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Abstract
Events and their announcements are ubiquitous today, especially in the
World Wide Web. These are of interest as they allow to gain information and
knowledge as well as to derive actions and reactions to take. To check all the
event announcements manually is a cumbersome task. Fortunately it can be
automated - the dissertation Bitemporal Complex Event Processing of Web
Event Advertisements by Michael Huemer, 2014, focusses on Web events and
introduces an approach for extracting events from the Web, processing them
into complex ones and execute actions on their occurrence.

This thesis implements parts of Mr. Huemer’s approach: It develops a com-
piler for the event and condition-action specification language Bitemporal
Complex Event Processing Language (BiCEPL). Moreover a Complex Event
Processor (CEP) based on in-memory database system H2 is implemented.
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Zusammenfassung
Events und ihre Bekanntmachungen sind in der heutigen Zeit nahezu allge-
genwärtig, vor allem im Web. Diese sind vorwiegend deswegen von großem
Interesse da sich Informationen und Wissen sowie Aktionen und Reaktionen
aus ihnen ableiten lassen. Allerdings ist die manuelle Überprüfung dieser
Event-Bekanntmachungen beschwerlich. Glücklicherweise kann diese Auf-
gabe automatisiert werden - die Dissertation Bitemporal Complex Event Pro-
cessing of Web Event Advertisments von Michael Huemer, 2014, konzentriert
sich auf Web Events und führt eine Herangehensweise zum extrahieren von
Events aus dem Web, deren Verarbeitung zu komplexen Events und die Aus-
führung von Aktionen bei deren Eintreten, ein.

Diese Arbeit implementiert Teile von Huemers Herangehensweise: Ein Com-
piler für die Sprache zur Event und Condition-Action Spezifikation, Bitempo-
ral Complex Event Processing Language (BiCEPL), wird entwickelt. Weit-
ers wird ein Complex Event Processor (CEP) basierend auf dem in-memory
Datenbanksystem H2 implementiert.
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Chapter 1

Introduction

Contents
1.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Statement of Problems . . . . . . . . . . . . . . . 4
1.3 Buying Groceries as Running Example . . . . . 4
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . 5

This section gives an introduction to the topic of complex event processing,
the thesis, its contributions, the running example used and finally describes
the organisation of the thesis.

1
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1.1 Preface

Events are ubiquitous today - you find them on the Internet, in businesses,
at home, etc. So what is an event? Michelson (2006) describes an event as ”a
notable thing that happens [...]”, Etzion (2010) as transitions between states
of entities. Furthermore Etzion (2010) states that the term event also refers to
the representation of events in the computer domain. Moreover, ”Event” can
mean event occurrence as well as event specification (Michelson, 2006). Each
event has at least a timestamp; Michelson (2006) describes events as only
having one timestamp, Etzion (2010) delineates occurrence time, when an
event occurred in the domain; detection time, the time an event is detected
by an event processing system; and valid time, the time within which an
event is relevant for processing. Besides these timestamps each event conveys
information about what happened (Michelson, 2006).

Such events provide lots of data which have to be processed in order to gain
information and knowledge from them and/or to choose appropriate actions
and reactions respectively. Systems providing the means to do so are so
called event processing systems (or information flow processing applications
(Cugola & Margara, 2012)). Such systems consist of several modules (Etzion,
2010; Michelson, 2006):

Event Generators/Detectors Event generators or detectors emit or de-
tect events, respectively.

Event Channel Events emitted or detected in the previous module are for-
warded into an event channel, e.g., a message queue, which routes the
events to the respective event processing engine(s). This channel is also
used to transport the results of the processing to the event consumers.

Event Processing Engine The event processing engine processes the
events and forwards the results into the event channel(s) and thus to
the event consumer(s).

For such a system Michelson (2006) delineates three different kinds of event
processing styles:

Simple Event Processing The most primitive form of event processing; a
notable event occurs and triggers some action(s) (Michelson, 2006).

Stream Event Processing In stream event processing multiple input
streams, possibly from different sources, are processed. These input
streams are screened for notable events and event content and sub-
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sequently are routed to the corresponding output stream. Assumed
is that events of the input stream are processed in order of their ar-
rival, thus simplifying the processing algorithm as only little memory
is needed and no event occurrences have to be remembered (Luckham,
2006). (Cugola & Margara, 2012; Michelson, 2006)

Complex Event Processing In complex event processing the assumption
that events arrive in order is not made; they take all events that were
detected so far into account. Furthermore these systems have a different
scope than stream event processing. They find patterns of events which
form higher-level/complex events. These patterns have to be specified
beforehand. Additionally to detecting such complex events interested
parties are informed about them. Moreover complex event processing
systems can also be used to simplify and abstract information in event
patterns. (Cugola & Margara, 2012; Luckham, 2006; Michelson, 2006)

The event processing systems described in Etzion (2010) and Huemer (2014)
are complex event processing systems which make use of the modules de-
scribed above. Both utilize occurrence, detection as well as valid time albeit
in different ways. Etzion (2010) specifies two processing methods: detection
time semantics, events are ordered by the time detected, or occurrence time
semantics, the order of events is given by their occurrence time. The order of
events is important, for instance, for trend patterns in data. Only one of the
semantics can be chosen. Huemer (2014) on the other hand concentrates on
events from the Web. Such events are often changed and due to the nature
of the Web updates or publications of events can be delayed. These situa-
tions can trigger actions in Huemer (2014), for instance, informing the event
consumer. To address the various situations a novel bitemporal event model
(occurrence and detection time) for the complex event processing framework
Processing Event Ads into Complex Events (PeaCE) is introduced. The
possibility to define conditions and actions upon events is similar to active
databases and event condition action (ECA) rules (Huemer, 2014).

This thesis is based on the PeaCE framework introduced in Huemer (2014).
In particular a compiler for the event specification language Bitemporal Com-
plex Event Processing Language (BiCEPL) is developed as well as an event
processing engine based on H2. Section 1.2 describes the problems addressed
in this thesis in more detail. The subsequent Section 1.3 introduces the run-
ning example used throughout the thesis for illustration. Finally, Section 1.4
delineates the further organization of the thesis.
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1.2 Statement of Problems

Today countless events are posted on the Internet at any given point in time
- processing these masses is rather challenging. A field coping with process-
ing and utilizing these masses is (complex) event processing. Huemer (2014)
proposes a complex event processing framework which consists of event detec-
tors, extracting events from the Web; at least one Complex Event Processor
(CEP), processing these events and deducing their corresponding actions;
and action executors conducting these actions.

The objective of this thesis is to extend the Java prototype of the PeaCE
framework described in Huemer (2014). In particular this means

• implementation of a compiler for BiCEPL, the language used to define
event and action classes and conditions for these actions,

• as well as providing an H2 implementation of the Complex Event Pro-
cessor (CEP) of the PeaCE framework.

• Additionally, these implementations are explained by introducing a
running example which gives the reader a better understanding of the
framework and the implementations.

The main contributions of this thesis do not consider event detection nor
action execution. They solely regard the CEP. Furthermore, any (visual)
assistance regarding BiCEPL, except for the console error output, is out
of scope. Finally, it has to be noted that the Java implementation of the
PeaCE framework is a prototype, thus is by no means complete nor fully
tested.

1.3 Buying Groceries as Running Example

This chapter describes the running example used throughout this thesis to
explain different parts of the PeaCE framework. The scenario plays in the
future when products for daily use are able to communicate with each other.
This communication can take part over the Web (Internet of Things) or
any other form of network (eg. Bluetooth, Radio frequency Identification
(RFID),...) but is not part of this thesis.

In this future one can abolish to some extent the, by some considered tedious,
task of shopping groceries by employing the PeaCE framework. First, the
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traditional process needs to be analysed, and subsequently the process, as im-
plemented using the PeaCE framework, is described. This example focuses
on products which need to be refrigerated.

Today’s process Today we have to check the refrigerator for products
which need to be replenished, either because they are empty, almost
empty, or expire soon. Once we have done this we decide on a day
to buy groceries based on our free time and the urgency of shopping.
Subsequently we go to one or several shops and buy what we need,
pay and bring the groceries home and place them in the fridge. This
process is then repeated in more or less regular time intervals.

Suggested Process In this process the fridge is informed by the products
it contains about their status. Once a resource has to be replenished
the fridge orders the appropriate product, or carries out some other
operation. The fridge is then notified about the deliveries and can
react to any changes to them.

The example focuses on a certain area of the scenario described above which
is delineated here. The resources inform the refrigerator if they are getting
low, are already empty, or expire soon. The refrigerator then orders products
from which it got status messages. Depending on whether these messages
are received late, i.e., detected later than they were issued, for instance, due
to network latencies, and whether a resource is already empty an instant
replenishing need or a normal replenishing need arises. The fridge will order
products for normal replenishing needs, depending on the detection delay,
with normal or one-day delivery. If an instant replenishing need occurs the
refrigerator informs the owner. Once it has ordered a product the fridge is
informed about the delivery and any changes, e.g., a delay. When a delivery
is late the fridge informs its owner, when it is early a twitter message is
posted.

1.4 Outline

With the introduction given above the remaining thesis is organized as de-
scribed here. First an introduction to the basics is given in Section 2. Af-
terwards the contributions, the BiCEPL compiler and the H2 version of the
CEP, to the PeaCE framework are delineated in Section 3 and Section 4,
respectively. The thesis ends with the conclusion in Section 5. The sections
are described in the following paragraphs in more detail.
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The first section presents the basis for this thesis - the PeaCE framework
(Section 2). In this chapter an introduction to the PeaCE framework by
Huemer (2014) is given (Section 2.1). Subsequently, the underlying novel
bitemporal event model is explained in Section 2.2. Thereafter, the language
for specifying event classes, conditions-action statements, and action classes,
BiCEPL, is delineated in Section 2.4. Section 2.5 explains the semantics
of the PeaCE framework. Finally, the Java prototype of the framework is
introduced in Section 2.6.

Section 3 delineates the first contribution to the framework, namely the im-
plementation of a compiler for BiCEPL. To do so an introduction to compil-
ers (Section 3.1) and compiler compilers (Section 3.2) is given. The following
section (Section 3.3) describes the syntax implemented and changes made to
the syntax introduced in Huemer (2014). Subsequently the Java implemen-
tation is sketched in Section 3.4.

The second contribution to the framework is described in detail in Section 4.
This section copes with extending the framework by an H2 based CEP. First
the H2 database and its qualities are described in Section 4.2 before ex-
plaining the implementation approach for the CEP using an H2 database
(Section 4.1). Section 4.4 depicts the differences to the SQLite implementa-
tion. Sections 4.5 and 4.6 describe the performance improvements achieved
and the test method used, respectively.

Finally, Section 5 summarizes the thesis and gives an outlook on future
work.



Chapter 2

The PeaCE Framework by
Huemer (2014)

Contents
2.1 A Sketch of PeaCE . . . . . . . . . . . . . . . . . 8
2.2 Bitemporal Event Model . . . . . . . . . . . . . . 9
2.3 PeaCE Setup Routine . . . . . . . . . . . . . . . . 11
2.4 Bitemporal Complex Event Processing Lan-

guage (BiCEPL) . . . . . . . . . . . . . . . . . . . 12
2.4.1 Event Definition . . . . . . . . . . . . . . . . . . . 13
2.4.2 Event-Condition-Action Model . . . . . . . . . . . 15

2.5 Event Processing Semantics . . . . . . . . . . . . 16
2.6 Implementation of PeaCE . . . . . . . . . . . . . 19

The PeaCE framework introduced in Huemer (2014) is summarized in this
section. Therefore a short introduction is given here as well as some fun-
damentals are investigated in more detail as they are needed to understand
the implementations. Finally, the Java prototype, a concrete implementa-
tion of the PeaCE framework is introduced so the reader can understand
the practical part of this thesis which extends this prototype.

7
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2.1 A Sketch of PeaCE

The Web is an excellent source for events; innumerable events are posted each
moment. It is desired to utilize these events to determine how to react/act
upon them, i.e., which actions to execute on their occurrence. Utilizing these
masses of events is insurmountable for humans, especially as soon as tasks
require combinations of events increasing complexity. Issues for humans arise
for instance when checking all sources whether new events have occurred (e.g.
time consuming and error-prone). Furthermore, deducing actions by hand
from all events found is prone to mistakes. Another problem when working
with events is that not just an event can be late but also its detection, thus
further complicating the situation. Such a process is desired to be automated;
capable of doing so is the event processing framework PeaCE which, with its
novel bitemporal event model, allows to react, for instance, to late detections.
(Huemer, 2014)

The previous paragraph implies that such an event processing framework
consists of several parts:

Event Detectors Event detectors are components which retrieve events
from various (web) sources and pre-process them into a form which
can be used by CEP components. PeaCE uses OXPath (Sellers,
2011) to extract events from the Web.

CEP CEPs process events and publish actions deduced. Which events are
input and which actions when to take has to be defined beforehand. In
PeaCE this is defined with a language called BiCEPL.

Action Executor Action executors conduct actions derived by CEPs. Such
actions can be, for instance, writing an email, ordering a product, or
posting on Facebook.

The components described form an application instance of the PeaCE
framework. Probably the most important part is the definition of events
and actions. Each type of event is defined in a separate class with its at-
tributes, key attributes, lifespan, and optional condition-action statements to
trigger actions based upon that event class. Such a definition is also called the
schema of an event. Three basic types of event classes are available, namely,
subscribed event, complex event, and action classes. The instances of the
first are created by event detectors, the second are computed as Structured
Query Language (SQL) queries over other subscribed and complex event
classes. An condition-action statement defines the condition under which an
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instance of the corresponding action class is created. Conditions can refer
to the previous and current version of an event as well as various timing
primitives (Section 2.2) and attribute/value comparisons (Section 2.4). The
schema of an action class is determined by the action part of the statement,
that is a list of attributes to be used from the event class it is defined upon.

The following chapters describe the PeaCE framework as defined in Huemer
(2014). Section 2.2 describes the bitemporal event model on which PeaCE
is based. Thereafter, the process of creating a concrete instance of PeaCE
is depicted in Section 2.3. The language, BiCEPL, used to define events
and actions is delineated in Section 2.4. Subsequently the event processing
semantics of the PeaCE framework are investigated (Section 2.5) and finally
the Java implementation of the framework is described in Section 2.6.

2.2 Bitemporal Event Model

PeaCE’s novel feature is its bitemporal event model. This bitemporal event
model is necessary as events can not only be late, their announcements might
be late too and moreover events can change over time. Therefore Huemer
(2014) defines an occurrence time, the time at which an event actually occurs,
and a detection time, the time at which an event is detected, which not
necessarily equals the occurrence time, for each event (refer to Example 2.1
for an example). These two kinds of times are used to define various timing
primitives which can then be used as predicates in BiCEPL condition-action
statements to trigger actions (Section 2.4).

Example 2.1: The Bitemporal Model

Consider the resources in the running example. The instant these resources
notice that they are running low is the occurrence time of the event (Re-
sourceLow). The detection time is when the refrigerator reads the message
from the resource. If the resource is, for instance, because of a network out-
age unable to post the event right away, then the occurrence and detection
time will be different. The detection time is then the moment the fridge
reads the event after the network outage has been rectified.

The timing primitives presented in Figure 2.1 can be grouped into
ANNOUNCEMENT, CANCELLATION, and CHANGE. The former refers to the initial
occurrence of an event whereas the latter two groups consider events which



CHAPTER 2. THE PEACE FRAMEWORK 10

Figure 2.1: The timing primitives for event classes (Huemer, 2014)

already exist. The timing primitive ONTIME is for events happening on time,
FUTURE describes event which will occur and LATE refers to events being de-
tected too late, i.e., they have already happened before the event was de-
tected. The remaining timing primitives are for events which allegedly oc-
curred in the past and are modified now. RETROACTIVECHANGE describes the
changing of an event with its new occurrence time still in the past whereas
POSTPONE describes events being postponed to the future. Finally, REVOCATION
is for events which are cancelled, thus do not have an occurrence time after
the update. Examples are given in Example 2.2.

Example 2.2: Timing Primitives

Assume a resource is issuing an event (for the first time) that it is running
low at 5pm. The refrigerator detects the event instantly, thus also at 5pm.
Consequently the timing primitives ANNOUNCEMENT and ONTIME are matched.
The fridge then orders the resource. The delivery company posts the event
for the delivery at 5:02pm but due to a network outage the fridge detects the
event at 5:30pm. Since the occurrence time of the delivery event describes the
time the delivery will occur the timing primitives ANNOUNCEMENT and FUTURE
are matched in this case. Unfortunately issues in the supply chain delay
the delivery. The delivery company publishes the delivery event with the
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updated delayed delivery time, thus the timing primitives CHANGE and FUTURE
match. The delivery time is changed once more after the delivery should
have occurred due to more severe issues in the supply chain than expected,
ergo POSTPONE matches.

2.3 PeaCE Setup Routine

Once the scenario is known, i.e., the actions to be executed, their conditions
and basic events, four tasks need to be done in order to create a PeaCE
application:

1. Event wrappers for extracting events from the Web (using OXPath)
or any other source need to be defined.

2. Action wrappers for conducting actions based on event conditions need
to be described. These actions can be web actions, for instance, posting
on Facebook, or any other action which is implemented as an action
wrapper.

3. Once the starting point, desired outcome, and actions are known the
subscribed event classes (events of these classes are outcomes of event
wrappers) need to be defined in BiCEPL. For each subscribed event
class optional condition-action-statements can be declared which rep-
resent the connection to action wrappers. They define conditions on
attributes of an event class which, if satisfied, trigger the action speci-
fied.

4. For complex scenarios subscribed event classes are not sufficient, there-
fore complex event classes are introduced to enable combinations of
subscribed and other complex event classes. Analogously to subscribed
event classes these are defined in BiCEPL and can have condition-
action statements.

Example 2.3 shows the result of the process for the running example in UML
notation.

Example 2.3: The Event Classes for the Scenario

Figure 2.2 shows the different event classes for the scenario defined in Sec-
tion 1.3. The events are specified in UML here, extracts of the BiCEPL
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definition are shown in Section 2.4.

�PK� ... Primary Key
�FK� ... Foreign Key
�immutable� ... Events of this class cannot change.
�mutable� ... Events of this class can change.

Figure 2.2: The running example event classes represented in UML.

2.4 Bitemporal Complex Event Processing
Language (BiCEPL)

BiCEPL is the language used by the PeaCE framework to define how events
are to be processed and which actions to perform under which conditions. A
BiCEPL program contains all information necessary for a runnable CEP,
i.e., the schema of all subscribed and complex event classes as well as their
corresponding condition-action statements.

Section 2.4.1 describes the syntax for defining event classes whereas Sec-
tion 2.4.2 delineates the notation of condition-action statements and their
corresponding action.
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2.4.1 Event Definition

In this section event definitions using BiCEPL are delineated. Therefore
BiCEPL’s syntax for defining an event class is depicted in Extended Backus-
Naur Form (EBNF) in Grammar 2.1. A BiCEPL program 〈program〉 is
a sequence of event classes. These can either be subscribed 〈sclass〉 or
complex event classes 〈cclass〉. Each such event class defines a 〈schema〉
which describes its 〈attributes〉 and 〈keys〉 (a subset of its attributes). The
keys are important as they are used for updating events; if a second event
with the same key is detected it is an update. The lifespan of an event is
declared as 〈time_literal〉 which is depicted in Grammar 2.2. Finally the
condition-action statements 〈condition_action〉 can be defined optionally
(Section 2.4.2).

〈program〉 ::= { 〈sclass〉 | 〈cclass〉 }

〈sclass〉 ::= ’CREATE’ (’MUTABLE’ | ’IMMUTABLE’)
’SUBSCRIBED EVENT CLASS’ 〈schema〉 ’LIFESPAN’
〈time_literal〉 [ 〈condition_action〉 { 〈condition_action〉 }
] ’;’

〈cclass〉 ::= ’CREATE’ ’COMPLEX EVENT CLASS’ 〈schema〉 ’LIFESPAN’
〈time lit〉 ’AS’ 〈selection〉 [ 〈condition_action〉 {
〈condition_action〉 } ] ’;’

〈schema〉 ::= 〈name〉 ’(’ 〈attributes〉 ’)’ ’ID’ ’(’ 〈keys〉 ’)’

〈attributes〉 ::= 〈name〉 〈type〉 { ’,’ 〈name〉 〈type〉 }

〈keys〉 ::= 〈name〉 { ’,’ 〈name〉 }

〈selection〉 ::= ’SELECT’ 〈select_clauses〉 ’OCCURRING AT’ 〈time〉

〈time〉 ::= 〈table_ref〉 ’.’ 〈name〉 | 〈time〉 [ ( ’+’ | ’-’) 〈time_literal〉] |
(’MAX’ | ’MIN’ ’(’ 〈time〉 { ’,’ 〈time〉 } ’)’

Grammar 2.1: The EBNF of the event class definition in BiCEPL as
sketched in Huemer (2014). 〈select_clauses〉 and 〈table_ref〉 refer to non-
terminals of an SQL grammar.

Subscribed event classes can be MUTABLE, i.e., they can be changed once de-
tected, or IMMUTABLE, i.e., their first occurrence is final and thus no further
changes are possible. Complex event classes on the other hand do not spec-
ify this due to their dependence on their constituent event classes (the event
classes on which they are based). Complex event classes are defined as SQL
queries 〈selection〉 over other event classes where the 〈select_clauses〉 are
borrowed from an SQL grammar. Since these event classes are derived they
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do not have a logical occurrence time, it needs to be specified explicitly using
OCCURRING AT 〈time〉. The 〈time〉 itself can be an attribute of the selection,
an arithmetic combination with a time literal, or a min or max function of
several 〈time〉 instances. A sample BiCEPL class definition for the running
example is given in Example 2.4.

Example 2.4: Subscribed Event Class ResourceLow

Listing 2.1 depicts the BiCEPL statement declaring the immutable sub-
scribed event class ResourceLow.

1 CREATE IMMUTABLE SUBSCRIBED EVENT CLASS ResourceLow
( resource VARCHAR (30), amountLeft NUMERIC ) ID
( resource ) LIFESPAN (5d);

Listing 2.1: The BiCEPL statement defining the subscribed event class
ResourceLow.

ResourceLow has two attributes: the id of the resource, resource, and the
amount left of it, amountLeft, where resource is the key attribute. The
lifespan of event instances is defined with five days.

The OCCURRING AT clause is not supported by the standard SQL. Therefore
it needs to be rewritten into an SQL statement. Huemer (2014) calls this
”SQL-Query Rewriting”. The query rewriting extends table references by
”.occ”, i.e., references to a table name (thus event class) are references to
the occurrence time of this class. The OCCURRING AT clause is rewritten as an
attribute into the SQL select statement of the complex event class. The selec-
tion of attributes is then extended by the ”det” attribute, the detection time
(with the value NOW). An example query rewriting is given in Example 2.5.

Example 2.5: SQL-Query Rewriting

The SQL-query rewriting is shown in Listing 2.2 and Listing 2.3. Listing 2.2
depicts the original BiCEPL SQL-query, Listing 2.3 shows the rewritten
pure SQL-query.

1 ... SELECT resource FROM ResourceEmpty WHERE ...
OCCURRING AT ResourceEmpty . occTime + 10m ...

Listing 2.2: The original BiCEPL SQL-query.
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1

... SELECT ResourceEmpty . occTime + 600 AS occTime , NOW AS
det , resource FROM ResourceEmpty ...

Listing 2.3: The rewritten BiCEPL SQL-query.

2.4.2 Event-Condition-Action Model

Section 2.4.1 describes the part of the BiCEPL grammar for defining event
classes. For each event class condition-action statements can be declared
which will be explained in this section. Grammar 2.2 depicts the syntax for
these statements in EBNF; the embedding into the event class definitions is
shown in Grammar 2.1.

〈condition_action〉 ::= ’ON’ 〈cond〉 ’DO’ 〈action〉

〈cond〉 ::= 〈atom〉 | ’NOT’ 〈cond〉 | 〈cond〉 ’AND’ 〈cond〉 | 〈condition〉 ’OR’
〈condition〉

〈atom〉 ::= 〈value〉 〈predicate〉 〈value〉
| ’ANNOUNCEMENT’ | ’CANCELLATION’ | ’FUTURE’ | ’CHANGE’ |

’ONTIME’ | ’LATE’ | 〈late〉 | ’RETROACTIVECHANGE’ |
’REVOCATION’ | ’POSTPONE’ | ’FIRED’

〈value〉 ::= ( ’OLD.’ | ’NEW.’ ) 〈name〉 | 〈literal〉 | ’NOW’

〈action〉 ::= 〈name〉 ’(’ 〈value〉 { ’,’ 〈value〉 } ] ’)’

〈time_literal〉 ::= 〈integer〉 (’d’ | ’h’ | ’m’ | ’s’)

Grammar 2.2: The EBNF definition of condition-action statements in Bi-
CEPL as defined in Huemer (2014).

The condition-action model distinguishes between subscribed/complex event
classes, and action classes. The former are the classes upon which the con-
ditions are defined, the latter describe the action classes for event instances
which satisfy the conditions. Each condition-action statement starts with
ON followed by the condition 〈cond〉, the terminal DO, and the action class
〈action〉. A condition can contain timing primitives ONTIME, LATE, etc. ;
FIRED; value comparisons 〈value〉 〈predicate〉 〈value〉; and logical combina-
tions of these 〈cond〉. FIRED is true if an action has been triggered for this
event instance before. Furthermore, previous, OLD., and current, NEW., at-
tributes of events can be referred to, as well as the current time NOW and
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literals 〈literal〉. The action definition 〈action〉 is analogous to a method
call. It has a name and an optional sequence of parameters which are re-
stricted by 〈value〉. Finally the time literal 〈time_literal〉 is introduced for
usability. It allows to specify time durations like days, hours, etc. so the user
does not have to calculate the time span in seconds. An example is given in
Example 2.6.

Example 2.6: Condition-Action Statements

This example shows such a condition-action statement to give an idea what it
looks like. Listing 2.4 depicts the event class definition of Delivery for which
two condition-action statements are declared. Since the event class is mutable
the events can change. If the delivery date changes we want to inform the
customer or tweet a message. Listing 2.4 triggers action informOwner if an
event instance is changed and the new delivery date is later than the old one.
Moreover the action twitterEarlyDelivery is set off when a change occurs and
the delivery is earlier than first announced.

1 CREATE MUTABLE SUBSCRIBED EVENT CLASS Delivery ( resource
VARCHAR (30), amount NUMERIC )

ID ( resource ) LIFESPAN (14d)
3 ON CHANGE AND new. occTime > old. occTime DO

informOwner (’delayed ’, new. resource,new . occTime ),
ON CHANGE AND new. occTime <= old. occTime DO

twitterEarlyDelivery (’Delivery company delivers %s
amazingly fast!’,new. resource );

Listing 2.4: The BiCEPL statement defining the subscribed event class
Delivery.

2.5 Event Processing Semantics

The elements of the PeaCE framework have been described in the previous
sections. This section investigates the semantics of the event processing
core starting with the time concept used, simplifications applied, updating
semantics of events, and evaluation of conditions as well as triggering actions.
Finally, the semantics for event expiration is depicted. For the semantics of
timing primitives refer to Section 2.1.
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The PeaCE framework is embedded into the real world and is able to com-
pare times of event instances. Therefore the occurrence time of events is
usually given using the conventional time concept and not some arbitrary
one. As a result the wall clock time is introduced in Huemer (2014), repre-
senting the time in the real world. The occurrence and detection times use
the wall clock time metric and thus can be compared on this wall clock time
scale and also with the current wall clock time (e.g. by using NOW).

Processing all events in real time is costly and most of the time not neces-
sary (apart from the fact that one cannot process events in ”real” time; no
event would ever be on time if one measures exactly enough). Consequently,
Huemer (2014) utilizes the chronon concept. Each chronon has a certain
time span; time is represented by an uninterrupted sequence of chronons.
All events that occur within a chronon are treated as if they had the same
occurrence time. The instance one chronon ends and a new one begins is
called clock tick. For an example refer to Example 2.7.

A BiCEPL program defines the subscribed and complex events to be pro-
cessed in the PeaCE framework instance. Each distinct event (having dif-
ferent key values than all the other event instances of this event class) has an
occurrence and a detection time. Based on the condition-action statements,
thus the current wall clock time, detection and occurrence time, and possible
changes to an event, actions are triggered. These changes require one event
(one unique key) to occur in two different chronons. Once a condition-action
statement for a specific event instance is satisfied this event has fired. This
is depicted in Example 2.7.

Example 2.7: Basic Semantics of PeaCE

Consider the event history shown in Table 2.1. The chronon length for this
example is given with 15 minutes with each clock tick occurring exactly on
the quarter hour. This means that at the clock ticks the following events are
detected:

16:00 No event is detected yet.

16:15 The first event is detected and the expected delivery is on 7.4.14 at
9:00.

16:30 A second event is detected which has the same key (resource =
milk) as the previous one. Furthermore the occurrence time attribute
changed, thus this is a change of the previous event updating the deliv-
ery time. Since the condition change and new.occTime > old.occTime
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holds for this update the action informOwner is triggered and thus
fired.

Occurrence Time Detection Time Resource Amount

7.4.14 09:00 3.4.14 16:01 Milk 2

7.4.14 17:00 3.4.14 16:27 Milk 2

Table 2.1: Event history for the subscribed event class Delivery.

The most natural semantics for such a system is the unlimited buffering
semantics. This allows to compare all events of all time points with each other
but can hardly be realized for systems with a high event throughput. Hence
Huemer (2014) introduces the sliding windowing semantics to PeaCE. Each
event class has a lifespan. This lifespan is used to calculate the expiration
times of its instances; once an event expires it is purged from the system.
For subscribed events which do not have any dependent event classes the
expiration time is yielded by exp = occT ime+lifespan. Complex events and
subscribed events with dependent event classes on the other hand are more
complicated resulting in the following (for an example refer to Example 2.8):

• The expiration times of complex event classes must be processed in
a fixed order such that complex event classes which depend on other
event classes are processed after these (analogous to stratification in
mathematical logics).

• The preliminary expiration times of each complex event is then calcu-
lated as prelmExp = MAX(occT ime + lifespan, S) with S being the
set of the occurrence time plus lifespan of all constituent events. These
times are preliminary as they can be changed in the next step.

• Thereafter the expiration times of each constituent event is calculated
as exp = MAX(occT ime + lifespan, S) with S being the set of the
expiration times of all dependent events.

• All preliminary expirations times not changed in the last step are set
as expiration times (exp = prelmExp).

Once every event has an expiration time associated each event expired, i.e.,
its expiration time is smaller than the current chronon start time (clock
tick), is purged from the system and can be archived optionally. One sanity
condition for the PeaCE framework is that events are not updated beyond



CHAPTER 2. THE PEACE FRAMEWORK 19

their lifespan. Furthermore, a complex event may only be purged if all its
constituent events are purged, and vice versa.

Example 2.8: Purging Semantics of PeaCE

The expiration time calculation is shown here using the event histories de-
picted in Table 2.2.

ResourceEmpty (lifespan 3 days)

Occurrence Time Detection Time Resource

9.4.14 9:00 9.4.14 9:30 Milk

InstantReplenishingNeeded (lifespan 5 days)

Occurrence Time Detection Time Resource

9.4.14 9:00 9.4.14 9:30 Milk

Table 2.2: Event histories for ResourceEmpty and InstantReplenish-
ingNeeded.

For complex event InstantReplenishingNeeded its constituent event Re-
sourceEmpty needs to be taken into account. The expiration time then cal-
culates as the maximum of its occurrence time plus lifespan and occurrence
time plus lifespan of the ResourceEmpty event. Consequently this leads to
MAX(9.4.14 9:00 + 5 days, 9.4.14 9:00 + 3 days) thus resulting in 14.4.14
9:00.

For subscribed event ResourceEmpty the expiration time is now given by
MAX(9.4.14 9:00 + 3 days, 14.4.14 9:00), ergo the expiration time is 14.4.14
9:00. Note that the lifespan of the event is thus prolonged by two days.

2.6 Implementation of PeaCE

The modular design of the PeaCE framework described in Section 2.1 allows
for high adaptability. For simple cases the framework might have one event
detector, one CEP and one action executor. For more complex scenarios more
instances of these components can be used. This architecture also allows to
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Figure 2.3: The PeaCE implementation for the running example.

distribute the components over different nodes, e.g., the CEP might run on a
different computer than the detectors. Moreover these three components run
in parallel thus utilizing multi-core processors when run on one computer.

Each event detector can supply multiple CEPs, each CEP can receive events
from multiple detectors. Finally, action executors wait for actions from one
or multiple sources and conduct the actions in the order they arrive. For the
implementation of the running example with PeaCE refer to Example 2.9.

Example 2.9: Implementation of the Running Example

Figure 2.3 depicts the implementation and deployment of the running exam-
ple. In this scenario four event detectors are employed, three of them, namely
ResourceEmpty, ResourceLow, and ResourceExpiring access a server (via re-
mote procedure calls) and one, Delivery, accesses the Web using OXPath.
The complex events InstantReplenishingNeeded and ReplenishingNeeded are
derived in the CEP. These two complex event classes could also be derived
on two different CEPs. Finally, four action executors, viz. orderResource,
order1Day, informOwner, and twitterEarlyDelivery are used to carry out the
actions. All of them use OXPath to access web sites and to conduct their
corresponding actions.

The Java implementation of PeaCE implements these components and fulfils
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most of the qualities (e.g. not all combinations of conditions are supported)
described in the previous sections. Furthermore the Java prototype can be
deployed on mobile devices due to its lightweight and portable implementa-
tion style. Currently the framework supports SQLite and H2 databases, both
can be used server-less which is particularly helpful for mobile devices. Addi-
tionally PeaCE allows detectors and action executors to be outsourced and
accessed via web services easing the computation load on devices with small
computing power. To increase usability the PeaCE framework provides a
visual editor as well as a simulation and visualization environment.

A PeaCE Framework Instance at Runtime Once the process described
in the next section is completed a PeaCE framework instance has been
created. In this framework instance each event detector retrieves its events
from a specified data source. Usually each event detector is responsible for
collecting events of one subscribed event class. These events are forwarded
into a buffer which is connected to the CEP. Through this connection the
CEP is able, at each clock tick, to consume the buffered subscribed events.
These events are then processed, this means, possible complex events are
derived and condition-action statements evaluated. If such a condition-action
statement holds true the corresponding action class instance is written to a
buffer connected to the action executors. These action executors read the
actions from the buffer and execute them.

Building a PeaCE Application Using the PeaCE Framework As
mentioned before, the Java prototype of PeaCE implements the system
as described in Huemer (2014) with some constraints, for instance, not all
possible conditions are supported. The following short description of the
instantiation process gives an overview of how the framework works. Note
that the components embedded into a handler are those which need to provide
methods to stop, start and pause their threads. These methods are used for
instance by the simulation environment to control the PeaCE framework.

1. First, the knowledge base is created from a BiCEPL program. To
create it the chronon length, whether to purge or archive expired events
as well as whether global occurrence time optimization (Section 4.1.4) is
to be used need to be announced. The knowledge base then represents
the BiCEPL program in abstract syntax in form of Java objects which
are subsequently used to create the CEP. A CEP is a set of tables and
triggers for a specific database which implements a BiCEPL program.
Therefore this knowledge base is compiled for the chosen underlying
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database, for instance, H2, using a mapper class. After this step the
database is initialized.

2. Once the CEP is set up it needs to be controlled, i.e., events need to be
forwarded, complex events derived, conditions evaluated and actions
published at each clock tick. Thus the next step is to create the so
called Bitemporal Complex Event Processor (BiCEP) handler. This
handler has a database dependent task manager assigned which has the
three tasks (a) read, (b) execute and (c) publish which are executed
in this order at each clock tick. (a) is responsible for reading events
from the detectors described in step 3 into the database created in
step 1. Furthermore it triggers the deduction of complex events, the
expiration time calculation and the purging. (b) executes tasks for an
optimization technique, namely global occurrence time optimization,
described in Section 4.1.4. Finally, (c) forwards the derived actions
to action executors as defined. The BiCEP handler is responsible for
controlling the task manager thread, for instance, starting, pausing and
stopping it. This step leads to a fully functional CEP component which
has yet to be assigned an input buffer for (a) and an output buffer for
(c).

3. As mentioned in the previous step the buffer assignments for the CEP
are not performed yet. Hence, in this step the event detectors and their
buffers are created. For each detector an event buffer has to be created
which can operate in two modes: forward delta (only new/changed
events are forwarded) and forward all events. Currently event detec-
tion buffers utilize an SQLite database. Each buffer is then embedded
into a buffer handler. Once the buffer is created the event detectors are
instantiated. An event detector is represented by an event detection
task which is executed every x seconds (the detection time interval) re-
turning a list of detected events. This detector is then again embedded
into a detector handler.

4. Next the action executors and the corresponding buffers are instan-
tiated. First a buffer manager is created, a thread checking whether
there are events in the buffer and processing them if some exist. In the
next step the buffer handler and the buffer are created; also the buffer
manager is then embedded into the buffer handler. Subsequently, the
manager is provided with tuples of action classes and action execu-
tors. Each action executor is responsible for the execution of a specific
action.

5. Now that all components have been created, what is missing is connect-
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ing them. In this step event detector buffer handlers are assigned to the
read task (created in step 2) via the BiCEP handler. Afterwards the
assignment of the action executor buffer handlers to the corresponding
action classes is done via the BiCEP handler, in particular the publish
task (see step 2). Thus the event detectors and action executors are
now connected to the CEP.

6. The last step is to assign all created components - event detection
handler, BiCEP handler, and action execution buffer handler - to the
BiCEP model. The model allows to control the PeaCE framework
by providing methods to start, stop, and pause it. This is especially
important for the simulation and visualization of the system.
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This section copes with the implementation of a compiler for BiCEPL pro-
grams. Before diving into implementation details an introduction to compil-
ers and compiler compilers is given in Section 3.1 and Section 3.2, respec-
tively. The latter also describes the motivation for choosing ANother Tool
for Language Recognition version 4 (ANTLRv4) as compiler compiler for the
implementation. The subsequent section, Section 3.3, lists and explains the
changes made to the grammar defined in Huemer (2014). Finally, Section 3.4,
and its subsections give a detailed description of the Java implementation of
the BiCEPL compiler.

24
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3.1 Compilers

compiler.net (2010) defines a compiler as ”a computer program that trans-
lates a computer program written in one computer language (called the source
language) into an equivalent program written in another computer language
(called the output, object, or target language)”. Most compilers translate a
high level language into machine language. A parser (also syntax analyser)
is part of a compiler; it checks the syntax of a program against a given gram-
mar (the language of that program). Moreover, parser usually create a data
structure, mostly parse trees, of the given program which can then be pro-
cessed further. A grammar is a set of rules explaining the structure of that
language. (Parr, 2012, p. 9f.)

Typical compilers comprise the following parts which are executed in the
order given:

Lexer The lexer is responsible for grouping single characters into tokens.
Furthermore the lexer can group tokens into token types, for instance
integer. This step is also called lexical analysis or tokenizing. (Parr,
2012, p. 10)

Parser The parser considers tokens and token types found by the lexer and
recognizes the sentence structure. Most parsers create a so called parse
or syntax tree to record how it recognized a certain input sequence.
The leaves of that tree represent the tokens, the nodes represent parsing
rules, and the root is the most abstract rule of the input sequence. If
there are any syntax errors in the program the parse tree cannot be
constructed correctly, for instance, the root of the parse tree would not
correspond to the root element of the grammar. Such syntax trees are
easy to process in any following steps. (Mössenböck, 2007; Parr, 2012)

Semantic Analysis The semantic analysis can include, for instance, type
checking, checks whether variables referred to in the program exist,
etc. on the syntax tree generated by the parser. This step is optional,
in the implementation of the BiCEPL parser this step is omitted.
(Mössenböck, 2007)

Optimization This optional step optimizes the given input. This is often
done when compiling high level languages, for instance Java, where
given code is optimized to increase the performance of executables.
(Mössenböck, 2007)

Code Generation The final task is the generation of code in the target
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language. (Mössenböck, 2007)

The BiCEPL compiler will not comprise the two optional steps semantic
analysis and optimization.

To write a compiler which comprises at least the three required steps is a time
consuming, complicated task. Fortunately compiler compilers exist which
allow to generate compilers and/or parsers from a formal description. Since
the generation of a complete compiler is challenging most current compiler
compilers create parsers and allow the user to add the code generation part.

3.2 Compiler Compilers

A compiler compiler is a tool generating a parser, interpreter or a compiler
from a formal description like an EBNF. This is particularly useful in this
case as the grammar of BiCEPL is given as EBNF. This section will state
the qualities required from such a compiler compiler for the given task and
why ANTLRv4 was chosen over other comparable tools.

First a few knock-out criteria are defined to constrain the possible alternatives
for implementing a BiCEPL compiler:

• The compiler compiler must generate Java code in order to work with
the existing PeaCE framework prototype.

• It must be free of charge.

• Extensions to the generated code must be possible.

Keeping the knock-out criteria in mind, four different compiler compilers,
namely Coco/R (Mössenböck, Löberbauer, & Wöß, 2011), JavaCC (JavaCC,
2013b), SableCC (Gagnon, 1998) and ANTLRv4 (Parr, 2012, 2013), have
been found. These are discussed in more detail below. In Table 3.1 a com-
parison of the compiler compilers named is depicted to support the decision
for ANTLRv4.

Coco/R uses an attributed grammar (semantic actions), this means the code
generation part is written directly into the formal description to add appli-
cation specific code (Mössenböck, 2007). This will get chaotic and confusing
with increasing amount of code. Furthermore it gets quite difficult to get
a look at the underlying grammar. Additionally, no implementation of the
SQL (2003) standard has been available at the point of writing thus Coco/R
was ruled out as an option.
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Property ANTLRv4 CocoR

Code Grammar actions,
Java visitor,
Java listeners

Semantic actions

Ignore Case 7 3

Left Recursion 3 7

Parser Type LL(*) LL(k)

SQL available 3 7

License Berkeley Software Dis-
tribution (BSD)

Extended GNU General
Public License

Latest Update June 2013 April 2013

LL Left to right and Leftmost deviation top-down parser for a sub-
set of the context-free grammars. Usually it is given as LL(x)
where x indicates the number of tokens it can look ahead; LL(*)
describes an unlimited look ahead. (Lewis, 2014)

Table 3.1: Comparison of the compiler compilers ANTLRv4 and CocoR.
(Mössenböck et al., 2011; Parr, 2012, 2013)
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Property JavaCC SableCC

Code BNF productions Java visitor

Ignore Case 3 7

Left Recursion 7 3

Parser Type LL(k) LALR

SQL available 3 7

License BSD GNU Lesser General
Public License (LPGL)

Latest Update May 2013 November 2012

LALR Look Ahead Left to right and Rightmost deviation parser for
specific grammars. A LALR grammar is one for which its parser
does not contain conflicts. LALR is a simplification of a canon-
ical LR parser needing less resources. (Johnson, 2008)

Table 3.1: Comparison of the compiler compilers continued with JavaCC and
SableCC. (Gagnon, 1998; JavaCC, 2013a, 2013b)

JavaCC uses so called BNF productions, similar to Coco/R’s semantic ac-
tions, for application code notation. This results once again in a difficult to
read compiler. Although an SQL (2003) grammar is available JavaCC was
not used as the documentations found were incomplete and the code gets
confusing.

The remaining compiler compilers are SableCC and ANTLRv4. Both are in
terms of grammar and action definition very similar although they are based
on different parsing techniques. Both allow to separate parsing and code gen-
eration and create tree walkers and/or listeners which allow to write actions
for certain parts of the grammar. Furthermore, SableCC and ANTLRv4
support left recursion. The final decision is ANTLRv4 as an SQL (2003)
grammar is available, although only ANTLR 3. Additionally, many widely
known projects, for instance, NetBeans’ C++ parser or HQL, use ANTLRv4.
Albeit only the select statement of the SQL (2003) grammar is needed for
BiCEPL the grammar is so complex and vast that it would have cost more
time to implement just the select statement in all its variants than to adapt
the existing grammar. (Gagnon, 1998; Parr, 2013)

A typical ANTLRv4 grammar comprises two parts, namely lexer rules spec-
ifying the lexer and parser rules defining the parser. These two parts can
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either be combined into one single file or split into two or more files. The
ANTLRv4 compiler compiler then reads this file or these files. These rep-
resent the formal description of the language to build a parser/compiler for.
The compiler compiler then outputs the Java classes necessary to parse a
program of that language. Optionally a visitor or a listener class can be
created, thus allowing the user to insert application code into the parser.
These classes are utilized in this thesis to compile a BiCEPL program into
the knowledge base format required by the PeaCE framework.

3.3 BiCEPL Syntax Implemented - Differ-
ences to Huemer (2014)

The basic EBNF defining BiCEPL is taken from Huemer (2014) and has
been developed further by the author since. This section describes the addi-
tional non-terminal and terminal symbols which have been introduced. On
the one hand these are the ones necessary to represent the further develop-
ments in the grammar; on the other hand these are extensions which are
essential so the grammar and the SQL (2003) integration could be imple-
mented with ANTLRv4. The EBNF used for the BiCEPL parser is depicted
in Grammar 3.1 and Grammar 3.2. As can be seen BiCEPL’s structure is
reminiscent of SQL.

Grammar 3.1, Grammar 3.2, and the original EBNF as defined in Huemer
(2014) differ slightly. The specific differences are listed below.

• The non-terminal 〈name〉 is replaced by 〈Regular Identifier〉 from the
SQL (2003) grammar.

• The symbol 〈type〉, which allowed long, real and text, is replaced by
〈predefined type〉 from the SQL (2003) EBNF. This is necessary to
provide consistency within the BiCEPL statements regarding the type
definition as not all of these types are available in SQL (2003) un-
der these names. During parsing these predefined types, 〈predefined
type〉, are converted to the three basic types long, real and text sup-
ported by the PeaCE framework.

• 〈table_ref〉 ’.’ 〈name〉 is replaced by 〈identifier chain〉 from SQL
(2003).

• The non-terminal 〈condition〉 is extended by two options to support
conjunctive and disjunctive clauses in parenthesis, thus allowing more
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〈program〉 ::= { 〈sclass〉 | 〈cclass〉 }

〈sclass〉 ::= ’CREATE’ (’MUTABLE’ | ’IMMUTABLE’)
’SUBSCRIBED EVENT CLASS’ 〈schema〉 〈lifespan〉 [ 〈ca stmt〉 {
〈ca stmt〉 } ] ’;’

〈cclass〉 ::= ’CREATE’ ’COMPLEX EVENT CLASS’ 〈schema〉 〈lifespan〉 ’AS’
〈bicepl select〉 [ 〈ca stmt〉 { 〈ca stmt〉 } ] ’;’

〈schema〉 ::= 〈Regular Identifier〉 ’(’ 〈attrs〉 ’)’ ’ID’ ’(’ 〈keys〉 ’)’
〈attrs〉 ::= 〈Regular Identifier〉 〈predefined type〉 〈keys〉
::= 〈Regular Identifier〉 { ’,’ 〈Regular Identifier〉 }

〈lifespan〉 ::= ’LIFESPAN’ ’(’ 〈time lit〉 ’)’

〈bicepl select〉 ::= 〈query specification〉 〈occ at clause〉

〈occ at clause〉 ::= ’OCCURRING AT’ 〈time〉

〈time〉 ::= 〈identifier chain〉
| 〈time〉 ( ’+’ | ’-’ ) 〈time lit〉
| ( ’MAX’ | ’MIN’ ) ’(’ 〈time〉 { ’,’ 〈time〉 } ’)’

Grammar 3.1: The BNF definition of BiCEPL. Non-terminal symbols,
which are all lower case except for SQL (2003) symbols, are represented by
parser rules in the ANTLR4 grammar; terminal symbols, which are all capi-
tal letters, are lexer rules. The 〈query specification〉, 〈identifier chain〉,
〈Regular Identifier〉, and 〈predefined type〉 are taken from SQL (2003).
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〈ca stmt〉 ::= ’ON’ 〈condition〉 ’DO’ 〈action〉

〈condition〉 ::= 〈atom〉
| ’NOT’ 〈condition〉
| 〈condition〉 ’AND’ 〈condition〉
| ’(’ 〈condition〉 ’AND’ 〈condition〉 ’)’
| 〈condition〉 ’OR’ 〈condition〉
| ’(’ 〈condition〉 ’OR’ 〈condition〉 ’)’

〈atom〉 ::= 〈timing〉 | 〈lit〉 〈comp op〉 〈lit〉 | ’FIRED’

〈timing〉 ::= ’ANNOUNCEMENT’ | ’CANCELLATION’ | ’CHANGE’ | ’ONTIME’ |
’LATE’ | 〈late〉 | ’RETROACTIVECHANGE’ | ’REVOCATION’ |
’POSTPONE’

〈late〉 ::= ’LATE’ ’(’ 〈min delay〉 ’,’ 〈max delay〉 ’)’

〈lit〉 ::= 〈val expr〉 | 〈general literal〉

〈val expr〉 ::= 〈val term〉 | 〈val term〉 ’-’ 〈val term〉 | 〈val term〉 ’+’
〈val term〉

〈val term〉 ::= ’NOW’ | 〈NEWOLDCOL〉 | 〈val numeric〉

〈val numeric〉 ::= 〈Unsigned Float〉 | 〈Unsigned Integer〉 | 〈Signed Float〉|
〈Signed Integer〉 | 〈time lit〉

〈action〉 ::= 〈Regular Identifier〉 〈paramlist〉

〈paramlist〉 ::= ’(’ [ 〈param〉 { ’,’ 〈param〉 } ] ’)’

〈param〉 ::= 〈value expression primary〉 | 〈NEWOLDCOL〉

〈time lit〉 ::= 〈Unsigned Integer〉 〈TIME UNIT〉

〈NEWOLDCOL〉 ::= (’NEW’ | ’OLD’) ’.’ 〈Regular Identifier 〉

〈TIME UNIT〉 ::= ’D’ | ’H’ | ’M’ | ’S’

Grammar 3.2: The BNF definition of BiCEPL condition-action statments.
Non-terminal symbols, which are all lower case except for SQL (2003) sym-
bols, are represented by parser rules in the ANTLR4 grammar; termi-
nal symbols, which are all capital letters, are lexer rules. The 〈comp op〉,
〈literal〉 extended by 〈unsigned numeric literal〉 as an additional option,
〈Unsigned Integer〉, 〈Unsigned Float〉, 〈Signed Integer〉, 〈Signed Float〉,
〈general literal〉, and 〈value expression primary〉 are taken from SQL
(2003).
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complex conditions.

• The symbol 〈predicate〉 is replaced with 〈comp op〉 from the SQL (2003)
EBNF.

• 〈value〉 is extended and renamed to 〈lit〉 to support addition and sub-
traction of numeric terms. These are implemented anew since the SQL
(2003) non-terminal 〈numeric value expression〉 implements multipli-
cation and division as well. Nevertheless, the non-terminal 〈literal〉
is replaced with 〈general literal〉 from the SQL (2003) since they are
semantically identical.

• The timing primitive FUTURE is not implemented as it has not been
defined yet at the time the compiler was written.

3.4 BiCEPL Compiler Implementation

With the theoretical concepts and the grammar to be implemented at hand,
the actual implementation is discussed in this section. Before delineating the
specifics a short introduction to the PeaCE components used, in particular
their realization in the Java prototype, is given in Section 3.4.1. Thereafter
the ANTLRv4 formal description of BiCEPL (Section 3.4.2 - 3.4.4), the
parser generated, and the application code used (refer to Section 3.4.5 for the
latter two) to create the necessary PeaCE framework objects (the knowledge
base) are discussed. Note that the following sections will give just an overview
of the Java implementation, for the detailed description of classes, methods,
attributes, grammar rules, etc. refer to the files and the Javadoc respectively.

The BiCEPL compiler implemented for the PeaCE framework, and de-
scribed below, is rather slow for compiling/parsing programs. This is mainly
due to the vast SQL (2003) grammar. Fortunately, since the compilation
of a BiCEPL program takes place before the framework is run, the per-
formance of the compiler is not essential. Therefore no performance tweaks
were attempted.

3.4.1 PeaCE Components Used

The BiCEPL compiler uses only one part of the PeaCE framework, namely
the so called knowledge base which represents a BiCEPL program in ab-
stract syntax in form of Java objects. The compiler therefore uses the classes
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of biceps.bicep.knowledge_base and its subpackages. The structure of these
packages, their classes and their tasks are explained below.

Approaching the elements top-down the KnowledgeBase is the root ele-
ment. It contains all events, their names, attributes, keys, condition-actions,
etc. Thus the KnowledgeBase corresponds to the whole BiCEPL program.
Each event definition in BiCEPL is represented with either an object of
SubscribedEventClass or ComplexEventClass. The Java classes currently
support three data types for attributes, namely long, real, and text. There-
fore types specified in BiCEPL have to be mapped to these three.

The previous paragraph described the BiCEPL event definition in Java; here
the event-condition-action declaration for event classes is delineated. For
each condition-action statement of an event an EventPublicationStatement
is created. This EventPublicationStatement is referenced in its correspond-
ing EventClass. It contains an object hierarchy representing the condition
(Section 3.4.5 and Figure A.6) and a PublishedEventClass object represent-
ing the action. A PublishedEventClass is a construct used to implement
action classes. For each condition-action statement one published event class
is created unless the same action class is used several times, then one pub-
lished event class is created for all of them. Such a class contains the same
attributes as the event class its condition-action statement is defined upon.
The name of the published event class is given by the condition-action state-
ment; the attributes specified for an action in BiCEPL are currently ignored.
At each clock tick the instances of the published event classes are sent into
the buffer forwarding them to the action executors. A published event class
is thus nothing else but the implementation of an action class.

3.4.2 Structured Query Language Grammar

As described previously, BiCEPL is not just very similar to SQL it also uses
the SQL (2003) 〈query specification〉 inter alia to define complex event
classes. Hence the SQL (2003) EBNF has to be implemented, at least partly,
or an existing grammar has to be employed. Since the SQL (2003) grammar
is extensive and the interdependence of the various symbols is high it is
difficult to implement just one specific part of it. Therefore an existing SQL
(2003) grammar provided by Godfrey (2011) is modified so it can be used with
ANTLRv4. Furthermore this SQL grammar is extended by BiCEPL specific
symbols. Since Godfrey (2011) is not guaranteed to be tested JUnit tests
are utilized to test the 〈query specification〉 part of the grammar (details
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lexer grammar BiCEPLLexerDef ;
2 // Keywords for subscribed events

MUTABLE : ’MUTABLE ’ | ’mutable ’ ;
4 IMMUTABLE : ’IMMUTABLE ’ | ’immutable ’ ;

SEVENT : ’SUBSCRIBED EVENT CLASS ’ | ’subscribed event
class ’ ;

6 LIFESPAN : ’LIFESPAN ’ | ’lifespan ’ ;
ID : ’ID’ | ’id’ ;

Listing 3.1: The ANTLRv4 lexer definition of the keywords for subscribed
events.

follow in Section 3.4.6). For the concrete modifications see the grammar files;
modifications are accompanied by comments starting with “fb:”.

3.4.3 BiCEPL Lexer

A lexer is responsible for tokenizing the input stream, i.e., it groups the
characters into tokens (Parr, 2013). The parser then only uses these tokens
for further processing. The lexer for BiCEPL described in this section has
been derived from the EBNF shown in Grammar 3.1 and Grammar 3.2.

The lexer developed for the PeaCE framework comprises two lexers which
are maintained in separate files. One is the SQL (2003) lexer, the other
is the BiCEPL lexer. The former is not described in detail as it has not
been developed as part of this thesis. Nevertheless, it has to be mentioned
that the EBNF productions have been reordered to work with ANTLRv4
and BiCEPL. Additionally, the white spaces which are skipped in Godfrey
(2011) are now sent to a hidden channel. This is necessary as the parsed
query_specification needs to contain the white spaces so it can be passed
without further processing to an SQL data base. Skipped tokens do not
appear in the parse tree and therefore white spaces would have to be added
to the query_specification again.

The lexer specific to BiCEPL contains the BiCEPL tokens. These are
divided into several parts:

• the keywords for subscribed events (Listing 3.1, line one shows the
statement of the grammar type and its name),

• the keywords for complex events (Listing 3.2),

• the keywords for the optional condition-action statements (Listing 3.3),
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// Keywords for complex events
2 CEVENT : ’COMPLEX EVENT CLASS ’ | ’complex event class ’ ;

OCC_AT : ’OCCURRING AT’ | ’occurring at’ ;
4 CHK_AT : ’CHECKING AT’ | ’checking at’ ;

Listing 3.2: The ANTLRv4 lexer definition of the complex event keywords.

2 // Keywords for the optional condition action statment
DO : ’DO’ | ’do’ ;

4 T_ANN : ’announcement ’ | ’ANNOUNCEMENT ’ ;
T_CAN : ’CANCELLATION ’ | ’announcement ’ ;

6 T_CHG : ’CHANGE ’ | ’change ’ ;
T_ON : ’ONTIME ’ | ’ontime ’ ;

8 T_LATE : ’LATE ’ | ’late ’ ;
T_RET : ’RETROACTIVECHANGE ’ | ’retroactivechange ’ ;

10 T_REV : ’REVOCATION ’ | ’revocation ’ ;
T_POS : ’POSTPONE ’ | ’postphone ’ ;

12 NOW : ’NOW ’ | ’now ’ ;
FIRED : ’FIRED ’ | ’fired ’ ;

Listing 3.3: The ANTLRv4 lexer definition of condition-action statements.

• a type definition, namely, the definition of the time unit enumeration
(Listing 3.4),

• and the identifiers for new and old column specifications (Listing 3.4).

The time_lit rule, which semantically belongs to the lexer, is defined in the
parser (Listing 3.9). This is necessary as the visitors and listeners generated
by ANTLRv4 only contain methods for parser rules. These methods are
needed to convert the time_lit to seconds.

1 TIME_UNIT : [dhms] | [DHMS] ;
NEWOLDCOL : ( NEW | OLD ) Period Regular_Identifier ;

Listing 3.4: The ANTLRv4 lexer definition of the column identifier
referring to the new or old value of an event as well as the definition
of the time units.
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3.4.4 BiCEPL Parser

A parser recognizes a specific language, i.e., the syntax of the defined lan-
guage (Parr, 2012, p. 10). In this section the parser implemented for the
PeaCE framework, the BiCEPL parser, is explained in detail. This parser
is, as is the lexer, derived from the EBNF depicted in Grammar 3.1 and
Grammar 3.2.

Analogous to the lexer the parser comprises two separate specifications: one
concerning the SQL (2003) grammar and one regarding BiCEPL. The SQL
(2003) parser has been modified so it can be used with ANTLRv4 and Bi-
CEPL. These changes are listed below:

• The import statement has been removed, all imports are declared in
the BiCEPL parser specification.

• The options declaration at the beginning of the file has been deleted as
it is no longer needed in ANTLRv4.

• All embedded actions have been removed from the ANTLRv4 grammar
since they were of no use to the BiCEPL parser.

• The rule literal has been extended to support the BiCEPL specific
time literals.

• The token Space has been removed from all rules as there is no need
to explicitly define it. White spaces are automatically taken care of by
the lexer.

• The general_value_specification has been changed in order to sup-
port the predicate like.

• Several sections of the grammar have been removed as they caused
errors during the parser generation and are not viable for the query_-
specification rule.

For the specific modifications refer to the file; all modifications are annotated
with “fb:” and an description of the alteration.

With the SQL (2003) parser part described above the specific BiCEPL
parser are investigated below. This parser contains all parser rules neces-
sary to recognize BiCEPL programs. The specification for the parser is
split into several parts:

• The declaration part states the name, imported grammars, and the
@header option. This option allows the specification of Java code which
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grammar BiCEPL ;
2

import BiCEPLLexerDef , sql2003Parser ;//, CommonLexer ;
4

@header {
6 package biCEPLCompiler . parser ;

}

Listing 3.5: The declaration part of the ANTLRv4 parser for BiCEPL.

is inserted before each class definition (Listing 3.5).

• The syntax of a BiCEPL file or command which consists of zero or
more simple event and/or complex event classes. Notice that the syntax
differs only in one point, the complex event class contains a modified
SQL statement which declares how it is derived, i.e, how it depends on
its constituent event classes (Listing 3.6).

• The modified SQL statement which defines the derivation of a complex
event (Listing 3.7).

• The definition of the optional condition-action statement can be seen
in Listing 3.8. The condition-action statement is extended to support
conditions in parenthesis and therefore more complex conditions. This
is represented in Listing 3.8 by lines 7 and 9.

As depicted in Listing 3.8 the different possible alternatives for con-
dition, atom, and val_expr are labelled (# followed by the name).
Labelled alternatives allow more precise events in the ANTLRv4 gen-
erated Java code. Normally ANTLRv4 generates one listener/visitor
method per rule. Using labelled alternatives one method for each al-
ternative is created. This is very useful as no additional rules have to
be introduced in order to get the method granularity needed.

The action part of the condition-action statement is defined in lines
31 to 33 in Listing 3.8. An action looks like a method call in Java
or a similar programming language; the difference is that the allowed
parameters are SQL expressions and references to old or new values of
an event instance.

• The time literal, which semantically would belong to the lexer, is de-
clared in the parser (Listing 3.9). This is necessary to get ANTLRv4
to generate listener and visitor methods for the time literal.
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1 // The program contains subscribed and complex event
definitions .

program : ( sclass | cclass ) * ;
3

// Event definitions
5 sclass : CREATE ( IMMUTABLE | MUTABLE ) SEVENT schema

lifespan ( ca_stmt ( Comma ca_stmt ) * ) ? Semicolon ;

7 cclass : CREATE CEVENT schema ( lifespan ) ? AS
bicepl_select ( ca_stmt ( Comma ca_stmt ) * ) ?
Semicolon ;

9 lifespan : LIFESPAN Left_Paren ( time_lit | ’-1’ )
Right_Paren ;

// The schema for the events, both subscribed and complex .
11 schema : Regular_Identifier Left_Paren attrs Right_Paren

ID Left_Paren keys Right_Paren ;
attrs : attr ( Comma attr ) * ;

13 attr : Regular_Identifier predefined_type ;
keys : Regular_Identifier ( Comma Regular_Identifier ) * ;

Listing 3.6: The definition of a BiCEPL program which can contain
simple as well as complex events.

// The modified select statement for BiCEPL
2 bicepl_select : query_specification occ_at_clause ;

occ_at_clause : OCC_AT time ;
4

time : identifier_chain
6 | time ( Plus_Sign | Minus_Sign ) time_lit

| ( MAX | MIN ) Left_Paren time ( Comma time )*
Right_Paren ;

Listing 3.7: The modified SQL statement used to define the derivation of
a complex event class.
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// The condition action statement extended to support
parenthesis

2 ca_stmt : ON condition DO action ;
condition :

4 atom #
atomCond

| NOT condition # notCond
6 | condition AND condition # andCond

| Left_Paren condition AND condition Right_Paren # andCond
8 | condition OR condition # orCond

| Left_Paren condition OR condition Right_Paren # orCond
10 ;

atom :
12 timing # timingAtom

| lit comp_op lit # compAtom
14 | FIRED # firedAtom

;
16 timing : T_ANN | T_CAN | T_CHG | T_ON | T_LATE | late |

T_RET | T_REV | T_POS ;
late : T_LATE Left_Paren time_lit Comma time_lit

Right_Paren ;
18

// lit updated to support sum and substraction
20 lit : val_expr | general_literal ;

22 val_expr :
val_term # valExprTerm

24 | val_term Minus_Sign val_expr # valExprMinus
| val_term Plus_Sign val_expr # valExprPlus

26 ;
val_term : NOW | NEWOLDCOL | val_numeric ;

28 val_numeric : Unsigned_Float | Unsigned_Integer |
Signed_Float | Signed_Integer | time_lit ;

30 // The action is written like a method call
action : Regular_Identifier paramlist ;

32 paramlist : Left_Paren ( param ( Comma param ) * ) ?
Right_Paren ;

param : value_expression_primary | NEWOLDCOL ;

Listing 3.8: The grammar for the optional condition-action statement.

1 // Time Literal ; Semantically it belongs to the Lexer but
listener methods are only generated for rules!

time_lit : Unsigned_Integer TIME_UNIT ;

Listing 3.9: The grammar for the time literal.
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3.4.5 BiCEPL Application Code / Compiler

The previous sections, Section 3.4.3 and Section 3.4.4, discuss the definition
of the BiCEPL parser. Using the ANTLRv4 library the corresponding Java
parser is generated. This chapter describes the application code added to the
generated parser to create the needed PeaCE object, namely the knowledge
base. This knowledge base is then used by the PeaCE framework to create
the CEP.

The BiCEPL compiler comprises four packages, three containing application
code and one package for JUnit tests (Figure A.1). The biCEPLCompiler
package comprises the interface BiCEPLRuntime and the implementing BiCEPL
class which are used to run the compiler and the parser. Furthermore, it
contains the biCEPLParser package, consisting of the ANTLRv4 generated
classes, and the biCEPLCompiler package, comprising the application specific
code. A more detailed description of the different packages and the changes
made to the PeaCE framework is given in the sections below.

Runtime Interface This package provides an interface and a class imple-
menting it. These can be used to run the BiCEPL compiler or the BiCEPL
parser. The parsing function is provided to the visual editor included in the
PeaCE framework. The interface BiCEPLRuntime is employed to introduce
an abstraction layer to the compiler. Hence it is possible to exchange the
ANTLRv4 parser for any other parser as long as the interface is implemented.

The class BiCEPL implements the interface BiCEPLRuntime and provides the
concrete implementation for the ANTLRv4 grammar. The classes and their
relationship are depicted in Figure A.2.

Parser The parser package of the BiCEPL compiler contains the classes
generated by the ANTLRv4 library. These allow to parse a given BiCEPL
program and provide classes to extend the functionality of the parser. The
built classes are depicted in Figure A.3. The class BiCEPLBaseVisitor pro-
vides the means to process the BiCEPL program via a visitor pattern allow-
ing more control over traversing the parsing tree. The BiCEPLBaseListener
on the other hand provides no means to steer the traversing. It ”only” pro-
vides listener methods for entering and exiting parser rules; thus every node
of the parsing tree is visited when using the listener.
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Compiler This package contains the extensions to the ANTLRv4 gener-
ated parser. As described in Section 3.2 two options for extending the basic
parser exist which are both used in the BiCEPL parser. This is necessary as
a BiCEPL program can be split into two differently organized parts. These
are:

• the event class definition, and

• the condition-action statement.

This difference in the underlying structure demands distinct processing. The
event class definition requires the existence of entering and exiting meth-
ods, e.g. for the time literal, and therefore has to be processed with a lis-
tener. The condition-action statement on the other hand is based on a tree
structure, at least the condition part, and thus a visitor is preferred. Fur-
thermore, the objects generated by the two parts are different; the defini-
tion part generates EventClasses whereas the condition action part creates
EventPublicationStatements. Finally, the methods of the listener do not re-
turn objects and thus are not as suitable for building hierarchical structures
as is the visitor. Although both parts could be implemented using just a
listener or only a visitor this has not been done for the sake of code readabil-
ity and reduced complexity. Furthermore the performance of the parser is
not critical resulting in the decision for cleaner code. The class diagrams for
the compiler can be seen in Figure A.4 and Figure A.5. Below the different
classes and their functions are explained in more detail.

TimeLiteral This class is used to convert time literals into seconds. The
conversion is provided via the static method getSeconds.

BiCEPLPeACEListener This class extends the ANTLRv4 generated listener
and processes the event class definition part of a BiCEPL statement.
The disadvantage of using the listener is that it runs through the whole
program and not just the class definitions.

The BiCEPLPeACEListener is responsible for creating the KnowledgeBase
containing the EventClass objects for all event classes defined in the
BiCEPL program. In order to achieve this it has to perform the
SQL-query rewriting. The time literal is rewritten in the entering
method of time_lit using the TokenStreamRewriter, provided by the
ANTLRv4 framework, and the TimeLiteral class. The rewriting of the
occurring-at clauses is handled in the exit method of occ_at_clause.
The TokenStreamRewriter is not used here as the rewritten SQL clause
is directly stored in the EventClass object. The class diagram can be
found in Figure A.3; for more information regard the Javadoc.
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BiCEPLPeACEVisitor This class extends BiCEPLBaseVisitor<Symbol> to con-
vert the condition-action statements into PublishedEventClasses. To
do so it uses the elements defined in PeaCE framework. The result is
a hierarchy of elements with a Symbol object as root for the Condition.
In combination with a PublishedEventClass object for the action these
two form the corresponding EventPublicationStatement for a given
condition-action statement. The PublishedEventClass simply contains
the name of the action. For detailed information regarding the hierar-
chy created refer to the next section.

The ANTLRv4 library allows to add custom error listeners to a parser. The
following classes, depicted in Figure A.3, build such a listener and are used
to log errors while parsing.

LexerError This class is a subclass of Exception and contains information
about a lexical error including the line number, character position,
offending symbol, etc. A toString method is provided to print the
information in a convenient way.

BiCEPLErrorListener The BiCEPLErrorListener extends the
BaseErrorListener provided by the ANTLRv4 library. It there-
fore can be used instead of or additionally to the standard error
listener while parsing a file or a string. Each time an error occurs it
creates a new LexerError object and adds it to the internal error list.
These error objects can then be accessed via a getter. Furthermore, a
method is provided which returns whether errors have occurred during
parsing.

Necessary Changes to the Knowledge Base Packages The condition
part of the condition-action statement is represented as a hierarchy of classes
in the PeaCE framework. The old hierarchy structure was not suitable for
ANTLRv4 and its visitor extension. The visitor class of an ANTLRv4 gener-
ated parser returns the same class for all methods, thus the whole hierarchy
needs to have one common class/interface. Consequently the hierarchy has
been remodelled and extended by the features added to BiCEPL. The re-
sulting remodelled hierarchy is depicted in Figure A.6. As shown all objects
directly or indirectly (through inheritance) implement the interface Symbol.
Thus it is possible to construct the object representation of a BiCEPL con-
dition subsetting the visitor of the ANTLRv4 generated parser.
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3.4.6 Testing

Before implementing the parser the SQL grammar retrieved from Godfrey
(2011) has to be tested. Therefore the first JUnit test, namely TestSQL, is
written to do so; in particular the select statement which is used in the Bi-
CEPL grammar is examined. Select statements containing joins, predicates,
group by, subselects, having, complex columns and order by are tested. In
order to avoid writing one test method for each select statement Parame-
terized JUnit Tests are used. These allow to define a Collection of objects
(in this case Strings containing select statements) and subsequently run the
specified test method for every object in it.

Once it has been ascertained that the SQL grammar provided by Godfrey
(2011) works as expected the BiCEPL compiler is developed. Three JUnit
4 tests check the correctness of the compiler. These confirm the functional-
ity of the original implementation and test the continued functionality after
changes of the compiler/parser. The JUnit test TestBiCEPL examines the
parsing capabilities of the parser created. Various BiCEPL statements to
be run and whether to expect parsing errors or not are specified. Finally,
tests are created for the BiCEPLPeACEListener part of the BiCEPL com-
piler as well as the BiCEPLPeACEVisitor part. These run several BiCEPL
statements and test the created Java objects for their correctness.

These JUnit tests could be grouped into a test suite to run all of them by
simply starting the test suite. For the BiCEPL compiler no suite is created
as eclipse provides the functionality to run all JUnit tests within a project,
thus making a test suite superfluous.
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The Java prototype delineated in Section 2.6 uses an SQLite database for
its CEP. The second contribution of this thesis is the implementation of the
PeaCE framework’s CEP using H2. The first part of this chapter describes
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the implementation approach for the CEP with extended condition-action
statement support (Section 4.1). This includes tables, views, and triggers
which are used to create the basic functionality of the CEP. Thereafter, be-
fore diving into implementation details, an introduction to the H2 database
and its qualities is given in Section 4.2. Subsequently, the implementation of
the approach within the Java prototype using H2 is explained. Section 4.4
then explicitly states the differences between the H2 and the SQLite imple-
mentation of the CEP. In Section 4.5 the performance improvements achieved
are discussed. Finally, the test methods applied are described in Section 4.6.

4.1 Implementation Approach

This section depicts the implementation approach developed for the CEP
supporting higher complexity in condition-action statements. Section 4.1.1
describes the tables and views needed whereas Section 4.1.2 delineates the
triggers defined upon them. The subsequent sections Section 4.1.3 and Sec-
tion 4.1.4 describe the features purging and global occurrence time optimiza-
tion, respectively. Note that <SEC> is a placeholder for Subscribed Event
Class (SEC), <CEC> for Complex Event Class (CEC), <AC> for Action
Class (AC), and <EC> for Event Class (EC) name.

Database tables store on the one hand information about the PeaCE in-
stance, e.g., chronon length, event classes, etc. On the other hand each event
class is implemented with tables and views. Each of these tables contains the
instances of the corresponding event class. All subscribed events are imple-
mented with two tables, one containing an as-of-now view and one containing
the history of events. Complex event classes have additionally to these two
a view which is used to derive the complex event class from its constituent
event class(es). These tables and views are maintained by triggers. These
triggers move entries from the as-of-now to the history tables and vice versa,
maintain materialized views, purge events, derive complex events, evaluate
condition-action statements and perform optimization strategies. An exam-
ple of the cooperation between tables and triggers is shown in Example 4.5.

4.1.1 Tables & Views

This section depicts tables and views needed for a CEP. This includes system
tables, and event class specific tables and views. The corresponding triggers
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for maintaining the tables are described in Section 4.1.2. Finally, Example 4.1
exhibits some tables created for event classes of the running example.

System Tables The system tables contain data about the PeaCE frame-
work instance; some of them are static tables (Table 4.1) others are modified
during runtime (Table 4.2).

The static tables, depicted in Table 4.1, are described in more detail here. Ta-
ble S_SituationClass stores name, lifespan and metatype of all event classes
defined for a certain PeaCE framework instance. The metatype field is a
reference to an S_SituationClassType entry. sitId is an auto-increment field
which is the primary key.

Table S_SituationClassType defines three different metatypes of event classes
which can exist in a PeaCE framework. These are

• subscribed event classes,

• complex event classes, and

• published event classes (desbribed in Section 3.4.1).

S_SituationClass, depicted in Table 4.1, contains all event classes and their
corresponding information; S_SituationClassAttribute stores all attributes
defined for each event class in S_SituationClass. The event class is referenced
via the attribute sitId. For each attribute its name and whether it is part of
the key is stored.

Table S_System stores hyperparameters of the specific PeaCE instance, for
instance, the length of a chronon. Each parameter is stored with a text/name
describing it (parameter) and the corresponding value (value).

S_Trigger contains the name and the priority of every trigger employed in
the PeaCE framework instance. The priorities of triggers define the order
in which they are executed; this is of mayor importance as the result of the
CEP depends on this order.

The last system table depicted in Table 4.1 is S_ProcessorLog. This table is
used to log events of the PeaCE framework instance. For each clock tick the
begin and end time of the three tasks read, execute, and publish are inserted.

Each dynamic system table (Table 4.2) contains just one row. This row is up-
dated at each clock tick but at different times, for instance, S_UpdateHistory
is updated in the read task whereas ClockTick is in the execute task. Conse-
quently the triggers depending on them are started at different times when
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Table Name Attributes Key

S_SituationClass

sitID INT

sitIdname VARCHAR
lifespan INT
metatype INT

S_SituationClassAttribute
sitID INT sitIdatt_name VARCHAR att_nameisKey INT

S_SituationClassType typeID INT typeIdname VARCHAR

S_System parameter VARCHAR parametervalue VARCHAR

S_Trigger name VARCHAR namepriority INT

S_ProcessorLog

occTime INT occTimetimeStamp BIGINT statestate VARCHAR eventevent VARCHAR

Table 4.1: The static system tables used in PeaCE framework.
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processing events of the previous chronon (the events arriving in the current
chronon are processed when the next clock tick occurs). ActClockTick, un-
like ClockTick and S_UpdateHistory, does not set off any triggers. ClockTick
causes the triggers for action classes which contain ONTIME or LATE in their
conditions to fire whereas S_UpdateHistory starts the triggers for updating
the tables of complex event classes.

Table Name Attributes Key

ActClockTick occTime INT occTime

ClockTick occTime INT occTime

S_UpdateHistory occTime INT -detTime INT

Table 4.2: The dynamic system tables used in the PeaCE framework.

Subscribed Event Classes For each subscribed event class two tables
are created, namely <SEC> and H_<SEC> (depicted in Table 4.3). The
former contains the as-of-now view of the subscribed event class <SEC>.
Consequently, there is always at most one event with a certain key in the
table; no second event with the same key can exist. Changes to this event
lead to an update of the corresponding entry. The latter, H_<SEC>, is the
history table of the subscribed event class. It contains all changes to any
event of this class, i.e., the initial insert, updates, and deletion (represented
by a occTime of -1). Entries of the history table are only deleted in case the
purging option of the PeaCE framework is activated.

Both tables store occurrence time (occTime) and detection time (detTime)
of event instances. Additionally, user defined attributes can be added by
specifying them in the BiCEPL program. These user defined attributes are
represented as <user defined> in Table 4.3.

At each clock tick new events are inserted into H_<SEC>; The trigger
transporting these new events to <SEC> is depicted in Section 4.1.2.

Complex Event Classes A complex event class is defined upon other
event classes by an SQL select statement. This statement is used to derive
the complex event class from its constituent one(s). In the implementation
approach this is done by creating a view <CEC> which employs this SQL
statement (Table 4.4).
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Table Name Attributes Key

<SEC>
occTime INT

<user defined>detTime INT
<user defined>

H_<SEC>
occTime INT detTimedetTime INT <user defined><user defined>

Table 4.3: The tables created for each subscribed event class.

View Name Attributes Key

<CEC> user defined -

Table 4.4: The view necessary for deriving the instances of a complex event
class. This view is defined upon the SQL select in the event class’ BiCEPL
definition.

Analogous to subscribed each complex event class has a corresponding history
(H_<CEC>) and as-of-now table (R_<CEC>) containing concrete event
instances (Table 4.5). The view <CEC> and the table R_<CEC> contain
the same entries; the difference is that the latter is a materialized view and
thus allows faster queries. How these tables are updated and synced with
the view is described in Section 4.1.2.

Table Name Attributes Key

H_<CEC> detTime detTime
user defined user defined

R_<CEC> user defined user defined

Table 4.5: The as-of-now and the history table created for a complex event
class analogous to subscribed event classes.

Action Classes (Published Event Classes) For each event class
condition-action statements can be defined. Every condition-action state-
ment is depicted with one table unless the same action is used multiple
times. This is only permitted when the same attributes are provided. In
this case one table is created for an action not for every condition-action
statement. Every published event class table contains the event instances
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for which the condition(s) defined is/are satisfied. For the table description
refer to Table 4.6.

Table Name Attributes Key

H_<AC> based on <CEC> based on <CEC>

Table 4.6: One table, as depicted above, is created for each distinct action
class. For an action used multiple times in the BiCEPL program one table
is created.

Example 4.1: H2 Tables & Views for the Scenario

This example shows what some of the event classes of the running example
look like in an H2 database using the implementation approach described
above. Listing 4.1 depicts the SQL statements to create the tables for Re-
sourceLow, a subscribed, and ReplenishingNeeded, a complex event class.
In this case purging with archiving is activated. The tables are created as
delineated in the previous section.

4.1.2 Triggers

The previous section, Section 4.1.1, describes the tables of the implemen-
tation approach. These are managed and maintained by triggers and can
themselves cause triggers to execute. These triggers are described in this
section. Each trigger is assigned a priority as they need to be executed in
a certain order for the CEP to work. Higher values equal a higher priority.
Finally Example 4.2 gives an example of an action class trigger.

Subscribed Event Classes Section 4.1.1 describes the tables created for
each subscribed event class. Each materialized view <SEC> is maintained
by two triggers (Table 4.7). t_MView<SEC>_insert transfers new events
and event updates to the materialized view whereas t_MView<SEC>_delete
deletes entries from the materialized view <SEC> which have been revoked.

Complex Event Classes Identical to subscribed, complex event classes
have a materialized as-of-now view and a history table. Subscribed event
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1 --ResourceLow
CREATE memory TABLE H_ResourceLow ( occTime INT , detTime

INT , resource VARCHAR , amountLeft INT , PRIMARY
KEY(detTime , resource ));

3 CREATE memory TABLE ResourceLow ( occTime INT , detTime
INT , resource VARCHAR , amountLeft INT , PRIMARY
KEY( resource ));

--Purging ResourceLow
5 CREATE TABLE P_ResourceLow ( resource VARCHAR , detTime

INTEGER , exp INTEGER , PRIMARY KEY( resource ));
CREATE memory TABLE A_ResourceLow ( occTime INT , detTime

INT , resource VARCHAR , amountLeft INT , PRIMARY
KEY(detTime , resource ));

7

-- ReplenishingNeeded
9 CREATE view ReplenishingNeeded

as SELECT tab. occTime as occTime , unixTime (NOW ()) as
dettime , resource

11 FROM ( SELECT resource , occtime FROM ResourceLow UNION
SELECT resource , occtime FROM ResourceExpiring

where ( occTime - unixTime (NOW ())) < 432000) tab;
13 CREATE memory TABLE H_ReplenishingNeeded ( occTime

INT , detTime INT , resource VARCHAR , PRIMARY KEY(detTime ,
resource ));

CREATE memory TABLE R_ReplenishingNeeded ( occTime
INT , detTime INT , resource VARCHAR , PRIMARY KEY( resource
));

15 --Purging ReplenishingNeeded
CREATE TABLE P_ReplenishingNeeded ( resource VARCHAR ,

detTime INTEGER , exp INTEGER , PRIMARY KEY( resource ));
17 CREATE memory TABLE A_ReplenishingNeeded ( occTime

INT , detTime INT , resource VARCHAR , PRIMARY KEY(detTime ,
resource ));

Listing 4.1: The H2 SQL statements for the event classes ResourceLow
and ReplenishingNeeded of the scenario.
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Trigger Name Condition Priority

t_MView<SEC>_insert AFTER INSERT ON H_<SEC> -10

t_MView<SEC>_delete AFTER UPDATE ON clockTick -100

Table 4.7: The triggers for a materialized view of a subscribed event class.

classes use two triggers to keep them up to date whereas complex event
classes use only one trigger depicted in Table 4.8.

Trigger Name Condition Priority

t_H<CEC>_history AFTER UPDATE ON S_UpdateHistory -80

Table 4.8: The trigger for updating the history and as-of-now table of a
complex event class.

Action Classes (Published Event Classes) For each action class at
least one condition-action statement in the BiCEPL program exists. These
conditions are transformed into SQL queries which are then used in the trig-
gers depicted in Table 4.9 (for the transformation refer to Section 4.3.2).
Depending on the main timing primitive (ONTIME, LATE, ...) the triggers have
different priorities and different triggering conditions (note that only one tim-
ing primitive per condition-action statement is permitted). When an event
occurs and one of the conditions is satisfied the event instance is inserted into
the corresponding table (Section 4.1.1). In case that several condition-action
statements refer to the same action only one published action class table
is created. Nevertheless, for every condition-action statement one trigger is
created.

Example 4.2: H2 Trigger Example

Listing 4.2 displays the H2 Java class trigger for the condition-action state-
ment for an one-day delivery. This trigger is dynamically created at runtime.
Lines 14–19 are part of the global occurrence time optimization whereas
lines 20–21 represent the actual query for determining whether the condition
is met. The trigger is then registered in the H2 database using Listing 4.3.
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1 package biceps .bicep. knowledge_mapper .h2;

3 import java.sql. Connection ;
import java.sql. PreparedStatement ;

5 import java.sql. ResultSet ;
import java.sql. SQLException ;

7

import org.h2.api. Trigger ;
9

public class T_order1day implements Trigger {
11

public void fire(java.sql. Connection conn , Object []
oldRow , Object [] newRow ) throws SQLException {

13 PreparedStatement prep = null;
PreparedStatement potStmt =

conn. prepareStatement (" select * from
s_potential_ClockTick where eventclass like
’ReplenishingNeeded ’ and occTime <= ("+ newRow [0]+"
- 10)");

15 ResultSet rsPot = potStmt . executeQuery ();
long count =-1;

17 if(rsPot.next ()) count = rsPot. getLong (1);
rsPot.close ();

19 if (count > 0){
prep = conn. prepareStatement ("merge into H_order1day

( occTime ,detTime ,resource ) select a. occTime
,a. detTime ,a. resource from R_ReplenishingNeeded
a where ((a.dettime -(a. occTime +
((a.dettime -a. occTime )% 10 ))) >= 18000) and
((a.dettime -(a. occTime + ((a.dettime -a. occTime )%
10 ))) <= 86400) and a. occTime <> -1 AND
a. occTime <= (a. dettime - 10) AND NOT EXISTS
( select t1.* from ( select * from
H_ReplenishingNeeded where
dettime !="+ newRow [0]+") t1 left outer join
( select * from H_ReplenishingNeeded where
dettime !="+ newRow [0]+") t2 ON (t1. resource =
t2. resource AND t1. dettime < t2. dettime ) where
t2. occtime IS NULL AND t1. resource = a. resource
AND t1. occtime < (( select occTime from
ActClockTick ) -10))");

21 prep. execute ();
}

23 if(prep != null) prep.close ();
}

25 }

Listing 4.2: The H2 SQL trigger method for the condition-action
statement order one-day delivery.
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Trigger Condition Prior. Note

t_<AC>

AFTER UPDATE ON clockTick -70 OnTime &
Late

AFTER INSERT ON H_<E> -5 Announcement

AFTER INSERT ON H_<E> -40 Cancellation &
Change

BEFORE INSERT ON H_<E> -30 Retroactive
change

BEFORE INSERT ON H_<E> -80 Revocation &
Postpone

AFTER INSERT ON H_<E> -80 (*)

(*) Conditions which do not contain any timing primitives.

Table 4.9: The action class triggers for the different timing primitives in the
condition-action statements.

1 CREATE TRIGGER t_order1day AFTER UPDATE ON clocktick FOR
EACH ROW CALL
" biceps .bicep. knowledge_mapper .h2. T_order1day ";

Listing 4.3: The H2 SQL statement to register the ”order1day” trigger
depicted in Listing 4.2.

4.1.3 Purging

The PeaCE framework implements its sliding windowing semantics through
purging. Purging, when activated, deletes event instances after their defined
lifetime has expired. This would be simple if it were not for complex event
classes which depend on their constituent event classes. These dependencies
form a graph with subscribed event classes at the bottom and complex event
classes as internal nodes and at the top. The lifespan of a complex event
class then depends on this graph. An example graph is shown in Figure 4.1;
an example is given in Example 4.3.

Consequently the lifespans of complex events have to be calculated; Ta-
ble 4.10 shows the tables used. The table S_CalcExpTimes contains one
row which is updated at each clock tick and sets off the triggers for com-
puting the expiration times of events. For each node (event class) a table



CHAPTER 4. PEACE’S CEP IN H2 55

CE ... Complex Event Class
SE ... Subscribed Event Class

Figure 4.1: An example graph for purging.

P_<EC> (Table 4.10) is created. Each current event instance of the cor-
responding class is stored in this table with its key and its expiration time.
The expiration time is calculated by traversing the graph from top to bottom
and back. This computation of the expiration time is done by the triggers
t_P_Calc_Leaves and t_P_Calc_Roots shown in Table 4.12. The calcula-
tion is triggered by an update of the entry in table S_CalcExpTimes. Once
the triggers have finished the updated expiration times of the event instances
are stored in the corresponding P_<EC> tables (Table 4.10).

Table Name Attributes Key

S_CalcExpTimes occTime INT -detTime INT

P_<EC>
detTime INT

key from <EC>exp INT
key from <EC>

Table 4.10: The tables used to trigger the expiration time calculation and
the table created for each event class containing the expiration information.

Now that the expiration times have been calculated the purging of expired
events needs to be started. Table 4.11 depicts the table S_PurgeHistory,
containing one entry, which is used to start the purging of events from their
corresponding tables (history, published events, etc.). The entry of this table
is updated in the read task.
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Purging is performed with three triggers; one, t_Purge_<SEC>, purges
subscribed event instances from <SEC> and subsequently H_<SEC>. If
any published events exists these are cleansed too. Finally the expiration
time entry is removed from P_<SEC>. The purging of complex events
works in a similar fashion; first the trigger t_Purge_H_<CEC> removes
expired events from the history table. This triggers t_Purge_R_<CEC>
which then cleanses R_<CEC> and thereafter removes the expiration time
entry from P_<CEC>. As with subscribed events any published events are
deleted afterwards.

Table Name Attributes Key

S_PurgeHistory occTime INT -detTime INT

Table 4.11: The table for triggering the purging of events.

Trigger Name Condition Priority

t_P_Calc_Leaves BEFORE UPDATE ON S_CalcExpTimes -100

t_P_Calc_Roots AFTER UPDATE ON S_CalcExpTimes -100

t_Purge_<SEC> BEFORE UDPATE ON S_PurgeHistory -80

t_Purge_R_<CEC> AFTER UPDATE ON S_PurgeHistory -80

t_Purge_H_<CEC> AFTER DELETE ON H_<CEC> -80

Table 4.12: The triggers used for purging.

Optionally, purging can be performed with archiving activated; if the archiv-
ing option is used purged events are stored in archive tables depicted in Ta-
ble 4.13. These archive tables are created for complex and subscribed event
classes; archives for action classes are not created as they can be deduced from
the former. Archiving, if active, is done in the triggers t_Purge_<SEC>
and t_Purge_H_<CEC>. Before purging the history events concerned are
archived in their corresponding A_<EC> tables.

Example 4.3: H2 Purging Example

Consider Example 2.8 with the archiving option is activated. The subscribed
event ResourceEmpty is to be purged at 14.4.14 9:00 as is the complex event
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Table Name Attributes Key

A_<EC> based on <EC> based on <EC>

Table 4.13: The archive table for every event class if the archiving option is
activated.

InstantReplenishingNeeded. The trigger t_P_Calc_Leaves is set off first, t_-
P_Calc_Roots follows. These calculate and write the expiration time to the
tables P_ResourceEmpty and P_InstantReplenishingNeeded. Thus at clock
tick 14.4.14 9:15 first the subscribed event is purged from ResourceEmpty,
then archived and subsequently cleansed from the history. Finally the expi-
ration entry from P_ResourceEmpty is deleted.

Afterwards the purging of InstantReplenishingNeeded begins. First
the entry is archived in A_InstantReplenishingNeeded. Sub-
sequently H_InstantReplenishingNeeded is cleansed followed by
R_InstantReplenishingNeeded and P_InstantReplenishingNeeded. Sub-
sequently the event is purged from all published event classes.

4.1.4 Optimization Strategy: Global Occurrence Time
Optimization

This section gives an overview of the global occurrence time optimization
strategy. The main idea is that triggers only need to be executed if they will
potentially discover something thus reducing the execution time. Currently
this is only implemented for ontime and late triggers by performing the SQL
inserts only on a potential clock tick. When such a potential clock tick for
an event class occurs is stored in table S_Potential_ClockTick (Table 4.14).
The potential clock ticks are calculated and stored in this table by the trigger
t_h_<ec>_PotClockTick depicted in Table 4.15. This trigger is created
for each event class having event publication statements associated with it.
It merges the occurrence time and the event class name of an event into
S_Potential_ClockTick. Subsequently all entries having occurrence times
before or equal to the current clocktick−chronon are deleted. For an example
refer to Example 4.4.
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Table Name Attributes Key

S_Potential_ClockTick occTime INT eventclass
eventclass VARCHAR occTime

Table 4.14: The table storing the potential clock ticks for the global occur-
rence time optimization.

Trigger Name Condition Priority

t_H_<EC>_PotClockTick AFTER INSERT ON H_<EC> -10

Table 4.15: The trigger for the global occurrence time optimization.

Example 4.4: The Global Occurrence Time Optimization

A Delivery event arrives with an occurrence time of 14.5.14 9:00; the current
time is 12.5.14 15:00. Thus t_h_<ec>_PotClockTick writes the occurrence
time to the table S_Potential_ClockTick with ”Delivery” as eventclass. Be-
tween 12.5.14 15:00 and 14.5.14 9:00 no new Delivery is detected thus the
triggers ontime and late are never entered. On the clock tick 14.5.14 9:00
the ontime trigger is executed as an potential clock tick entry is found in
S_Potential_ClockTick. The next clock tick this entry is deleted.

Example 4.5: H2 Trigger Sequence Example

Consider the scenario described in Section 1.3. A new event instance of
ResourceLow occurs at 11:00 and is detected at 10:30, thus it is in the future.
Later on this event is changed to occur at 10:45 and is detected at 10:45,
thus it is on time (assuming that ResourceLow is mutable for this example).
Table 4.16 depicts the trigger sequence set off by forwarding the events to
the CEP, i.e., inserting the instances into the history table, without purging.
The tx are symbols for the triggers.

Tables 4.17 to 4.19 show the state of the tables after the trigger tx defined
in Table 4.16 has performed. Table 4.17 depicts the entries in the tables for
ResourceLow. The first event is initially inserted into H_ResourceLow and
consequently it is copied to ResourceLow. The next clock tick the updated
event is detected and inserted into H_ResourceLow and ResourceLow is up-
dated. Note that there is only one entry in ResourceLow whereas the history
contains two. Table 4.17 depicts the state after the second event has been
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forwarded. Once the event is in ResourceLow the view ReplenishingNeeded
contains the event. t2 transfers this view update to H_ReplenishingNeeded
and R_ReplenishingNeeded. In the same step the entry for the optimiza-
tion strategy is made in S_Potential_ClockTick, t3. Since the event is on
time the trigger t4 copies the event to the published event class orderRe-
source. t5 does not update any table content as its condition is not met.
The entry in S_Potential_ClockTick is then deleted when the next clock
tick is processed. This completes the sequence triggered by inserting the two
ResourceLow events.

Trigger Condition

t1 t_MViewResourceLow_insert AFTER INSERT ON
H_ResourceLow

Update S_UpdateHistory

t2 t_H_ReplenishingNeeded_history AFTER UPDATE ON
S_UpdateHistory

t3 t_H_ReplenishingNeeded_PotClockTick AFTER INSERT ON
H_ReplenishingNeeded

Update clockTick

t4 t_orderResource AFTER UPDATE ON
clockTick

t5 t_orderResource0 AFTER UPDATE ON
clockTick

tx... A symbol for the specific trigger.

Table 4.16: An example trigger sequence in the CEP after forwarding a
ResourceLow event.
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H_ResourceLow
occTime detTime resource amountLeft

11:00 10:30 Yoghurt 50g

10:45 10:45 Yoghurt 100g

ResourceLow
occTime detTime resource amountLeft

t1 10:45 10:45 Yoghurt 100g

Table 4.17: The changes made to the subscribed event class ResourceLow
tables when a ResourceLow event is forwarded.

ReplenishingNeeded H_ReplenishingNeeded
occTime detTime resource occTime detTime resource

t1 10:45 10:45 Yoghurt t2 10:45 10:45 Yoghurt

R_ReplenishingNeeded orderResource
occTime detTime resource occTime detTime resource

t2 10:45 10:45 Yoghurt t4 10:45 10:45 Yoghurt

Table 4.18: The changes made to the complex event class Replenish-
ingNeeded tables when a ResourceLow event occurs.

S_Potential_ClockTick
occTime eventclass

t3 10:45 ReplenishingNeeded

Table 4.19: The entry made in S_Potential_ClockTick for the global occur-
rence time optimization when a ReplenishingNeeded occurs.
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4.2 H2 Data Base

Before delineating the details of the CEP’s implementation using H2 a short
overview regarding H2 is given here. In particular the focus lies on the
qualities relevant for the implementation and differences to SQLite.

H2 is a fast open source Java database outperforming comparable databases
like MySQL, Hyper SQL Database (HSQLDB), Derby, etc. in most bench-
marks (refer to H2 (2014b) for the specific results). H2 provides an embedded
version as well as a client-server version and clustering support; SQLite on
the other hand provides only an embedded version. Furthermore it can ei-
ther be run completely in-memory (data is not persisted) or as a disk based
database. Such H2 databases can be accessed via Java Database Connectiv-
ity (JDBC), for easy access from Java applications, or Open Database Con-
nectivity (ODBC). The ODBC Application Programming Interface (API)
offered can be accessed using the PostgreSQL ODBC driver. Multiple con-
nections to a database at one time are supported. Additionally to these qual-
ities H2 has a very small footprint of under 1.5 MB making it a good choice
for mobile devices and low resource systems. To manage an H2 database a
handy web user interface for browsing, querying, and managing data within
a database is provided. (H2, 2014a)

With the general features of H2 described above the SQL specific features of
H2 are named here. H2 is an SQL based database and thus supports most
of its features. The relevant features for this thesis are referential integrity,
joins, subqueries, aggregation functions (including group by and having),
auto increments, indexes, and stored procedures/Triggers. Additionally H2
provides transaction support and a query optimizer. (H2, 2014a)

These qualities suggest that an H2 based CEP should run faster than an
SQLite based one on a PC/laptop or mobile device. Especially, since H2, un-
like SQLite, supports hash indexes speeding up specific value queries. These
hash indexes can only be utilized if an in-memory database is used or the
table is declared as memory table (i.e. the index data is stored in the main
memory). As mentioned previously, H2 supports triggers but currently these
triggers, like all user defined functions, have to be written in Java. Each trig-
ger is one Java class extending the Trigger class of H2 which is subsequently
added to the database via an SQL statement. (H2, 2014a)

Taking all these features and qualities into account H2 has some advantages
over SQLite but also causes issues:
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• The indexing feature of H2 works as long as enough memory is available.

• The requirement to provide triggers as Java classes results in the neces-
sity to create the triggers dynamically at runtime. This is due to the
fact that the BiCEPL program is read when the framework is already
running.

• Moreover H2 does not provide a when clause for triggers. Therefore a
trigger is executed in any case and consequently such conditions need
to be evaluated inside the trigger.

• The implementation of triggers as Java classes is problematic regard-
ing performance as any SQL statements issued in a trigger, like selects,
inserts, etc., are executed via JDBC. Consequently Java triggers, when
accessing or modifying tables, will be slower than a Procedural Lan-
guage/Structured Query Language (PL/SQL) implementation.

• H2 does not provide functions to determine the max or the min value
of a given list of values. This can easily be dealt with by creating two
one line Java functions in H2.

These issues being stated, the implementation of the CEP will be described
in the next section taking these problems into account.

4.3 Implementation of the Approach with
Java and H2

The previous section, Section 4.1, introduces the implementation approach
developed for the PeaCE framework’s extended CEP. This section delineates
how this approach is implemented using Java and H2. Therefore the Java
prototype depicted in Section 2.6 has to be extended. Fortunately, PeaCE
is designed with extensibility in mind, thus only a few new subclasses have to
be created to support H2 and its specific features. Particularly challenging
is the fact that H2 requires triggers to be in Java. These triggers need to be
created dynamically at runtime as their content is only known then and not
beforehand. A tool to modify and create Java code at runtime is Javassist
which is described in Section 4.3.1. Thereafter Section 4.3.2 and Section 4.3.3
depict the implementation of the H2 CEP. The new classes are located in the
package biceps.bicep.knowledge_mapper.h2 whereas the SQLite implemen-
tation is contained in biceps.bicep.knowledge_mapper.sqLite. Section 4.3.2
describes the classes used to create the BiCEPL program specific CEP, i.e.,
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the H2 database is completely set up for the given program. Section 4.3.3
then explains the classes needed to embed the H2 CEP into the PeaCE
framework instance, i.e., to feed events into it, to control the execution, and
to forward the derived actions. Note that the following sections give only a
brief overview; for the details refer to the Javadoc.

4.3.1 Javassist

As depicted in Section 4.2 using H2 for implementing the CEP requires dy-
namic creation of Java classes. One alternative for dynamically creating/al-
tering Java code is the Javassist library which is described in detail in Chiba
(2000). Javassist provides structural reflection additionally to behavioural
reflection (changing the behavior of operations), i.e., data structures can be
altered once they are created and new classes can be defined at runtime. The
main advantage of Javassist is that it provides a source code API thus no
knowledge about Java bytecode is necessary. (Chiba, 2013)

In this thesis Javassist is used to dynamically create the triggers needed to
instantiate the specific CEP for a given BiCEPL program. In particular its
ability to create classes on-the-fly by specifying Java source code is utilized
(refer to Section 4.3.2).

4.3.2 Knowledge Mapper

The knowledge mapper, contained in the package
biceps.bicep.knowledge_mapper, compiles a knowledge base
(biceps.bicep.knowledge_base.KnowledgeBase) created by the BiCEPL
parser, or by hand, into the specific database schema and the corresponding
triggers. The term mapper is a legacy term used in the Java prototype
and is used in this thesis as well (although not correct). This compilation
is implemented using an abstract class KnowledgeBaseMapper as base class
which is extended by concrete mappers. Currently two specific mappers,
namely H2Mapper, developed in this thesis, and SQLiteMapper are provided
by the prototype. The sections below each describe one package of the
knowledge mapper.

H2Mapper The H2Mapper extends the KnowledgeBaseMapper and thus im-
plements the abstract methods for creating the database schema and the cor-
responding triggers, i.e., event classes are compiled into the H2 database as
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described in Section 4.1. Furthermore, H2Mapper creates the database func-
tions necessary for the CEP to work, for instance the max(int... args)
function returning the maximum value of all the values provided. The
KnowledgeBaseMapper and its H2 subclass are depicted in Figure A.8.

In particular H2Mapper inherits four abstract methods:

• mapSubscribedEventClass which compiles a given subscribed event
class into the corresponding tables and triggers.

• mapComplexEventClass which compiles complex event classes.

• createEnvironment/createMobileEnvironment which use the former
two to compile the whole knowledge base into an H2 database. Addi-
tionally these two are responsible for creating the system tables, com-
piling the purging feature if activated, compiling the global occurrence
time optimization feature, as well as creating the additional database
functions needed and ensuring the execution of triggers according to
their priorities. Since H2 does not support trigger priorities these are
implemented using a workaround; the Java triggers are first stored in
a list, subsequently ordered and thereafter registered to the database.

mapSubscribedEventClass and mapComplexEventClass utilize the classes of
the packages described in the sections following, especially these of the
triggerBuilder package.

Helpers The H2Mapper uses the classes DBHelper and H2Handle con-
tained in this package besides H2TriggerBuilder and H2FireBuilder from
triggerBuilder to fulfil its task. H2Handle is a singleton class which allows
to access and execute SQL statements on an H2 database. The singleton
is implemented to ensure only one connection at a time and to be able to
access the same connection object from any class. DBHelper on the other
hand provides methods like getting the column names of a table as string
with different separators. This class also provides methods to H2FireBuilder.
Like H2Handle DBHelper too is implemented as singleton as only one instance
is needed and consequently passing references of the object is thus not nec-
essary. The two classes and their relationship to H2Mapper are depicted in
Figure A.9. The package triggerBuilder, which is used to build the actual
Java triggers needed, is explained in the next section.

TriggerBuilder The package TriggerBuilder (Figure A.10 and Fig-
ure A.11) contains two classes, viz. H2TriggerBuilder and H2FireBuilder.
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The H2TriggerBuilder provides the means to dynamically create Java classes
using the Javassist library. This class implements a modified builder pattern
to allow for building and registering various types of triggers (e.g. after insert,
before update, ...). Furthermore it permits to assign priorities to the triggers
and to sort them according to their priorities by implementing the Comparable
interface. The code generation for triggers is performed in H2FireBuilder;
H2TriggerBuilder then creates a subclass of the org.h2.api.Trigger class
using Javassist, adds the generated code to the method fire, loads the new
class and finally registers the trigger with the H2 database.

The H2FireBuilder, like the H2TriggerBuilder, implements a modified
builder pattern which allows to assemble triggers without having to write
a separate method for each one. The parts common to the various triggers
are extracted into methods; the building of the trigger code is then an ex-
ecution sequence of these methods based on what is needed for a certain
trigger. How a trigger looks like depends on its type, ”static” triggers look
more or less always the same (e.g. materialized view triggers, purging trig-
gers, ...). The complex triggers are the ones for action classes. These triggers
insert events into published event classes if their specified condition is met.
Consequently these conditions, defined in BiCEPL, have to be transformed
into Java Triggers. Each trigger needs to evaluate the condition on the H2
database and to insert the events for which the condition holds into the corre-
sponding tables. This is implemented utilizing the condition object hierarchy
created by the BiCEPL parser. Each Class in this hierarchy implements a
method called toH2ConditionSQL which rewrites the current object into an
SQL condition. Such a condition can contain place holders which are then
replaced in H2FireBuilder with the corresponding SQL conditions. These
place holders are necessary as some conditions require information about the
event upon which the condition-action statement is defined. These informa-
tion are not available within the condition object hierarchy. A restriction
made here is that each condition may only contain one timing primitive.

4.3.3 Execution Model

The package execution_model contains all classes necessary for the execu-
tion of a CEP. These are the database handles forming the db package, the
tasks building the task package, and the task managers located in the main
package. For the tasks refer to Section 2.6.

The main class of the execution model is TaskManager and its subclasses
as depicted in Figure A.12. They are responsible for executing the task
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queue (read, execute, and publish) at each clock tick. The specific sub-
classes address different databases and platforms. Each TaskManager contains
a DBHandle from the package db for the specific database used for the CEP.
These handles provide methods to insert events into the database, for trans-
action handling, updating the various system tables, establishing database
connections, executing SQL statements, etc. The read task, for instance,
uses one of these methods to forward events to the database. The handles
available right now, SQLite and H2, are depicted in Figure A.7.

4.4 Differences to the SQLite Implementa-
tion of the PeaCE Framework

In this section the differences of the described H2 implementation and the
SQLite implementation of the CEP are explicitly stated. First the functional
differences are delineated. Thereafter the differences caused by the qualities
of the H2 database system are explained.

The foremost difference is the implementation of more complex conditions.
Additionally to the eight basic timing primitives the H2 implementation al-
lows complex conditions on event attributes (of the current as well as of the
previous instance) and literals. Furthermore FIRED and NOW are supported.
NOW refers to the current time whereas FIRED returns true if the event instance
of the corresponding action class has occurred yet. A restriction continued
from SQLite is that only one timing primitive per condition is supported.

This extended support of conditions requires changes to the way conditions
are represented in the Java prototype. These changes are described in detail
in Section 3.4.5.

Besides these changes to the Java implementation the implementation ap-
proach has been modified in order to enable extended conditions. Some of
these alterations have been made regarding triggers. Most triggers are imple-
mented analogously to the SQLite CEP but with different trigger conditions.
Consequently the SQL statements in the triggers have been changed too but
the end result is the same. The main differences are regarding the triggers
for condition-action statements due to the extended condition support.

Furthermore, alterations regarding the tables have been made, namely the
removal of the fired tables. In the SQLite implementation each of these tables
contains actions fired and the corresponding timing primitive of the condi-
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tion. One table is created for each event class containing condition-action
statements. The evaluation of some timing primitives (e.g. LATE) then queries
this table whether another timing primitive has already fired, for instance
for LATE no ONTIME, LATE or RETROACTIVECHANGE must have fired. This only
works if these timing primitives occur in the condition-action statements of
a class, otherwise the fired table would not contain any entries on them.
This, the extended condition support in the H2 CEP, the restructuring of
the triggers and trigger sequences, and keeping in mind the future support
of several timing primitives in one condition results in the decision to dis-
continue the use of the table. Consequently it is replaced by queries on the
tables of the event classes (see Section 4.1.1) thus making queries on timing
primitives not contained in any condition of an event class possible. This
on the one hand allows for more complex condition evaluation, on the other
hand tables are queried which contain more data than the fired table thus
the query evaluation takes more time.

The qualities of H2 lead to further distinctions between the H2 and the
SQLite version. Especially the requirement of functions and triggers to be
in Java demands changes in the Java architecture. The SQLite mapper,
compiling the knowledge hierarchy into SQLite, creates the PL/SQL code for
triggers as strings and then to adds them to the database. The H2 version on
the other hand needs to build Java classes for these triggers, and subsequently
load and register them to the database at runtime. Since the H2 Trigger
class does not support conditional triggering beyond tables, i.e., conditions
on attributes, e.g. occtime < 0, cannot be used when registering the trigger.
This has to be implemented using if statements within the triggers. SQLite
on the other hand implements a where clause on the trigger registration
which allows to further restrict the execution of a trigger.

4.5 Performance Improvements

This section describes the techniques used to improve the performance of the
H2 CEP. They concentrate on reducing the computation load by optimizing
the design rather than tweaking the database.

Before describing the changes the measurement methods shall be explained
here. Each of the three main tasks executed at each clock tick encapsulates
its database tasks into transactions. Whenever a task starts or ends a trans-
action an entry of the current system time and the task is made into a log
table. This table is then subsequently used to determine the performance
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of the system. This technique is also used in Huemer (2014) for comparing
the SQLite with the H2 implementation. Furthermore the simple H2 Pro-
filer provided by the H2 database is used for determining which database
processes took the most time.

With the measurement methods now explained the improvments are de-
scribed here. Some improvements have been achieved reducing the select
statements issued to the database. Moreover, the queries on views have been
replaced due to their slow response times. For the same reason queries on
the history tables are only made when unavoidable. Moreover, using the
hash indexes available in H2 the performance is increased especially if high
event capacities are the case. Interestingly the H2 Profiler shows that using
hash indexes for these cases sometimes actually decreases the time spent with
maintaining them (time spent in org.h2.index).

4.6 Testing

The previous sections described how the H2 version of the CEP is imple-
mented, this section copes with the test method used.

Testing the system is quite difficult as the result can vary from run to run as
system parameters like available memory or CPU time have a high influence.
Therefore the tests are, to keep it simple, conducted not automated. To
do so the simulation environment of the PeaCE framework is used. This
environment uses a static detector which is a Java class containing events
and the times when they should be forwarded to the CEP. A BiCEPL
program has been developed which is sufficient to cover the test scenarios.
Test scenarios are, for instance, specific timing primitives, condition-action
statements, global occurrence time optimization, etc. For the classes defined
in the program the event instances necessary for the scenarios are set in the
static detector. Using this setup the functionalities of the H2 CEP are tested.
The checks whether the system works correct are done via the simulation
environment user interface and the database console.

The method described above is used to test the semantic correctness of the
system. To test the performance two major approaches are used: measuring
time spent in tasks, and the H2 Profiler. The former has first been tried
with JLog and files but this approach slows down the system too much.
Consequently the times are now logged in the database allowing for better
performance. The latter is a simple tool for CPU profiling (H2, 2014b) which
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is used to find out which H2 database processes consume the most time and
thus are potential candidates for optimizing.



Chapter 5

Conclusion

This thesis extends the event processing framework Processing Event Ads
into Complex Events (PeaCE) (Huemer, 2014) by two components, a com-
piler for its Bitemporal Complex Event Processing Language (BiCEPL)
which transfers a BiCEPL program into an H2 based Complex Event Pro-
cessor (CEP). The PeaCE framework is based on a novel bitemporal event
model, defining an event’s occurrence time and detection time and thus sup-
ports mutable events as well as delayed event detections and processings.
Moreover the PeaCE framework is formed by three parts, detector(s), com-
plex event processor(s), and action executor(s).

In this thesis a compiler implementation for BiCEPL using ANother Tool for
Language Recognition version 4 (ANTLRv4) is introduced. This compiler is
integrated into the Java prototype of the PeaCE framework which requires
minor changes to it. The parser part of the compiler supports full BiCEPL,
the compiler supports the parts available in the PeaCE CEP.

Moreover, an H2 based implementation of the CEP is created for the Java
prototype. Since H2 requires triggers to be Java classes and triggers to be
created are only known after compiling a BiCEPL program, these Java
classes must be created dynamically at runtime. The H2 version of the CEP
has extended condition support compared to its SQLite sibling. Nevertheless,
the H2 version is still restricted by the use of at most one timing primitive
per condition-action statement. The performance of this implementation is
then improved by tweaking the design and usage of hash indices.

Concluding, future work concentrates on three areas: First, the compiler
can be extended to support BiCEPL fully. Second, further performance
improvement is possible regarding the H2 implementation by tweaking the
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database parameters and settings. Moreover, H2 will support PL/SQL in
future (H2, 2014c) making the trigger access via JDBC obsolete and thus
faster. At last future work can cover the porting and optimization of the H2
CEP to mobile devices.
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Appendix A

Class Diagrams

The UML diagrams presented in this chapter are, for the sake of readability
and to be able to present them here, not complete.

A.1 BiCEPL

Figure A.1: The UML class diagram of the packages in the BiCEPL com-
piler. The package compiler contains only classes generated by ANTLRv4.

A
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Figure A.2: The UML class diagram of the interface and its concrete imple-
mentation.

Figure A.3: The UML class diagram for the parser package. These classes
are generated by ANTLRv4.
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Figure A.4: The UML class diagram for the compiler package (continued).
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A.2 H2

Figure A.7: The Java database handles used to access the CEP database.



APPENDIX A. CLASS DIAGRAMS H

Figure A.8: The UML class diagram of the H2 knowledge mapper and its
super class.
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Figure A.11: The UML class diagram of the H2FireBuilder.
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