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Abstract

The Air Traffic Management (ATM) covers various tasks regarding air traffic
control, air traffic flow management and aeronautical information services.
This generates a huge amount of information addressing airspace users. The
information exchange is based on the Aeronautical Information Exchange
Model (AIXM) which is designed to enable the management and distribution
of complex and evolving Extensible Markup Language (XML) structures. To
avoid an information overflow the Semantic NOTAM (SemNOTAM) project
provides intelligent and fine-grained filtering of these information. SemNO-
TAM is implemented as a rule-based system using ObjectLogic (OL). There-
fore, a corresponding OL representation of the information to be filtered
is required. This thesis contributes to the SemNOTAM system by imple-
menting a mapper which transforms the XML data to its corresponding OL
representation following the object-property model. This OL representation
is inserted into the SemNOTAM system and used to conduct queries. A
requirements analysis is conducted which analyzes the in- and outputs, ex-
ceptions, and constraints on the processing task. Based on the requirements
a mapping approach is developed which especially covers the handling of ge-
ographical data. Moreover the XML transformation technologies Extensible
Stylesheet Language Transformation (XSLT), Simple Application Program-
ming Interface (API) for XML (SAX), Streaming API for XML (StAX) and
Document Object Model (DOM) are evaluated with regards to their suitabil-
ity for the mapper. It is shown that the DOM outperforms other technologies
and consequently the mapper is implemented using DOM and Java.
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Zusammenfassung

Das Flugverkehrsmanagement umfasst verschiedene Aufgaben von der
Flugverkehrskontrolle, Flugverkehrsflussmanagement bis hin zur Verwaltung
von aeronautischen Informationsservices. Die dabei generierte enorme In-
formationsmenge adressiert die Benutzer des Flugraums. Der Information-
saustausch erfolgt anhand des Aeronautical Information Exchange Model
(AIXM), welches entwickelt wurde um den Austausch und die Verwaltung
von komplexen Extensible Markup Language (XML) Strukturen, deren En-
twicklung noch nicht abgeschlossen ist, zu ermoglichen. Um einen Infor-
mationsiiberfluss bei den Benutzern zu vermeiden, wurde im Semantic NO-
TAM (SemNOTAM) Projekt eine intelligente und feingranulare Filterung
dieser Informationen entwickelt. SemNOTAM baut auf einem regel-basierten
System auf welches mittels ObjectLogic (OL), einer formalen Sprache zur
Wissensreprésentation, realisiert ist. Aus diesem Grund ist auch eine OL
Représentation der Informationen notwendig. Der Beitrag dieser Arbeit
zum SemNOTAM System ist die Implementierung eines Mappers der die
XML Daten in ihre korrespondierende OL Reprasentation iiberfithrt. Die
OL Représentation wird danach in das SemNOTAM System eingefiigt und
dient damit als Abfragegrundlage. Um dies zu bewerkstelligen, wird eine
Anforderungsanalyse durchgefiihrt, welche die Ein- und Ausgaben, die Aus-
nahmen und die Einschrankungen wahrend der Verarbeitung analysiert.
Basierend auf den ermittelten Anforderungen wird ein konzeptueller Entwurf
entwickelt, welcher insbesondere die Bearbeitung von geographischen Daten
umfasst. Des Weiteren wird die Verwendung der XML-Transformations-
Technologien Extensible Stylesheet Language Transformation (XSLT), Sim-
ple Application Programming Interface (API) for XML (SAX), Streaming
API for XML (StAX) und Document Object Model (DOM) evaluiert. Es
wird gezeigt, dass die DOM Technologie in Anbetracht der Leistungsfahigkeit
den anderen iiberlegen ist, weshalb auch die Implementierung des Mappers
mittels DOM und Java erfolgt.
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Introduction

Contents
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1.3 Outline. . . . . . . i i i i i it e e e e e e e 5

This section gives an introduction to the topic of ATM and the processes
within it. Furthermore, the scope of the thesis, its contribution, and finally
its structure is provided.

1.1 Preface

The European Organisation for the Safety of Air Navigation (EUROCON-
TROL) expects to reach the 2008 peak of traffic (10.1 million flights) within
and from Europe in 2016 (EUROCONTROL, 2014, p. 25). To manage this
traffic volume an efficient and effective ATM is required (EUROCONTROL,
2015d). The ATM consists of the following three main components (EURO-
CONTROL, 2015d):

1. The Air Traffic Control is the process of safely separating aircraft in
order to prevent collisions or critical situations. Therefore a separation
of the aircraft in the sky as they fly and at the airports where they take
off and land is needed.
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2. Air Traffic Flow Management takes place before the flight and
represents a central repository where all flights are analysed and com-
puted. For each flight a flight plan is computed, determining the exact
position of an aircraft at any given point in time. This flight plan is
used by aeronautical controllers to supervise an aircraft and its flight
crew.

3. Aeronautical Information Services (AIS) provide, combine and
distribute aeronautical information to airspace users. The services pro-
vide information regarding administrative or legal matters, safety or
navigation related activities, or about technical issues and their up-
dates.

The information provided by AIS is encoded within so called Notices to
Airmen (NOTAM). NOTAMs are a loosely structured, text-based repre-
sentation of aeronautical information which are used by aviation systems
and flight personnel such as flight crews or controllers. Flight crews use
NOTAMs, provided by AIS, for their pre-flight briefings (EUROCONTROL,
2015¢). These pre-flight briefings allow the pilots to get and read the
relevant NOTAMs for their flight.

However, flight crews have to face a flood of NOTAMs during their
pre-flight briefings. This flood is a consequence of limited filtering capa-
bilities of current Aeronautical Information Management (AIM) systems
(EUROCONTROL, 2015b). The loosely structured textual representation
of NOTAMs conflicts with the needs of automated systems which require
highly structured and standardised data structures (EUROCONTROL,
2010). The problem is that the decision whether a NOTAM is relevant or not
mostly requires human interpretation since geographical, navigational, tem-
poral information, and descriptions about events are represented as free text.

To overcome these drawbacks of textual NOTAMs a joint project be-
tween EUROCONTROL and the Federal Aviation Administration (FAA)
was launched in 2010 (EUROCONTROL & Federal Aviation Administration,
2011b). The aim was to replace textual NOTAMs with digital NOTAMs.
Digital NOTAMs represent structured data sets which can be read and
interpreted by automated systems. In order to provide an encoding for
digital NOTAMSs, the existing Aeronautical Information Exchange Model
(AIXM) was used and extended (Geospatial Intelligence TWG, 2006).
AIXM allows to represent ATM elements such as event scenarios or features
like airports, airspaces or routes. The machine-interpretable data structure
allows filtering of NOTAMSs without the need of human interpretation. Thus
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the flood of NOTAMs retrieved by flight crews and other flight personnel
can be minimized using this automated filtering capabilities. This reduces
the information overload and stress of the crew which positively affects their
situation awareness.

Services, such as the Federal NOTAM Service and NOTAM Distribu-
tion Service (FNS-NDS), already provide filtering of NOTAMs but on a very
limited scale. The service allows querying basic geographical information,
text, and/or attributes for a point in time (Burgstaller et al., 2015).
However these query capabilities are not sufficient enough for complex
queries like filtering for a flight plan. To pose such a query, intelligent
filtering capabilities are required.

This issue is addressed by the SemNOTAM project (Burgstaller et al.,
2015). It aims to provide intelligent and fine-grained filtering and querying
of digital NOTAMs (Burgstaller et al., 2015). Therefore a rule- and
ontology-based Knowledge-Based Framework (KBF), that uses and extends
semantic technologies, is developed. The KBF of the SemNOTAM system
is depicted in Figure 1.1.

/ SemNOTAM \

Knowledge-Based Framework

[ Ontology Manager ] [ Reasoner J

[ Knowledge Base ]

T

Mapper
7y

o %

Figure 1.1: SemNOTAM Knowledge-Based Framework (Burgstaller et al.,
2015).

Structured Data Sources

The Ontology Manager is used to maintain the SemNOTAM ontology. An
ontology is used to define "explicit and formal specification of a shared con-
ceptualization" (Gruber, 1995). Furthermore the KBF consist of a Knowledge
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Base (KB) and a reasoner. The KB contains the explicit facts and includes
deduction rules which are used by the reasoner to derive new facts. These
derived facts represent the implicit knowledge since it is not available without
applying the deduction rules (Gringinger, Eier, & Merkl, 2011).

In order to access this knowledge the KBF provides a semantic querying
interface (Frequentis AG, 2015). This interface allows to use various crite-
ria. These criteria are based on location in space, progress in time, different
events, aircraft, or flight types or any combination of them. Furthermore,
structured data such as digital NOTAMs can be loaded into the KB. How-
ever, all data including queries must be mapped to a corresponding knowl-
edge representation in order to store it in the SemNOTAM ontology of the
KB (Burgstaller et al., 2015). Therefore a mapper is needed, as depicted
in Figure 1.1. It maps various structured data sources such as the AIXM
representation of digital NOTAMs to the corresponding declarative repre-
sentation. This mapper is the main topic of this thesis.

1.2 Problem Statement

This thesis comprises the implementation of the mapper. As depicted in
Figure 1.1 the mapper is a central component of the whole SemNOTAM
system since it operates as an interface between the KBF and the structured
data sources.

However, the implementation of such a mapper is not a trivial task
due to the various data sources and interfaces. During the mapping
process no information must be lost and the resulting knowledge-based
representation must be syntactically and semantically correct. In addition
to the central mapping task, the mapper must also provide preprocessing
capabilities in order to enrich the accessed data. Since new data sources
can be introduced in the future, the mapper must provide extension
capabilities which allow to add new mapping and/or preprocessing tasks
without modifying the existing implementation. The SemNOTAM system
is designed with a focus on high adaptability and flexibility in order to
face changing requirements. This design rational has to be followed in the
implementation of the mapper to avoid design breaks.

The mapper transforms the structural data sources to their corre-
sponding knowledge-based representation. The resulting knowledge-based



CHAPTER 1. INTRODUCTION >

representation is loaded into the KB. The mapper allows to configure in-
and outputs, handle exceptions, and to conduct various processing tasks.
Moreover it completes missing information and provides extension capabili-
ties supporting future data sources. Without the mapper it would neither be
possible to define new conceptualizations, insert new facts nor pose queries
against the KB as their declarative representation could not be determined.
The absence of the capability to insert new knowledge from structured data
sources, such as digital NOTAMs, and to conduct specified queries would
make the whole SemNOTAM system inoperative. This clearly shows the
contribution of this thesis to the usage and progress of the SemNOTAM KBF-.

The implementation of the mapper is based on requirements, which
are derived from the SemNOTAM KBF. The requirements will be used to
develop an mapping approach and to identify suitable technologies. Finally,
the implementation will be evaluated in order to determine the performance.

1.3 Outline

The remaining thesis is organized in the following sections: At the beginning
the SemNOTAM architecture and the used data representation is detailed,
followed by the requirements analysis and the introduction of a mapping
approach fulfilling them. Afterwards the implementation is presented.
Finally, an evaluation of the mapper and a conclusion are provided.

Section 2 introduces and explains basic concepts needed for this the-
sis. Therefore the SemNOTAM project is detailed and its architecture is
analysed (Section 2.1). Furthermore, textual NOTAMs is examined (Sec-
tion 2.2.1). Thereafter the drawbacks of textual NOTAMSs are explained and
how they can be overcome by digital NOTAMs (Section 2.2.2). Finally, the
used representations are introduced. This includes the AIXM representation
(Section 2.3) for structured data and OL (Section 2.4) for knowledge.

A requirement analysis is conducted in Section 3. Therefore the task
is delineated which covers the examination of the available data sources
(Section 3.1). The data source examination comprises NOTAMs (Sec-
tion 3.1.1), configuration data (Section 3.1.2), and queries (Section 3.1.3).
In Section 3.2 the requirements are extracted, grouped, and detailed based
on the task description. Besides the requirements, Section 3 describes
challenges and problems which can occur during the fulfillment of the
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requirements (Section 3.3).

In Section 4 the basic mapping concept is introduced (Section 4.1).
Moreover, the mapping approach is introduced in order to fulfill all previ-
ously defined requirements (Section 4.2). To implement the mapping concept
suitable technologies are analyzed, evaluated, and the best performing is
selected (Section 4.3). Furthermore, the extension capabilities of the selected
technology are delineated in Section 4.4.

Based on the mapping concept and the selected technology the mapper is
implemented in Section 5. Therefore, a conceptual design is introduced
which supports extension and configuration capabilities (Section 5.1). The
mapper is implemented based on the selected technology and the conceptual
design (Section 5.2). Moreover, the performance is evaluated in order to
show how the mapper performs while increasing the workload (Section 5.2.3).

Finally a conclusion is given which summarizes the thesis and provides an
outlook on future work Section 6.
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This section will introduce the basic concepts needed for this thesis. There-
fore the SemNOTAM project is detailed and especially the current architec-
ture of the SemNOTAM system is analysed. A delineation of the system is
mandatory in order to identify interfaces which can be used by the mapper.

7
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Besides describing SemNOTAM, the textual NOTAMs and their successor,
the digital NOTAMs, are examined. Moreover, a theoretical background of
the used representations and technologies, which are crucial for the under-
standing the mapping task, are provided.

2.1 SemNOTAM-Project

As mentioned in Section 1.1, the SemNOTAM research project addresses the
challenge of filtering NOTAMs and was launched in 2014 (Schrefl, 2014).
It is a cooperative project between industry and university partners. The
Austrian high-tech company Frequentis AG! is operating in ATM and pub-
lic safety and transport branches providing and developing information and
communication systems (Frequentis AG, 2015). The Institute of Data &
Knowledge Engineering of the Department of Business Informatics of the Jo-
hannes Kepler University Linz which conducts research in the area of seman-
tic systems, business intelligence, business process modelling and integration,
and in web-based system (Gringinger, 2014). Other cooperation partners and
subcontractors are EUROCONTROL, AustroControl and the FAA.

2.1.1 Background

The SemNOTAM project relies on previous research done in the EURO-
CONTROL’s Single European Sky ATM Research Program (SESAR) and
FAA’s Next Generation Air Transportation System (NextGen). As stated in
(Gringinger et al., 2011) these two programs aim to modernize and harmonize
the ATM systems locally and globally. They are developing new capabilities,
procedures and technologies in order transform the ATM systems. Former
ground-based systems, which depend on voice communication between
controller and the pilot and radar, are transformed to air/ground-integrated
aviation systems based on digital data communication and satellite nav-

igation (European Union, 2015). One modernisation is the replacement
of textual NOTAMs with digital NOTAMs in the future AIM (Schrefl, 2014).

As stated Section 1.1, flight crews, especially pilots, have to face a flood of
information. This can lead to stress, lack of situation awareness, missing
prioritization, information overload and misunderstandings (Burgstaller et

http://www.frequentis.com
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al., 2015). In addition to the increasing number of NOTAMs this problem
can be also traced back to the mandatory requirement of achieving one
hundred percent recall of relevant NOTAMs (Burgstaller et al., 2015). One
hundred percent recall is mandatory because a not retrieved relevant and
safety critical NOTAM can lead to unpredictable negative consequences.
As stated in Section 1.1, present services provide filtering of NOTAMs but
on a very limited scale. Intelligent filtering capabilities are needed to sup-
porting complex queries like filtering for flight plans (Burgstaller et al., 2015).

As shown in (Burgstaller et al., 2015), there are two approaches found in
the literature addressing intelligent NOTAM processing. The first approach
of (Gringinger, Trausmuth, Balaban, Jahn, & Milchrahm, 2012) is an
ontology-based one not supporting business rules. However, without busi-
ness rules it is not possible to define how, for whom and when information is
relevant and how the recipients should be notified (Gringinger et al., 2012).
In contrast to the approach of (Gringinger et al., 2012), (Zimmer et al.,
2011) introduce a rule-based approach, using business rules which determine
when and which information is significant for whom depending on the flight
phases. However this approach does not support reasoning over ontologies
leading to restricted capabilities since derived knowledge is not available or
considered while filtering (Gringinger et al., 2012).

2.1.2 Problem Description

The SemNOTAM project follows a rule- and ontology-based approach
introducing a knowledge-based framework that uses and extends semantic
technologies enabling intelligent and fine-grained filtering and querying of
digital NOTAMs (Burgstaller et al., 2015). As already mentioned in Sec-
tion 1.1, the project aims to provide a machine-readable and ontology-based
representation of digital NOTAMs which enable semantic querying using
a wide range of criteria (Frequentis AG, 2015). This provides the airmen
intelligent support for the management of their NOTAMs (Frequentis AG,
2015).

Due to the heterogeneous character of digital NOTAMs regarding their
structure and semantics, intelligent querying becomes a challenging task.
As stated in Section 2.2.1 about NOTAMSs, they can be used to describe
specific events. Events are defined within event scenarios which describe
possible NOTAM conditions while being linked to specific AIXM features
(Burgstaller et al., 2015). For each of these events, such as airspace
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restrictions, rules need to be specified (EUROCONTROL, 2010). Based on
the given event scenario and pre-defined business rules, the SemNOTAM
system derives which NOTAMSs are relevant or not and how important they
are (Burgstaller et al., 2015). Furthermore, SemNOTAM supports business
terms representing the precise, understandable, and machine-interpretable
concepts which are explicitly specified within an ontology. Furthermore,
business terms can be defined in a hierarchical manner which allows to
derive sub- or super-business terms.

This heterogeneity and the complexity results in various requirements
for intelligent filtering concerning geographic querying, prioritizing, group-
ing, determining changes, customizing and personalization without re-design
or redevelopments (Burgstaller et al., 2015). Due to the evolving character
of the aeronautical environment solutions based on high-level-programming
languages and relational database management systems are disadvantageous
because they are characterized by a high adoption effort (Burgstaller et
al., 2015). Therefore an adaptable knowledge-based system representing a
declarative and machine-interpretable approach is used in SemNOTAM.

2.1.3 Method

As introduced in Section 1.1, the KBF consist of a reasoner and a knowl-
edge base. These two parts are the core of every knowledge-based system
(Gringinger et al., 2011). The KB contains the actual knowledge represented
through facts, business terms and deduction rules. Facts are instances of
business terms which are created during runtime. These base facts embody
the explicit knowledge such as NOTAMs or aircraft types. Deduction rules
describe how new facts can be derived. These derived facts represent the
implicit knowledge since it is not available without applying deduction rules.
As depicted in Figure 2.1, the appliance of these rules is done by a reasoner
which reveals implicit relationships between facts. The derived facts will
again be inserted into the knowledge base and used for further reasoning
tasks. The knowledge-based framework of the SemNOTAM system is based
on this reasoning process.



[ Reasoner

CHAPTER 2. SEMNOTAM 11
Derived
\ Facts
[Deduction Rules Knowledge Base
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Facts Facts

Figure 2.1: Process of reasoning (Gringinger et al., 2011).

As depicted in Figure 2.2 the framework accesses various structured data
sources. The AIXM baseline data which is referenced in the digital NOTAMs
represents static data which can be accessed remotely or locally (EURO-
CONTROL & Federal Aviation Administration, 2011b, p. 9). The baseline
includes all values of all properties of a given permanently changed feature
state (EUROCONTROL & Federal Aviation Administration, 2010, p. 7).
Furthermore it accesses configuration data like route segments, aircraft char-
acteristics and the query which includes specific interests (Burgstaller et al.,
2015). All this accessed data must be mapped to the corresponding knowl-
edge representation in order to store it in the SemNOTAM ontology of the
KB (Burgstaller et al., 2015). As shown in figure 2.2, this AIXM to Ontol-
ogy Mapper is one central layer within the SemNOTAM system because it
provides the interface between the structured data and their semantic repre-
sentation.

Figure 2.2 shows that the SemNOTAM ontology is located in the KB. It
contains the base, derived facts and business terms which are specified by
the user or the framework (Burgstaller et al., 2015). Business rules are in-
cluded within the SemNOTAM Rules in order to define whether a NOTAM
is relevant and how important it is. Beside the SemNOTAM ontology and
the business rules, the KBF provides a SemNOTAM Interest Specification.
This allows the user to specify his/her interest and thus defines which Sem-
NOTAM Rules will be applied. Their temporal, aircraft and spatial interest
are provided as simple interests which can be combined to complex interests
using the set operators intersection and union.
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SemNOTAM
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Ontology Rules
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Figure 2.2: SemNOTAM Knowledge-Based Framework (Gringinger et al.,
2011).

This KBF introduced in the SemNOTAM system provides high adapting ca-
pabilities due to the declarative representation of data and rules (Burgstaller
et al., 2015). Furthermore it enables the intelligent and fine-grained filtering
based on specific interests which can take individual interests into account.
By supporting business terms, the framework allows to group query results
according to topics (Burgstaller et al., 2015).

2.1.4 SemNOTAM Architecture

The architecture of the SemNOTAM system is based on the core architecture
depicted in Figure 2.2. It supports embedding into environments which can
be connected to external systems. The only prerequisites are a interface
to a database supporting the system with NOTAMs and a Result Builder
combining the outcome with the original NOTAMs (Burgstaller, Szabolcs,
Steiner, & Frequentis AG, 2014, p. 6).

Beside the environment, the SemNOTAM architecture can be split into the
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Figure 2.3: SemNOTAM architecture and interfaces (Burgstaller et al., 2014,

p. 6).

following two parts, as depicted in figure 2.3 (Burgstaller et al., 2014):

SemNOTAM component: it provides SemNOTAM interfaces to the
environment. These interfaces grant all access needed to load or purge
data and rules (Knowledge Acquistion), conduct queries (Query Inter-
face), provide configuration data such as segments (Segment Interface)
and retrieve results (Result Interface) (Burgstaller et al., 2014, p. 11).
All of these interfaces use an AIXM respectively XML representation
as input data and pass them over to the mapper.

Core: the core comprises the KBF and the appropriate KBF API
(Burgstaller et al., 2014, p. 10). Both parts depend on the ontology-
based representation provided in OL. The whole KBF component is
written in OL and can be access by the API of the OntoBroker Rea-
soner of Semafora. Since the SemNOTAM component implements in-
terfaces to load and purge NOTAMs the core provides the KBF API to
support this actions (Burgstaller et al., 2014, p. 10). Furthermore, the
KBF API grants loading and purging of segments as well as other con-
figuration data such as concepts, aircraft, groups, priority orders, group
arrangements and default parameter (Burgstaller et al., 2014, p. 10).
However these NOTAM and knowledge acquisition interfaces require
an OL representation of the configuration data respectively NOTAMs
provided by the mapper. The SemNOTAM interfaces for querying and
retrieving the result are also supported by the KBF API. In contrast to
the Query Interface which requires again an OL representation as input,
the Result Interface outputs a XML respectively AIXM representation
(Burgstaller et al., 2014, p. 10).

As shown the SemNOTAM component depends on an AIXM representa-
tion whereas the Core expects an OL representation. Both depend on the
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AIXM to OL mapper between them because their interfaces access each
other. Based on this detailed architecture, mapping requirements can be
derived. However, before this will be done the two representations will be
examined.

2.2 Notices to Airman

NOTAMs represent unclassified notices or advisories that are distributed
by means of telecommunication (Myers, 1978). They primarily address
aviation personnel and systems that are essential for flight operations such
as controllers and pilots. NOTAMs contain information regarding any
hazards of a route at a specific location, essential timely knowledge or any
change, establishment, or condition in any aeronautical facility or service.
Changes or essential timely knowledge are represented by events. Events
which indicate changes in conditions or availability of aeronautical facilities
or services can lead to possible hazards. Examples for hazards can be closed
runways, military exercises, temporary route changes, dust or volcanic ash
contaminations or changes states of runways due to weather conditions.

From the examples it can be seen that there are many NOTAMs which can
be divided into several types regarding their addressed audience. A coarse
division is provided by the FAA (Federal Aviation Administration, 2010),
where international, domestic, civilian and military NOTAMs are distin-
guished. However, there are important specific types such as SNOWTAMSs,
BIRDTAMs and ASHTAMs (Icao-Ais-Aimsg, 2011). SNOWTAMs are used
as notifications about the removal or existence of unsafe conditions due
to ice, snow, water or slush indicating that the movement area is possibly
restricted (Icao-Ais-Aimsg, 2011). BIRDTAMs include information about
possible bird strike areas and ASHTAMSs contain warnings about volcanic
activities such as eruptions and ash clouds (Icao-Ais-Aimsg, 2011).

Even thought NOTAMs can address different audiences and cover var-
ious events, they are the most basic and important concept within the
ATM domain. NOTAMs were already defined in 1978. In the last 50
years NOTAMs developed from simple text messages, supplying pilots
and other operational flight personnel with critical safety information, to
containers for other not safety related information such as Navigational Aids
(NAVAIDs) (EUROCONTROL, 2015b). Since NOTAMs require human

interpretation this extended usage has led to an information overload.
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Performance statistics of the European Aeronautical Information Services
Database (EAD) show an increase of newly added NOTAMs within Europa
from 44764 in 2007 to 91578 in 2013 (EUROCONTROL, 2015¢). This
increase represents a doubling of newly added NOTAMs within only six
years. The analysis of the increased NOTAM circulation in the France
AIS (International Civil Aviation Organization, 2013), identified several
reasons for this development. They show that the number of NOTAMs
is not directly correlated to air traffic; but it depends on the number of
air navigation facilities and activities. The main causes for the extensive
NOTAM usage can be found in the Global Navigation Satellite System
(GNSS) navigation, instrument flight procedures, information about runway
closures or restrictions, taxiways, air navigation warnings, information
about time slots and restrictions regarding aerodromes and their facilities,
services, and airspaces (International Civil Aviation Organization, 2013). As
already stated in Section 1.1, this flood of NOTAMs is given to flight crews
which use them for pre-flight briefings resulting in a Pre-flight Information
Bulletin (PIB) of ten to fifty pages for an internal European flight (EU-
ROCONTROL, 2015¢). Due to current limited filtering capabilities forty
and sometimes up to ninety percent of the provided information is neither
important nor relevant for their flight (EUROCONTROL, 2015b). This can
lead to flight crews unaware of important and safety critical information
since they are not able to detect it within this flood of information.

2.2.1 Textual Notices to Airmen

NOTAMSs cover various events and use cases. This comprises especially
dynamic data such as temporal knowledge. For that reason a textual
representation for non-static information was chosen. As mentioned in
Section 1.1, this led to textual NOTAMs which were loosely structured
and mainly provided as free text. However this conflicted with automated
AIM systems (EUROCONTROL, 2010). AIM systems highly depend on
structured and standardised data structures representing accurate, timely,
and quality assured aeronautical information (EUROCONTROL, 2010).

Since dynamic information is encoded as free text it becomes the bur-
den of the pilot or controller to recognize which information is relevant and
which is obsolete (EUROCONTROL, 2015b). This manual process offers
an entry point for errors and requires a post-submission quality control
(EUROCONTROL, 2015b). Possible errors can occur due to misinterpre-
tations of NOTAMs based on different or missing understanding of used
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words (EUROCONTROL, 2015b). Besides that, human interpretation
is also required for safety critical events which can be partly encoded as
text. To cover such events, a detailed description is required which again
leads to complexity which cannot be comprehended easily by non-experts.
(EUROCONTROL, 2015b). Although human interpretation is error-prone,
it is needed to feed automated systems. The encoded information within
textual NOTAMs cannot be extracted otherwise in a satisfying way. This
significantly slows down the information flow and, as mentioned before,
leads to errors and misunderstandings (EUROCONTROL, 2015b).

The information overload mentioned in Section 2.2.1 is not just a re-
sult of the increased number of NOTAMs, it is also a consequence of
the geographical and temporal inaccuracies of textual NOTAMs (EURO-
CONTROL, 2015¢). Geographical aeronautical information is expressed by
geometrical forms defining an ATM element such as airport surface, airspace,
routes, runways, etc. The automatic interpretation of NOTAMs containing
geographical data is currently limited to the consideration of the position
and the radius of influence (EUROCONTROL, 2015¢). These limitations
lead to vague geographical definitions where operators tend to overestimate
the radius of influence in order to be on the safe side (EUROCONTROL,
2015c). These overestimations negatively affect flight crews as NOTAMs
which are completely irrelevant for them will be assigned to their pre-flight
briefing. As stated before, the temporal aspect is also being considered
in order to find the latest NOTAMs and their states. The interpretation
whether a NOTAM is relevant for a given time period, again depends on
the human interpretation which can result once more in a high number of
irrelevant NOTAMs (EUROCONTROL, 2015c¢).

2.2.2 Digital Notices to Airmen

To overcome the drawbacks of textual NOTAMs, EUROCONTROL and
FAA launched a joint project in 2009 with the aim of developing digital
NOTAMs (EUROCONTROL & Federal Aviation Administration, 2011b, p.
2). In contrast to textual NOTAMs, digital NOTAMs are structured data
sets which can be read and interpreted by automated systems removing the
need of human interpretation. A digital NOTAM is defined as a "data set
made available through digital services containing information concerning
the establishment, condition or change in any aeronautical facility, service,
procedure or hazard, the timely knowledge of which is essential to systems
and automated equipment used by personnel concerned with flight operations'
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(EUROCONTROL, 2010). Although the focus is set on automated systems,
humans will still be addressed by NOTAMs and therefore the information
can be transformed to a human readable textual and graphical represen-
tation (EUROCONTROL & Federal Aviation Administration, 2011b, p.
6). Digital NOTAMs do not only comprise a simple conversion to a more
structured format. It is a shift in the paradigm. Temporary or permanent
information updates will not be encoded within an own data structure.
They are integrated within the information of longer duration utilizing the

same data structures and distribution channels (EUROCONTROL, 2015b).

The encoding for digital NOTAMs was developed in cooperation be-
tween FAA and EUROCONTROL with the support of the international
AIS community and the International Civil Aviation Organization (ICAO)
(EUROCONTROL, 2010). It is based on the previously Aeronautical Infor-
mation Exchange Model (AIXM) version 4.5, which can be used to model
ATM elements such as aircraft, runways, etc. (EUROCONTROL & Federal
Aviation Administration, 2011b). Prior versions of AIXM were already used
by central database of EAD and locally in different States but with limited
modeling, temporal and geographical capabilities (EUROCONTROL, 2010).
A more detailed description of AIXM will be provided in Section 2.3.

Digital NOTAMs will not replace the textual NOTAMs immediately,
for many years they will be issued parallel with classical NOTAMs (EU-
ROCONTROL & Federal Aviation Administration, 2011b, p. 6). The
implementation of digital NOTAMs will follow an incremental approach,
where the most important and mostly used types of NOTAMs will be
supported first (EUROCONTROL & Federal Aviation Administration,
2011b, p. 6).

Besides overcoming the drawbacks of textual NOTAMs, digital NO-
TAMs will be also used to improve the efficiency and enhance global civil
aviation safety (EUROCONTROL, 2015c¢). The information within digital
NOTAMs can be automatically plotted for visual representation. Temporal
aspects such as schedules can be computer interpreted, cross references
within static data are provided and transformations between different
formats and/or textual or graphical output will be supported. Moreover,
automatic integration between computer systems will be provided and it will

be possible to conduct complex queries in order to select the most recent
NOTAMSs which fulfill user-specified criteria (EUROCONTROL, 2010).

Digital NOTAMs will allow automatic checks due to their machine-
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readable structure. This will improve coherence and correctness and
enhance the overall data quality (EUROCONTROL, 2010). Since a graphi-
cal data representation is also provided, visual checks by human operators
will be supported too (EUROCONTROL, 2010). With these checks, missing
and wrong data can be easily detected which again contributes to an
improved data quality. Besides that, digital NOTAMs will facilitate an
accurate situation awareness based on shared and up-to-date data sets
(EUROCONTROL, 2010). Situation awareness encompasses the perception
of elements within an environment with respect to time and space; the
comprehension of their meaning and the projection of their consequences
into the near future (Baader et al., 2009). It allows to understand what is
happening, how information and actions could impact goals now and in the
future in order to avoid faulty decisions. Furthermore digital NOTAMs will
be able to trigger automated actions which result out of hazards or other
events (EUROCONTROL & Federal Aviation Administration, 2011b, p. 6).

2.3 Aeronautical Information Exchange
Model

As mentioned before, in order to realize the concept of digital NOTAMs a
comprehensive data model for aeronautic information was needed. Therefore
the AIXM version 5.1 was developed by EUROCONTROL and FAA. The
first version of the AIXM specification was developed to support the distribu-
tion and encoding of aeronautical information which is provided by the AIS
(EUROCONTROL, 2015a). This data-centric approach was needed in order
to ensure data quality, real-time information, efficiency and cost effective-
ness of AIM systems (EUROCONTROL & Federal Aviation Administration,
2006). Besides that, it provides one data source used by different systems
enabling interoperability.

The key concepts and the extensions specified in AIXM 5.1 are depicted
in Figure 2.4. In contrast to AIXM version 4.5, which focused just on
the encoding of static data, AIXM 5.1 supports dynamic data as well
(EUROCONTROL, 2006b). Dynamic data encoding is supported by a
temporality model which captures different states of features and their prop-
erties during their lifetime. Since AIXM 5.1 is built in a modular way, single
modules can be simply re-used or expanded by new features, properties,
domain values or message types. This allows using all the benefits of the
complex standard, while still considering local interests without affecting
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AIXM version 5.1
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Figure 2.4: Key concepts and extensions of AIXM version 5.1 (EUROCON-
TROL & Federal Aviation Administration, 2006).

the global interoperability (EUROCONTROL, 2006a). Furthermore, AIXM
5.1 includes International Organization for Standardization (ISO) standards
for geospatial information such as ISO19100 providing a framework for
developing geography-based domain specific standards and providing meta-
data about geographic information. Moreover it includes and extends the
Geography Markup Language (GML) XML Schema version 3.2 which is an
international standard for exchanging geographical features.

AIXM is compliant with the ATM Information Reference Model (AIRM).
Besides AIXM, the ATM provides additional data exchange models such
as the Flight Information Exchange Model (FIXM)? used for sharing
information about flights throughout their life-cycle and the Weather
Information Exchange Models and Schema (WXXM)? for meteorological
information (Burgstaller et al., 2015). AIRM satisfies the need of ensuring
semantic interoperability within ATM by providing understandable, clearly,
structured, harmonized, and uniquely defined ATM business term defini-
tions (EUROCONTROL, 2012, p. 1). It contributes to the System Wide
Information Management (SWIM) ensuring that information is not altered
or lost while it is used (EUROCONTROL, 2012, p. 1)(Burgstaller et al.,
2015).

Zhttp://wuw.fixm.aero/
3http://www.wxxm.aero/
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2.3.1 eXtensible Markup Language

The data structure behind AIXM is XML which is ideal for data sharing
between different systems. XML is used for representing semi-structured
information such as documents, configurations or data. It is a simple text-
based format used for sharing structured information (W3C, 2015). The main
advantages of XML is that it is self-describing, independent of programming
languages, data base structure and hardware and it can be easily extended
(EUROCONTROL, 2006¢, p. 2). XML represents a hierarchical structure
including elements with attributes. These XML elements can contain text or
other XML elements. Every XML element must be closed by an appropriate
XML end element in order to be considered as well-formed. Well-formed
XML documents assure that the document is syntactically correct. However,
it is also possible to validate an XML document against a given XML Schema.
As stated by (W3C, 2015), na XML Schema represents a description of a type
of XML document. There are various different languages such as Schematron,
Relax-NG, Document Types Definitions, and, the most used, XML Schema
Definition (XSD). XML Schemas are used to associate types with values
found in the XML documents; furthermore it is possible to define a list of
allowed elements and their attributes. Besides that it is possible to constrain
where elements and attributes can be used and what content is allowed within
those elements. However the most important property is to use the XML
Schema as a human-readable as well a machine-processable documentation
including formal descriptions of the document.

2.3.2 AIXM Conceptual Model and XML Schema

The AIXM specification is large and complex, covering various aeronautical
data of ATM elements, their attributes and their relations. It provides over
one hundred different features and data types. However, two main parts can
be identified. The logical information model and a data exchange format
(EUROCONTROL, 2015a). Both parts can be and are still extended and
provide extensive capabilities supporting temporal models and geographical
data.

AIXM Conceptual Model: the conceptual model of the aeronautical
data was specified using the visual Unified Modelling Language (UML)
which allows to describe behaviour, relationships and abstract con-

cepts (EUROCONTROL, 2006a). It is widely used and a de facto
modelling standard with an extensive tool support allowing to con-
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vert

UML diagrams to programming languages, database structures

or XML schemas. UML is therefore used to model concepts defined
in the Aeronautical Information Conceptual Model (AICM) (EURO-
CONTROL, 2006c). The AICM represents the logical basis for AIM
databases and provides a common conceptual understanding. Com-
prised concepts amongst other are aerodromes, airspaces, NAVAIDs
and fixes, routes, procedures and organizations and services:

The Airspace Concept represents a region of any three dimensional
space in the air with aeronautical significance such as restricted
areas or air traffic control sectors (EUROCONTROL, 2006¢, p.
17). An airspace can be defined by a single airspace using poly-
gons including the range of the altitude and horizontal borders or
combined by other primitive airspaces.

The area describing the structure of airport and heliports can be
specified using the Aerodrome Concept. This covers definitions of
runways, taxiways, limitations, obstacles, aircraft parking places
and airport time tables.

In order to define significant points in space which are needed
for air traffic control and navigational purposes the NAVAID and
Designated Points Concept is used. NAVAIDs are also used to
provide landing aids (EUROCONTROL & Federal Aviation Ad-

ministration, 2006).

Routes for flights are defined by a series of significant points defin-
ing route segments (EUROCONTROL, 2006¢, p. 20). Each route
segment contains information of the minimum en-route altitude,
traffic flow restrictions and operating hours which is all comprised
in the Routes Concept.

Standard arrival routes, departure procedure and instrument ap-
proach procedures are defined within the Procedure Concept con-
sidering operating hours of the aerodrome and obstacles (EURO-
CONTROL, 2006¢, p. 21). Again significant points are used to
define procedure segments.

Information about aerodromes, procedures, NAVAIDs and
airspaces are provided by various services (EUROCONTROL,
2006¢, p. 22). In order to describe divisions, units, organiza-
tions and their provided services, the Service Concept is used.
Furthermore this concept allows to model connections between
aeronautical elements which are provided by the services.



CHAPTER 2. SEMNOTAM 22

Figure 2.5 depicts how these conceptual areas are modelled within UML
using features, attributes and associations. They represent important
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Figure 2.5: UML example of an conceptual area (EUROCONTROL & Fed-
eral Aviation Administration, 2006).

aeronautical entities such as runway, aerodromes or routes. Since they
are central entities they are modelled as UML classes (EUROCON-
TROL & Federal Aviation Administration, 2006). Each of them is
characterized by various elements such as the boundaries of runways.
Multiple features can be associated to each other using relationships
indicating for example that a specific runway is situated at an aero-
drome (EUROCONTROL & Federal Aviation Administration, 2006).
Moreover, AIXM allows to define plausibility checks on the data and
business rules.

XML Schema: after defining the concepts within UML, an exchange
model to transfer them is needed. Such an exchange model for aero-
nautical data is provided by the AIXM XML Schema which is defined
using XSDs. It is derived from the AIXM Conceptual Model and al-
lows system-to-system exchange of aeronautical information. Due to
its size and complexity it is not addressing flight personnel, instead it
ensures that automated systems can communicate correctly with each
other. As mentioned before, XSDs are used to define attributes, asso-
ciate them with types and model simple or nested elements. Basically,
the AIXM exchange format consists of three main UML files. The
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first one* defining AIXM base feature and object constructs such as
abstract features, time slices, objects and property types. The second
one® defining data types used within the UML model and the third
one® representing all other features and their properties.

2.3.3 Temporality Model

Since each aeronautical feature instance is affected by time, the AIXM
provides a model to consider temporality. Every feature has a lifetime which
is determined by its start and end of life (EUROCONTROL & Federal Avi-
ation Administration, 2010, p. 5). Moreover, the features properties and the
relationships to other features can change during the lifetime. This can result
in properties which are not defined over a time period. A key assumption
of the temporality model is that each property and relationship can change
permanently or temporally, except the global unique feature identifier. It
consists of two main components. Events which represent changes of one or
more feature properties and states which represent valid feature properties
over a time period (EUROCONTROL & Federal Aviation Administration,
2010, p. 6). Events occur during transitions between states. So called
"Time Slices" are used to describe feature properties during states and events.

As depicted in Figure 2.6, a time slice is a container including all
time varying properties of the features. Moreover, it defines how long a
value is set for which property. Since each feature can contain multiple
Time Slices, the sequence number is used as an identifier for them within
a feature (EUROCONTROL & Federal Aviation Administration, 2010,
p. 11). This sequence number also allows to update or replace already
communicated Time Slices. As changes can be conducted temporally or
permanently, different types of Time slices are provided. A BASELINE
Time Slice describes the state of a feature which results of a permanent
change (EUROCONTROL & Federal Aviation Administration, 2010, p.
12). In contrast to that, a TEMPDELTA Time Slice is used to define a
temporal feature state. In order to describe the differences of a feature
state which results of a permanent change, PERMDELTA Time Slices are

‘http://www.aixm.aero/gallery/content/public/schema/5.1/
ATIXMAbstractGMLObjectTypes.xsd

Shttp://www.aixm.aero/gallery/content/public/schema/5.1/AIXMDataTypes
.xsd

Shttp://www.aixm.aero/gallery/content/public/schema/5.1/AIXMFeatures
.xsd
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used. To communicate the current status of a feature, the baseline data

and any active temporal data needs to be merged; this is provided by the
SNAPSHOT Time Slices.

AIXMFeature
[Gidentifier : UUID

!

1__*J/ +time varying properties
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Figure 2.6: UML concept of a time slice (EUROCONTROL & Federal Avi-
ation Administration, 2006).

Time Slices describe the features and their properties for a given time period.
However there are properties which do not contain constant values during
their validity of time (EUROCONTROL & Federal Aviation Administration,
2010, p. 13). Properties can have cyclic varying values with an associated
timetable. This timetable describes the times when a given value is used for
these properties. To incorporate these timetables, the temporality model
provides the concept of schedules. These schedules avoid the generation
of a BASELINE or/and TEMPDELTA time slices every time the feature
property state is changed.

The dynamic content of NOTAMs can be represented by this tempo-
rality concept. Time Slices and schedules consider the fact that the content
of NOTAMs can change during their life-time. Based on this, dynamic
information can be encoded in a structured and machine readable way which
is needed for the SemNOTAM system (Section 2.1).

2.3.4 Geographic Model

The geographical model of AIXM is based on the GML Encoding Standard
in order to express geographical features. GML can be used as a modelling
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language, as well as an interchange format for geographic data (EUROCON-
TROL, 2006a). Using the GML Schema, it is possible to express geometries
such as lines, curves, points, polygons or surfaces.

It is important to notice that the AIXM exchange model is based on
a subset of the GML, so called profiles. This leads to AIXM features
which are basically GML features and AIXM objects which are GML
objects (EUROCONTROL, 2008, p. 12). Furthermore, AIXM follows the
GML object-property concept which prohibits that a GML object has an
immediate child representing another GML object (EUROCONTROL, 2008,
p. 12). Applied to AIXM, this means that an association between two
features respectively between a feature and an object must be established
over a property of the feature (EUROCONTROL, 2008, p. 12). The
implementation of the object-property concept is realized by declaring a
type and assigning properties to it. These properties include attributes as
well as relationships. The declared type will be then assigned to features
(EUROCONTROL, 2008, p. 12).
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Figure 2.7: AIXM extensions of the GML (EUROCONTROL & Federal
Aviation Administration, 2007).

As depicted on figure 2.7, AIXM uses a 2.5 Dimension (2.5D) representation
of the GML geometry model (EUROCONTROL & Federal Aviation Admin-
istration, 2007). A 2.5D representation is used in order to encode geometric
elements above the earth’s surface. Therefore the vertical distance from the
Mean Sea Level to the to the highest point on the geometry is added as the
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elevated property 'elevation'. Furthermore the height of the geometry is
encoded within the vertical extent. All the properties are defined regarding
a vertical accuracy. The definition of 2.5D geometries is used in AIXM for
ATM elements such as airspaces or routes.

As mentioned in Section 2.1.3, the query interfaces allows to consider
criteria such as the location in space. Therefore a geometry is specified
as input. The geometry is analysed in order to detect an overlapping
with geometries of NOTAMs. When the geometry of a NOTAM intersects
the specified geometry, then the NOTAM is relevant. The detection of
geographic intersection is done by checking whether the specified geometry
is intersected horizontally or vertically by any other NOTAMs geometry.
Since geometries can encode polygons, curves or complex surfaces, this is
not a trivial task. To ease the computational effort GML allows to model
envelopes. These envelopes define the bounding box of a geometry. A
bounding box is the smallest horizontal rectangle comprising all the points
of a geometry.

Using the capabilities of GML, AIXM is able to cover all relevant ge-
ographical elements needed within the ATM. Furthermore it provides more
detailed geometries definitions than used in prior versions of AIXM. This
improves the filtering capabilities since the intersection works with more

accurate data than using only the radius of influence. Thus intersections of
irrelevant NOTAMs are avoided.

2.3.5 Feature Identification and Reference

As mentioned in Section 2.3.3, each AIXM feature is identified through
the use of the identifier property. This property is the only time-invariant
one and therefore it is situated outside the TimeSlice complex object
(EUROCONTROL & Federal Aviation Administration, 201la, p. 5).
In order to provide feature identification, the AIXM 5.1 schema relies
on Universal Unique Identifiers (UUIDs) as feature identifiers. These
identifiers fulfill two essential requirements; they are unique and universal,
which means that the same identifier will never be used unintentionally
by anyone else and that the same identifier can be used in all systems
to identify a given AIXM feature. It is important to notice that an
identifier does not identify a feature itself, it identifies the data that
someone has about a feature. When two systems use the same identifier
for a feature, it indicates that the data is retrieved from one source or that
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there are processes ensuring consistency between the data of the two systems.

Since AIXM 1is used to distribute information to various consumers,
the possibility to manage linkages between aeronautical features is sup-
ported. Therefore the AIXM schema utilizes the XML Linking Language
(XLink) schema which is bundled within GML (EUROCONTROL & Federal
Aviation Administration, 2011a, p. 10). XLink is a standard for representing
a reference between two XML elements, which represent AIXM features. It
allows to address individual XML elements which are located within the
document or available over external sources.

The capability to uniquely identify an AIXM feature allows referenc-
ing it. Supporting references avoids redundancy and improves consistency
since data can be maintained at one place and referenced from anywhere.

2.4 ObjectLogic

Besides the AIXM representation for structured data, the SemNOTAM
system requires a knowledge-based representation. Therefore the deductive
and object oriented database language OL is used. OL combines the
expressiveness and declarative semantics of deductive data base languages
with the modelling capabilities supported by object orientation. It is a
successor of F-Logic which was developed by (Kifer, Lausen, & Wu, 1995) in
1995. F-Logic is an ontology and knowledge representation language used for
ontology management, semantic web services, information integration and
intelligent agents. Since F-Logic was developed to overcome the relational
approach of predicate logic, it already comprises the object-orientated
concepts which are used in OL. Since OL is also used to represent knowledge
it provides rules in order to derive new knowledge. Furthermore queries for
filtering that knowledge base are supported.

OL is based on the Closed World Assumption (CWA). This assump-
tion is crucial for the reasoning task, since a CWA implies that all available
knowledge is complete. Everything which is not known is assumed to be
false e.g. an aircraft has a pilot named Bob, the reasoner would determine
that there is only one pilot for that aircraft. In contrast to that the Open
World Assumption (OWA) implies that all available knowledge is true but
not complete. This means for the given example that the aircraft has a
pilot named Bob but it can have other pilots too, it is just not known. This
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difference seems slight, but when a query is conducted to filter aircraft with
only one pilot, then only the CWA based reasoner will return the aircraft.

The tool support for OL is restricted to OntoStudio and OntoBroker
since OL exclusively provided by semafora systems GmbH. The OntoBroker
is the reasoner for OLOL and includes the knowledge base and an API
(OntoAPI) in order to access it. The OntoStudio provides a graphical
interface for the supported operations of the OntoAPI.

The following description provides an insight of the OL concepts and
examples explaining them. Since semafora systems GmbH are exclusively
developing OL, they are the only source of documentation for it. Therefore

the following explanations refer to the OL Tutorial (semafora systems
GmbH, 2012) and the OL Reference (semafora systems GmbH, 2013).

Basic Syntax: Factual knowledge is defined in OL by objects, their
relationships, and classification. This kind of knowledge is also known
as the explicit knowledge. In contrast to that the intensional knowledge
represents the implicit knowledge derived by applying rules. Both the
intensional and the factual knowledge can be queried. All these entities
of an OL program which can be queried must be named.

1 Jet. // term as class name
2> Jet [maxSpeed -> 800] // term as method name
3 jet123_3:Jet. // term as object name

5 7- eurofighterX[crewMember -> ?Y]. // term as query
variable 7Y

Listing 2.1: Example of terms.

As shown in Listing 2.1, OL provides terms for naming entities. Terms
can be used as constants or to name classes, object or methods. Terms
used to name classes, objects or methods are called id-terms and start
with a letter followed by letters, digits or underscores. Terms are also
used for variables, which are only used within rules and queries. They
follow the same grammar as id-terms except that they start with a
question mark. Moreover terms can represent methods including the
name and a list of one or more terms within braces.

Schema Level Statements: OL supports the object-oriented concepts of
classes and attributes. Therefore the schema provides a vocabulary al-
lowing to define classes, attributes and applicable methods. Using this
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vocabulary, OL allows to define complex class hierarchies. Furthermore
various methods and class attributes can be defined this way, providing
thereby type-safety and constraints regarding the cardinalities.

Subclass-F-atoms allow to define subclass relationships between
two classes. The classes are denoted by id-terms. Multiple inheritances
of several classes are permitted in OL.

1 Jet.
> Jet::Aircraft.

Listing 2.2: Example of a subclass-F-atom.

As shown in Listing 2.2, a class "Jet" is defined. The subclass-F-atom is
used to define hierarchical structure declaring that a "Jet" is a subclass

n,o.n

of an "Aircraft". Subclass relationships are denoted by ":

Signature-F-atoms are used to define methods of a class and type
restrictions for parameters and results. Moreover, each method can
be restricted by a given cardinality, which determines how many en-
tries may be provided at least respectively at most. It is important to
note that attributes of a class are modelled as methods without any
parameter. Therefore methods without any parameter will be named
attributes in the following sections.

1 Pilot::Person.

> Jet[type {1:1} #*=> xsd#string].

3 Jet[pilot (xsd#date) {1:%} *=> Person].
1 Jet [pilot (xsd#date) {1:%} *=> Pilot].

Listing 2.3: Example of several signature-F-atom.

The Listing 2.3 starts with defining a class "Pilot" which extends "Per-
son" using a subclass-F-atom. The first signature-F-atoms defines for
the domain "Jet" an attribute named "type" with an range "xsd#string".
Moreover, the cardinalities indicate that there must be exactly one
"type" provided. The domain defines which class is affected and the
range determines which types respectively classes can be used as val-
ues. The following two signature-F-atoms define the method "pilot"
which can be used to determine the pilot(s) of a jet. As shown, the
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method "pilot" accepts a parameter of the type "xsd#date" indicating
since when a given pilot is the pilot of the jet. Furthermore, these
two signature-f-atoms show also that the concept of method overload-
ing is provided since both share the same method signature. The only
difference is determined by the specified range.

Instance Level Statements: Based on a defined schema, instance level
statements can be used to create objects. These objects represent in-
stances of the predefined classes. However a valid OL program does not
need to have existing schema level statements. It is also valid without
them, when the basic syntax is not violated.

F-atoms are also know as isa-F-atoms which are used to instantiate
classes. With isa-F-atoms the class membership is denoted by a single
colon separating two id-terms, representing the instance (object) and
the class. OL allows the multiple instantiation of several classes.

1 eurofighterX:Jet.
2> eurofighterY:Jet.

Listing 2.4: Example of a isa-F-atom.

A simple instantiation of one class "Jet" is depicted in Listing 2.4.

Data-F-atoms are used to apply methods on objects which were
instantiated using f-atoms. Data-F-atoms represent the instance of
signature-F-atoms and therefore they consist of a host object (domain),
a method and a value which denoted by id-terms. The value can be
either an object or a literal.

1 eurofigtherX[type -> "Eurofigther Typhoon"].
2> mary:Person.

3 bob:Pilot.

. eurofigtherX[pilot (2012) -> mary].

5 eurofigtherX[pilot (2011) -> bob].

Listing 2.5: Example including several data-F-atoms.

Listing 2.5 shows how the methods of the previously instantiated object
"eurofigtherX" are used. The attribute "type" is set to "Eurofigther Ty-
phoon'; moreover, a person "mary" and a pilot "bob" are instantiated.
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It would also be possible to multiple instantiate "bob" using other OL
classes. These two individuals are used for the usage of the objects’
"pilot" methods. Both methods receive a year as input parameters.

F-molecules allow to collect information about an object, by com-
bining multiple f-atoms statements. Furthermore f-molecules can also
be used to combine subclass-F-atoms and signature-F-atoms. The pre-
vious OL examples can be rewritten to the following OL program 2.6
based on f-molecules.

1 // Schema Level statements

2 Pilot::Person.

3 Jet[type {1:1} *=> xsd#string, pilot(xsd#date) {1:x*}
*=> {Person, Pilotl}].

5 // Instance Level statements
6 mary:Person.

7 bob:Pilot.

s peter:Person.

9 anna:Person.

11 eurofighterX:Jet.

12 eurofighterY:Jet [type -> "Eurofigther Typhoon",
pilot (2012) -> mary, pilot(2011) -> bob,
controller -> {peter, annal].

Listing 2.6: Example of a F-molecule.

F-molecules allow to combine the data-F-atoms and isa-F-atoms which
results in a more readable OL program. An object and its correspond-
ing methods and attributes can be defined within only one statement.
The Listing 2.6, is enriched by the attribute "controller" which indicates
who is the responsible air traffic controller. As stated before, even if
that attribute is not defined in the schema, it is still valid. Furthermore
it can be seen that multiple values can be assigned to one attribute at
once. When more than one values is set for an attribute at once, the
values must be enclosed within braces. The usage of the method "pilot'
of the "eurofighterY" object cannot be grouped to one statement since
each of them have a different parameter. If both methods would receive
the same parameter "2012" then a grouping to "pilot(2012) -> {mary,
bob}" would be possible.
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Namespaces: a term can be used multiple times representing different se-
mantics. Besides using a term multiple times, a term can have different
meanings (synonyms). Furthermore, the same id-term can be used in
multiple knowledge bases which can lead to problems when they get
merged. To overcome these issues, OL provides namespaces. Names-
paces are used in the context of the Semantic Web to uniquely identify
objects and instances. Therefore they can also be used to handle multi-
ple definitions of concepts (classes) in different knowledge bases. Each
namespace must represent a valid identifier according to RFC 2396 and
must end with either "#", "/", or ":". These last characters mark the
separator between the namespace and the local part of an identifier.

| :— prefix aero = "httm://www.aixm.aero/schema/5.1#".
2 airlinerX:aero#Aircraft [aero#id -> "Boeing747-123"].

Listing 2.7: Example of using a namespace.

As shown in Listing 2.7, it is possible to define prefixes for names-
paces. These prefixes act as a place holder for the namespace, avoiding
to rewrite the whole namespace identifier before each term. When a
namespace respectively a prefix is used to identify a term, then the
separator symbol "#" must be placed between the prefix and the term
(local name).

Rules: OL rules are used to extend the knowledge base by deriving new
information. Whenever a precondition of a rule is satisfied, the conclu-
sion is true. The preconditions represents the rule body and is formed
by combining F-molecule by logical conjunction such as OR, NOT and
AND. The rule head is also represented by a conjunction of F-molecules
and is separated from the rule body by the symbol ":-". Variables are
used within rules as place holders. However, variables used in the rule
head must also be used in the rule body.

1 ?X[coPilot -> ?Y] :- ?X:Aircraft[flightCrew -> 7Y]
AND ?Y:Pilot AND NOT 7?X[captain -> ?7Y].

Listing 2.8: Simple rule defining the aircrafts’ co-pilot.

Listing 2.8 depicts a simple rule. The rule head defines that a object
"?X" has the attribute "coPilot" with the value "?7Y" when the rule body
is satisfied. The rule body comprises the conditions which need to be
fulfilled; in this case the variable "?X" must be an aircraft and "?Y"
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must be a member of the flight crew. Furthermore, "7Y" must be a
pilot who is not the captain of the aircraft "?X". Using this rule the
implicit knowledge that "a flight crew member who is a pilot but not
the captain of the aircraft is assigned as a co-pilot" can be derived.

Queries: To access the explicit and derived knowledge, OL provides
queries. Syntactically a query can be considered as a special kind of a
rule with an empty head. Queries start with the symbol "?-" followed
by conditions which need to be satisfied. These conditions are denoted
by f-molecules including unbound variables. The unbound variables are
used to determine which objects are queried respectively which object
will be in the result set. Queries retrieve results based on derived and
explicit available facts.

1 ?7- eurofighterX[crewMember -> 7Y].

Listing 2.9: Example a simple query.

The query depicted in the example 2, retrieves all crew members of the
jet "eurofighterX".
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This section specifies the requirements of the mapping task. Therefore the
task description will be detailed and examined. Based on this the require-
ments will be determined and analysed. Moreover, it provides an insight of
possible problems which can occur. The identified requirements will be then
used in Section 5 to design an appropriate architecture and to select suitable
technologies.

3.1 Task Description

A coarse description of the mapping task is given in Section 1.1 and
Section 2.1. It is stated there that the mapping will transform a given
structured data set into a knowledge representation. In the subsequent
sections this task is substantiated to a mapper between an XML-based

34
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and an OL representation. This section will specify this task by providing
detailed description of the data sources, their usage and their structure.

The main task of the mapping is the transformation of several struc-
tured input sources to an OL representation. These input sources are
depicted in figure 3.1 and represent the data structures introduced in the
SemNOTAM system (Section 2.1). Each of the depicted data sources will
be processed sequentially.

Structured Data ObjectLogic
AIXM Baseline
Data & Digital Notams Knowledge-Based
Framework
AbstractGML_ObjectTypes.xsd >
DataTypes.xsd
Features.xsd
Knowledge
Queries AIXM to Base Results
Query.xsd > oL > P Result.xsd
Mapper
Configuration Data
Segment.xsd J >

Figure 3.1: Mapping tasks of the AIXM to ObjectLogic Mapper.

Since the XML schemas are still being developed, the available data sources
are restricted to NOTAMs, segments and queries. However, other sources
such as aircraft data will be supported in the future which can lead to new
data sources. Each data source is described through XSD document(s).

The three sources depicted in Figure 3.1 must be handled by the mapper.
The AIXM to OL Mapper must accept these three XML documents which
will be parsed to corresponding OL files. The resulting segment, query
and NOTAM OL files will then be inserted into the knowledge base. This
knowledge base is accessible over the OntoAPI of the OntoBroker. The
query OL files will be saved and processed by another component. During
the mapping process not information must be lost since the data sources,
especially NOTAMSs, can contain safety critical information. However,
information which does not add any knowledge need to be omitted to avoid
clutter. That are XML attribute elements which are empty, contain no
XML attributes and do not represent an association.
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Furthermore, it must possible to configure the mapper. Examples for
configuration parameters are the source XML file name, the output OL
file name, credentials for accessing the OntoAPI and whether a new
ontology will be created or an existing extended. The mapper has to
perform preprocessing tasks, such as the calculation of the bounding box of
AIXMBasicMessages and their features. This will ease later computational
steps on OL. Besides these functions, the time at which the NOTAMs have
been processed will be stored within a detection time stamp. This time
stamp is needed for so called delta queries which should determine changes
in the knowledge base. These changes are relevant because they indicate
updates of already mapped data sources.

Since not all sources and therefore possible preprocessing steps are known,
the parser must be extensible without changing the existing implementation.
Possible preprocessing steps in the future could be the classification of
NOTAMs according to their corresponding flight information region, air
traffic service (ATS) segments, or airport. Other classifications could include
a specific standard instrument departure (SID) or/and standard terminal
arrival route (STAR).

The following subsections details the three data sources depicted in
Figure 3.1. For each data source the structural representation encoded in
XML will be analysed. Therefore it will be examined which information
is stored in which XML elements. Moreover, possible content of the XML
elements and their corresponding OL representation will be introduced.

3.1.1 NOTAM Data

NOTAMs in AIXM are represented by AIXMBasicMessages. The
ATXMBasicMessage is available as XML data and will be transformed
into OL. An AIXMBasicMessage contains multiple AIXM features which are
included within the hasMember association.

1 <ns13:AIXMBasicMessage ns5:id="FNS_ID_34828025">
2 <nsb5:boundedBy xsi:nil="true"
3 xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" />
! <ns13:hasMember>

<ns10:Event nsb5:id="Event_1_34828025">
6 <ns5:boundedBy xsi:nil="true"
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7 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" />
8 <ns10:timeSlice>

9 <nsl10:EventTimeSlice ns5:id="Event TS_ 1 34828025">

10 <nsb:validTime>

11 <nsb5:TimePeriod nsb5:id="Event_TS_TP_1_34828025">

12 <nsb5:beginPosition>2013-02-12T21:51:00.000Z</ns5:

beginPosition>
13 <ns5:endPosition indeterminatePosition="unknown" />
14 </ns5:TimePeriod>
15 </nsb5:validTime>

16 <ns6:interpretation>BASELINE</ns6:interpretation>
17 <ns10:scenario>6000</ns10:scenario>

18 <ns10:extension>
19 <nsll:EventExtension nsb:id="ext_01_34828025">
20 <nsll:classification>INTL</nsll:classification>

21 <nsl1l:accountId>KIAD</nsl1:accountId>
22 <nsl1l:xoveraccountID>FDC</ns11:xoveraccountID>
23 <nsll:xovernotamID>3/8008</ns1l:xovernotamID>

24 <nsl1l:airportname>WASHINGTON DULLES INTL</nsi1i:
airportname>

25 <ns11:originID>KIAD</nsl1l:originID>

26 <ns11:lastUpdated>2013-09-30T10:50:00.000Z</ns11:
lastUpdated>

27 <nsl1l:icaoLocation>KIAD</ns11:icaoLocation>

28 </ns11:EventExtension>

29 </ns10:extension>
30 </ns10:EventTimeSlice>
31 </ns10:timeSlice>

32 </ns10:Event>
33 </ns13:hasMember>
34 </ns13:AIXMBasicMessage>

Listing 3.1: Example of a NOTAMs encoded as an AIXMBasicMessage.

AIXM features can be used to represent events introduced in Section 2.2.1
and Section 2.3.3. As depicted in Listing 3.1, the AIXMBasicMessage con-
tains an Event as a member. Since the values within a NOTAM can vary,
a time slice feature for the event is provided (Section 2.3.3). Furthermore,
it is shown that identifiers for the feature elements are provided, whereas
the associations are not identified explicitly. The boundedBy element is
empty since no GML information is provided in Listing 3.1. However,
GML information can be encoded within NOTAMs. Moreover, it is shown
that the AIXMBasicMessage which is used for encoding the NOTAMs,
follows the object-property concept of GML (2.3.4). Besides XML ele-
ments and their attributes a NOTAM can contain text as content. AIXM
allows to formate this text using HyperText Markup Language (HTML) tags.
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Using the NOTAM in Listing 3.1 as an input, the AIXM to OL Map-
per has to produce the corresponding OL output as depicted in Listing 3.2.

1 FNS_ID_34828025:ns13AIXMBasicMessage [ns5id->"FNS_ID_34828025",
nsi3hasMember->Event_1_34828025] .

N

3 Event_1_34828025:ns10Event [ns5id->"Event_1_34828025", ns10timeSlice->
Event_TS_1_34828025, nsbboundedBy -> "xsi:nil"].

4

5 Event_TS_1_34828025:ns10EventTimeSlice [nsb5#d->"Event _TS_1_34828025",
nsbvalidTime->Event_TS_TP_1_34828025, ns6interpretation->"BASELINE
", nsl0scenario->"6000", nslOextension->ext_01_34828025].

~

ext_01_34828025:ns11EventExtension[ns5#id->"ext_01_34828025",
nslloriginID->"KIAD", nsllxoveraccountID->"FDC", nsllclassification
->"INTL", nsllairportname->"WASHINGTON DULLES INTL",
nslllastUpdated->"2013-09-30T10:50:00.000Z", nsllicaoLocation—>"
KIAD", nsllxovernotamID->"3/8008", nsllaccountId->"KIAD"].

) Event_TS_TP_1_34828025:ns5TimePeriod [ns5id->"Event _TS_TP_1_34828025",
nsb5endPosition("indeterminatePosition")->"unknown",
nsbbeginPosition->"2013-02-12T21:51:00.000Z"] .

Listing 3.2: Example of an AIXMBasicMessage represented in an OL
representation.

As shown the AIXMBasicMessage and its features are represented by f-
molecules. Each of these f-molecules is defined using the given identifier,
such as "FNS_ID 34828025", as the id-term. The XML attributes of the
ATXMBasicMessage are mapped to OL attributes. These OL attributes are
added to the f-molecule using data-F-atoms. Moreover, the associations to
the direct AIXM child features are mapped to OL. These associations are set
by adding OL methods which receive the id-term of the AIXM child features
as a value.

3.1.2 Configuration Data

As stated in Section 2.1.3, configuration data is used to define route segments
and aircraft characteristics. Since currently the segments are used as input
sources, the aircraft characteristic will be left aside. However, it must be
considered that they will be available in the near future. A route consists of
several segments (Section 2.3.2). Each segment is defined by a start and an
endpoint (Cordell, 2006). Beside these two points, segments are composed
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of consecutive connected significant points. These significant points can be
used by multiple routes. Therefore it is possible to reference them.

1 <Collection xmlns="http://semnotam.frequentis.com/SegmentSchema"

2 xmlns:xsi="http://www.w3.o0rg/2001/XMLSchema-instance"

3 xsi:schemalocation="http://semnotam.frequentis.com/SegmentSchema ./
SegmentSchema.xsd"

. xmlns:gml="http://www.opengis.net/gml">

5  <hasMembers>

6 <Segment>

7 <id>1212</id>

8 <shape>

9 <gml:PolygonPatch>

10 <gml:exterior>

11 <gml:LinearRing>

12 <gml:posList>38.9353015690001 -77.458481289

13 38.93530156900009 -77.45848128899996
38.9358698240001

14 —77.458208563 38.9359786850001
-77.45815443

15 </gml:posList>

16 </gml:LinearRing>

17 </gml:exterior>

18 </gml:PolygonPatch>

19 </shape>

0 </Segment>

1 o o .
2 </hasMembers>
; </Collection>

Listing 3.3: Example of segments encoded in XML.

As shown in Listing 3.3, segments can be encapsulated in a collection of
segments. Each segment is identified by an identifier and contains a GML
shape. This GML shape consists of several coordinates representing a geom-
etry. Segments follow object-property concept of GML since they are based
on GML shapes. In Listing 3.3, the represented geometry is a linear ring.

3.1.3 Query Data

The parsing of the query will neither lead to a resolution of the query nor
to the correct interpretation of it. It will transform the XML document
containing the query to its corresponding OL representation. The resolution
of the query and the interpretation of it will be done in a separate module.



CHAPTER 3. REQUIREMENTS ANALYSIS 40

As stated in Section 2.1 the query will support the combination of various
interests. As depicted in Figure 3.2 these interests are used to specify queries
regarding aircraft, attributes, periods or areas. It is important to note that
the area of interests can use the information provided by segments. Like in
the other data source, the object-property model is followed since the query
can be used to query GML information.

*
Context |0.1 0.5 query 1 - ! Mnterest 0.
obe | interest h

G

Complexinterest

<<noFredicate»» UnaryComplex | I BinaryComplex |
Arealfinterest All

PeriodOfinterast | NOT | [ OR || AND |
AlrcraftOfinterest

Figure 3.2: Query object structure (Steiner et al., 2014, p. 15).

Simpleinterest

FANANFANYAY

Attribute Ofinterest

Due to the high modularity of this structure, each queried aspect is rep-
resented by a SimpleInterest subclass. These SimpleInterests can be
combined to ComplexInterests using logical connectors such as NOT, OR
and AND. AND is used for the intersection of two operands, such as the
intersection of two relevant sets. OR is used for the union of two sets and
NOT is used as the negation of a referenced set. Each query object contains
an identifier which needs to be set by the context.

In the following the different interests and their attributes will be investi-
gated:

e AircraftOfInterest: specifies the attributes of the aircraft which can
be used to filter NOTAMSs which are relevant to the described aircraft.

e AttributeOfInterest: refers to AIM elements which are specified in
the SemNOTAM system as concepts. Furthermore they can be used to
restrict the values of the result. Combinations of concepts and value
restrictions are possible.

e PeriodOfInterest: defines the time span which will be considered
during the filtering. These periods are divided into the two types. The
occurrence time which describes the valid time of a NOTAM, and the
detection time which describes the time a NOTAM is inserted into the
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SemNOTAM system. Therefore every NOTAM has one valid timespan
and a detection time stamp which allows querying from any point of
view in time.

AreaOfInterest: is used to define restrictions to certain areas, such
as Areas, ScopedAreas, GML Shapes, and segments. Area restrictions
allow to geographically restrict AIM elements such as retrieving the air-
port in Linz. ScopeArea restrictions are used to define queries which
retrieve NOTAMs of a specific airport while excluding runways. For
each exclusion exceptions can be set which allows to exclude all run-
ways except a specific one. GML Shapes and segments can be queried
by providing GML data and a buffer. NOTAMs which fit the GML

information within the buffer are retrieved.

Besides the querying of current data it is possible to request the changes
since the query was last posted to the SemNOTAM system. This is done
by using Delta Queries which are a specialization of normal queries. Due to
the fact that NOTAMSs can be corrected, a correction can lead to NOTAMs
which were relevant in the first query but later becoming irrelevant due to
the changes.

| <Query xmlns="http://semnotam.frequentis.com/QuerySchema"

%

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:rs="http
://semnotam.frequentis.com/ResultSchema"
xsi:schemalocation="http://semnotam.frequentis.com/QuerySchema ./
QuerySchema3.xsd"
xmlns:gml="http://www.opengis.net/gml">
<id>1</id>
<interest>
<ScopedArea>
<scope>
<Area>
<concept>
<AreaClass>Airport</AreaClass>
</concept>
<restriction>
<ValueRestriction>
<attribute>designator</attribute>
<operator>=</operator>
<value>MUC</value>
</ValueRestriction>
</restriction>
</Area>
</scope>
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<exclude>
<Exclusion>
<exclude>
<AreaClass>Runway</AreaClass>
</exclude>
<except>
<Area>
<concept>
30 <AreaClass>Runway</AreaClass>
31 </concept>
2 <restriction>

NN
w N

-~ &

~

O N N N NN
00 o o

N

3 <ValueRestriction>

34 <attribute>designator</attribute>
35 <operator>=</operator>

36 <value>MUC_RWY10</value>

37 </ValueRestriction>

38 </restriction>
39 </Area>

40 </except>

41 </Exclusion>

12 </exclude>

13 </ScopedArea>

11 </interest>

15 </query>

Listing 3.4: Example of a simple query encoded in XML.

The query depicted in Listing 3.4, queries all NOTAMs belonging to the
airport Munich. The airport includes all existing runways. Therefore all
runways are excluded from the airport except the runway RWY10. It is as-
sumed that the designator attribute is specified at NOTAM level. Moreover,
it is assumed that the designator for the airport Munich is MUC and that the
designator for RWY10 is MUC_RWY10.

3.2 Requirements

The task description from Section 3.1 is used in order to determine the re-
quirements. The requirements are determined by identifying and extracting
them from the task description. Moreover, they are grouped according their
characteristics. This results in a listing containing all requirements which
need to be fulfilled by the design respectively the implementation.

1. Input:
1.1. XML documents have to be processed sequentially.



CHAPTER 3. REQUIREMENTS ANALYSIS 43

1.2.
1.3.

1.4.
1.5.

It has to be possible to set the XML-input and OL-output files.

The mapper has to allow to define mapping parameters, such as
the radius.

The credentials for accessing the interface must be configurable.

It has to be possible to define whether a new ontology is created
or an existing one to be extended.

2. Output:

2.1.

2.2.

2.3.

2.4.
2.5.

Query specifications have to be mapped to their equivalent OL
representation. They will not be enriched or interpreted.

Segments have to be mapped to their equivalent OL representa-
tion.

NOTAMSs have to be mapped to their equivalent OL representa-
tion.

The OL representation has to be saved to a file.

An interface for loading OL files into the knowledge base must be
provided.

3. Processing:

3.1.

3.2.

3.3.

3.4.

No information must be lost during the mapping task. All fea-
tures, their attributes, their relationships and the content of the
XML elements have to be included in the OL representation. Es-
pecially formatted text must be preserved.

Local references inside an XML document need to be resolved.
This means that instead of the XLink reference statement the
identifier of the referred XML elements has to be used. External
references do not have to be resolved.

The mapper must provide extension capabilities which allow to
add new mapping and/or preprocessing tasks without modifying
the existing implementation. An extension example is the calcu-
lation of bounding boxes (Requirement 4.1).

Due to the possibility that the AIXM schema can be extended,
the mapper needs consider the different namespaces within the
XML documents.
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3.5. A detection time stamp has to be added which represents the time
the data source is mapped.

4. Completing missing information:

4.1. An extension must be provided which completes missing geograph-
ical information. If the bounding box of a NOTAM is not avail-
able, then it has to be calculated and added to the NOTAM and its
features. Bounding boxes for geographic points will be calculated
with a given radius.

4.2. Missing identifier attributes of XML elements, which represent
features, have to be added. These identifier must be unique and
universal. Unique means that there has to exist a reasonable plau-
sibility that the identifier will never be used unintentionally by
anyone else. Universal refers to the requirement, that the same
identifier has to be used in all systems to identify a specific AIXM
feature.

These requirements will be used in further sections, especially the develop-
ment of the mapping concept and the selection of the technologies relies on
them.

3.3 Challenges and Problems

The requirements describe the main tasks which must be fulfilled by the map-
per. However they are not exhaustive since not all aspects were considered.
The resulting ambiguities and their emerging challenges and problems will
be discussed in this section.

Data identification: The mapping task requires a distinction between
ATIXM feature and their relationships. The challenge is to define how features
respectively relationships are characterized in order to distinguish them. The
requirements describe only how they have to be mapped to OL but not how
to identify them. An approach must be found which generic enough to be ap-
plied on all three data sources. This approach must identify characteristics to
distinct between AIXM features and their relationships. It must be ensured
that all features and relationships follow the identified characteristics.
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Exception handling: Moreover, exceptional XML elements must be de-
termined such as the HTML tags which are used to format text. It must be
possible to exclude a set of XML elements which will be ignored or treated
as text and therefore not be mapped to an corresponding OL representa-
tion. Besides that missing attribute such as the identifier must be handled.
It is not exactly specified how the identifier requirements uniqueness and
universality can be provided.

OL representation: Since no information has to be lost an approach must
be defined which allows to map all information given in the data sources to
their corresponding OL representation. The mapping described in the re-
quirements covers only a basic use case. The handling of the attributes of
XML elements which represent AIXM relationships is not specified. More-
over, it is not specified how links have to be added to the OL representation.
The OL representation of text is limited to simple text without any format-
ting. However, text can be formatted using HTML tags, tabulators, multiple
blanks or line breaks. It is not specified how the formatting has to be mapped
in order to preserve the formatting in the OL representation.

Namespaces: the requirements state that the mapper has to consider dif-
ferent namespaces in the data sources especially in AIXM. The handling of
namespaces can lead to problems because same prefixes for different names-
paces can be used in the data sources. These varying namespace definitions
does not conflict within the XML document, but they can lead to conflicts
when they are inserted and merged into the KB of the SemNOTAM system.

Preprocessing: Even the defined preprocessing task is challenging since
GML elements require a proper handling. The interpretation of coordinates
depends on the Coordinate Reference System (CRS). CRSs are required due
to the distortions which occur during the plotting of the earths’ surface onto
a map. The CRS is encoded in the attribute "srsName" which needs to be
resolved to find the corresponding CRS. Beside that, calculations based on
the geometries must be performed, in order to calculate the bounding box.
These calculation again depend on the specified CRS and are not trivial
since the earths surface cannot be interpreted as an flat surface. Instead
it is represented through an ellipsoid which requires complex trigonometric
functions to determine new spatial points. Moreover, it must be possible to
transfer coordinates between different CRSs since not all CRS allow these
kind of calculations.
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Flexibility: Besides the mapping of the data sources to a corresponding OL
representation, modification and configuration possibilities must be provided.
These modifications are not know currently and therefore the mapper has to
be implemented in a way to support them in the future. Therefore a concept
must be found to extend the mapper at different points without modifying
existing implementations.
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In this section the basic mapping concept and the mapping approach are
introduced to fulfill the requirements of Section 3.2. Moreover, the handling
of geographic data is analyzed. Based on the mapping concept a suitable
technology is chosen. This comprises the analysis and evaluation of the
technologies which can be used for the mapping task. Furthermore, the
extension capabilities of the selected technology are described in Section 4.4.
The mapping concept is shown by using AIXM NOTAMs as it can be applied
analogously to all data input sources since they follow the object-property
model. Consequently XML attribute elements and AIXM elements which
represent OL attributes are used analogously here. This applies also to XML
object elements and AIXM features which represent OL objects.

4.1 Basic Mapping Concept

As stated in Section 2.3.2 AIXM follows the object-property model. This
model prohibits that an AIXM feature has an immediate child representing
another AIXM feature or object. Therefore every relationship between these
features must be established over a property/attribute of the feature.

1 <ns13:AIXMBasicMessage ns5:id="FNS_ID_34828025">

2 <!-- AIXM Feature -->

3 <nsb:boundedBy xsi:nil="true" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" />

i <!-- ATXM Attribute -->

5 <ns13:hasMember>

6 <!-— AIXM Attribute -->

7 <ns10:Event nsb:id="Event_1_34828025">

8 <!-- ATXM Feature -->

9

10 <ns10:timeSlice>

11 <!-- AIXM Attribute -->

13 <ns5:beginPosition>2013-02-12T21:51:00.000Z</ns5:

beginPosition>
14 <l-- ATXM Attribute -->
15 <nsb5:endPosition indeterminatePosition="unknown" />

16 <!-- AIXM Attribute -->

18 </ns10:timeSlice>
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19 </ns10:Event>
20  </ns13:hasMember>
21 </ns13:AIXMBasicMessage>

Listing 4.1: Applying the object-property model to an
AIXMBasicMessage.

Listing 4.1 shows an excerpt of a NOTAM which is enriched by comments.
These comments indicate which XML element represents an AIXM feature
and which an AIXM attribute. The decision whether an XML element
represents an AIXM feature or not, is determined by the object-property
model. AIXM attributes can represent relationships which refer to other
AIXM features or contain text. As shown on line five of Listing 4.1, the
XML element <ns13:hasMember> represents an AIXM attribute which con-
tains other AIXM features. Whereas the line thirteen represents an AIXM
attribute which contains text content only.

AIXM feature and attribute identification: Based on the object-
property model two approaches can be followed to identify whether an XML
element represents an AIXM feature or an AIXM attribute.

Hierarchical approach: One option for identification is to consider the
hierarchy of the XML document. Due to the object-property model
AIXM features can only occur every second hierarchy level in the XML
document since an AIXM attribute has to be located between them.
This applies for the AIXM attributes too, since no AIXM attribute
can have other AIXM attributes as direct children. There is always an
AIXM feature between two AIXM attributes. This limits the occur-
rence of AIXM attributes to every second hierarchy level in the XML
document. This approach allows to easily identify the type of an XML
element due to the alternating occurrence of AIXM features and AIXM
attributes. The only prerequisite is that it must be ensured that the
first XML element represent an AIXM feature.

Naming approach: Another approach for the determination is to dis-
tinguish between UML classes representing AIXM features and UML
associations representing AIXM attributes. UML classes are labeled
using a name starting with an uppercase letter. Whereas UML associ-
ations as well as UML class attributes are labeled using names with a
lowercase starting letter. This approach works fine as long as all UML
classes and associations follow this naming convention. However there
are exceptions such as the usage of acronyms. An example is the as-
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sociation "airpointReferencePoint" which associates GML information
to an AIXM airport feature. Instead of using the original name, the
XSD schema specifies the association using the acronym "ARP" for the
AIXM attribute. Since this acronym starts with an upper case letter, it
would be detected as an AIXM feature and not as an AIXM attribute.
Therefore this approach requires additional exception handling in order
to incorporate such naming exceptions.

Since the hierarchical approach works without an exception handling, it is
used to map the AIXM document to the OL representation. The hierarchical
approach requires no accessing and checking of the XML element name
instead the hierarchy can be determined by a counter which indicates the
depth. Assuming that the first XML element on level one represents an
AIXM feature, the alternating occurrence of AIXM features and attributes
can be determined by simply using a modulo-2-operation. The operation
returns a remainder when the XML element on the current level represents
an AIXM feature otherwise an AIXM attribute. This approach can be
applied to the query and configuration data sources as well, since both
follow the object-property model.

After the determination whether an XML element represents an AIXM
feature or an AIXM attribute is performed, the XML elements need to be
mapped to the corresponding OL representation. AIXM features are mapped
to OL objects. OL objects are created using instance level statements to
instantiate OL classes. These OL classes can be obtained by mapping the
source XSD documents to schema level statements. However, this mapping
of the XSD document is not necessary since valid OL programs do not need
to have existing schema level statements (Section 2.4). The schema level
statements are not needed because the reasoner validates the OL program
syntactically, but not the schema/instance correspondence. Therefore,
instead of mapping the XSD and the XML document, only the XML
document is mapped to the corresponding OL representation. Therefore
only the mapping of AIXM features to OL objects and AIXM attributes to
OL attributes needs to be defined.

OL Objects: As shown in Section 3.1, the OL objects are defined using
f-molecules. Each OL object is identified by an id-term which is
represented by the id XML attribute of an XML feature element.
However, XML feature elements can have multiple XML attributes
besides the id attribute. These XML attributes are included within
the f-molecule by using data-F-atoms.
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1 <ns13:AIXMBasicMessage ns5:id="FNS_ID_34828025">
2 <!-- ATXM Feature -->
<ns13:hasMember>
4  <!-— ATXM Attribute -->
<ns10:Event nsb:id="Event_1_34828025">
6 <!-- ATXM Feature -->

Listing 4.2: AIXMBasicMessage cutout.

Listing 4.2 shows an excerpt of an AIXMBasicMessage where the first
XML feature element is represented by the AIXMBasicMessage XML
element. The AIXMBasicMessage XML element does not represent
the id-term of the resulting OL object, it represents the corresponding
OL class. Furthermore the XML element includes an id-attribute. As
mentioned before, the id-term is determined by the id attribute. Based
on this information the OL object with the id-term FNS_ID_ 34828025
instantiating the AIXMBasicMessage class can be created as depicted
in Listing 4.3.

1 FNS_ID_34828025:ns13AIXMBasicMessage [nsbid -> "FNS_ID_34828025"].

Listing 4.3: Example of creating an OL object with a f-molecule.

OL

Besides using the id attribute as the id-term it is added as a data-
F-atom within the f-molecule as well. Following these steps leads to
an OL object which is named, instantiated and its XML element at-
tributes are assigned to it as OL attributes. However, this does not
capture the association to other XML feature elements. To capture
these associations, the XML elements in the next hierarchy level must
be comprised.

Attributes: the second XML element in Listing 4.2, represents an
AIXM attribute respectively association. This AIXM attribute is
mapped to an OL attribute. The <hasMember> XML element does
not contain any information except that it determines that all child
XML feature elements within this XML element are associated OL ob-
jects of the upper OL object FNS_ID_34828025. Since these child XML
feature elements are again OL objects, new f-molecules for each of them
are created.
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1 FNS_ID_34828025:ns13AIXMBasicMessage[nsbid -> "FNS_ID_34828025",
ns13hasMember->Event_1_34828025] .

Listing 4.4: Adding OL attributes with their corresponding OL
attribute value to the upper OL object.

The id-term of the child OL object is used as the value which is
added as the OL attribute value to the f-molecule of the parent OL
object FNS_ID_34828025. As depicted in Listing 4.4, the OL attribute
ns13hasMember with the OL attribute value Event 1 34828025 is
added to the f-molecule of the upper OL object FNS_ID_34828025.
After the addition of the OL attributes and associations, the first f-
molecule for OL object FNS_ID_ 34828025 is finished.

The next step is to map the XML feature element Event_1_ 34828025 with
all its XML elements and associations to the corresponding OL representa-
tion. Therefore these steps is recursively repeated until all XML elements
are mapped to their corresponding OL representation.

4.2 Mapping Approach

In this section the basic mapping concept is extended by considering excep-
tions which can occur and by considering the processing tasks which have
to be performed while mapping the data sources. The origins of them can
be found in the properties of the XML or OL structure, restrictions, and
requirements which need to be fulfilled. The exceptions must be handled
during the mapping process which is why they are analyzed. Moreover, the
processing tasks are examined and detailed.

4.2.1 Namespaces

As stated in Section 2.4, OL statements can be qualified by namespaces
in order to identify OL classes, objects or attributes. Namespaces are
separated from the local name by the "#'-sign as depicted in Listing 2.7.
The semantics of namespace-qualified OL classes, objects or attributes is
always a pair of strings, representing an Uniform Resource Identifier (URI)
(httm://www.aixm.aero/schema/5.1#) or a prefix (aero) and a local name
(Aircraft). These namespaces must be available in the OL representation
because otherwise the OL statements would not be valid since the used
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prefixes in the f-molecules could not be resolved by the reasoner. Therefore
each new namespace and the corresponding prefix are collected during the
mapping of the XML documents which fulfills Requirement 3.4.

1 <ns13:AIXMBasicMessage ns5:id="FNS_ID_34828025" xmlns:nsl="http://www.
opengis.net/ows/1.1" xmlns:ns2="http://www.aixm.aero/schema/5.1/
message'>

Listing 4.5: NOTAM containing a namespace declaration as an attribute.

Inside an XML document, a namespace is defined by using the XML
attribute xmlns as depicted in Listing 4.5. This XML attribute can be used
in all elements of the XML document when a new namespace needs to be
introduced. However, the usage of the xmlns attribute without a prefix
only defines the default namespace. The default namespace is valid for the
current XML element and all child elements. If more than one namespace
is used in an XML document, then the xmlns attribute must be extended
by a colon followed by a prefix. This allows to define and use multiple
namespaces inside one XML document. Therefore while mapping the XML
documents it needs to be checked whether a namespace is defined using the
xmlns attribute. The new namespace is not added as an OL attribute to
the f-molecule, instead the value is added as a namespace statement.

1 :— prefix nsl = "http://www.opengis.net/ows/1.1".

2 :— prefix ns2 = "http://www.aixm.aero/schema/5.1/message".

3 FNS_ID_34828025:ns13#AIXMBasicMessage [ns5#id->"FNS_ID_34828025", ns13#
hasMember->Event_1_34828025] .

Listing 4.6: Example of a NOTAM including mapped text.

Listing 4.6 depicts the resulting OL statements after mapping the XML ele-
ment of Listing 4.5. The XML element contains two xmlns attributes which
are mapped to the declaration of two namespace statements consisting of a
prefix referring to an URI and an f-molecule which contains the OL object
without the xmlns attributes. Moreover, the prefixes are separated from
the OL class and attribute names by using the "#"-sign which conforms
to the OL syntax. This is done because the given OL sample representa-
tion in Section 3.1.1 merged names and prefixes to one string. The merging
would lead to valid OL statements but the namespaces would not be used
since the OL processor could not differ a prefix from the OL terms such as
ns13AIXMBasicMessage.
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4.2.2 Text

Text in NOTAMSs can occur over multiple lines and at different positions.
Furthermore it can contain multiple blanks which are used to format the
text output. However f-molecules can only contain text without line breaks.
Therefore the line breaks "\n" and "\r\n" are replaced by their HTML
equivalent <br>. The HTML tag <br> is used because it leads to a text
represented in a single line. Furthermore the separator information of a new
line is not lost. Besides that multiple occurrences of blanks are replaced
by one blank because this kind of formatting is irrelevant in one line. It
only stretches the OL statement and thereby decreases the readability. In
the OL statements the value of an OL attribute can be defined using a
literal. This literal is wrapped within double quotation marks. It is possible
that the NOTAM text already contains quotation marks around terms and
therefore these are handled by escaping them in the OL attribute value
using a backslash.

1 <ns10:NOTAM ns5:id="NOTAM_1_34828025">

2 5060

3 <ns10:text>

| QXXXX WASHINGTON DULLES INTERNATIONAL AIRPORT AIRSPACE ADS-B
SERVICES TISB AND FISB AVBL FEBRUARY 29, 2012. REPORTS OF TIS-B AND

FIS-B MALFUNCTIONS SHOULD BE REPORTED BY

6 RADIO OR

7 TELEPHONE

8 TO THE NEAREST "FSS" FACILITY.

9 </ns10:text>

10

11 </ns10:NOTAM>

Listing 4.7: Example of a NOTAM text content.

Listing 4.7 depicts an excerpt of a NOTAM representing the AIXM feature
<ns10:NOTAM> and the AIXM attribute <ns10:text>. The AIXM attribute
<ns10:text> contains the text which includes quotation marks and is
formatted using blanks.

1 NOTAM_1_34828025:ns10#NOTAM[nsb#id -> "NOTAM_1_34828025", nsiO#text ->
"QXXXX WASHINGTON DULLES INTERNATIONAL AIRPORT AIRSPACE ADS-B <br>
SERVICES TISB AND FISB AVBL FEBRUARY 29, 2012. REPORTS OF TIS-B AND

FIS-B MALFUNCTIONS SHOULD BE REPORTED BY <br> RADIO OR <br>
TELEPHONE <br> TO THE NEAREST \"FSS\" FACILITY."].

Listing 4.8: Example of a NOTAM including mapped text.
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Listing 4.8 depicts the resulting f-molecule based on the NOTAM excerpt of
Listing 4.7. The text is parsed by replacing the line breaks with <br>, mul-
tiple blanks by one blank, and escaping quotation marks with backslashes.

1 <ns10:NOTAMTranslation nsb5:id="NT02_34828025">

> <ns10:type>0THER:ICAO0</ns10:type>

3 <ns10:formattedText>

| <html:div xmlns:html="http://www.w3.0rg/1999/xhtml"

xmlns="http://www.aixm.aero/schema/5.1/message"

xmlns:aixm="http://www.aixm.aero/schema/5.1" >

7 <! [CDATA[<P align=left>04/103 NOTAMR<BR><B>Q) </B>ZNY/QMXLC/IV/NBO
/A/000/999/4038N07346W005<BR><B>A) </B>KJFK<BR><B>B) </B
>1404070918<BR><B>C) </B>1505252359EST<BR><B>E) </B>TWY D BTN
TWY C AND HANGAR 7 RAMP CLSD<BR></P>]]></html:div>

8 </html:div>

9 </ns10:formattedText>

10 ..

11 </ns10:NOTAMTranslation>

o o

Listing 4.9: Example of a NOTAM including formatted text.

Listing 4.9 shows that besides using blanks and line breaks, AIXM 5.1 pro-
vides the possibility to format text using HTML elements. This format-
ted text is used inside the AIXM attribute <formattedText>. The text is
mapped as the OL attribute value of the OL attribute formattedText includ-
ing the HTML tags. Preserving these HT'ML tags in the OL attribute value
preserves the formatting. Furthermore the namespaces inside the HTML
tags are kept and processed as described before. This approach avoids loss
of information since the formatting is preserved (Requirement 3.1)

4.2.3 Attributes of AIXM Attributes

AIXM attributes can contain content or they can be used to encode associ-
ations between AIXM features. Beside that there can be AIXM attributes
which contain additional information represented by various XML attributes.
Since only the AIXM attributes are added as OL attributes to OL objects
the attributes of the AIXM attribute would be lost. Due to the fact that
no information may be lost in the mapping process, a solution needs to be
found (Requirement 3.1).
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1 <nsb5:TimePeriod nsb5:id="Event TS_TP_1_34828025">
> <nsb5:beginPosition>2013-02-12T21:51:00.000Z</ns5:beginPosition>
<nsb:endPosition indeterminatePosition="unknown" xsi:nil="true" xmlns
:xsi="http://www.w3.o0org/2001/XMLSchema-instance"/>
1 </ns5:TimePeriod>

Listing 4.10: AIXM attribute with multiple attributes.

Listing 4.10 depicts the two AIXM attributes <nsb:beginPosition> and
<nsb:endPosition>. Both represent OL attributes but the second one
contains additional XML attributes. A possible solution to map them to
the corresponding OL representation is to introduce a new OL object for
AIXM attributes. AIXM attributes are added as f-molecules including the
XML attributes as OL attributes. The upper OL object stores a reference
to the AIXM attribute by adding an OL attribute referring to it. In order
to refer to the attribute OL object an identifier is needed. The genera-
tion of OL objects without an identifier is described in detail in Section 4.2.5.

1 Event_TS_TP_1_34828025:ns5#TimePeriod [ns#beginPosition -> "2013-02-12
T21:51:00.000Z", nsb#endPosition ->
uuid_b9024736_3a25_4c92_9b2f_bfc0e29ae31b] .

3 uuid_b9024736_3a25_4c92_9b2f _bfc0e29ae31b:ns5#endPosition[
indeterminatePosition -> "unknown", xsi#nil -> "true"].

Listing 4.11: Handling multiple XML attributes of AIXM attributes using
OL attribute objects.

As shown in Listing 4.11, the f-molecule representing an OL object is created
for the AIXM attribute <ns5:endPosition> including its XML attributes
as OL attributes. The AIXM attribute <ns5:beginPosition> is mapped as
already described in Section 4.1.

Another approach is to treat the AIXM attributes, which contain
multiple XML attributes, as normal AIXM attributes. In order to prevent
information loss by not mapping the XML attributes of the AIXM attribute,
they are included as OL attributes with a parameter in the parent OL
object. The parameter is named after the XML attribute name in the AIXM
attribute. The XML attribute value is assigned to the OL attribute value.
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| Event_TS_TP_1_34828025:ns5#TimePeriod [ns#beginPosition -> "2013-02-12
T21:51:00.000Z", nsb#endPosition(indeterminatePosition) -> "unknown
", nsb#endPosition(xsi#nil) -> "true"].
Listing 4.12: Handling multiple AIXM attribute attributes with OL
attributes including parameters.

Listing 4.12 depicts the mapping of XML attributes of an AIXM attributes
by using OL attributes. As stated in Section 2.4 these OL attributes are
actually methods which can receive a parameter. This parameter is the
name of the XML attribute and the value is the one of the XML element
attributes. It is important to note that XML attributes of AIXM features
are still added as OL attributes without parameters.

The second approach is chosen for the implementation since the first
approach has drawbacks. The first approach provides a way to avoid loss
of information, but it introduces overhead and conflicts with the basic idea
where each AIXM attribute is added as an OL attribute. As depicted in
Listing 4.11, an overhead is introduced by the newly generated f-molecule
for the AIXM attribute. A reference to this f-molecule needs to be added in
the upper OL object and therefore an identifier is created. Furthermore the
readability of the generated OL program is negatively affected due to newly
added lines containing f-molecules. In addition to that future work based
on the OL statements will have to interpret OL objects differently since
they can represent "real" OL objects or OL objects representing attributes.
Moreover, a new OL attribute must be defined to store text content since
the name of AIXM attribute is already used as the OL class term.

4.2.4 Processing Timestamp

As defined in Requirement 3.5 the data sources need to be enriched by
additional information. This additional information includes a detection
time stamp which records the time when the NOTAM has been mapped.
The detection time stamp is used to find newly added or updated NOTAMs.
To establish this, a new XML attribute detectionTimestamp is added to
the AIXM feature before it is mapped. During the processing this new XML
attribute of the AIXM feature is mapped and added as an OL attribute to
the OL object as depicted in Listing 4.13.



CHAPTER 4. MAPPING APPROACH o8

1 FNS_ID_3381098:ns13#AIXMBasicMessage [nsb#id->"FNS_ID_3381098", nsb#
boundedBy (xsi#nil)->"true", nsi3#hasMember->{Airport_1_3381098,
Event_1_3381098}, detectionTimestamp->"2015-07-02T10:44:34.483Z"].

Listing 4.13: F-molecule of a NOTAM including a detection timestamp.

However it is more efficient to directly add the time stamp as an OL at-
tribute value to the f-molecule of the NOTAM instead of manipulating the
XML document and mapping it. The detection time stamp is added in
the following format "yyyy-MM-dd'T’"HH:mm:ss.SSS’Z’" which corresponds
to the date format of AIXM in order to ease later computational steps.

4.2.5 XML Elements with missing Identifiers

XML elements which are detected as OL objects need to have an identifier.
As described in Section 4.1 this identifier is used as the id-term of the
resulting f-molecule. XML elements which represent AIXM features usually
contain an identifier. However there are cases where the identifier is not
available (Requirement 4.2). For example when preprocessing steps add
new XML elements or create new OL objects they need to set an id-term.
Therefore an identifier needs to be generated. As stated in Requirement 4.2
the identifier must be unique and universal.

As mentioned in Section 2.3.5 AIXM relies on UUID as feature iden-
tification. Therefore an UUID generator is used to create missing identifiers.
The RFC 4122 defines the structure of an UUID (Leach et al., 2005). The
intention of UUID is to provide uniqueness across space and time. It is
128 bits long and requires no central registration process. An automated
generation on demand can be done based on the fact that no centralized
authority is required to administer them. UUIDs are represented in their
canonical form by a sequence of thirty-two hexadecimal digits. As depicted
in Listing 4.14 these digits are grouped into a sequence of eight, four, four,
four and twelve digits.

1 £81d4fae-7dec-11d0-a765-00a0c91e6bf6
Listing 4.14: Example of an UUID.

The formal definition is based on (Crocker & Overell, 2005) and follows the
Augmented Backus-Naur Form (ABNF).
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1

%

UUID = time-low "-" time-mid "-" time-high-and-version "-"

clock-seq-and-reserved clock-seq-low "-" node

time-low = 4hex(Octet

5 time-mid = 2hex0Octet

; time-high-and-version = 2hex0Octet

clock-seq-and-reserved = hexOctet

clock-seq-low = hexOctet

node = 6hexOctet

hexOctet = hexDigit hexDigit

hexDigit =

IIOII / lllll / ll2|l / Il3ll / Il4l| / |I5Il / ll6ll / Il7ll / Il8l| / |I9l| /
3 llall / llbll / IICII / Ildll / llell / llfll /

IIAll / IIBII / I|C|l / IlDlI / IlEll / IIFII

Listing 4.15: Formal UUID string representation according to (Leach et
al., 2005).

There are five different implementations of UUID generators, where each of
them implements a different algorithm.

Version 1: As stated before the UUID consists of 128 bits resulting in

sixteen octets (Leach et al., 2005). Version 1 represents the basic
implementation and is based on the Media-Access-Control (MAC) ad-
dress and a time stamp. A MAC address is used to identify a network
device and represents the uniqueness across space. Version 1 uses
a sixty-bit time stamp, which represents the Coordinated Universal
Time (UTC) counting the 100-nanosecond intervals since 00:00:00.00,
15 October 1582. The time stamp is used to represent the uniqueness
across time. As depicted in Listing 4.15 it is split into octets where the
first four octets represent the low field of the time stamp (time-low).
The following two octets represent the middle field of the time stamp
(time-mid) and the last two octets represent the high field of the time
stamp multiplexed with the version number (time-hi-and-version).
The version number determines the implementation variant of the
UUID. It is located in the most significant 4 bits of the time stamp
(bits 4 to 7 of the time_hi_and_version field). The next two octets
are based on the clock sequences which are used to avoid duplicates
that could occur when the clock is set backwards in time. A random
number is used to initialize the clock sequence in order to minimize
the correlation across systems. The clock sequence is split into two
octets. The first octet includes the high field of the clock sequence
multiplexed with the variant (clock_seq_and_reserved). The second
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octet includes the low field of the clock sequence (clock_seq_low).
The last six octets are used to store the host address respectively the
MAC address of the network card. Systems without a MAC address
will use a randomly generated value.

The chance of a collision in generated UUID in Verison 1 does
not actually exist, due to the fact that it represents a single point in
space (computed using the MAC) and time (the number of intervals).
Even if two UUIDs are generated in the same interval of nanoseconds
the time stamp will be incremented by one. This prevents collisions
in a reliable way. However, it was shown that collisions can occur.
One use case which causes collisions is when the MAC is spoofed and
thereby possibly not unique any more. Another way to cause collisions
is if UUIDs are generated on a device without a MAC address due
to a missing network card. Another drawback, besides the chance
of collisions, of this version is that it reveals the time when it is
generated and the identity of the computer. Therefore other versions
were developed.

Version 2: The Version 2 is also known as the Distributed Computing
Environment (DCE) Security version (Leach et al., 2005). It is similar
to Version 1 except that the first four octets of the time stamp are
replaced by the Portable Operating System Interface (POSIX) User
Identifier (UID) of the user (The Open Group, 1997). Furthermore
the last octet of the clock sequence is replaced by a POSIX UID
domain identifier. Due to this reduced clock size it is going to produce
collisions sooner than Version 1.

Version 3 and 5: Both versions are based on generating UUIDs from
names using hash functions (Leach et al., 2005). These names should
be unique such as textual names or namespaces. Therefore Uniform
Resource Locators (URLs) or domain names are mostly used. The
generation algorithm has to generate always the same UUID based
on a given name in a namespace. Furthermore two UUIDs generated
from two different names in the same or different namespace should
be different. Version 3 uses the Message Digest 5 (MD5) Algorithm
defined in RFC 1321 (Rivest, 1992). The MD5 algorithm generates
a 128 bit hash output based on the given input which is truncated
to the 122 bits available in the UUID since six bits are reserved for
fixed values. The use of MD5 in one system will probably lead to
no collision but on a global scale it can lead to collision as shown in
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(Selinger, 2006) and (Stevens, 2006). (Stevens, 2007) has shown, that
collisions can occur after 233 invocations. The structure of Version 3
differs because for the construction of the time stamp the MD5 hash of
the given name is used instead of the interval of the nanoseconds. Also
the clock sequence and the node are generated from the given name.
Version 5 is similar to Version 3 except that for the generation the
algorithm Secure Hash Algorithm (SHA-1) is used (U.S. Department
of Commerce & National Institute of Standards and Technology, 2012).
The SHA-1 provides a 160 bit hash which is also truncated to 122 bit.
As shown by (Rijmen & Oswald, 2005) a collision by obtaining SHA-1
hashes from small messages can occur after 253 invocations. Generic
algorithms can obtain a collision after 280 invocations on average.

Version 4: UUID Version 4 relies on a random number (Leach et al., 2005).
The first six bits are reserved, where the first four of them represent
the version number. The remaining 122 bits are set using a random
number. That means that the sixty-bit value of the time stamp, the
fourteen-bit value of the clock and the forty eight-bit value of the node
are randomly generated.

As shown in (Suzuki, Tonien, Kurosawa, & Toyota, 2006), the birthday
paradox can be used to calculate the chance of a collision of two Version
4 UUIDs. The birthday paradox shows that in contrast to the human
intuition a low number of randomly assigned people is needed to find a
pair with the same birthday date. This paradox can also be applied to
the probability of collisions within a randomly generated number based
on 122 bits. The chance is approximated using the formula p(n) =~

11— e_g where the number of already generated UUIDs relates to 2"
and x is the number of bits occupied by the random number. The
Table 4.1 shows the resulting probabilities which result by applying
the formula on the UUID generation.

After creating 1,12 quadrillion (2°°) UUIDs the probability of causing
a collision while generating the next one is 1,1921 * 10~7.

Based on these insights of the different versions and their uniqueness a
decision can be made. Version 1 can provide reliable UUIDs regarding
uniqueness if the issues regarding the MAC spoofing and machines with no
MAC address can be handled. However as long as this cannot be ensured,
Version 1 and Version 2 cannot be used. Version 3 and Version 5 are
both based on hash functions which use names and namespaces in order
to generate a hash. As mentioned before, collisions can occur after 233
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Table 4.1: Approximated probability of a collision after 2" UUID calculations

Calculates UUIDs (n) Collision Probability
240 — 1099511627776 1,1369 * 10713
245 = 35184372088832 1,1641 * 10710
250 = 1125899906842624 1,1921 * 1077
255 = 36028797018963968 107

260 — 1152921504606846976 0,1175
205 — 36803488147419103232  0,9999

and 2% invocations. However, both are based on names and namespaces

which again need to be distinguishable in order to create unique hashes.
Therefore Version 4, which relies completely on random numbers, is preferred.

As shown in Listing 4.16 the AIXM UUID identifier consists of a pre-
fix uuid which is append to the value of the id attribute. The Listing 4.16
shows that the prefix uuid is set at the beginning of the identifiers’ value.

1 <aixm:SpecialNavigationStation gml:id="uuid.b9024736-3a25-4c92-9b2f-
bfcOe29ae31b">
2 <gml:identifier codeSpace="urn:uuid:">
b9024736-3a25-4c92-9b2f-bfc0e29ae31b
</gml:identifier>
<aixm:featureMetadata>
¢ <gmd:MD_Metadata>

Listing 4.16: UUID of an AIXM feature.

This format is kept in order to be consistent with other elements. In OL
id-terms have to start with a character to be valid. Appending the uuid
prefix prevents id-terms containing UUIDs to be invalid since UUIDs can be
generated starting with a number. Besides that, the hyphens in the UUID
need to be replaced with underscores. In OL the hyphens are reserved since
they are a part of the assignment "->" of OL attribute values to OL attributes.

Moreover, the "." character is reserved in OL to declare the end of a statement.
Therefore it is also replaced by an underscore as shown in Listing 4.17.
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1 uuid.b9024736-3a25-4c92-9b2f-bfcO0e29ae31b // invalid OL id-term
> uuid_b9024736_3a25_4c92_9b2f bfc0e29ae31b // valid OL id-term

Listing 4.17: Invalid and valid OL id-terms.

The Listing 4.18 depicts an excerpt of an AIXM feature which is recognized
as an OL object element without an existing identifier.

| <aixm:SpecialNavigationStation>
2 <aixm:featureMetadata>
<gmd :MD_Metadata>

Listing 4.18: AIXM feature without an identifier.

Therefore an identifier is generated using a UUID Version 4 generator. This
UUID is manipulated by replacing all hyphens with underscores and adding
the uwuid_ prefix in front of the UUID value. After this, the identifier is
added to the AIXM feature as an XML attribute. This XML attribute is
then mapped according to Section 4.2.3.

1 uuid_b9024736_3a25_4c92_9b2f_bfc0e29ae31b:aixm#SpecialNavigationStation
[id->" uuid_b9024736_3a25_4c92_9b2f_bfcOe29ae31b", aixm#
featureMetadata -> uuid_7ee612af_15a5_4468_807d_3c8ae33649c3] .

2 uuid_7ee612af_15a5_4468_807d_3c8ae33649c3:gmd#MD_Metadatal[id->"
uuid_7ee612af_15ab_4468_807d_3c8ae33649c3"].

Listing 4.19: F-molecule including newly generated identifier for the
AIXM features.

Listing 4.19 shows the resulting f-molecule including the newly generated
identifiers. For both AIXM features SpecialNavigationStation and for
the sub AIXM feature MD_Metadata an identifier is generated.

4.2.6 Link Resolution

As stated in Requirement 3.2 local references inside an XML document must
be resolved. Therefore the identifier of the referred XML element has to be
used instead of the XLink reference statement. Section 2.3.5 describes the
referencing capabilities of AIXM. It is stated that AIXM provides internal
and external references by using XLink. Internal references refer to existing
XML elements inside the XML document.
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As shown in Listing 4.20 line twelve, the XML element with the iden-
tifier Event_1 3246418 is being referred. Therefore the locator attribute
href is used which allows an XLink application to find a remote or locale
resource. However, the locator attribute xlink:href can only identify a
resource which represents an XML document. To refer to a specific XML
element the XML Pointer Language (xPointer) is used. An XPointer allows
to link to a specific fragment of an XML document by using XML Path
Language (xPath) expressions. Therefore the "#"-sign, which indicates that
the local XML document represents the resource, followed by the target
identifier is used.

<ns13:AIXMBasicMessage nsb5:id="FNS_ID_32464181">

<ns13:hasMember>
<ns6:AirportHeliport ns5:id="Airport_1_3246418">
5 <ns5:boundedBy xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:nil="true"/>
6 <ns6:timeSlice>
7 <ns6:AirportHeliportTimeSlice nsb5:id="Airport_TS_1_3246418">

9 <ns6:extension>

10 <ns10:AirportHeliportExtension ns5:id="AHE_EVENT_1_3246418">

11 <!-- Reference to other AIXM XML feature -->

12 <ns10:theEvent xmlns:ns2="http://www.w3.org/1999/x1link"
ns2:href="#Event_1_3246418"/>

13 </ns10:AirportHeliportExtension>

14 </ns6:extension>

15 </ns6:AirportHeliportTimeSlice>

16 </ns6:timeSlice>

17 </ns6:AirportHeliport>

15 </ns13:hasMember>

19 <ns13:hasMember>

20 <ns10:Event ns5:id="Event_1_3246418" xmlns:ns10="http://www.aixm.

aero/schema/5.1/event">

NN

2 </ns10:Event>

3 </ns13:hasMember>

4 </ns13:AIXMBasicMessage>

Listing 4.20: Local reference within an XML document and the XLink
target.

N

The reference in Listing 4.20 is mapped according to Section 4.2.3 since it
is detected as an XML attribute of an XML element representing an OL
attribute. The mapping output of this is depicted in Listing 4.21.
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| AHE_EVENT_1_3246418:ns10#AirportHeliportExtension [ns5#id="
AHE_EVENT_1_3246418", ns10#theEvent (ns2#href)->"#Event_1_34058787
"] .
Listing 4.21: Mapping of references as XML attributes of AIXM
attributes.

However, the reference value is not resolved since it is still treated as a literal
instead as an id-term. The mapping described in Section 4.2.3 needs to be
adapted for links. Instead of referring to the OL object identifier literal, the
OL attribute refers directly to the OL object. In order to distinguish local
from external references the parameter ns2#href respectively xlink#href is
replaced by ref (Listing 4.22). This makes it easier to detect local references
in the OL representation.

| AHE_EVENT_1_3246418:ns10#AirportHeliportExtension [ns5#id="
AHE_EVENT_1_3246418", ns1O#theEvent (ref)->Event_1_34058787].

Listing 4.22: Mapping of resolved references.

Beside local references, AIXM supports concrete external references where
information about referred AIXM features is available via web services.
Again XLink in combination with XPointer is used to refer to these
resources. Instead of providing just the identifier of the referred XML
element, an URL is additionally used. The URL will be resolved to an XML
document which contains the XML element which is referred using a "#'
and the identifier (Listing 4.23).

| <aixm:clientAirspace nsb:id="CA_1_3246418" xlink:href="http://aim.faa.
gov/services/AirspaceService#uuid.a82b3fc9-4aad4-4e67-8def—
aaealacb95j"/>

3 <aixm:clientAirspace ns5:id="CA_1_3246418"

. xlink:href="http://aim.faa.gov/services/AirspaceService?get=a82b3fc9-4
aa4-4e67-8defaaealac595j#xmlns (nsl=http://www.opengis.net/gml/3.2)
xmlns (ns2=http://www.aixm.aero/schema/5.1)xpointer(//ns2:Airspacel[

nsl:identifier=’a82b3fc9-4aa4-4e67-8def-aaealac595j’])"/>

Listing 4.23: Simple and complex remote XLink statement with an
XPointer reference.

Both references in Listing 4.23 refer to the same XML element. The first
reference uses a simple XLink syntax whereas the second one defines the
reference in a more detailed way. However since both are external references



CHAPTER 4. MAPPING APPROACH 66

they are not resolved during the mapping. Both are mapped according to
Section 4.2.3 since they are detected as XML attributes of an XML element
representing an OL attribute.

4.2.7 Bounding Boxes

Requirement 4.1 defines that the missing bounding box for NOTAMs has
to be calculated and added to the NOTAM and its features. A bounding
box represents the minimum rectangle which is oriented to the x- and
y-axes in order to enclose a geographic feature of a geographic dataset
(Caldwell, 2005). It is also known as Minimum Bounding Rectangle (MBR)
or envelope. As depicted in Figure 4.1, the bounding box is specified by
two geographic coordinates which define the minimum x- and y-value and
the maximum x- and y-value. The coordinates are determined by two
longitudes and two latitudes representing the western-most, eastern-most,
northern-most and southern most limits.

X 4
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Figure 4.1: Geographic coordinates of the bounding box of the JFK Airport.

There exist several other bounding container shapes beside bounding boxes
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such as bounding parallelograms, circles, balls or ellipses (Caldwell, 2005).
The bounding box is the simplest bounding container and requires the least
computational effort which is why it is mostly used. Due to the low computa-
tional effort it is used in many geometry applications for collision avoidance,
ray tracing or hidden object detection. Moreover it is used for spatial index
schemes which use them to subdivide space. In the SemNOTAM system it is
used to detect overlaps in order to find relevant NOTAMs for a given GML
shape.

€f
.

Figure 4.2: Visualization of a GML envelope.

In GML the bounding box is encoded as the Envelope XML element (Cox,
Daisey, Lake, Portele, & Whiteside, 2005, p. 59). As depicted in Figure 4.2
an envelope determines the area "by using a pair of positions defining
opposite corners in arbitrary dimensions'. The north-east coordinate
determines the upperCorner and the south-west coordinate determines the
lowerCorner of the GML envelope (Listing 4.24). Moreover, the XML
element is associated to an XML element which represents an AIXM feature
by the AIXM attribute <gml:boundedBy>. As stated in Requirement 4.1
the bounding box respectively the GML envelope has to be calculated for
the NOTAM as well as the AIXM features within it. This has to be done
when no bounding box exists but a geographic data is available.
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1 <gml:boundedBy>
2 <gml:Envelope srsName="urn:ogc:def:crs:EPSG::4326">
<gml:lowerCorner>-32.0886111111111 -47.0</gml:lowerCorner>
4 <gml :upperCorner>57.690815969999996 52.4283333333333</gml:
upperCorner>
</gml:Envelope>
6 </gml:boundedBy>

Listing 4.24: Example of an XML GML envelope.

Since bounding boxes are used to enclose geographical datasets, they have
to capture two use cases. The first one is a dataset containing multiple
geographic points which can represent various GML shapes. The second use
case is a dataset with only one geographic point in it. The bounding box
depicted in Figure 4.2 represents a dataset containing multiple geographic
points representing a so called linear ring. It depicts the path of a runway of
the John F. Kennedy International Airport. In order to calculate the bound-
ing box the western-most, eastern-most, northern-most and southern-most
points of the dataset need to be determined. Therefore the coordinates of the
points need to be compared. The northern-most point is characterized by the
maximum latitude value whereas the southern-most point is determined by
the minimum latitude. Similar to this the western-most point is determined
by the point with the minimal longitude value whereas the eastern-most is
determined by the maximal longitude value of a point.

However, the bounding box calculation for one geographic point in a
dataset is more complex. To calculate a bounding box for a single point,
additional information such as the radius of the bounding box is needed.
As depicted in Figure 4.3 the radius is used to determine the distance from
the given GML point to the points which are needed to calculated the GML
envelope. The center point is the given GML point for an AIXM feature
such as the airport reference point of an airport. It represents the center
of the circle which is used to determine the western-most, eastern-most,
northern-most and southern-most points. These points can be determined
by using the Harversine Formula which assumes that the earths’ surface can
be represented by a sphere (United States Census Bureau, 1997). Specifying
the azimuth (angle) and distance (radius) from a given point, a new one
can be calculated. Another algorithm for calculating points is represented
in (Vincenty, 1975). In contrast ot the Harversine Formula this algorithm
assumes that the earths’ surface is an ellipsoid. Since the earths shape is
more similar to an ellipsoid than to a sphere the algorithm of Vincenty
(1975) leads to more accurate results.
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After the points are calculated they can be used to determine the
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Figure 4.3: Bounding box calculation for one geographic point.

upper and lower corner of the bounding box as depicted in Figure 4.3. The
latitude of the north-point and the longitude of the east-point determine
the upper corner. The latitude of the south-point and the longitude of the
west-point determine the lower corner. The calculated corners are then
added in the XML document as a GML envelope as depicted in Listing 4.24.
Since this is a preprocessing step it is added to the XML document instead
of adding it directly to the mapped f-molecule.

As mentioned before, a NOTAM can contain multiple features which
can contain GML points and therefore may require a bounding box calcula-
tion. Beside this, each NOTAM has its own bounding box. This bounding
box of the NOTAM is the outer one which encloses all GML points included
in the features’ bounding boxes. For the calculation of the NOTAMSs’
bounding box all GML points of all features must be considered. However it
is easier to access the already calculated bounding boxes and use the corner
points for the calculation of the outer bounding box. It is not necessary to
access all GML points again after the bounding boxes for the NOTAMSs’
features were calculated.
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As stated in Section 3.3 the interpretation of GML information espe-
cially the coordinates depends on the given CRS. CRSs are required due
to the distortions which occur during the plotting of the earths surface
onto a 2D map. CRSs define how the earths surface can be mapped to
latitude and longitude coordinates and how this mapping can be projected
on a map (Frazier, 2013). As mentioned before, the earths’ shape can be
modeled using a sphere or an ellipsoid. An ellipsoid shape is preferred
since the earth is slightly distorted at the equator. Datums are defined to
anchor the abstract coordinates to the earth. They specify an origin point
of the coordinate axes and their direction resulting in a 3D ellipse or sphere
with latitude and longitude coordinates. Multiple projections such as a
cone, plane, or cylindrical one can be used to represent the 3D globe to a
2D map representation. Figure 4.4 depicts a cylindrical projection of the
earths surface. As shown the projection of the surfaces causes distortions.
Especially the area at the top and the bottom of the projection is distorted.
Angles and distances are preserved. Due to the occurring distortions other
projections are used depending on which distortion should be minimized.
As shown in Listing 4.24 the CRS is encoded in the attribute srsName. This
srsName needs to be resolved to find the corresponding CRS. Due to the
different projections the interpretations of the given coordinates depends on
the CRS.
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by
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Figure 4.4: Cylindrical projection of the earths surface®.

Since NOTAMs can include GML datasets of worldwide locations it is possi-
ble that different CRSs are used to encode the data. Therefore the datasets
need to be transformed to a common CRS in oder to align them with each
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other. This transformation ensures that the units are interpreted the same
way.

4.3 Mapping Technologies

The mapping of the structured data sources to the corresponding OL
representation is the central task of the mapper. It is needed to fulfill
the Requirement 2.1, Requirement 2.2, and Requirement 2.3. Therefore
a suitable technology must be found. This section provides an overview
of existing transformation technologies for mapping XML documents.
Each technology is analyzed and a prototype of the mapper is imple-
mented with it. The prototype includes all basic steps excluding the
preprocessing step such as the GML handling. However, the preprocessing
steps have to be considered while selecting the technology. Finally the
implementations are compared and the best performing technology is chosen.

As mentioned before, the technologies represent transformation tech-
nologies for mapping XML documents. Compiling technologies are not
evaluated since the mapping task differs from a compiling task. Compiling
covers the transformation of a source code written in programming language
into another programming or computer language (Aho & Ullman, 1972,
p. 59 ff.). It is mostly used to transform source code from a high-level
programming language (source language) to a lower level programming
language (target language). The source code written in the source language
represents a string of characters which is converted by a compiler to object
code. The compilation task is split into two phases. The analysis phase is
used to analyze the lexical structure in order to retrieve lexical units called
tokens. Tokens can represent keywords, strings, operators or numbers.
Moreover, the syntax analysis checks whether the source code corresponds
to the predefined syntax respectively grammar of the source programming
language. The semantic analysis checks whether the source code follows
predefined rules. Examples for such rules can be that a variable must be
declared before it is used or that only a value of the corresponding type must
assigned to it. The result of the first phase is a decorated syntax tree. After
the analysis phase is finished, the second phase starts. This generation phase
uses the decorated syntax tree and creates programming code of the target
language which is optimized according to data-flow and dependence analyses.

'https://commons.wikimedia.org/wiki/File:Usgs_map_miller_cylindrical
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In contrast to that, the mapping task does not transform a source
programming language into a target programming language. It transforms
XML, which is a markup language for documents, into the knowledge-
representation language OL. There is no programming source code which
will mapped to a target programming language. However, the basic idea of
compiling can be applied. In the analysis phase the bit sequence representing
the XML document must be converted to a character sequence which can
be used for lexical analysis (Lam, Ding, & Liu, 2008). The result of this are
tokens such as start/end XML elements, attributes names and values, and
text. The syntax and the semantic of the data sources are predefined by
the XML syntax and their corresponding XSD documents. As mentioned
in Section 2.3.1 the XML syntax determines the well-formedness and the
XSD document determines the validity. The result of the first phase is a
model representing a tree or events depending on the used XML technology.
The model is used in the second phase in order to map it to OL statements
representing OL objects and attributes. Since f-molecules are used instead
of single F-atoms and data-F-atoms an optimization is performed. Besides
that the source representation is enriched by additional information or
handling missing information.

In order to map XML documents to OL statements the technologies
must provide the possibility to access the XML document structure and de-
fine transformation rules. The accessing of the XML document corresponds
to the analysis phase which is supported by various XML parsers. Numerous
processing technologies which support the parsing of XML documents can
be found. XSLT, XQuery, and directly using XML parsers such as SAX,
StAX, and DOM are the most common ones. The following subsections will
analyze each of them.

4.3.1 XSLT

XSLT is a part of the Extensible Styling Language (XSL) which was
developed to perform complex styling operations on XML documents (Lam
et al., 2008). In contrast to Cascading Style Sheets (CSS), which are used
to format HTML, the XSL styling sheets use an XML notation in order to
format XML documents. Every XSLT stylesheet is a valid XML document
since it follows the XML notation. Beside the formating capabilities of XSL,
XSLT allows to transform XML documents by applying XSLT stylesheets
to other XML documents, HTML pages, plain text, or other representations
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(W3C, 2007). XPath is included as a subset of XSLT and is primarily used
to identify subsets of the XML document tree. Beside that it can be used
to perform calculations. XPath also provides various functions which enrich
the restricted capabilities of XSLT.

The data model which is used in XSLT is the XQuery and XPath
data model (XDM) (IBM, 2010). XDM represents the content of an XML
document as a tree structure. This tree structure is described using a se-
quence of items. An item is either an atomic value or a node. Atomic values
are represented by the built-in atomic data types defined in the XML Schema
such as strings, dates or integers. Nodes are characterized by properties
which indicate its name, attributes, parent, children or other information.
There are seven different kinds of nodes which are supported by XDM.
Each kind indicates whether the node is a document, attribute, element,
text node, processing instruction, or namespace. Moreover the XDM stores
the node identity and the hierarchy of the document and therefore each node.

XSLT is based on pattern-matches and templates. The pattern-matches are
determined by XPath expressions selecting specific elements of the XDM.
A template contains rules which are triggered when a pattern-match is
detected. The template defines the transformation and the output. Further-
more advanced processing steps can be executed. XSLT allows to define and
read variables, however they cannot be altered after they are bound (De
Schrijver, De Neve, Van Deursen, De Cock, & de Walle, 2006). Besides that
it allows to define control flows providing choices or loops. These control
flow elements again use XPath expressions. Moreover, templates can be
reused and therefore used to modularize the XSLT stylesheet.

Figure 4.5 depicts the XSLT transformation process. One or more XML doc-
uments and one or more XSLT stylesheets can be used as input files. The
XSLT processor starts with reading and preparing the XSLT stylesheets.
After that the processor builds a source tree based on the given XML doc-
uments. The built source tree is processed by finding the best-matching
template for a given XML node. When the template is identified it is in-
stantiated and recursively applied to the XML node in the source tree. The
result is either the creation of a node in the result tree or the processing of
other nodes in the source tree. Finally, after the XSLT processor finished
the processing of the source tree and the applying of XSLT templates the
resulting result tree is output.
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XLST
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Result

XSLT — | Document

Processor

XML
Document

Figure 4.5: XSLT transformation process (W3C, 2007).

XSLT Prototype Implementation: XSLT allows to implement a
prototype which covers main features of the mapping concept as depicted
in Listing B.1. However there is a huge drawback of this solution. The
recursive approach cannot be applied easily since the XSLT processor
directly creates an output. The recursive approach would result in nested
f-molecules. However, the recursion is needed to iterate through the XML
tree representing the source data. The problem is that XML elements
exist which have no identifier. For these XML elements an identifier
according to Section 2.4 needs to be generated. As stated in Section 4.1
this identifier is used in the OL f-molecule of an XML feature element
as an OL attribute value in order to store the associations to other OL
objects. However this identifier needs to be passed recursively to sub XML el-
ements which use this identifier as the id-term for the mapped OL f-molecule.

This issue can be overcome by changing the recursion to an end re-
cursive approach. However, this cannot be easily established in XSLT
stylesheets since variables cannot be reassigned to new values and no
additional data model can be defined within the scope of XSLT. Moreover
it is not trivial to return the output as the return value of a template
without directly outputting it. Another solution would be to preprocess
the whole XML input document and add missing identifiers before it is
transformed with XSLT. However, other preprocessing steps such as the
GML handling must be conducted before in order to prevent XML elements
without identifiers.
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This shows that the implementation is possible but it would result in
complex and hardly maintainable XSLT stylesheets. In contrast to the
XQuery and DOM approach the XSLT implementation would not al-
low to easily extend the existing implementation which contradicts the
Requirement 3.3.

4.3.2 XQuery and BaseX

XQuery is a functional programming and query language used for querying
and transforming data (W3C, 2014). The accessed data is usually rep-
resented as XML documents, but other data formats such as plain text,
relational database, or JavaScript Object Notation (JSON) can be accessed
using extensions. Similar to XSLT, XPath is a subset of XQuery. Both
XSLT and XQuery are developed by the World Wide Web Consortium
(W3C) which is also responsible for XPath. Moreover, XSLT and XQuery
share the same data model XDM which is described in Section 4.3.1.
XQuery allows to select documents and elements regarding their content,
attributes, or structure. Moreover it allows to merge sequences of elements
to new elements.

Since XQuery was initially developed to provide a query language for
XML databases it is inspired by Structured Query Language (SQL) which
is used to query relational databases (W3C, 2014). XQuery provides
FLWOR expressions which are similar to the SELECT statements of SQL.
FLWOR expressions allow to bind variables, iterate through sequences,
and to define pattern for the result. A FLWOR expressions consists of
the five clauses FOR, LET, WHERE, ORDER BY, RETURN. However a
valid FLWOR, expression does not need to contain all of them. The FOR
clause is used to iterate through sequences. Moreover it can be used to
join them in order to create a Cartesian product. A FOR clause is always
returning a sequence using the RETURN clause. The ORDER BY clause
allows to sort the items within the sequence in an ascending or descending
manner. In order to filter the returned items of the sequence it is possible
to define WHERE clauses which check whether a logical expression is
fulfilled by the item or not. Beside FLWOR expressions, XQuery provides
the possibility to union, intersect, or except sequences. Aggregate and
arithmetic functions are also supported as well as control flow clauses. It
is important to note that FLWOR expression can be nested within each
other. Moreover variables can be bound to the returned sequence. In order
to modularize the queries it is possible to define own or use existing functions.
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1 (: query all notams encoded as AIXMBasicMessages :)
> let $notams := (
for $element in doc($db)//* where local-name($element) = "
ATIXMBasicMessage" order by xs:date($element/@detectionTimestamp)
descending
| return $element

Listing 4.25: Example of a FLWOR expression.

Listing 4.25 depicts a FLWOR expression which returns a sequence which
contains XML nodes with the local name AIXMBasicMessage. Moreover
the sequence is ordered by the attribute value detectionTimestamp in a
descending manner and bound to the variable $notams.

XQuery can be used to directly access single XML documents. How-
ever, usually XQuery is used to query collections of XML documents. As
depicted in Figure 4.6 an XML database is used to store XML document
collections. Besides the storing of multiple XML documents an XML
database allows to use index techniques which increase the performance.
The indexed collections can then be accessed by an XQuery engine which
resolves the query formulated using FLWOR expressions. The retrieved
sequence is returned as the query result.

< XQuery
XML
Document »| Result
7

~ 7

Figure 4.6: XQuery querying and transformation process (W3C, 2014).
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Popular XML databases amongst others are eXistDB?, BaseX?®, and Mark-
Logic*. For the prototype implementation the BaseX XML database is se-
lected due to fact that it provides an XPath and XQuery 3.1 processor and
therefore supports the latest version of XQuery. Furthermore BaseX pro-
vides an easy to use and interactive Graphical User Interface (GUI) frontend
(BaseX, 2015). Structural indexes such as name, path, or resource indexes
can be created. Moreover, value indexes are also supported which allow to
index attributes, text and full-text.

XQuery Prototype Implementation: The XQuery prototype imple-
mentation is depicted in Listing B.2. Since XQuery and XSLT use the same
data model both face the same problems which occurs using recursion. The
outcome of the XQuery results in nested OL f-molecules. However, XQuery
allows to implement an alternative solution using an end recursive approach.
The reason for this can be found in the FLWOR expressions which can easily
be used to retrieve sequences of items without outputting them directly.
This fact is crucial since it allows to return sequences to outer FLWOR
expressions. Especially when missing identifiers are generated they can be
used as a value of the association while still being able to return them to
outer FLWOR expression. The outer-most FLWOR, expression returns all
the sequences which are then used to start the end recursion.

The basic idea of the XQuery prototype implementation is to create a
sequence which contains the mapped f-molecules represented as elements
and text. Later it is mapped to a textual representation of the f-molecules.
The sequence is returned by the end recursion which returns all f-molecule
sequences of AIXM features. The first step is to retrieve all NOTAM
elements stored in the BaseX database (Listing B.2). The implementation
retrieves only the NOTAM data sources since the other two data sources
can be mapped the in the same way. These NOTAM elements represent
the first level of the hierarchy. They are parsed at first by calling the parse
function using an empty identifier and an element as input parameter. An
empty identifier indicates that no identifier was generated and therefore
the identifier of the XML id attribute should be used. Instead of directly
mapping the element to a textual representation a sequence containing the
XML element <fmol> is created. This sequence contains the id-term, the OL
class, the attributes of the element, and the children of the element. These

’http://exist-db.org/exist/apps/homepage/index.html
3http://basex.org/
4http://marklogic.com
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child elements represent AIXM attributes which either include text content
or represent an associations to other AIXM features. The child elements
are looped and for each of them the attribute name, its attributes, the
content, and, most important, the associated AIXM features are stored in
XML elements. The associated AIXM features are stored in the <toParse>
element because they represent the children of the AIXM attribute. Since
the identifier of them is used later as the value of an OL attribute it is
determined and added to the sequence as the element <subobjid>. Besides
that the associated AIXM feature is stored in the element <subobjname>.
After the sequence containing the f-molecule element is build it is returned.
This sequence contains all F-atoms and data-F-atoms of the f-molecule
encoded as elements. However up to now no recursion was started. The
recursion starts when the f-molecules of the associated AIXM features are
parsed. All these AIXM features are stored in the <toParse> element of the
already parsed NOTAMs. Therefore all elements in the <toParse> element
are iterated and for each of them the parse function is called. The value of
the <subobjid> is used as the id parameter and the <subobjname> element
is used as the element parameter. Again a sequence containing the <fmol>
element is build as described above but this time the given parameter is used
as the id-term. After the sequence is build the recursion is started by calling
the parse function for all elements which are included in the <toParse>
element of the newly parsed <fmol> element. When the end recursion is
finished all sequences are returned. Since the element <subobjname> is not
needed anymore it is removed from the sequences. Afterwards the strings
within the sequences are joined and the outcome is combined and returned.

4.3.3 SAX and StAX Parser

SAX and StAX parser are used to efficiently parse huge XML documents.
They do not create a tree structure like in XDM used by XQuery and XSLT.
Instead of building a whole XML document tree, events are created and
fired while performing the lexical analysis (Lam et al., 2008) (Megginson,
2001). Which means that SAX and StAX do not conduct the whole analysis
phase, both stop after lexical analysis. As mentioned before the result of
the lexical analysis are tokens such as start/end XML elements, attribute
names and values, and text. Whenever a token is recognized by the SAX or
StAX parser an event is fired in order to notify the accessing application.
This allows to access partial data before the parsing of the whole XML
document is complete. After the event is fired, the token and the event are
destroyed which prevents a growing memory usage while parsing the entire
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XML document. SAX and StAX parsers allow a memory efficient usage
in contrast to XSLT and XQuery where the whole XML document tree is
stored within the memory.

As depicted in Figure 4.7 SAX implements the so called push model
(Lam et al., 2008). Whenever an event is fired, due to a detection of a token,
the corresponding callback function is invoked. To invoke the corresponding
callback function the application must provide an event handler which is
registered to the parser. The callback functions determine how the event
will be handled. They need to be defined in the accessing application. The
SAX parser loops through the entire XML document and continuously
checks which token is produced from the lexical analysis in order to fire the
corresponding event and invoke thereby the corresponding callback function.

SAX Parser — Push Model

Application
I Invoke nextEvent() invoke callback > /I Callback functions
1l Check event type l—callbackreturns | startElement(...}{...}
XML > /I Invoke callback function

Document Event nextEvent() { . endElement(...){...}

// Parse token, create event, | invokecallback |
7 return event «Ccallback returns

}

Figure 4.7: SAX push parsing approach (Lam et al., 2008).

In contrast to the push model of the SAX parser, the StAX parser is based on
the so called pull model (Figure 4.8). Instead of continuously firing events
and invoking the corresponding callback functions, the StAX parser waits
until the application invokes the lexical analysis of the next token. The
token is then parsed and the corresponding event is fired. This allows the
application to skip uninterested events, in contrast to the SAX parser where
all events must be handled.

Application
StAX Parser — Pull Model .
«—invoke nextEvent()
nextEvent returns ’ /I Invoke nextEvent()
Event nextEvent() {

XML I/l Parse token, create event, /I Check event type

Document return event invoke nextEvent)
} M I/ Handle the event

7 nextEvent returns R

Figure 4.8: StAX pull parsing approach (Lam et al., 2008).

As indicated in Figure 4.7 and Figure 4.8 the transformation of the detected
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tokens must be handled by the application. Since both only provide access
to the parsed tokens, no transformation, query or selection possibilities are
given. The drawback of SAX and StAX is that XPath is not supported since
no XML tree is available.

SAX and StAX Prototype Implementation: Due to the drawback
that the SAX as well as the StAX parser do not provide the capability of
directly selecting specific XML elements a prototype is not implemented. In
order to apply the concepts introduced in Section 4.1 and Section 4.2 the
capability to select specific elements is crucial. Especially the link resolution
depends on this feature. Even if the link resolution can be implemented
with a workaround the GML handling requires the selection capabilities.
Without it the GML elements of the AIXM features cannot be selected which
are needed in order to conduct the bounding box calculation described in
Section 4.2.7.

4.3.4 DOM Parser

"The DOM 1is a platform- and language-neutral interface that will allow
programs and scripts to dynamically access and update the content, struc-
ture and style of documents' (W3C, 2009). It is an API for HTML and
XML documents which specifies the logical structure of documents as a
collection of objects. Moreover, it describes how they can be accessed and
manipulated. DOM is an object model specifying interfaces; it is not a set
of data structures. Relationships such as the child or parent relationship are
defined by logical relationships which are defined by the API. DOM can be
used as a basis for implementing XML applications which process an XML
document as if it were a tree.

Parsers implementing DOM can be used to represent and interact with
objects in XML, HTML, or XHTML documents. In contrast to SAX and
StAX parsers a DOM parser conducts the whole analysis phase returning
an XML tree structure. This tree structure can be accessed using XPath
expressions. Therefore the XML DOM parser provides methods to traverse
the tree structure, access it, and insert new, or delete existing nodes within
it. Moreover, the hierarchical structure of the XML document is preserved.
Similar to XDM, DOM stores the whole tree structure in the memory which
is why it is not as well performing as SAX or StAX parsers.
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DOM Parser — Tree Model

/I Communicate with tokenizer Application
XML R // Build the data structures invoke access | #/Navigate through the data
Document 7| structure
7 /I Data structure completely build

/I Ready for application to access

Figure 4.9: DOM parsing approach (Lam et al., 2008).

Figure 4.9 depicts the DOM parsing process. The DOM parser accesses the
XML document and loops through it. While looping through it the lexical
analysis detects tokens which are added to the construction of the tree. After
the XML document is completely iterated and the data structure is finished,
it is returned to the application. The application can then access the DOM
tree model and navigate through it using XPath expressions. However, the
DOM parser only provides access to the XML document without providing
transformation or query capabilities.

DOM Prototype Implementation: Similar to SAX and StAX the
application needs to implement the mapping task since no transformation or
query capabilities are provided. An object-orientated programming language
is chosen for the application because a DOM XML parser represents the
XML document as an object collection structured as a tree. Besides the
fact that no transformation or query capabilities are provided, no additional
data structures are provided by the DOM parser. Therefore the application
needs to build an appropriate data structure where the parsed elements
and their content can be stored. However, this allows to fully adapt the
implementation according to the requirements.

The prototype implementation is depicted in Listing B.3.  However,
Listing B.3 is not providing the whole source code, it shows the core of the
parser. As mentioned before the application needs to create a data model
to store the mapped data. The data structure consists of an OLProgram
class which contains multiple OLNamespaces and OLFMolecules. The
OLFMolecules store its namespace, the OLClass and the OLAttributes
which are represented by OLObjects. An OLObject is an abstract super
class of OLLiteral and OLLink. This data structure is filled during the
mapping task. The prototype starts with building an XML DOM tree
based on a given input XML document. The root element is selected and
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the mapping is started by calling the parseNode ()-method assigning the
document, the root element, the hierarchy level zero and the name of the
root element as the parent name to it. In the method the level is updated
by checking if the parent has changed. When the parent has changed the
level is increased and the parent is updated to the new one. After the level
is updated it is checked whether the element represents an XML node since
only XML nodes can be either an AIXM feature or an AIXM attribute. Due
to the fact that AIXM features and AIXM attributes are alternating the
element type is determined using a modulo-2-operation.

When an AIXM feature is encountered a new f-molecule is instanti-
ated, initialized and assigned to the OLProgram. For each of the child
elements of the AIXM feature the parseNode ()-method is called starting
the recursion. It stops when no child elements exists. When the modulo-2-
operation encounters an AIXM attribute it is added to the parent f-molecule
as an OL attribute. The value of this OL attribute is either text or
representing an association to another AIXM feature. If it is an association
the identifier of the associated AIXM feature is determined and added as the
OL attribute value of the parent f-molecule. Moreover the level is updated
and the parseNode ()-method is invoked using the AIXM feature as a new
input parameter.

The recursion stops after there are no more AIXM attributes of AIXM
features or if there are no more child AIXM features of AIXM attributes.
The filled data structure contains an OL program which includes all
f-molecules and namespaces. These f-molecules and namespaces are iterated
and output according to their corresponding OL syntax.

4.3.5 FEvaluation and Selection

This sections evaluates the implemented prototypes in oder to select the best
performing technology for the concrete implementation of the mapping task.
The evaluation of the prototypes is conducted by measuring the time which
is required to map a predefined number of NOTAMSs to the corresponding
OL representation. This will show how the prototypes perform while
increasing the workload. The measurements are carried out on a computer
with an fifth generation Intel(R) Core(TM) i7-5500U processor and 8GB
Single Channel DDR3L 1600MHz RAM where one GB is directly assigned
to the prototype application.
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Therefore samples must be obtained in order to measure the time
which is needed by the prototypes to map the given XML data sources. Six
samples are created where each of them contains an logarithm increased
number of NOTAMs. The logarithmic to the base ten is used which leads to
samples containing one, ten, one hundred, 1000, and 10000 NOTAMs. For
each of them the mapping time is measured in milliseconds.

100000

10000 //
1000
/ ——DOM_PRO
100 —XQUERY_PRO

10

Millicseconds

1 10 100 1000 10000
Number of NOTAMs

Figure 4.10: Evaluation of the XQuery and DOM prototype implementation.

Figure 4.10 depicts the line diagram which represents the measurements.
The axes show the time in milliseconds and the number of NOTAMs.
The blue line represents the measurements obtained by the DOM XML
prototype implementation whereas the red line represents the measurements
of the XQuery prototype implementation. Both prototypes map the samples
of one and ten NOTAMs in nearly the same time. However it is shown,
that the XQuery prototype performs slightly better. In contrast to that the
DOM XML prototype outperforms the XQuery prototype while mapping
one hundred NOTAMs. Moreover, it is shown that the red line stops after
one hundred NOTAMs. The reason for that is that the query result size
exceeds the limits of the database when 1000 NOTAMs are mapped. As
shown the DOM XML prototype implementation performs well even with
an increased workload. It supports the mapping of XML sample documents
containing 1000 or 10000 NOTAMs in acceptable time.
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Based on this performance evaluation the DOM XML prototype will
be used for the implementation. Besides the better performance, the
prototype allows to fully adapt the mapping process since no predefined
transformation or query capabilities are used. Moreover, the created data
structure can be reused and modified. It is important to note that the DOM
XML prototype does not require an additional XML database, it accesses
the XML documents directly.

4.4 DOM Extension Capabilities

In this section the extension capabilities of the chosen technology are
delineated and the Requirement 3.3 which defines the extension capabilities
is detailed. Since the DOM technology is selected to parse the XML
input sources the basic parsing steps are described. Moreover, hooks are
introduced which allow the extensions of the parsing steps.

As described in Section 3.2 the main task of the mapping is the trans-
formation of NOTAMSs, queries, and segments to their corresponding OL
representation. Besides these three XML data sources other sources will be
supported in the future since the XML schemas are still being developed.
The introduction of new XML data sources can require to add new mapping
and/or preprocessing tasks to the mapper. Moreover, new exceptions and
restrictions can be introduced with them. As stated in Requirement 3.3
the mapper must provide the possibility to add new mapping and/or
preprocessing tasks without modifying the existing implementation. To
fulfill this the mapper needs to be designed to support future preprocessing
and processing steps.

As long as the introduced XML data sources follow the object-property
model the basic mapping concept of Section 4.1 can be applied without
modifying the mapper. This is possible since the mapping, based on the
object-property model, is not limited to data sources representing NOTAMs,
queries, and segments. Each of them will be mapped to their corresponding
OL representation. This allows the mapper to be used with more than the
three named XML sources. However, processing tasks exceeding the basic
mapping concept requires modifications. Therefore it is necessary that future
modifications can extend the existing implementation without adapting it.
To establish this the behavior of the DOM XML mapper must be modifiable.
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Since the DOM parser does not provide any transformation or query
capabilities traversing and mapping of the DOM tree must be implemented
using a programming language (Section 4.3.4). Therefore the object-
orientated programming language Java is chosen because it is already used
in the implementation of the DOM parser prototype. The basic idea is to
provide methods, so called hooks, which are located at different processing
steps in the DOM parser. Hooks allow to modify the mapping task by simply
extending their functionality. As depicted in Listing 4.26, several hooks are
needed which handle XML root elements, XML exceptional elements, XML
object elements, XML attribute elements, associated XML object elements,
and the XML content.

1 // startMapping(...)
> Level 0: handle root element; parse root element

1+ // parseNode(...)

5 Level 1: handle exceptional elements if needed

6 Level 1: check element type

7 IF: OL object; handle object element; parse child elements

¢ ELSE: OL attribute; handle attribute element; iterate through child
elements

9 Level 2: handle object elements; parse child OL objects

10 Level 2: handle text elements

Listing 4.26: Basic steps of the parser.

The mapping starts by invoking the startMapping()-method. Level zero
represents the root level and thereby covers the handling of the root element.
When the root element is handled the parsing of it starts by invoking the
parseNode ()-method. By invoking this method the first parsing level is
entered. In this first level exceptional elements can be handled. After
exceptional elements are handled the differentiation between AIXM features
which represent OL object and AIXM attributes which represent OL
attributes is conducted in the first level. An element can either represent
an OL object or an OL attribute. When an AIXM feature is identified
the handling of it is invoked and child elements are parsed by invoking the
parseNode ()-method. When an AIXM attribute is detected the attribute
element is handled and its child elements are iterated. By iterating over
the child elements the second level is entered. Child elements representing
AIXM features are handled by the object element handling of the second
level and text elements are handled by the text handling.
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This section will introduce the conceptual design and the implementation
of the AIXM to OL mapper using DOM. The conceptual design as well as
the implementation are based on the previously developed mapping approach
and the selected transformation technology (Section 4). Besides the extension
capabilities the conceptual design covers also configuration capabilities, the
interfaces, and the data model. The implementation realizes the mapping
concept and the conceptual design. Finally, the implementation is evaluated
in order to determine the performance.

36
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5.1 Conceptual Design

The conceptual design covers the fulfillment of requirements which are be-
yond the functional requirements fulfilled by the mapping concepts intro-
duced in Section 4.1 and Section 4.2. Besides the requirements the data
model is detailed. Especially the Requirements 1.2, 1.3, 1.4, and 1.3 which
define the configuration capabilities, Requirement 2.5 which describes the
interfaces, and Requirement 3.3 which specifies the extension capabilities are
comprised by the conceptual design.

5.1.1 Data Model

The data model which is implemented in the DOM XML prototype will be
reused since it covers all OL statements which are needed. It is depicted
in Figure 5.1 and consists of the six main classes OLProgram, OLNamespace,
OLFMolecule, OLObject, OLLink, and OLLiteral. The detailed diagram is
depicted in Appendix A.1.

OLNamespace

uri: String ' 1 OLProgram
-alias String -madule: String
-default: Boolean +namespaces

1

OLObject # +molecules

+name: String

A

1 =

OLLiteral OLLink OLFMolecule

-value: String -value: String -namespace: String
-olClass: String
-attributes: Map<5tring, LinkedList<OLObject>>

Figure 5.1: UML class model representing OL statements.

The OLProgram class is the main class of the data model since it contains
all namespaces and all f-molecules. The OLNamespaces class contains data
about an OL namespace. This covers the namespace URI, the prefix (alias),
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and whether it is the default namespace or not. The OLFMolecules contains
data about the namespace, the OL class, and the OL attributes. The OL
attributes are represented as a map where the key is represented by the OL
attribute name and the value by a list of OLObjects. The abstract OLObject
class contains a name and is extended by the classes OLLiteral, OLLink and
OLFMolecule. The classes OLLiteral and OLLink are used to distinguish
whether an OL attribute contains an literal or refers to an OL object.

5.1.2 Configuration Capabilities and Interfaces

As described in the Requirements 1.2, 1.3, 1.4, and 1.3 it must be possible to
configure the mapper. Configuration capabilities allow to modify the imple-
mentation without the need of adapting the code. Therefore class attributes
are used which can be accessed and set.

Mapper
-domParser -olOntolLoader
+getDomParser()
+getOl0OntoLoader()
1 1
DOMParser OLOntolLoader
-handler: Handler -host: String
-xmlSourceFile: String -port: int
-0lOutputFile: String -user: String
+... -password: String

-extendOnto: boolean
-ontolri: String
-ontolnputFile: String
-ontoOutputFile: String
-ollnputFile: String

+getOIProgram()
+setHandler(...)
+setXmliSourceFile(...)
+setOl0utputFile(...)
~-{)

+setOlinputFile(...)
+setOntologyDatal...)
+setOntoBrokerCredentials(...)
+loadFlelntoOntology()

--{)

Figure 5.2: UML class model depicting the configuration capabilities.

Figure 5.2 depicts the structure of the mapper. The detailed diagram is
depicted in Appendix A.2. The mapper consists of the two main classes
DOMParser and OLOntoLoader. Both can be accessed by methods defined
in the Mapper class. The DOMParser allows to configure the input data
source and the OL output file. Moreover, the handler can be set which
allows to apply the prior introduced decorated handler. The interface to
the ontology API is provided by the OLOntoLoader class which allows to
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configure the OL input file, data about the ontology and the credentials to
access the ontology API. The data about the ontology comprises an boolean
value which indicates whether an ontology is extended or created, an ontology
URI, the input file of an existing ontology, and the output file of the saved
ontology. The input file is only needed when an existing ontology which is
stored in a file needs to be accessed. The output file is always needed since it
determines the location where the ontology is stored after the OL statements
are inserted. The credentials comprise the host, port, user, and password
which are required to access to ontology API. Moreover the OLOntoLoader
class provides a method to start the loading process.

5.1.3 Extension Capabilities

To fulfill the Requirement 3.3 the conceptual design needs to comprise the
DOM extension capabilities introduced in Section 4.4. The extension capa-
bilities allow future modifications which extend the existing implementation
without adapting it. Therefore design patterns which support the adaption
of implementation behavior are analyzed.

As introduced in Section 4.4 the basic idea is to provide methods, so
called hooks, which are located at different processing steps in the DOM
parser. Hooks allow to modify the mapping task by simply extending their
functionality. To provide extension capabilities it must be possible to extend
these handling methods. A simple approach is to create subclasses which
implement the specialized handling of the mapping process. In this case
the super class would implement the handling methods representing the
default handling of the data sources. A subclass can extend this super class
and add new functionality to it such as the handling of GML data. This
approach works fine as long as only the implementation of one subclass is
used without combining them. However when it is needed to use several
subclass implementations a new subclass implementation comprising all the
functionality of the needed subclasses needs to be implemented. Another
way is to create a new subclass which extends the subclasses and reuses their
functionality. This can lead to an class explosion especially when it is needed
to combine the functionality of three or more subclasses. Moreover, this
approach requires multiple inheritance since the subclass of the subclasses
extends several super classes. Besides these issues subclassing only allows
to define the behavior in a static manner since it must be define before the
compile time.
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Instead of defining the behavior at compile time it is better to pro-
vide a design which supports to defining it at runtime. The Decorator
pattern can be used to establish this. It provides a way to modify the
behavior of individual objects (Cooper, 1998, p. 103f.). Therefore it can
be used to change the behavior of individual objects from the same class
without affecting the other ones’ behavior. Moreover, the Decorator pattern
allows to stack multiple decorators which allows to merge behavior without
creating new subclasses or merging existing implementations in a new class.
This is achieved by wrapping the original class by the decorator class.

Component
+methodA() -component
+methodB()
+methodC()
ConcreteComponent ComponentDecorator
+methodA() +methodA() Ea-—
+methodB() +methodB()
+methodC() +method(C{()

A

ConcreteDecoratorA ConcreteDecoratorB ConcreteDecorator...

+methodB() +methodA(

) +.0)
+methodC()

Figure 5.3: Concept of the Decorator Pattern (Cooper, 1998, p. 103f.).

As depicted in Figure 5.3 the original abstract class Component is extended
by the two classes ConcreteComponent and ComponentDecorator. The
ConcreteComponent implements all three methods of the Component class.
The abstract ComponentDecorator contains a Component class attribute
component which is initialized in the constructor. This class attribute is
used to delegate all components methods. Therefore the methods of the
Component class are invoked in the methods of the ComponentDecorator
class. The ConcreteDecoratorA extends the ComponentDecorator and im-
plements the behavior of the method which needs to be modified. The
modified methodA() first calls methodA () of the super class and then con-
tinues its implementation. This allow to firstly invoke the behavior of a
concrete implementation before the modifications are invoked. Besides the
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ConcreteDecoratorA there can be several other decorator classes extend-
ing the behavior of the Component. All of them can be used to wrap the
ConcreteComponent class and therefore add new behavior to it.

Handler

+parseRootElemLvI0(...)
+parseExcepElemLvil(...)
+parseCbjElemLvl1(...)
+parseChjElembLvi2(...)
+parsefttrElembLvil( )
+parseTextElembLvi2(...)

+...()

-handler

NotamHandler DecoratorHandler

+parseRootElemLvI0[_) +parseRootElemLvl0(_)
+parseExcepElemLvil(...) +parseExcepElemLvil(..)
+parseCbjElemLvll(...) +parseCbjElembLwvil(...)
+parseCObjElembLvi2(...) +parseCbjElembLwvi2(...)
+parseAttrElembLvil(...) +parsefttrElembLvil(...)
+parseTextElemlvi2(.) +parseTextElemlLvi2( )

GmlHandler

+parseCbjElemLvil(...)
+parseGMLElements(...)

+.()

Figure 5.4: Decorator pattern applied to the mapper implementation design.

Figure 5.4 depicts the design of the Handler which is used by the DOM
parser according to Listing 4.26. The detailed diagram is depicted in Ap-
pendix A.3. The abstract Handler class includes the methods which act as
hooks. Moreover, it includes methods in order to ease the handling of XML
elements within a DOM tree. The NotamHandler class extends the Handler
class and implements the mapping concept defined in Section 4.1 and Sec-
tion 4.2 except the GML handling of Section 4.2.7. The GML handling is
added using a decorator GmlHandling which extends the DecoratorHandler.
The DecoratorHandler includes a reference to the Handler class and del-
egates the method invocations to it. The GmlHandling class overrides the
parseObjElemLv11()-method since the handling should be conducted once



CHAPTER 5. THE MAPPER 92

for each NOTAM. A new concrete decorator needs to be added as a subclass
of the DecoratorHandler if new preprocessing capabilities or data sources
are introduced in the future.

5.2 Implementation

The implementation is based on the object-orientated programming language
Java. It was chosen since it is already used in other implementations of
the SemNOTAM system. In order to ease the understanding of the imple-
mentation detailed class diagrams are attached in the appendix in Chapter A.

As mentioned before the DOMParser class contains a handler which can be set
using a decorated handler object. This handler provides the interface to the
hooks. The parsing of the XML document is done by the Java API for XML
(JAXP) DOM parser following the basic parsing steps defined in Listing 4.26.
The parsing is comprised in the DOMParser class where the XML input data
source is accessed by creating a DOM tree in the startMapping()-method.
After the DOM tree is created the root XML element is accessed and
handled as defined in the method parseRootElemLv10() of the set handler.
Despite its name the parseRootElemLv10 ()-method does not parse the root
element. It determines the id of queries and segments since it is available
in an XML element instead of an XML attribute. This method provides
the first hook since the parsing follows the basic parsing steps introduced in
Listing 4.26. After the handling of the root element it is parsed by invoking
the parseNode ()-method with it as a parameter.

In the parseNode()-method exceptional elements are handled by the
parseExcepElemLv11()-method of the handler. After exceptional elements
are handled the differentiation between AIXM features and AIXM attributes
is conducted in the first level. This differentiation is conducted according
to the hierarchical approach described in Section 4.1. If an AIXM feature
is detected it is mapped to a f-molecule and added to the OL program as
defined in Section 4.1. This mapping is again conducted by invoking the
parseObjElemLvl1()-method of the defined handler. If an identifier is not
available it is generated according to Section 4.2.5. The child elements
of the AIXM feature, which represent AIXM attributes according to the
object-property model, are parsed by invoking the parseNode ()-method
with them as a parameter.
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If an AIXM attribute is detected it is added as an OL attribute to
the f-molecule of the upper AIXM feature by invoking the handler method
parseAttrElemLv11(). Thereafter the content of the AIXM attribute is
checked. It contains either text which is mapped according to the handler
method parseTextElemLv12() or one or more child AIXM features. These
child AIXM features are parsed by invoking the parseObjElemLv12()-
method of the handler. Moreover, their child AIXM attributes are parsed
by invoking the parseNode ()-method with them as a parameter.

The recursion stops after there are no more AIXM attributes of AIXM
features or if there are no more child AIXM features of AIXM attributes.
The filled data structure contains an OL program which includes all
f-molecules and namespaces. These f-molecules and namespaces are iterated
and output according to their corresponding OL syntax.

This OL output file is used as the input file of the OLOntoLoader
class. The OLOntoLoader class provides an interface to the OntoBroker
accessing the OntoAPI. The OL statements are extracted from the file and
added either to a new ontology or to an existing one.

5.2.1 NOTAM Handler

The NotamHandler implements the default handling of the data sources.
Despite its name it also comprises the mapping of segment and query
data sources since the mapping concept can be applied on them as well.
The NotamHandler implements the hooks covering the functionality de-
scribed in Section 4.2 except the calculation of the bounding boxes. The
parseRootElemLv10()-method implementation covers the determination of
the identifier of queries and segments. Moreover it implements the mapping
of the AIXM features and attributes. The parseObjElemLv11()-method
implementation adds the detectionTimestamp as defined in Section 4.2.4
to the data sources. The parseObjElemLv12()-method adds the identi-
fier of the AIXM feature as the value of the OL attribute to the upper
f-molecule. The AIXM attributes are mapped by the implementation of the
parseAttrElemLvl1()-method by adding them to the upper f-molecule as
OL attributes. The parseAttrElemLv11()-method also implements the han-
dling of Section 4.2.6 and Section 4.2.1 while adding the OL attributes to the
f-molecule. The NotamHandler also implements the parseTextElemLv12()-
method where the text content of OL attributes is added and formatted
according to Section 4.2.2. Thus the NotamHandler is covering all tasks of
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the mapping concept except the handling of GML.

5.2.2 Example of an Extension - GML Handler

The implementation of the GmlHandler is based on the GeoTools! frame-
work. It is available as an open source Java library providing tools for
processing geospatial data. Therefore it is used to fulfill the preprocessing
task described in Section 4.2.7. The GeoTools library allows to correctly
interpret GML points according to their CRS. Moreover it provides the pos-
sibility to retrieve the GML envelope respectively the bounding box of GML
shapes which consist of several GML points. However, it does not provide
the possibility to retrieve the GML envelope for single points. To calculate
the bounding box for a single point the radius of the bounding box is needed.
As described in Section 4.2.7, the radius is used to determine the distance
from the given GML point to the points which are needed to calculate the
GML envelope. The GeoTools library provides a GeodeticCalculator
to preform calculation based on GML data. It implements an improved
version of the algorithm developed by Vincenty (1975) in order to calculate
new points. Based on a center point, a given angle, and the distance the
southern-, eastern-, northern-, and western-most points are calculated.
Besides that the GeodeticCalculator supports the transformation of GML
points based on different CRS.

The GmlHandler modifies only the parseObjElemLvl1()-method since
the bounding box has to be calculated once for NOTAMs and their features.
Therefore it is checked whether a bounding box calculation is required and
if there are existing GML points. If a calculation is required and GML
points are available the GML envelope is created and added to the DOM
tree for each AIXM feature. The GML envelope of the NOTAM is added to
the DOM tree as the outer-most bounding box.

5.2.3 Evaluation

In this section the final implementation is evaluated in oder to determine
its performance. This evaluation follows the same approach and is con-
ducted on the same computer as already used in Section 4.3.5. The time

‘http://www.geotools.org/
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in milliseconds which is required by the mapper to map a number of NO-
TAMs is measured. The obtained samples containing one, ten, one hundred,
1000, and 10000 NOTAMs are reused. Different configurations of the im-
plementations are evaluated since the decorator pattern allows to add be-
havior such as the calculation of bounding boxes. Therefore the perfor-
mance of the implementation using the NotamHandler (NH) is measured.
In order to measure the overhead which is introduced by decorating the
NotamHandler a new TestHandler is introduced. This TestHandler ex-
tends the DecoratedHandler class (TH+NH) and implements all provided
methods. The implementation executes a simple addition of two numbers.
The last measurements covers the performance of the NotamHandler which
enriched by the GmlHandler (GH+NH).
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Figure 5.5: Evaluation of the implementation using different handler.

Figure 5.5 depicts the line diagram which represents the measurements.
The blue line represents the measurements obtained by the NotamHandler,
the red line represents the measurements obtained by the NotamHandler
which is decorated by the TestHandler, and the green line represents the
measurements obtained by the NotamHandler which is decorated by the
GmlHandler. As shown the time required to conduct the mapping task
of the NotamHandler is constantly increasing till the mapping of 1000
NOTAMs which is followed by a steeper increase. The decoration of the
NotamHandler by the TestHandler is slightly decreasing the performance.
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The overhead is recognizable but not remarkable. In contrast to that the
decoration of the NotamHandler with the GmlHandler remarkably decreases
the performance. As shown the mapping time for one NOTAM increased
by a factor of ten from about 200 milliseconds to over 2000 milliseconds.
Moreover, it is shown that the green line stops after one hundred NOTAMs.
The reason for that is that the memory required to fulfill the mapping task
exceeds the assigned space. The maximum number of NOTAMs which can
be parsed by this configuration is 175.

As depicted in Listing 5.1 this bottleneck can be traced back to the
parsing of GML points provided by the GeoTools library (Gundel, 2012)
(Deoliveira, 2012). Moreover, it was tested to parse always the same GML
point in order to avoid additional processing steps but this does not solved
the issue. Besides that the geoToolsParser was newly initialized each time
to force a cleaning of the heap space but this does not solved the issue
either.

¢ Exception in thread "main" java.lang.OutOfMemoryError: GC overhead
limit exceeded

s at com.sun.org.apache.xerces.internal.impl.
XMLDocumentFragmentScannerImpl.scanDocument (Unknown Source)

9 at com.sun.org.apache.xerces.internal.parsers.XML11Configuration.parse(
Unknown Source)

10 at com.sun.org.apache.xerces.internal.parsers.XMLParser.parse(Unknown
Source)

11 at com.sun.org.apache.xerces.internal.parsers.AbstractSAXParser.parse (
Unknown Source)

12 at com.sun.org.apache.xerces.internal. jaxp.SAXParserImpl$JAXPSAXParser.
parse (Unknown Source)

13 at com.sun.org.apache.xerces.internal.jaxp.SAXParserImpl.parse (Unknown
Source)

14 at org.geotools.xml.Parser.parse(Parser. java:240)

Listing 5.1: Excerpt of the parsing exception.
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Conclusion

This thesis covers the implementation of an extensible mapper which
transforms AIXM and other structured data sources to OL. The mapper is
a central component of the SemNOTAM system. The SemNOTAM system
is developed to provide intelligent and fine-grained filtering capabilities of
ATM related information. Besides other systems it supports the filtering
of NOTAMs which contain safety critical, temporal, spatial information.
Therefore the mapper accesses available structured XML input sources.
These XML sources contain data about AIXM NOTAMs, queries and seg-
ments. All of them will be mapped to their corresponding OL representation
following the object-property model. This allows the mapper to be used
with more than the three named XML sources. The OL representation is
then inserted into the SemNOTAM system.

Besides giving a theoretical background this thesis analyses and ex-
tracts the requirements for the mapper based on the given task description.
Therefore the mapping in- and outputs, exceptions, and constraints on
the processing task are analyzed. The resulting requirements are used to
develop a mapping approach which details how the XML data sources are
mapped to their corresponding OL representation. The mapping approach
follows the object-property model and is able to execute the mapping under
the given processing constraints as well as to handle exceptions. Especially
the challenging handling of geographical data is covered in this mapping
concept which defines how bounding boxes are calculated.

Moreover this thesis includes the evaluation and selection of suitable
technologies for the implementation. Therefore the XML transformation
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technologies XSLT, SAX, StAX and DOM are analyzed. This covers an
introduction to the technology and the implementation of a basic mapping
prototype with it. The mapping prototypes are evaluated which shows that
the DOM outperforms the other tested technologies.

A conceptual design providing configuration and extension capabilities
is introduced in this thesis. The design is based on the previously developed
mapping concept and the selected technology. Moreover, this thesis includes
the implementation of the mapper which realizes the mapping concept
and the conceptual design. Finally the mapper is evaluated using different
configurations in order to determine its performance.

Concluding, future work can be conducted to optimize the performance of
the mapper. Therefore preprocessing steps, especially the handling of geo-
graphical data, can be extracted from the mapper and executed separately.
The bottleneck which occurs while parsing geographical data can be investi-
gated. Moreover, the loading of the OL files into the ontology can be changed
to omit the OL files and directly insert the OL statements stored in the data
model. This can avoid unnecessary creating, writing, and reading file opera-
tions. At last future work can cover the export of NOTAMs by mapping the
OL representation back to XML.
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Appendix A

Class Diagrams

The UML diagrams presented in this chapter are not complete. They should
provide an overview and support the understanding of the implementation.



APPENDIX A. CLASS DIAGRAMS

OLNamespace
-uriz String OLProgram
-alias: Siring . 1 -module: String
-default Boolean +oString(): String
+getUri(): String tnamespaces +addFMolAtir(String, OLObject)
+getAlias(): String +addMamespace(COLNamespace ns)
+isDefault() +getMolecules(): List=OLFMolecule=
+toString()
1
OLObject
+name: String [€— +fmolecules
+gethame()
1 &
OLLiteral OLLink OLFMolecule
-value: String -value: String -namespace: String
-olClass: String
+getValue() +getvalue() _attributes: Map<String. LinkedList<OLObject>>
getLiteral()

+sethttributes(attributes: Map<String. LinkedList<OLObject=>)
+getAtributes(): Map=5tring. LinkedList<OLObject==
+addFMolAttr(name: String, fm: OLObject)

+toString(): String

Figure A.1: The UML class diagram of the OL statements.
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OLOntolLoader

-host: String

-port: int

-user: String
-password: String
-extendOnto: boolean
-ontoUri: String
-ontolnputFile: String
-ontoOutputFile: String
-ollnputFile: String

+loadFilelntoOntology()

-getNamespaces(olStatements: String): Map=5tring. String=

-getFMuolecules(olStatements: String): LinkedList<String=

-getOntologyFromFile(manager: OntologyManager, filePath: String, entoUri: String): Ontology
-initOntologyManager(host: String, port: int, String user: Siring, password: Siring): OntologyManager
+setOntoBrokerCredentials{host: String, port: int, user: String, password: String)
+setOntologyData(extendOnto: boolean, ontoUri: String, ontolnputFile: String, ontoOutputFile: String)
+setOlinputFile(clinputFile: String)

1

FolOntoLoader

Mapper

+getDomParser(): DOMParser
+getOLOntoLoader(): OLOntoLoader

tdomParser
1

DOMParser

-handler: Handler
-olProgram: OLProgram
-xmiSourceFile: String
-olQutputFile: String

+startMapping(}

-parseMode(doc: Document, parentFMol: OLFMolecule, node: Mode, level: int, parent: String)
+getOIPRogram(): OLProgram

+setHandler(handler: Handler)

+setXmlSourceFile(xmlSourceFile: String)

+5etOl0utputFile(oclOutputFile: String)

Figure A.2: The UML class diagram of the interface and its concrete imple-
mentation.
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Appendix B

Prototype Source Code

| <xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/
Transform"

> xmlns:fn="http://www.w3.o0rg/2005/xpath-functions"

3 xmlns:functx="http://www.functx.com"

4 xmlns:uuid="java.util.UUID">

6 <xsl:output method="text" omit-xml-declaration="yes" indent="no"/>

7 <xsl:template match="/">

8 <xsl:variable name="fMolOpen" as="xs:boolean" select="false()"/>
9 <xsl:for-each select="//*">

10 <xsl:choose>

11 <xsl:when test="count(ancestor::*) mod 2">

12 </xsl:when>

13 <xsl:otherwise>

14 <xsl:call-template name="parseNode'">

15 <xsl:with-param name="node" select="."/>
16 </xsl:call-template>

17

18 </xsl:otherwise>

19 </xsl:choose>

20 </xsl:for-each>

21 </xsl:template>

24 <!-- generate AIXM feature id or access existing one -->
25 <xsl:template name="parseNode">

26 <xsl:param name="node"/>

27

28 <xsl:call-template name="get-node-id">

29 <xsl:with-param name="node" select="."/>

30 </xsl:call-template>
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32 <xsl:call-template name='"get-node-name">

33 <xsl:with-param name="node" select="$node"/>

314 </xsl:call-template>

35 [

36 <!-- transform direct child attribute-elements -->

37 <xsl:for-each select="$node/*">

38 <xsl:value-of select="local-name(.)"/>

39

40 <xsl:choose>

41

42 <!-- References to other AIXM features of the attribute-element --
>

43 <xsl:when test="count(./*) &gt; 0">

44 =>

45 <xsl:for-each select="./x">

46 <xsl:if test="count(../*) > 1">

47 {

48 </xsl:if>

49

50 <xsl:call-template name="get-node-id">

51 <xsl:with-param name="node" select="."/>

52 </xsl:call-template>

53 <l-- <xsl:call-template name="parseNode">

54 <xsl:with-param name="node" select="."/>

55 </xsl:call-template> -->

56

57 <xsl:if test="position() != last()">,</xsl:if>

58

59 <xsl:if test="(count(../*) > 1) and (position() = last())">

60 T

61 </xsl:if>

62 </xsl:for-each>

63 </xsl:when>

64

65 <!-- Simple text content of the attribute-element -->

66 <xsl:when test="./text() != >’">

67 ->"<xsl:value-of select="./text()"/>"

68 </xsl:when>

69

70 <!-- Attributes of the attribute-element -->

71 <xsl:when test="count(./@x*) &gt; 0">

72 <xsl:choose>

73 <xsl:when test="count(./@x) = 1">

74 (

76 <xsl:call-template name="get-node-name">

77 <xsl:with-param name="node" select="./@x[1]"/>

78 </xsl:call-template>

79 ) —-> "<xsl:value-of select="./@x[1]"/>"
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80

98

99
100
101
102
103
104
105
106
107
108
109
110
111

2

113

</xsl:when>
<xsl:otherwise>
many attributes!
</xsl:otherwise>
</xsl:choose>
</xsl:when>

</xsl:choose>
<xsl:if test="position() != last()">,</xsl:if>
</xsl:for-each>

1.

</xsl:template>

<!-- generate AIXM feature id or access existing one -->
<xsl:template name="get-node-id">

<xsl:param name="node"/>
<xsl:choose>
<xsl:when test="$node/@*[local-name()=’id’] != ’’">
<xsl:value-of select="$node/@*[local-name()=’id’]"/>
</xsl:when>
<xsl:otherwise>
<xsl:variable name="random" select="uuid:randomUUID()"/>
uuid_<xsl:call-template name="replace-string">
<xsl:with-param name="text" select="$random"/>
<xsl:with-param name="replace" select="’-"" />
<xsl:with-param name="with" select="’_’"/>
</xsl:call-template>
</xsl:otherwise>
</xsl:choose>

</xsl:template>

<!l-- retrieve the node name in OL notation with or without a namespace

-=>

<xsl:template name="get-node-name">

<xsl:param name="node"/>
<xsl:variable name="prefix">
<xsl:call-template name="get-prefix">
<xsl:with-param name="qname" select="name($node)"/>
</xsl:call-template>
</xsl:variable>

<xsl:if test="$prefix != ’>’">
<xsl:value-of select="$prefix"/>#
</xsl:if>

<xsl:value-of select ="local-name($node)"/>

5 </xsl:template>
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128
129

130

138
139
140

141

150

160
161
162
163
164

165

<xsl:template name='"replace-string">
<xsl:param name="text"/>
<xsl:param name="replace'/>
<xsl:param name="with"/>
<xsl:choose>
<xsl:when test="contains($text,$replace)">
<xsl:value-of select="substring-before($text,$replace)"/>
<xsl:value-of select="$with"/>
<xsl:call-template name="replace-string">
<xsl:with-param name="text" select="substring-after($text,
$replace)"/>
<xsl:with-param name="replace" select="$replace"/>
<xsl:with-param name="with" select="$with"/>
</xsl:call-template>
</xsl:when>
<xsl:otherwise>
<xsl:value-of select="$text"/>
</xsl:otherwise>
</xsl:choose>
</xsl:template>

<!-- get the substring before the *last* colon (or empty string if no
colon) —-->
<xsl:template name="get-prefix">
<xsl:param name="gname"/>
<xsl:param name="prefix" select="’’"/>
<xsl:choose>
<xsl:when test="contains($gname, ’:’)">
<xsl:call-template name="get-prefix">
<xsl:with-param name="qname" select="substring-after(
$gname, ’:’)"/>
<xsl:with-param name="prefix" select="concat($prefix,
substring-before($qname, ’:’))"/>
</xsl:call-template>
</xsl:when>
<xsl:otherwise>
<xsl:value-of select="$prefix"/>
</xsl:otherwise>
</xsl:choose>
</xsl:template>
</xsl:stylesheet>

Listing B.1: XSLT prototype implementation.

1

%

3
4

(: http://docs.basex.org/wiki/Repository :)
import module namespace functx = ’http://www.functx.com’;

declare namespace myNs="www.googlle.at";
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5 declare namespace uuid = "java:java.util.UUID";

7 (: get current formatted timestamp :)

s declare function myNs:getTimestamp() as xs:string {

o (: "yyyy-MM-dd’T’HH:mm:ss.SSS’Z’°" :)

10 concat(substring(replace(string(current-dateTime()),"\+","0"),1,23),"
zZ")

11 };

15 (: parse the text :)

14 declare function myNs:getParsedText($text as xs:string) as xs:string {

15 replace(replace(replace(replace(functx:trim($text), "\\n", "<br>"),
"\\r\\n", "<br>"), "&quot;", "\\&quot;"), "\\s+", " ")

16 };

1s (: retrieves id of given element. if no id attr is existing, an uuid is
generated. :)

9 declare function myNs:getId($elem as element()) as xs:string {

20 if (empty($elem/@*[local-name()="1id"]))

21 then replace(uuid:randomUUID(),"_","-")

else replace($elem/@*[local-name()="id"],"_","-")

N
N

23 };
!

25 (: retrieves id of given element. if no id attr is existing, an uuid is
generated. :)

26 declare function myNs:getId($id as xs:string, $elem as element()) as xs
:string {

27 if(string-length($id)>2)

25 then replace($id,"_","-")

20 else

30 if (empty($elem/@* [local-name ()="id"]))

31 then replace(uuid:randomUUID(),"_","-")

32 else replace($elem/@*[local-name()="id"],"_","-")

33 };

35 (: parses the element and the first two levels. :)
36 declare function myNs:parse($id as xs:string, $notam as element()) as
element O* {

38 let $res := (<fmol>{

10 (: id term :)

11 if($id = "")

12 then myNs:getId($notam)

13 else myNs:getId(replace($id,"->",""),$notam),

A5 (: ol class:)
16 concat(":",replace(name($notam),":","#"),"["),
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(: attribute of xml ol object:)
if($id = "")
then <objattr>{"detectionTimestamp -&gt;",myNs:getTimestamp
O,","}</objattr> union (
for $attrobj in $notam/@*
return <objattr>{replace(name($attrobj),":","#"),"-&gt;&quot;",
data($attrobj),"&quot; ,"}</objattr>)
else for $attrobj in $notam/@*
return <objattr>{replace(name($attrobj),":","#"),"-&gt;&quot;",
data($attrobj),"&quot;,"}</objattr>

(: children of the xml element representing associations :)
for $attr in $notam/*
return

<attr>{

(: ol attribute name :)
replace(name ($attr),":","#"),

(: ol attribute can have own attributes, text content or refer
to other ol objects:)
if (count ($attr/@*)>0)
then
(: output attributes of the xml association element:)
for $attrattr in $attr/0x
return <attrattr>{concat("(",name($attrattr),")","->",data(
$attrattr))}</attrattr>
else
if (count ($attr/*)>0)
then
(: 1vl 2 - referred ol objects:)
for $subobj in $attr/*
return <toParse><subobjid>{concat("->",myNs:getId($subobj
)) }</subobjid><subobjname>{$subobj}</subobjname></
toParse>
else
(: text value of xml attribute elements:)
concat ("->&quot ;" ,myNs:getParsedText ($attr) , "&quot;"),

n.n
B

}</attr>,
ll] .

}</fmol>)

return if($id = "")
then $res
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else
let $subres := (
for $subobj at $pos in $res//toParse return
myNs : parse ($subobj/subobjid, $subobj/subobjname/*)
)
return <a>{$res, $subres}</a>

};

(: define database existing in BaseX:)
let $db := ’NOTAM’

(: query all notams encoded as AIXMBasicMessages :)
let $notams := (for $y in doc($db)//* where local-name($y) = "
ATXMBasicMessage" return $y)

(: query all namespaces:)

5 let $prefixes := (

for $elem in doc($db)//* return
for $prefix in fn:in-scope-prefixes($elem)
return <ns><prefix>{":- prefix ",$prefix,"="}</prefix><uri>{"&quot
;" ,fn:namespace-uri-for-prefix($prefix,$elem) , "&quot;.
"}</uri></ns>
)

let $distincPrefixes := fn:distinct-values($prefixes)

; (: parse the first level :)

let $parsedNotams := (
for $notam in $notams
return myNs:parse("",$notam)

(: retrieve all f-molecules of the child nodes:)
let $subFMols := (
for $subobj at $pos in $parsedNotams//toParse
return myNs:parse($subobj/subobjid,$subobj/subobjname/*)

3 )

5 (: remove elements which where needed only for the recursion :)

let $cleanedParserNotams := (functx:remove-elements-deep($parsedNotams
, ’subobjname’))

let $cleanedSubFMol := (functx:remove-elements-deep($subFMols,’
subobjname’))

(: join the sequences to stirngs :)

let $outputO := string-join($distincPrefixes)

let $outputl string-join($cleanedParserNotams)
let $output?2 string-join($cleanedSubFMol)

33 let $output := concat($output0,$outputl,$output)

let $output := replace($output,",\&#x005D;.","&#x005D;.")
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135 return $output

Listing B.2: XQuery prototype implementation.

1 public class DOMParser {

2

3

private OLProgram olProgram;

public DOMParser() {
olProgram = new OLProgram("olProgram");

}
public OLProgram startParser(String file) {

DocumentBuilder builder;
DocumentBuilderFactory factory = DocumentBuilderFactory.
newlInstance();
factory.setNamespaceAware (true);
Document doc = null;

try {
builder = factory.newDocumentBuilder();

// create xml document in memory
doc = builder.parse(new File(file));

} catch (ParserConfigurationException | SAXException | IOException
e) {
e.printStackTrace();

}

// select root element. can be query, result, FeatureCollection
Element root = doc.getDocumentElement () ;

OLFMolecule parentFMol = null;
parseNode(doc, parentFMol, root, O, getNodeName(root));

return olProgram;

}

VET:

* Recursive method which iterates top-down through all elements of
an given node.

* Creates and adds new f-molecules to the OL program.

* Qparam parentFMol

* @param node

*/
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N

private void parseNode(Document doc, OLFMolecule parentFMol, Node

node, int level, String parent) {

if (node.getNodeType () == Node.ELEMENT_NODE) {

// only element nodes can be an object- or attribute-element

if (!parent.equals(getNodeName (node.getParentNode()))) {
level++;
parent = getNodeName (node.getParentNode());

}

if (' (level’2==0)) {
// object-element

OLFMolecule fMol = null;
fMol = initFMolecule(node);

fMol.setAttributes(getNodeAttr (olProgram,node, fMol.
getAttributes()));

// add a detection timestamp to Notams aka AXIMBasicMessage

String timestamp ="";

if (node.getLocalName() != null && node.getLocalName() .equals("
ATXMBasicMessage") || node.getLocalName() != null && node.
getLocalName () .equals("Query")) {

try{
SimpleDateFormat formatter = new SimpleDateFormat ("yyyy-MM-
dd’T’HH:mm:ss.SSS’Z’") ;
Date currentTime = new Date();
timestamp = formatter.format(currentTime);
}
catch(Exception e){
e.printStackTrace();
}

fMol.addFMolAttr("detectionTimestamp", new OLLiteral("
timestamp", timestamp));

}

// parse child nodes - start recursion
if (node.hasChildNodes()) {
for(int i=0; i<node.getChildNodes().getLength();i++) {
parseNode(doc, fMol, node.getChildNodes().item(i), level,
parent) ;
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90

olProgram.addMolecule (fMol) ;

}

else if (parentFMol != null && !isEmptyAttrElem(node)) {
// attribute-element

// add node attributes to f-molecule attributes
parentFMol.setAttributes(getNodeAttr (olProgram, node, parentFMol
.getAttributes()));

// handle html as text (formattedText), the child elements
including html are not correctly parsed (multiple parsed)
if (getNodeName (node) .equals("formattedText")) {
addFormattedText (olProgram, parentFMol, node) ;
Element parentNode = (Element) node.getParentNode();
parentNode.removeChild(node) ;

}

// second level
for(int i=0; i<node.getChildNodes().getLength(); i++) {

Node childNode = node.getChildNodes().item(i);
// objects are added as attr -> obj
if (childNode.getNodeType() == Node.ELEMENT_NODE) {

if (!parent.equals(getNodeName (childNode.getParentNode()))) {
level++;
parent = getNodeName(childNode.getParentNode());

}
if (1 (Llevel)2 == 0)) {
if (1isIdExisting(childNode)) {

// add ’id’ directly to the node which is then parsed
correctly
String id = ("uuid_".concat(UUID.randomUUID() .toString
())) .replace("-", "_");
((Element)childNode) .setAttribute("id", id);
parentFMol.addFMolAttr ((node.getPrefix() == null 7 ""
node.getPrefix() .concat(":")) .concat (getNodeName (node
)), new OLLiteral("id",id));
}
else {
parentFMol.addFMolAttr ((node.getPrefix() == null 7 ""
node.getPrefix() .concat(":")) .concat (getNodeName (node
)), getNodeId(childNode));
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126 // recursion starts here for new object

127 parseNode(doc, null, childNode,level, parent);
128 T

129 }

130 else if(childNode.getNodeType() == Node.TEXT_NODE) {

131 // Simple Elements - Text within elements and no children ->
getNodeValues

132 String text = getParsedString(childNode.getNodeValue()) ;

134 if (text.length() > 0) {

135 parentFMol.addFMolAttr ((node.getPrefix() == null 7 ""
node.getPrefix() .concat(":")) .concat (getNodeName (node) .
replace(’:’,’#’)), new OLLiteral(getNodeName (node) .
replace(’:’,’#’) ,text));

136 }

138 }
139 }
140 }

141 }

142

143

144 }

Listing B.3: DOM XML prototype implementation.
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