 FILTER(isLiteral(?o)).

9 OPTIONAL{

10 ?bn rdf:subject ?s;
11 rdf:property ?p;
12 rdf:object ?o;
13 :count ?c.
14 }
15 }
16 BIND(IF(!BOUND(?c),1,?c) as ?cnt)
17 }
18 {
19 SELECT DISTINCT ?s ?s_g WHERE{
20 …
21 }
22 }
23 }
24 GROUP BY ?s_g ?o ?p
25 }
26 OPTIONAL{
27 SELECT ?bn ?s_g ?p ?o (?c as ?cnt) WHERE{
28 GRAPH :Module8{
29 ?bn rdf:subject ?s_g;
30 rdf:property ?p;
31 rdf:object ?o;
32 :count ?c.
33 }
34 }
35 }
36 OPTIONAL{
37 SELECT ?s_g ?p ?o (count(*) as ?cnt) WHERE{
38 GRAPH :Module8{
39 ?s_g ?p ?o.
40 }
41 }
42 GROUP BY ?s_g ?p ?o
43 }
44 BIND(IF(!BOUND(?cnt),0,?cnt) as ?cntMeta)
45 BIND (?cntSum + ?cntMeta AS ?total)
46 FILTER(?total > 1)
47 }
48 …

Listing 25: Select part to query reification information for the abstract by group-

ing operator with grouping property, selection property and selection resource

type set

67

1 DELETE

2 {

3 GRAPH :Module8

4 {

5 ?bn rdf:subject ?s_g;

6 rdf:property ?p;

7 rdf:object ?o;

8 :count ?cntMeta.

9 }

10 }
11 INSERT
12 {
13 GRAPH :Module8
14 {
15 [] rdf:subject ?s_g;
16 rdf:property ?p;
17 rdf:object ?o;
18 :count ?total.
19 }
20 }
21 …

Listing 26: Delete/Insert part to update reification information for the abstract

by grouping operator with grouping property, selection property and selection

resource type set

1 DELETE{

2 GRAPH :Module8{

3 ?bn ?x ?y.

4 }

5 }

6 WHERE{

7 SELECT ?bn ?x ?y WHERE{

8 GRAPH :Module8{

9 ?s ?p ?o.

10 FILTER(isLiteral(?o)).
11 ?bn ?x ?y.
12 ?bn rdf:subject ?s;
13 rdf:property ?p;
14 rdf:object ?o;
15 }
16 {
17 SELECT DISTINCT ?s ?s_g WHERE
18 {
19 …
20 }
21 }
22 }
23 }
24 …

Listing 27: Delete part to delete reification information for the abstract by

grouping operator with grouping property, selection property and selection re-

source type set

68

1 …

2 GRAPH :Module8{

3 ?s ?p ?o .

4 FILTER (?p != :grouping)

5 FILTER(?p = :subCompanyOf)

6 }

7 …

Listing 28: Extension of the abstract by grouping operator for the abstract

property by grouping operator

5.3.4 Abstract Property By Grouping

This operator is an extension of the abstract by grouping operator. Whereas the ab-

stract by grouping operator is only able to specify the resources to be grouped, this

operator it is able to specifically define which properties should be updated to the

grouped resource. Therefore a direction can be specified to define if incoming or out-

going properties should be updated to the grouped resource.

Basically the update statement of the abstract by grouping operator has been im-

plemented in a way the functionalities described above can be implemented with only

a few extensions. The two subqueries of Listing 23 in Lines 7-45 in combination with

the statement in Line 4 select s and o with the respective grouping resources s_g and

o_g. If the resource s of a triple s p o is replaced by s_g this means that all outgoing

properties p of s need to be updated to the new resource s_g. So the subquery in Lines

7-45 define outgoing properties whereas the subquery in Line 45 define incoming

properties.

If only a specific property should be grouped this needs to be defined additionally.

Line 4 of the query shown in Listing 23 needs to be extended by an additional filter in

order to select only those properties with the property assigned. As shown in Listing

28 the additional filter of Line 5 need to be defined to select only those resources with

the property subCompanyOf. This means that the grouping is only done for resources

with that specific property.

69

5.3.5 Abstract Property By Source

As already mentioned, this operator is similar to the abstract by grouping and abstract

property by grouping. Because of this, the updates of this operator differ to the other

operators only in some parts. Listing 29 shows the operator with the configuration

shown in Listing 11. The main difference is that the queries of Listing 29 in Lines 8-

40 do not select subjects of triples but objects of triples as s and o. So it is possible to

replace the objects by the respective grouping resources s_g and o_g.

Due to the fact that this abstract is of type resource-generating a new resource

needs to be generated for all grouped resources. The generation of the IRI is too long

for visualization so it is described textually. The first component is the namespace of

the generated resource which can be set by using the appropriate method of the opera-

tor. The second component is the name of the subject whose object are rolled up. This

guarantees a higher understandability because the relation of subject and

rolled up object is encoded in the name of the newly generated resource. The selection

property and the grouped property only are concatenated if they are set explicitly for

the operator. The last component is the term ‘Generated_’ with an attached Universal

Unique ID (UUID). The unique id is generated by the use of the Java class ja-

va.util.UUID. For the execution of an operator one UUID is generated. If a UUID

would be generated for every newly generated resource, this may lead to the situation

that resources to be grouped are grouped to resources with different UUIDs.

70

1 …

2 SELECT ?s ?s_new ?p ?o ?o_new ?o_gen ?s_gen WHERE{

3 GRAPH :Module10{

4 ?s ?p ?o.

5 FILTER (?p != :grouping)

6 FILTER (?p = :stockFlow)

7 }

8 OPTIONAL{

9 SELECT DISTINCT ?s ?s_gen WHERE{

10 {
11 SELECT DISTINCT ?s ?source WHERE{
12 ?closure ckr:closureOf ?c.
13 ?c :hasAssertedModule :Module10.
14 ?closure ckr:derivedFrom ?m.
15 ?c2 :hasAssertedModule ?m.
16 ?source ?p ?s.
17 GRAPH ?m{
18 ?source :grouping ?s_g.
19 }}}
20 {
21 SELECT DISTINCT ?source ?s WHERE{
22 ?closure ckr:closureOf ?c.
23 ?c :hasAssertedModule :Module10.
24 ?closure ckr:derivedFrom ?m.
25 ?c2 :hasAssertedModule ?m.
26 GRAPH ?m{
27 ?source :provide ?s.
28 }}}
29 {
30 SELECT DISTINCT ?s WHERE{
31 ?closure ckr:closureOf ?c.
32 ?c :hasAssertedModule :Module10.
33 ?closure ckr:derivedFrom ?m.
34 ?c2 :hasAssertedModule ?m.
35 GRAPH ?m{
36 ?s rdf:type :Sale
37 }}}
38 BIND(…) as ?s_gen) }
39 }
40 OPTIONAL{ … }
41 BIND (IF (BOUND(?s_gen), ?s_gen, ?s) AS ?s_new).
42 BIND (IF (BOUND(?o_gen), ?o_gen, ?o) AS ?o_new).
43 FILTER (?p != rdf:subject).
44 FILTER (?p != rdf:property).
45 FILTER (?p != rdf:object).
46 FILTER (?p != :count).
47 }
48 …

Listing 29: Select part of the update statement for the abstract property by

source operator with grouping property, selection property, partition property,

grouped property and selection resource type set

71

1 DELETE

2 {

3 GRAPH :Module18

4 {

5 ?s ?p ?o.

6 }

7 }

8 INSERT

9 {

10 GRAPH :Module18
11 {
12 ?s_new ?p ?o_new.
13 ?s :partOf ?s_gen.
14 ?o :partOf ?o_gen.
15 }
16 }

Listing 30: Delete/Insert part of the update statement for the abstract property

by source operator with grouping property, selection property, partition prop-

erty, grouped property and selection resource type set

Listing 30 illustrates the Delete/Insert section of the query shown in Listing 29.

The resources s p o are deleted while the newly bound resources s_new p o_new are

inserted. Line 13-14 show the statements to insert the information about grouped re-

sources by the use of the partition property.

The query to handle reification information is slightly different to the ones of the

other operators. Due to the fact that a new unique resource is generated it is not possi-

ble that such a resource already exists. So there is no need to update existing reifica-

tion information first. As shown in Listing 31 the update only inserts reification in-

formation. The rest of the query is very similar to the query shown in Listing 25. Also

the deletion of the reification information of Listing 32 is similar to Listing 27 so it

will not be explained one more time.

72

1 INSERT {

2 GRAPH :Module18{

3 [] rdf:subject ?s_generated;

4 rdf:property ?p;

5 rdf:object ?o;

6 :count ?total.

7 }}

8 WHERE{

9 SELECT DISTINCT ?bn ?s_generated ?p ?o ?cntMeta ?total WHERE{

10 {
11 SELECT DISTINCT ?source ?p ?o (sum(?cnt) as ?cntSum) WHERE{
12 {
13 GRAPH :Module18{
14 ?s ?p ?o.
15 FILTER(isLiteral(?o)).
16 OPTIONAL{
17 ?bn rdf:subject ?s;
18 rdf:property ?p;
19 rdf:object ?o;
20 :count ?c.
21 }}
22 BIND(IF(!BOUND(?c),1,?c) as ?cnt)
23 }
24 {
25 SELECT DISTINCT ?s ?source WHERE{
26 ?closure ckr:closureOf ?c.
27 ?c :hasAssertedModule :Module18.
28 ?closure ckr:derivedFrom ?m.
29 ?c2 :hasAssertedModule ?m.
30 ?source ?p ?s.
31 GRAPH ?m{
32 ?source :grouping ?s_g.
33 }}}
34 {
35 SELECT DISTINCT ?source ?s WHERE{
36 ?closure ckr:closureOf ?c.
37 ?c :hasAssertedModule :Module18.
38 ?closure ckr:derivedFrom ?m.
39 ?c2 :hasAssertedModule ?m.
40 GRAPH ?m{
41 ?source :provide ?s.
42 }}}}
43 GROUP BY ?source ?o ?p
44 }
45 BIND(IF(!BOUND(?cnt),0,?cnt) as ?cntMeta)
46 BIND (?cntSum + ?cntMeta AS ?total)
47 FILTER(?total > 1)
48 FILTER(?p = :stockFlow)
49 BIND(…) as ?s_generated)
50 }}

Listing 31: Insert part to update reification information for the abstract

property by source operator with grouping property, selection property,

partition property, grouped property and selection resource type set

73

1 DELETE{

2 GRAPH :Module18{

3 ?bn ?x ?y.

4 }

5 }

6 WHERE{

7 SELECT ?bn ?x ?y WHERE{

8 GRAPH :Module18{

9 ?s ?p ?o.

10 FILTER(?p = :stockFlow)
11 FILTER(isLiteral(?o)).
12 ?bn ?x ?y.
13 ?bn rdf:subject ?s;
14 rdf:property ?p;
15 rdf:object ?o;
16 }
17 {
18 SELECT DISTINCT ?s ?source WHERE
19 {
20 …
21 }
22 }
23 }
24 }

Listing 32: Delete part to delete reification information for the abstract property

by source operator with grouping property, selection property, partition proper-

ty, grouped property and selection resource type set

74

5.3.6 Abstract Literal By Source

The main focus of this operator is to execute aggregate functions on literals which

represent numeric values. The operator persists of only one update statement. The

example update assumes a configuration of the operator as illustrated in Listing 12

and additionally the selectionResourceType is set to Sale.

The query illustrated in Listing 33 selects literals of triples and executes aggrega-

tion functions on them. It also considers reification information without the use of an

additional query. The query not considering reification information is the same with-

out the usage of the specific reification parts and will not be explained explicitly.

Lines 6-7 define that only triples with the property revenue are selected. Line 15 de-

fines that the triples need to have an object of type literal. Note that the selection of

the resources with a specific property is done with a simple filter (Line 7) and not

with a subquery like the other operators do. The reason is because it is assumed that

the property which directly asserts the literals to the subject needs to be in the same

module. Furthermore the subjects need to be selected which are of a specific type

(Lines 19-30). Due to the generation of the reification information by the other opera-

tors it is now possible to use this information in order to calculate the right literals.

This means it is necessary to find out how often a literal exists for the same subject

and property. The number of existences is saved by the object c of the count property

(Line 12). With a simple multiplication of the literal and the number of its existences

the total value of the literals is calculated (Line 14). Then the grouping is done on the

subject and the property (Line 32) so the SUM of the literals can be calculated. With-

out the filters defined at Lines 16-17 the objects of the properties rdf:object and count

would be selected because they also represent literals. The next step is to select all

information which needs to be deleted from the modules. All reification information

of the aggregated literals need to be selected for deletion (Lines 35-41). If the aggre-

gate property, for example, is set to SUM the result of the query only includes the

SUM but not the summed up literals. This is why the query needs to select the triples

of the summed up literals (Lines 43-47). Listing 34 shows the Delete/Insert part of the

update which is similar to the other operators and will not be explained one more

time.

75

1 …

2 SELECT * WHERE{

3 {

4 SELECT ?source ?p (SUM(?total) as ?result) WHERE{

5 GRAPH :Module8{

6 ?source ?p ?literal.

7 FILTER(?p = :revenue).

8 OPTIONAL{

9 ?bn rdf:subject ?source;

10 rdf:property ?p;
11 rdf:object ?literal;
12 :count ?c.
13 }
14 BIND(IF(BOUND(?c),?literal * ?c, ?literal) as ?total).
15 FILTER(isLiteral(?literal)).
16 FILTER(?p != rdf:object).
17 FILTER(?p != :count).
18 }
19 FILTER EXISTS{
20 SELECT distinct ?source WHERE{
21 ?closure ckr:closureOf ?c.
22 ?c :hasAssertedModule :Module8.
23 ?closure ckr:derivedFrom ?m.
24 ?c2 :hasAssertedModule ?m.
25 ?source ?p ?s.
26 GRAPH ?m{
27 ?source rdf:type :Sale.
28 }
29 }
30 }
31 }
32 GROUP BY ?source ?p
33 }
34 {
35 OPTIONAL{
36 GRAPH :Module8{
37 ?bn rdf:subject ?source;
38 rdf:property ?p;
39 rdf:object ?literal;
40 :count ?c.
41 }
42 }
43 OPTIONAL{
44 GRAPH :Module8{
45 ?source ?p ?all.
46 }
47 }
48 }
49 }
50 …

Listing 33: Query part for the abstract literal by source operator with ag-

gregate function, aggregate property and selection resource type set

76

1 DELETE

2 {

3 GRAPH :Module8

4 {

5 ?bn rdf:subject ?source;

6 rdf:property ?p;

7 rdf:object ?literal;

8 :count ?c.

9 ?source ?p ?all.

10 }
11 }INSERT
12 {
13 GRAPH :Module8
14 {
15 ?source ?p ?result.
16 }
17 }
18 …

Listing 34: Delete/Insert part for the abstract literal by source operator with

aggregate function, aggregate property and selection resource type set

5.4 Testing Environment

The API has been tested using JUnit tests The JUnit tests execute ASK queries

which represent the expected result of the base data after the execution of the opera-

tors. For the temp repository the Apache Jena Fuseki9 SPARQL Version 2.0 server

was used. In order to be able to run queries implemented by this API it is necessary to

configure the dataset of the server. The option unionDefaultGraph10 needs to be set so

the server interprets the default graph as the union of all named graphs. This is needed

because so it is possible to query the default graph in order to receive data from all

named graphs. The option can be set by adding the statement --set

tdb:unionDefaultGraph=true to the java call of the fuseki-server.jar in the script file

fuseki-server.bat.

9 http://jena.apache.org/documentation/fuseki2/
10 https://jena.apache.org/documentation/tdb/configuration.html

77

6 Summary and Future Work

Data produced by companies need to be represented by numeric values in order to be

compatible with traditional OLAP systems. Due to the fact that this is not possible for

all kinds of data, OLAP cubes with ontology-valued measures extend the ability of

data analysis. The implemented API is a proof-of-concept prototype in order to sup-

port OLAP operators on ontology-valued measures. The CKR framework is conven-

ient for the generation of additional information about contexts and knowledge propa-

gation within the base data.

This thesis is not about guidelines for modelling business model ontologies. Exist-

ing literature presents business model ontologies like REA [8] in order to model busi-

ness scenarios. To maximize the benefit of using the operators implemented by the

API, modelling guidelines for the measures should be created.

The independence of the API from a particular RDF framework was very im-

portant while implementing the API. The operators have been implemented using

SPARQL. As some of the update statements for the operators are complex they had to

be split into separate updates in order to minimize their execution time. While devel-

opment we found out that the performance mainly depends on two factors. The first

one is the structure of the update. In SPARQL there exist a lot of operators which may

be combined in different ways in order to produce equal results. But the performance

of the operators varies and so it needs to be considered which operators should be

combined. Existing approaches about performance of SPARQL queries [18] may be

used to optimize the queries. The second one is the type of SPARQL endpoint used.

We noticed differences in execution time when run against different endpoints. More

formal performance tests, however, will have to be carried out in order to quantify the

differences in execution time between different frameworks.

To enable analysts without programming skills to use the API a graphical user in-

terface (GUI) needs to be developed in order to present an easy-to-use and intuitive

way of data analytics. It should be possible to choose existing levels and dimension

attributes via the GUI in order to configure the operators of the API. Also a clearly

arranged presentation of the results should be implemented by the GUI. The look and

feel of the GUI may be inspired by existing solutions like Saiku11 or any other BI tool.

11 http://www.meteorite.bi/products/saiku

78

References

1. Schütz, C., Neumayr, B., Schrefl, M.: Business model ontologies in OLAP

Cubes. CAiSE 2013. LNCS 7908, 514–529 (2013).

2. Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts

and Abstract Syntax, http://www.w3.org/TR/2004/REC-rdf-concepts-

20040210/.

3. Brickley, D., Guha, R.V.: RDF Schema 1.1 - W3C Recommendation,

http://www.w3.org/TR/2014/REC-rdf-schema-20140225/.

4. W3C SPARQL Working Group: SPARQL 1.1 Overview,

http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/.

5. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and

trust. In: Proceedings of the 14th international conference on World Wide

Web. pp. 613–622. ACM Press (2005).

6. Serafini, L., Homola, M.: Contextualized knowledge repositories for the

semantic Web. Web Semant. Sci. Serv. Agents World Wide Web. 12-13, 64–

87 (2012).

7. Osterwalder, A.: The Business Model Ontology - A Proposition in a Design

Science Approach, (2004).

8. Geerts, G.L., McCarthy, W.E.: An ontological analysis of the economic

primitives of the extended-REA enterprise information architecture. Int. J.

Account. Inf. Syst. 3, 1–16 (2002).

9. Neumayr, B., Schrefl, M., Linner, K.: Semantic cockpit: An ontology-driven,

interactive business intelligence tool for comparative data analysis. ER Work.

2011. LNCS 6999, 55–64 (2011).

10. Neumayr, B., Schuetz, C.G., Schrefl, M.: Towards Ontology-driven RDF

Analytics. In: MORE BI 2015-3rd International Workshop on Modeling and

Reasoning for Business Intelligence (2015).

11. Chen, C., Yan, X., Zhu, F., Han, J., Yu, P.S.: Graph OLAP: Towards online

analytical processing on graphs. In: IEEE International Conference on Data

Mining. pp. 103–112 (2008).

79

12. Abelló, A., Romero, O., Pedersen, T.B., Berlanga, R., Nebot, V., Simitsis, A.:

Using Semantic Web Technologies for Exploratory OLAP: A Survey. IEEE

Trans. on, Knowl. Data Eng. 27, 571–588 (2015).

13. Golfarelli, M., Maio, D., Rizzi, S.: the Dimensional Fact Model: a Conceptual

Model for Data Warehouses. Int. J. Coop. Inf. Syst. 07, 215–247 (1998).

14. Neumayr, B., Schrefl, M., Thalheim, B.: Hetero-Homogeneous hierachies in

data warehouses. Proc. 7th Asia-Pacific Conf. Concept. Model. CRPIT 110,

61–70 (2010).

15. Neumayr, B., Schütz, C., Schrefl, M.: Semantic enrichment of OLAP cubes:

Multi-dimensional ontologies and their representation in SQL and OWL.

OTM 2013. LNCS 8185, 624–641 (2013).

16. Bozzato, L., Serafini, L.: Materialization calculus for contexts in the Semantic

Web. In: CEUR Workshop Proceedings. pp. 552–572 (2013).

17. Aalst, W. Van Der: Process Cubes: Slicing, Dicing, Rolling Up and Drilling

Down Event Data for Process Mining. AP-BPM 2013. LNBIP 159, 1–22

(2013).

18. Loizou, A., Angles, R., Groth, P.: On the formulation of performant SPARQL

queries. Web Semant. Sci. Serv. Agents World Wide Web. 31, 1–26 (2014).

