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Abstract

In this work, we present the implementation of a prototype that extends a con-
ventional data warehouse with judgement and analysis rules by using a commercial
database system. This thesis is based on ideas and concepts [Neuböck et al., 2013;
Schre� et al., 2013] developed in the Semantic Cockpit project. The main contribu-
tion of this thesis is the implementation of these ideas and concepts. Analysis rules
aid analysts in conducting routine and semi-routine decision tasks. Judgement rules
are used to externalise knowledge about insights gained during data analysis. Both
rule types aid to facilitate data analysis tasks. The presented prototype is part of
the Semantic Cockpit research project in which an ontology-driven business intelli-
gence approach for comparative data analysis has been developed, and is based on
the developed data warehouse and multi-dimensional ontology.
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Kurzfassung

Diese Arbeit beschreibt die Implementierung eines Prototyps, der es auf Basis eines
kommerziellen Datenbankmanagementsystems ermöglicht ein konventionelles Data
Warehouse mit Judgement-Regeln und Analyse-Regeln zu erweitern. Diese Arbeit
basiert auf Ideen und Konzepten [Neuböck et al., 2013; Schre� et al., 2013], die
im Rahmen des Semantic Cockpit Forschungsprojektes entwickelt wurden. Der
wesentliche Beitrag dieser Arbeit besteht in der Implementierung dieser Ideen und
Konzepte. Analyse-Regeln helfen Analytikern und Analytikerinnen wiederkehrende
Entscheidungen zu tre�en. Judgement-Regeln werden verwendet um Fachwissen zu
externalisieren und im Rahmen der Datenanalyse generiertes Wissen zu explizieren.
Beide Regeltypen zielen darauf ab die Aufgabe der Datenanalyse zu erleichtern. Der
in dieser Arbeit vorgestellte Prototyp ist Teil des Semantic Cockpit Projektes in
dem ein ontologie-basierter Business Intelligence-Ansatz zur vergleichenden Daten-
analyse entwickelt wurde. Der Prototyp basiert auf dem Data Warehouse und der
multi-dimensionalen Ontologie, die im Rahmen dieses Projektes entwickelt wurden.
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1 Introduction

Data warehouses are dedicated to integrating data from online transaction process-
ing (OLTP) systems in order to provide a comprehensive data base for managerial
decisions. Analysts perform interactive analysis on the data warehouse with on-
line analytical processing (OLAP) tools in order to �nd solutions for decision tasks.
According to Inmon [1992], a data warehouse is a subject-oriented, integrated, non-
volatile, and time variant collection of data designed to support management deci-
sions.
A data warehouse organises data using the dimensional modeling approach [Kim-

ball and Strehlo, 1994], which classi�es data into measures and dimensions. Mea-
sures are the basic units of interest for data analysis. Dimensions allow evaluating
measures from di�erent perspectives, for example, time, customer, or product. Each
dimension is organised hierarchically with di�erent dimension levels, which o�ers the
possibility to view measures at di�erent granularities. For example, granularities for
dimension time can be day, month, and year. The aggregation of measures up to
a certain dimension level creates a multi-dimensional view, which is also known as
data cube or cube for short [Datta and Thomas, 1999] [Agrawal et al., 1997] [Gray
et al., 1997].
Business analysts explore data cubes with the purpose of �nding meaningful per-

formance indicators that can be used to support business decisions. Measure values
contained in a cube are usually numeric values. These values can be evaluated with
respect to other values, for example, reference values of performance targets, in order
to increase their meaningfulness. Similarly, analysts can perform comparative data
analysis by comparing measure values of di�erent groups of data. For example, a
comparative analysis might compare aggregated measure values of the current year
with values of the previous year. In comparative analysis situations, scores compare
the measure values of di�erent cubes, thus capture the results of a comparison. This
work focuses on these is-to-is comparisons of data.
In the course of the analysis process the analyst obtains additional insights on

the underlying data. These insights can be used either as starting points for further
investigations, for example, using data mining techniques, or as rationale for busi-
ness decisions. Further, the generated knowledge can be employed to guide future
analysis tasks.
Comparative data analysis is a complex and time-consuming task. As the goal of
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data analysis is to gain new insights, it is an �explorative, iterative and incremental

process� [Neuböck et al., 2013, p. 36]. The main challenges of a business analyst are
to identify relevant comparison groups and to de�ne the relevant scores for showing
their relationships. Speci�c domain knowledge can help the analyst during this
process.
Traditional data warehouses do not provide su�cient support for comparative

data analysis. In order to conduct comparative analysis, speci�c domain knowledge
is needed for the formulation of analysis queries. A repository that de�nes the
semantics of business terms can aid analysts with the formulation of comparative
data analysis queries as the use of de�ned business terms allows the analyst to
abstract from the concrete de�nitions. It allows business analysts to reuse previously
de�ned concepts in order to formulate similar yet di�erent queries. Further, the use
of business terms improves readability of query expressions for other users. Current
data warehouses do not provide such a repository. Therefore, the business analyst
has to rely on his expert knowledge, or an external knowledge base, in order to
formulate correct business terms during query creation.
In the Semantic Cockpit (semCockpit) research project a multi-dimensional on-

tology (MDO) provides a repository of business term de�nitions. These business
terms are speci�cally designed for use in an OLAP system. Business terms in the
MDO are unambiguous and are hierarchically ordered in subsumption hierarchies.
Further, business terms are �rst-class citizens in semCockpit. This allows analysts
to utilise the de�ned business terms for data analysis. A comprehensive description
of the semCockpit approach can be found in Neuböck et al. [2013].
The main objective of semCockpit is to support the comparative data analysis

process. Scores, comparative concepts, and comparative cubes are used to make
comparisons �rst-class citizens in semCockpit. Scores capture the results of a com-
parison of di�erent measure values. Comparative concepts specify relevant compar-
ison groups and their relationship. A comparative cube is a data cube that captures
the result of a comparative analysis and is therefore an explicit representation of a
comparative data analysis situation.
In Thalhammer et al. [2001] and Thalhammer and Schre� [2002], analysis rules

are speci�ed in the context of data warehousing as means to (semi-) automate rou-
tine and semi-routine decision tasks. Analysis rules have been inspired by active
database systems, which employ the event-condition-action (ECA) paradigm in or-
der to automate recurring tasks in online transaction processing (OLTP) databases
[Thalhammer et al., 2001, p. 242]. A di�erent, yet in some aspects similar form
of rules for data warehouses are judgement rules, which are introduced in Neumayr
et al. [2011] and further elaborated in Neuböck et al. [2013].
In this work the implementation of a rule engine prototype is described, which

implements the core functionalities of judgement and analysis rules, as described in
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Neuböck et al. [2013], on top of the semCockpit system prototype. Judgement rules
represent stored knowledge for facts of comparative analysis situations whose score
values are extraordinarily low or high. They provide some judgement or possible
explanations for these striking values. Analysis rules are likewise de�ned over facts
of a comparative analysis situation. Analysis rules de�ne actions that should be
executed depending on the score values of a fact. For example, a possible action
is that the facts in question are reported. Analysis rules allow hierarchical analysis
of the underlying data along a de�ned analysis path, and therefore require speci�c
evaluation strategies with respect to inheritance and overriding.
The remainder of this work is organised as follows: In chapter 2 the Semantic

Cockpit project and its underlying concepts and ideas are presented. This includes
the semCockpit data warehouse (semDWH) and the MDO together with the MDO
database (MDO-DB). Further, MDO concepts, comparative concepts, measures,
scores, and comparative cubes, which are used for comparative data analysis, are
described. This chapter also discusses the notion of generic measures and generic
scores as de�ned by the semCockpit approach. This includes the introduction of
generic comparative cubes as means for specifying a generic comparative analysis
situation.
Chapter 3 introduces the conceptual basis of the rule engine prototype. The two

di�erent rule types, judgement and analysis rules, are discussed. Two di�erent eval-
uation strategies, prerogative and presumed, which de�ne the hierarchical evaluation
of analysis rules are discussed in detail. After introducing the base rule types we
present a generic extension of rules, which allows to de�ne rules not only for concrete
but also for generic comparative analysis situations.
The implementation of the prototype system is presented in chapter 4. First, we

give a brief overview on the semCockpit system architecture underlying the rule
engine prototype. Following this, we present our implementation of rules within
the MDO-DB as well as the corresponding representation in the semDWH. Next,
the process for mapping MDO rule de�nitions into semDWH representations is de-
scribed. After that, we provide our implementation for rule evaluation. In addition,
we provide the results of a preliminary performance study. The presented results
highlight the parts of the prototype with the highest performance impact. Finally,
we discuss the state of the current rule engine implementation and point at relevant
features that were not within the scope of this work.
Finally, chapter 5 gives a summary of the presented work and provides an outlook

for further enhancements and applications of the presented rule engine prototype.
Speci�cally, we take a look at guidance rules as introduced in Neuböck et al. [2013],
which might be implemented similar to the rule types covered by the current pro-
totype.

8



2 The Semantic Cockpit

Approach

This chapter provides an overview of the concepts of the Semantic Cockpit (sem-
Cockpit) research project for which the rule engine prototype described in this work
has been developed. The rule prototype is part of the semCockpit proof-of-concept
prototype. A comprehensive description of the ontology-driven approach employed
can be found in Neuböck et al. [2013]. After giving a general overview on the sem-
Cockpit approach and related work in the context of semantic data warehousing,
the speci�cs of the semCockpit data warehouse (semDWH) are explained. Then,
we present the multi-dimensional ontology (MDO) and the MDO database (MDO-
DB). Further, we provide the de�nitions of the di�erent types of concepts that can
be de�ned in the MDO. After introducing the basic concept types we provide a more
detailed overview of measures, scores, cubes, and comparative cubes, which are used
for de�ning comparative analysis situations. We also discuss the notion of generic
measures and scores as well as generic comparative cubes for specifying generic com-
parative analysis situations. Finally, we describe the mapping component used for
communication between the semDWH and the MDO-DB.
One of the main objectives of semCockpit is to fully support business analysts in

conducting comparative data analysis. Traditional business intelligence (BI) tools
leave the de�nition of domain-speci�c business terms to the analysts. This results
in business terms being implicitly de�ned within query applications. In contrast,
semCockpit provides a central repository in form of the MDO, which contains unam-
biguous de�nitions together with the semantics of business terms. This repository
is organised as a multi-dimensional ontology, which is stored in the MDO-DB, and
contains explicit representations of domain-speci�c concepts. Analysts can employ
business terms de�ned in the MDO for the formulation of OLAP queries, which fa-
cilitates the query-creation process. The semCockpit approach especially supports
the de�nition of concepts dedicated for use in comparative analysis queries.
Ontology-based business intelligence approaches have received considerable atten-

tion and several complementary applications have been proposed. Ontologies can be
utilised during the data warehouse design process for automating tasks of the data
warehouse schema generation [Romero and Abelló, 2007; Khouri and Ladjel, 2010;
Sciarrone et al., 2009; Nebot et al., 2009]. Nebot et al. [2009] provide a framework
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for designing multi-dimensional analysis models, which they call Multidimensional
Integrated Ontology (MIO), over the semantic annotations stored in a semantic data
warehouse. Their approach allows the analysis of data by using traditional OLAP
operators [Nebot and Llavori, 2012; Nebot et al., 2009]. For further discussion of
related work also see Neuböck et al. [2013] and Romero and Abelló [2013].
Using ontologies for querying databases is also an active area of research. See

the Related Work sections of Neumayr et al. [2011] and Neumayr et al. [2013].
Some work focuses on using ontologies as global, integrated view on top of di�erent
heterogenous data sources. One example of this approach is the MASTRO system
[Calvanese et al., 2011], which uses an ontology as query interface in order to provide
an integrated conceptual view over underlying data sources. Spahn et al. [2008]
de�ne an approach enabling ontology-based querying in business intelligence. In
order to facilitate query formulation for end-users they present the Semantic Query
Designer (SQD), which provides a graphical user interface for navigation within
the business ontology and for the de�nition of queries. Spahn et al. speci�cally
address the applicability of their approach with respect to multi-dimensional data
analysis as future research direction. Lim et al. [2007] employ a related approach by
integrating domain knowledge as concept de�nitions in terms of virtual views. These
views enrich relational data with information derived from a domain ontology and
provide a query interface for semantic queries. The semCockpit approach similar
to these approaches uses an ontology as conceptual view over the data repository.
In contrast to previous work, the semCockpit approach focuses on the speci�cs of
OLAP and especially comparative data analysis.
The core semCockpit business logic is split into three main components. First,

the semDWH holds all business data like any conventional data warehouse. The
data in the semDWH is stored in a speci�c form in order to allow interoperability
with other semCockpit components. Second, the MDO-DB provides the repository
of business terms. Finally, the MDO-DWH Mapper is responsible for managing the
communication between the semDWH and the MDO-DB. The MDO-DWH Mapper
generates the correct SQL statements, typically a create view statement, in order to
reproduce each MDO business term as object in the semDWH. Additional compo-
nents are built on top of this core and enhance the functionality of the semCockpit
system in di�erent areas.
Figure 2.1 shows the di�erent components of the semCockpit system. The core

components, semDWH, MDO-DWH Mapper, and MDO, form the foundation for
additional components. For presentation of the prototype a basic frontend show-
casing the characteristic features of the approach has been developed. This thesis
focuses on the conceptualisation and implementation of the rule engine component
and the therefore necessary extensions to core components.
The rule engine component heavily depends on the underlying implementation of
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Figure 2.1: The semCockpit stack

the semCockpit system prototype. To make this thesis self-contained, we discuss
the relevant concepts of the core components in the following sections in order to
provide a grounding for the conceptualisation of the rule engine. Neumayr et al.
[2013] provide the language speci�cation for the realisation of MDO constructs.
Additionally, a comprehensive description of the semCockpit approach can be found
in Neuböck et al. [2013].

2.1 semCockpit Data Warehouse

In this section we introduce the structure and speci�cs of the semCockpit data
warehouse (semDWH).
A data warehouse (DWH), or sometimes also referred to as multi-dimensional

database, usually organises data based on multiple dimensions using the dimensional
modeling approach introduced by Kimball and Strehlo [1994]. The basic conceptual
construct of a data warehouse is a data cube containing dimensions, attributes,
and measures [Datta and Thomas, 1999, p. 291]. A data cube provides a multi-
dimensional view over the data in the DWH. A DWH consists of multi-dimensional
facts. Facts are usually represented in fact tables, which contain the actual measured
data (measures) as well as foreign keys, which refer to each of the fact's dimensions
[Datta and Thomas, 1999, p. 292]. A speci�c fact within a data warehouse can
be identi�ed by a set of dimension nodes. The nodes of each dimension form a
hierarchy consisting of di�erent dimension levels. Each dimension node, in addition
to its place within the dimension hierarchy, can de�ne non-dimensional attributes,
which further describe the node. All nodes of the same dimension level de�ne the
same set of non-dimensional attributes. The facts of a data warehouse that are
represented in fact tables refer for each dimension to a node of the most �ne-grained
dimension level.

11
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Figure 2.2: semCockpit DWH schema

Example 1 (semDWH). Figure 2.2 shows a simpli�ed excerpt of the schema of a sem-
Cockpit data warehouse, adapted from Neuböck et al. [2013, p. 5], represented by
using a slight variation of the dimensional fact model [Golfarelli et al., 1998]. The
model shows the semDWH structure for drug prescription transactions. The de-
picted dimensions are Insurant, Doctor, Drug, and Ttime and constitute the di�erent
dimensions of a drug prescription. The di�erent dimension levels for each dimension
are shown. Top levels of dimensions containing for each dimension a speci�c all-node
are omitted. For example, the level hierarchy of dimension Insurant consists of the
dimension levels insurant, for single insurants; district, for aggregating all insurants
that reside in the same district; province, for aggregating insurants residing in the
same province; and all, for aggregating all insurants. The dimension level medSec

of dimension Doctor describes the medical section of a doctor. An example for a
node of this dimension level might be general practitioner. Dimension Drug organises
drugs by a subset of the Anatomical Therapeutic Chemical Classi�cation (ATC-
Classi�cation) system. Level atcPharm denotes the therapeutic or pharmacological
subgroup of drugs and level atcTherap the therapeutic main group. Note, that addi-
tional levels are de�ned by the ATC-Classi�cation that are omitted in the depicted
representation. The fact class drugPrescription, representing the collected data of
drug prescription transactions, contains the base measures quantity and costs. The
used dimension roles for drugPrescription facts are ins (insurant), leadDoc (leading
doctor), actDoc (acting doctor), drug and ttime.
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In the semDWH data model, entity classes are used to specify the non-dimensional
attributes of dimension nodes. A dimension level can refer to an entity class so that
each node of that level refers to a di�erent entity of the referred entity class. An
entity class may be referred to by several dimension levels of di�erent dimensions,
thus avoiding redundancy.

Example 2 (Entity Class). The entity class e_district contains the attribute dis-

trict, which is used as external identi�er, and a set of non-dimensional attributes,
which describe the entity. The attribute inhabitants denotes the total population
of a district entity and attribute sqkm describes the area of the entity. Attribute
inhPerSqkm denotes the population density of a district and can be derived from the
two other non-dimensional attributes. In the depicted DWH schema, level district
of each of the two dimensions Insurant and Doctor refers to instances of the entity
class e_district so that nodes of the di�erent dimensions at the respective district

level may refer to the same entity of e_district.

Dimension spaces are used to specify a domain for measures and multi-dimensional
concepts and are another inherent concept of the semDWH data model. A dimension
space consists of a set of dimension roles and for each dimension role a speci�c level
or level range. A dimension role is de�ned by a dimension together with a role
name. Dimension spaces can contain the same dimension multiple times as long as
they play di�erent dimension roles. Points within a dimension space are identi�ed
by the nodes of the de�ned dimension roles. In order to fully identify a point
within a dimension space, for each dimension role a corresponding node has to be
speci�ed. A speci�c point is in the interpretation of a dimension space, if it de�nes a
corresponding node for each of the dimension roles de�ned by the dimension space.
A dimension space can, for each dimension role, be restricted to either a speci�c

granularity speci�ed by a dimension level, or a granularity range de�ned by a closed
interval of two dimension levels. Dimension spaces that are restricted to a speci�c
dimension level for each dimension role are called monogranular dimension spaces.
Conversely, if a dimension space is either restricted to a granularity range or un-
restricted for one or more of its dimension roles, it is referred to as multigranular

dimension space.

Example 3 (Dimension Space). The excerpt of the semDWH schema in �gure 2.2
depicts the base dimension space drugPrescription de�ned by the �ve dimension roles
insurant, ttime, drug, leadDoc and actDoc. The roles leadDoc and actDoc are de�ned
on the same underlying dimension Doctor. A base dimension space in the semDWH
is not restricted to a speci�c granularity or granularity range. Base dimension spaces
can be restricted to a certain granularity or granularity range by specifying a level
or level range for each of the base dimension's dimension roles. For example, drug-
Prescription [ins:district..province, leadDoc:all, actDoc:all, drug:all, ttime:year] denotes
a multigranular restriction of the drugPrescription dimension space. The restriction

13
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for dimension role ins denotes a level range restriction and is interpreted as a restric-
tion to all nodes that belong either to level district or province, or to a level that is
situated between these two levels in the dimension hierarchy. All other dimension
roles are restricted to a single dimension level. Note, that a restriction to the dimen-
sion level all is also possible. If the level range for a speci�c dimension role should
not be restricted, the designation of the level range for this dimension role can be
omitted. Therefore, drugPrescription [ins:district..province] denotes the restriction of
the base dimension space drugPrescription to the levels district and province for di-
mension role ins with all other dimension roles being unrestricted. A speci�c point
in a dimension space, for example, ⟨ttime:20130110, ins:mrErnst, leadDoc:drMayer,

actDoc:drFalkner, drug:paracet500⟩, may be further described by measures.

Each measure in semCockpit is de�ned on a dimension space. The dimension
space of a fact class and its containing base measures is monogranular and, for each
dimension role of the dimension space, de�ned on the most �ne-grained dimension
level. Measures that are derived from one or more base measures, for example,
SUM(costs), can be de�ned on freely chosen dimension spaces and are not restricted
to the �nest granularity. Note, however, that logical restrictions to the possible
granularities of a dimension space might apply depending on the de�nition of the
derived measure.

Example 4 (Dimension Space of Base Measure). The base dimension space drug-

Prescription is unrestricted for each of its dimension roles. The base measure quan-

tity is de�ned on a restriction of the dimension space drugPrescription. Dimension
space drugPrescription restricted to the most �ne dimension level on each dimension
role, that is, drugPrescription [ttime:day, ins:insurant, actDoc:doctor, leadDoc:doctor,

drug:drug], is the monogranular-restricted dimension space of the base measure quan-
tity. The same dimension space restriction applies to the second measure de�ned by
the drugPrescription fact class, costs.

A dimension de�nes roll-up hierarchies for its dimension levels. In some cases
a single dimension de�nes more than one hierarchy. These di�erent hierarchies
are usually treated as alternative hierarchies, so that each point is identi�ed by
exactly one node for each dimension role independent of the hierarchy the node is
in. However, the semDWH data model also supports a di�erent approach that allows
for a joint integration of di�erent hierarchies. In order to do so a dimension space
de�nes for each additional hierarchy an additional hierarchy-speci�c dimension role.
A point in the dimension space is then identi�ed by one node for each conventional
dimension role as well as one node for each hierarchy-speci�c dimension role.

Example 5 (Roll-up Hierarchies). In �gure 2.2 dimension Doctor de�nes the hier-
archy MedSec as named hierarchy. Therefore, hierarchy-speci�c dimension roles
leadDocMedSec and actDocMedSec can be used to de�ne dimension spaces with

14
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parallel roll-up paths. For example, a dimension space de�nition might include the
dimension role actDoc as well as the hierarchy-speci�c dimension role actDocMedSec,
leading to the following behaviour: When actDoc refers to a node at level doctor,
then actDocMedSec refers to the same node. When actDoc refers to a node at level
district or province, then actDocMedSec refers to some node at level medSec or to the
hierarchy-speci�c all-node. Therefore, a query might select for example all doctors
from province Upper Austria with a medical section of general practitioner. Finally,
when actDoc refers to the role speci�c all-node, then actDocMedSec can either refer
to its all-node as well, or to some node at level medSec.

A semCockpit data warehouse can be created in two di�erent ways. First, the
semDWH can be built from scratch like any other data warehouse. Second, it
is possible to transform an existing data warehouse into a semDWH by de�ning
an extract, transform, load (ETL) process that maps the existing data warehouse
structure to the structure of a semDWH.

2.2 Multi-Dimensional Ontology

In this section the concept of a multi-dimensional ontology (MDO) is presented.
This includes the de�nitions of the di�erent concept types that can be de�ned in
the MDO and stored in the MDO database (MDO-DB).
MDO describes an ontology containing an arbitrary number of de�ned business

terms and the meaning thereof. A core feature of the MDO is the possibility to
translate MDO concept de�nitions into SQL statements for querying the semDWH.
Additionally, concepts can be translated into Web Ontology Language (OWL) state-
ments for determining subsumption hierarchies and disjointness by OWL reasoners.
The main motivation behind the MDO is to enable the de�nition of business

terms that can be employed during data analysis in the semCockpit data warehouse
(semDWH). In the MDO, di�erent types of concepts can be de�ned, whereby dif-
ferent types are de�ned over di�erent types of objects within the semDWH. For
the following semDWH objects MDO concepts can be de�ned: (1) entities of an
entity class (entity concept), (2) nodes of a dimension (dimensional concept), (3)
points of a dimension space (multi-dimensional concept), and (4) pairs of points of
a comparative dimension space (comparative concept) [Neuböck et al., 2013, p. 13].
Each concept de�nes a signature and a membership condition. The signature of

a concept indicates the type of individuals over which it is de�ned. Depending on
the concept type the signature might be expressed by an entity class, a dimension,
a dimension space, or a comparative dimension space. Therefore, the signature
of an entity concept consists of the concept name and the entity class over which
it is de�ned. The signature of a dimensional concept consists of its name and a
dimension. Additionally, the dimension in the signature of a dimensional concept
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may be restricted to nodes of a speci�c dimension level or level range. The signature
of a multi-dimensional concept is given by its name and a dimension space. This
dimension space might be restricted to a speci�c granularity or granularity range.
The signature of a comparative concept comprises next to its name, a comparative
dimension space (comparison space), de�ned by a pair of dimension spaces. The
dimension spaces de�ned by the comparative dimension space might be granularity
or granularity-range restricted as well. Concept expressions provide the membership

condition for concepts and specify which individuals are in the interpretation of a
concept. The signature of a concept does not need to be explicitly speci�ed as it
can also be derived from the concept expression.
An entity concept is interpreted by a subset of the entities of an entity class.

The concept expression speci�es the selection condition and de�nes which entities
are in the interpretation of the concept. Entity concepts are the simplest form of
MDO concepts as entity classes are the most basic structures over which a concept
can be de�ned. As entity classes can be referenced by multiple dimensions, an
entity concept cannot be directly used in the context of a multi-dimensional analysis
situation. Entity concepts are used as basic building blocks that are referenced by
the concept expression de�nitions of other MDO concept types.
The following ways of providing the concept expression of an entity concept are

described in Neuböck et al. [2013, p. 14]: (1) outside the MDO, that is, as primitive
in the semDWH; (2) by a single entity of an entity class; (3) by an enumeration
of entities; (4) by a boolean expression of attribute-value-comparisons so that all
entities that satisfy the comparison are in the interpretation of the concept; and (5)
by a SQL statement over an entity table of the underlying semDWH.

Example 6 (Entity Concept). The concept signature urbanDistrict (e_district) de-
scribes an entity concept de�ned on entity class e_district with the associated name
urbanDistrict. The concept expression of this concept might be de�ned by a boolean
expression on the entity class attribute inhPerSqkm, for example, inhPerSqkm > 500,
so that all districts that satisfy the expression condition are in the interpretation of
the concept. Note, that the concrete de�nition of what constitutes an urban district
might vary for di�erent analysts. The explicit de�nition in the MDO ensures that
the concept urbanDistrict can be uniformly applied during data analysis without the
analysts having to know its exact de�nition. Concept linz (e_district) describes an
entity concept de�ned by the single district entity Linz-Stadt. The statutory cities
of the province of Upper Austria might also be de�ned as entity concept. This
can be achieved through an enumeration of the statutory cities Linz-Stadt, Wels-

Stadt, and Steyr-Stadt in the concept expression of the concept statutoryUpperAustria
(e_district).

Dimensional concepts are de�ned in the context of a dimension. Therefore, a
dimensional concept is also valid in the context of dimension roles that reference
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the dimension over which the concept is de�ned. Like entity concepts, dimensional
concepts are used as building blocks for the de�nition of other concept types that
can then be used in analysis queries.
As described in Neuböck et al. [2013, p. 14f.], the concept expression of a di-

mensional concept is provided in one of the following ways: (1) as primitive outside
the MDO, (2) by a node, (3) by a reference to an entity concept, (4) by hierar-
chy expansion of a dimensional concept, (5) by level range restriction of a dimen-
sional concept, (6) by intersection of dimensional concepts or union of concepts
de�ned for the same level range, (7) as complement of two dimensional concepts,
(8) as ⟨node⟩concept[level-or-level range]-expression, or (9) by a SQL view over the
semDWH.

Example 7 (Dimensional Concept). The concept signature insurantUrbanDistrict (In-
surant[district]) describes a dimensional concept de�ned on dimension Insurant re-
stricted to the dimension level district with the associated name insurantUrbanDis-

trict. The concept expression of this concept might be de�ned by a reference to
the entity concept urbanDistrict. This concept comprises all districts contained in
the referenced entity concept. Another dimensional concept insurantInUrbanDistrict
(Insurant[insurant..district]) contains all nodes speci�ed by the concept insurantUrban-
District (Insurant[district]) as well as all nodes of the dimension Insurant that roll up
to a node that is in the interpretation of insurantUrbanDistrict. The concept expres-
sion of insurantInUrbanDistrict can be de�ned as hierarchy expansion of the concept
insurantUrbanDistrict.

A multi-dimensional concept (MDC) is de�ned over a dimension space. Each
dimension role of the dimension space can be restricted to a level or level range. The
interpretation of a MDC is the set of points contained in the concept's dimension
space that satisfy the concept de�nition for each of its dimension roles.
The concept expression of a multi-dimensional concept, according to Neuböck

et al. [2013, p. 16], can be provided in one of the following ways: (1) as primitive
outside the MDO, (2) by a speci�c point, (3) by reference to a dimensional concept
for one of the MDC's dimension roles, (4) by hierarchy expansion of a MDC, (5) by
granularity restriction of a MDC, (6) by intersection of MDCs or union of MDCs
de�ned for the same dimension roles and the same granularities, (7) by complement
of a MDC, (8) as ⟨point⟩concept[granularity-or-granularity range]-expression, (9)
by a SQL view over the semDWH, or (10) by a boolean expression over measure-
value-comparisons of measures applied to a point, so that the points that satisfy
the expression are in the interpretation of the MDC. Further, each dimension space
itself can also be used as MDC.

Example 8 (Multi-dimensional Concept). The MDC with signature insInUrbanDis-

trict (drugPrescription[ins:insurant..district]) should include all points that refer to
some urban district in the dimension role ins as well as the points that roll up to
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such a point. The concept expression of this concept might be given by a reference
to the dimensional concept insurantInUrbanDistrict for the dimension role ins. The
MDC insInUrbanDistrict can be restricted by de�ning a new MDC. MDC insUrban-

District might be de�ned by restricting insurantInUrbanDistrict to the dimension level
district for dimension role ins. Therefore, the signature of the resulting concept is
insUrbanDistrict (drugPrescription[ins:district]) whereby unrestricted dimension roles
are omitted.

Comparative concepts (CC) are used to de�ne point-pairs for comparative data
analysis. A comparative concept consists of two groups of points, the group of
interest (GoI) and the group of comparison (GoC), and de�nes rules for matching
the points within those two groups so that each resulting point-pair consists of one
point of the GoI and one of the GoC.
The signature of a comparative concept consists of a comparative dimension space.

A comparative dimension space is an ordered set of two dimension spaces, whereby
the �rst one de�nes the dimension space for the points in the GoI and the second
one de�nes the dimension space for the points in the GoC. The interpretation of
a comparative dimension space is the cross product of the points contained in its
underlying dimension spaces.
The concept expression of a comparative concept may be given by (1) the com-

bination of two MDCs and a join condition relating nodes of the GoI and the GoC
by a conjunction of some prede�ned comparison operations, or (2) by a boolean
expression over score-value-comparisons of scores applied to GoI and GoC [Neuböck
et al., 2013, p. 17].

Example 9 (Comparative Concept and Comparative Dimension Space). The com-
parative concept with signature insDistrProv2012vs2011 (drugPrescriptionC) is based
on the comparative dimension space drugPrescriptionC, which in turn has the signa-
ture drugPrescriptionC (drugPrescription [ttime:year, ins:district..province, actDoc:all,

leadDoc:all, drug:all], drugPrescription [ttime:year, ins:district..province, actDoc:all,

leadDoc:all, drug:all]). The concept expression of the comparative concept is de-
�ned by the two MDCs insDistrProv2012 and insDistrProv2011, whereby each of
the two concepts is de�ned on the dimension space drugPrescription [ttime:year,

ins:district..province, actDoc:all, leadDoc:all, drug:all] with the interpretation of a re-
striction to districts and provinces in the dimension role ins at the speci�c node
ttime:2012 and ttime:2011 respectively. Additionally, a join condition restricts the
combination of the remaining points in the GoI and GoC so that only points that
refer to the same node in the dimension role ins are combined. The resulting inter-
pretation consists of each point in the GoI related to the point in the GoC that refers
to the same node in the dimension role ins. All other dimension roles are restricted
to their dimension-speci�c all-node. Figure 2.3 displays the di�erent components of
the comparative concept insDistrProv2012vs2011.

18



2 The Semantic Cockpit Approach Steiner

year:2012

year:2011

drugPrescription[ttime:year, 
ins:district..province, actDoc:all, 

leadDoc:all, drug:all]

insDistrProv 
2012

(GoI MDC)

insDistrProv 
2011

(GoC MDC)
goi_ins = goc_ins
(Join-Condition)

insDistrProv2012vs2011

Figure 2.3: Components of comparative concept insDistrProv2012vs2011

The semCockpit reasoning component applies reasoning to the concepts de�ned
within the MDO. The reasoning process provides two speci�c results, which are
subsequently used in other parts of the semCockpit system, namely subsumption
hierarchy reasoning and reasoning over disjointness of MDO concepts.
Subsumption hierarchies facilitate query and concept de�nition. Through dis-

playing the subsumption relations of MDO concepts analysts gain an overview on
the available concepts and their general relationships. Therefore, it is easier to �nd
and select similar concepts during query formulation. This is especially useful for
coping with generic measures and scores, which will be introduced in section 2.4.
Generic measures and scores de�ne one or more generic quali�ers that are bound
to a speci�c concept during their application. As the domain of generic quali�ers
is usually de�ned by a subsuming concept, subsumption hierarchies can be used to
display all concepts that can be used in place of a generic quali�er.
The reasoning over disjointness of concepts is used for the evaluation of judgement

rules. Disjointness of two concepts asserts that two data cubes that are de�ned
based on disjoint concepts do not contain any overlapping points. By determining
disjointness of concepts, rules that do not correspond to a speci�c analysis situation
can be eliminated, and therefore do not have to be evaluated. This elimination
process uses the disjointness properties of the comparative concepts de�ned by the
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analysis situation and the cubes of judgement rules.
To derive knowledge about the relations of de�ned concepts, the web ontology

language is used for reasoning. OWL provides automatic reasoning support for the
generation of subsumption hierarchies and satis�ability checking. Neumayr et al.
[2013] specify a language for de�ning multi-dimensional ontologies. In this approach,
a multi-dimensional ontology is de�ned over the schema of a data cube and is inter-
preted by an extended data cube instance. Neumayr et al. de�ne the representation
of a data cube and MDO concepts in OWL. The semCockpit reasoning component
uses this approach to generate OWL representations for the concepts de�ned in the
MDO and delegates reasoning to an o�-the-shelf OWL reasoner.
Reasoning of subsumption and disjoint relations is sound but incomplete in the

prototype implementation. This is the result of a �exible concept de�nition ap-
proach, which allows the user to de�ne concepts in many di�erent ways, including
concept de�nitions by providing a correct SQL representation of a concept and allow-
ing to de�ne concepts outside the MDO. Such concepts lack a corresponding OWL
translation and are therefore not included in the reasoning process. Additionally,
the reasoning might be incomplete for any concept that is de�ned on top of concepts
without a complete OWL representation. The details of MDO representation and
reasoning will be described in the Master's thesis of Christoph Ellinger, which is
work in progress.

2.3 Measures and Scores

In this section a detailed introduction to measures and scores is provided. First,
we provide the de�nition of MDO measures and explain the relationship between
measures and other concepts and how concepts can be used for measure de�nition.
In this context, we introduce the cube concept that is used within the MDO as means
of de�ning measure applications. Then, we introduce scores as speci�c measure type
for use in comparative data analysis and comparative cubes as means for de�ning
comparative analysis situations.
In the context of measure and score expression de�nitions, MDO concepts are used

as quali�ers to select the facts that are regarded for measure or score calculation.
Measures can be distinguished into base measures and derived measures. Base

measures are derived from the fact classes of the semDWH and represent some
recorded measure values in the context of business transactions. Derived measures
are usually de�ned on base measures and represent some calculation or aggregation
of base measure values. A derived measure might also be de�ned using other derived
measures.
The signature of a measure consists of a dimension space. Base measures of

fact classes are always de�ned on a monogranular dimension space, whereby each
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dimension role is restricted to the most �ne-grained granularity level. The dimension
space of a derived measure can be restricted freely. However, depending on the
de�ned calculation of the measure and based on the dimension spaces of the measures
the calculation is based on, implicit granularity restrictions apply. Disregarding
these implicit restrictions can lead to the de�nition of a measure that does not
contain any facts within its interpretation.
The de�nitions for base measures in the MDO are automatically derived from the

fact classes de�ned in the semDWH. Base measures represent the set of measures
that can be used as base for the calculation of other, derived, measures. As the
signature of base measures is monogranular at the level of an individual transaction,
base measures do not allow for multi-dimensional analysis. In order to support
multi-dimensional analysis, derived measures are needed.
Derived measures are de�ned based on base measures or other derived measures.

The calculation of a derived measure is speci�ed by some mathematical term, which
de�nes the calculation based on the underlying measure values. The dimension space
of a derived measure can be multigranular. In order to create a multigranular mea-
sure from a monogranular base measure, the aggregation behaviour of the measure
value has to be de�ned by an aggregation function. Typical aggregation functions
are summation (SUM) and average (AVG).
Within the MDO, derived measure instructions can be de�ned in one of the fol-

lowing ways described in Neuböck et al. [2013, p. 23 �.] (with di�erent numbering):
(1) by an arithmetic expression over measures, (2) by an aggregation expression over
measures (de�ning one or more aggregation steps), (3) by a SQL expression over
the semDWH, or (4) by instantiation of a generic measure.

Example 10 (Measure). The base measure costs as depicted in �gure 2.2 contains
a numeric value for the costs of a single drug prescription. Its dimension space is,
therefore, for each dimension role restricted to the most �ne-grained dimension level.
If costs would be used in a multi-dimensional analysis that restricts the granularity
of dimension role ins to level district and all other dimension roles to their respective
all-node, the analysis would not yield a result as the base measure is not de�ned
for this granularity. In order to make this analysis possible, a derived measure
drugPrescriptionCosts can be de�ned. This measure might be de�ned over the unre-
stricted dimension space drugPrescription. In order to do so, the measure de�nition
expression consists of the base measure costs as underlying measure and additionally
de�nes the aggregation function SUM as function that is used to calculate values for
roll-up points. The previously suggested analysis applied to this measure yields for
each district in the dimension role ins the sum of the drug prescription costs over all
drug prescription facts. By de�ning a measure quali�er it is possible to use a MDC
in order to specify the points that are included in the measure computation. For
example, the MDC InsurantInUrbanDistrict can be used as quali�er in the de�nition
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of the measure drugPrescriptionCosts. The de�nition of this quali�er denotes, that
only facts for insurants that live in an urban district are added to the aggregated
measure values.

A cube, also referred to as analysis situation, represents the application of one
or more measures to a speci�c set of multi-dimensional points. A cube consists
of a dimension space, a multi-dimensional concept and a set of measures. The
dimension space of a cube represents the cube's signature. The multi-dimensional
concept de�nes the set of points for which the measures should be evaluated. The
set of measures comprises all the measures that are contained in the cube.

Example 11 (Cube). A cube representing the sum of drug prescription costs over
districts and provinces for the year 2012 is de�ned by the multi-dimensional concept
insDistrProv2012 (drugPrescription [ttime:year, ins:district..province, actDoc:all, lead-

Doc:all, drug:all]) and the derived measure drugPrescriptionCosts (drugPrescription).
The cube's signature can be derived from this de�nition as a restriction of the dimen-
sion space drugPrescription to the granularity range [ttime:year, ins:district..province,

actDoc:all, leadDoc:all, drug:all].

A score is used for de�ning the calculation of values in the context of a comparative
analysis situation. A score value is calculated by relating measure values of two
points, the point of interest (PoI) and the point of comparison (PoC). The signature
of a score comprises of a comparative dimension space.
A score in the MDO is de�ned as (1) arithmetic score, (2) analytical score, or (3) as

instantiation of a generic score [Neuböck et al., 2013, p. 26 �.]. The score de�nition
expression for an arithmetic score consists of two measures, one representing the
measure for points in the group of interest (GoI), also referred to as goi-measure, and
one for the points in the group of comparison (GoC), also referred to as goc-measure,
together with an arithmetic expression, which de�nes the score value calculation
based on the values of these measures. Typical expressions might de�ne a score
as ratio or percentage di�erence of goi-measure and goc-measure. Analytical scores
de�ne some analytical function, that is, mean percentile rank or median percentile

rank, instead of an arithmetic function. Additionally, a score can be de�ned as
instantiation of a generic score by specifying a valid concept for all generic score
quali�ers of the generic score. Generic scores will be discussed in detail in section 2.4.

Example 12 (Score). In order to compare the drug prescription costs of di�erent
point groups, the score RatioOfDrugPrescCosts is de�ned. The score signature con-
sists of the comparative dimension space drugPrescriptionC, which de�nes the dimen-
sion space drugPrescription as dimension space for the GoI as well as for the GoC.
As the name suggests, the new score is based on the previously de�ned measure
drugPrescriptionCosts for both GoI and GoC. Finally, the score calculation is de�ned
as the ratio of goi-measure drugPrescriptionCosts and goc-measure drugPrescription-
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Costs. The resulting score interpretation consists of a score value for each point-pair
in the cross product of the points in the GoI and the GoC.

Comparative cubes (ccubes), also referred to as comparative analysis situations,
de�ne the application of scores to a set of comparative points. A comparative cube
consists of a comparative dimension space, a comparative concept and a set of scores.
The comparative dimension space represents the signature of the comparative cube.
The comparative concept restricts the score calculation to the point pairs that are
in the representation of this concept. Note, that the comparative concept does not
in�uence the score calculation, but merely restricts it to a set of point-pairs. The set
of scores contains the scores that should be evaluated for the speci�ed point-pairs.

Example 13 (Comparative Cube). A comparative cube with the ratio of the sum
of drug prescription costs over districts and provinces for the year 2012 com-
pared to the year 2011, CostRatio2012, is de�ned by the comparative concept ins-
DistrProv2012vs2011 with signature drugPrescriptionC (drugPrescription [ttime:year,

ins:district..province, actDoc:all, leadDoc:all, drug:all], drugPrescription [ttime:year,

ins:district..province, actDoc:all, leadDoc:all, drug:all]) and the score RatioOfDrug-

PrescCosts (drugPrescriptionC). The cube's signature can be derived from this de�-
nition as a restriction of the comparative dimension space drugPrescriptionC, (drug-
Prescription [ttime:year, ins:district..province, actDoc:all, leadDoc:all, drug:all]), (drug-

Prescription [ttime:year, ins:district..province, actDoc:all, leadDoc:all, drug:all]). The
de�ned comparative cube consists of a score value for RatioOfDrugPrescCosts for
each comparative point within the interpretation of the comparative concept insDis-
trProv2012vs2011.

2.4 Generic Measures and Scores

This section introduces the concepts of generic measures and scores. First, we de-
�ne the notion of generic MDO concepts as used in this work. We also introduce
multi-dimensional metaconcepts, which are used for the de�nition of generic con-
cepts. After that, the concept of generic measures is presented. We also discuss
the necessary steps in order to instantiate a generic measure. Further, we provide
the de�nition and instantiation process for generic scores. Finally, we introduce a
generic extension of comparative cubes based on generic scores, which is needed
for the de�nition of generic rules, that is, rules that are de�ned based on generic
analysis situations.
Generic concepts in the MDO are generic in the sense that the concept expression

is not fully de�ned at the time of the concept's de�nition. A generic concept is
instantiated by qualifying the concepts that have been left open during de�nition
of the generic concept. Only after instantiation of a generic concept a complete
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interpretation is possible. Therefore, generic concepts are only available within the
MDO as it is not possible to translate them to semDWH objects.
Generic measures and scores are introduced in order to prevent the necessity to

de�ne similar yet di�erent measures from scratch. A generic concept allows to de�ne
its calculation using generic quali�ers. A generic quali�er represents a variable for
a concept that is only broadly restricted by the de�nition of the generic concept.
Instantiation of a generic concept is achieved by providing a concrete MDO con-

cept for each of the generic quali�ers used in the generic concept de�nition. There-
fore, given a generic concept and a set of quali�ers, a non-generic concept can be
derived. The instantiation of a generic concept always results in a new non-generic
concept of the same sort. Applying di�erent quali�ers to a generic concept leads to
di�erent instantiated concepts. Therefore, multiple similar measures can be created
by applying di�erent quali�ers to a generic measure.
Within the de�nition of a generic concept, the domain of each of the generic

quali�ers can be speci�ed by a multi-dimensional metaconcept (md-metaconcept).
Each generic quali�er can de�ne a di�erent domain with its own md-metaconcept.
A md-metaconcept de�nes the concepts that may be applied to a generic quali�er
during instantiation. If a concept that does not satisfy the de�ned md-metaconcept
is applied, instantiation is not possible.
The de�nition of a md-metaconcept can be given in two ways; either by sub-

sumption of a speci�c concept or by a set of concepts. The interpretation of a
md-metaconcept by subsumption is as follows: each concept that is subsumed by
the speci�ed concept, as well as the speci�ed concept itself, is in the interpretation
of the md-metaconcept and is therefore a valid concept during instantiation. In the
case of a given set of concepts, only the exact concepts that are contained in the set
are valid quali�ers for instantiation.
The signature of a generic measure consists of a dimension space and a set of

generic quali�er names used in the measure de�nition expression. The set of qual-
i�ers is needed so that they can be referenced for the instantiation of the generic
measure. The domain of each generic quali�er in a generic measure de�nition has
to be restricted by a md-metaconcept.
The concept expression of a generic measure can be given (1) by an arithmetic

expression over measures or (2) by an aggregation expression over measures [Neuböck
et al., 2013, p. 27]. These expressions are analogous to the de�nition expressions of
non-generic measures with the exception that generic quali�ers can be used in the
de�nition expression.
The de�nition of a generic measure can be based on other generic measures.

Such measures are called higher-level generic measures. In the case of a higher-level
generic measure the new generic measure has to bind each of the generic quali�ers of
the underlying generic measure to either a concrete concept within the interpretation
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gDrugPrescCosts : GenericMeasure

DrugPrescCostsInDrug : Measure DrugPrescCostsInOAD : Measure

%q : GenericQualifier

InDrug : Concept

InDrug : Concept InOAD : Concept

: QualifierBinding : QualifierBinding

restricted by subsumption

{subsumedBy} {subsumedBy}

InstantiationOf InstantiationOf

Figure 2.4: Relationship of generic measure gDrugPrescCosts and its instantiations
DrugPrescCostsInDrug and DrugPrescCostsInOAD

of the corresponding md-metaconcept (static quali�er binding), or to one of the
generic quali�ers of the new measure (dynamic quali�er binding). By using multiple
quali�er bindings it is also possible to bind two or more di�erent generic quali�ers
of the underlying generic measure to the same generic quali�er in the higher-level
measure expression. Instantiation of a higher-level generic measure leads also to
an instantiation of each of the generic measures used in the measure de�nition
expression of the higher-level generic measure.

Example 14 (Generic Measure). Figure 2.4 depicts the relationship of the generic
measure gDrugPrescCosts and two instantiations DrugPrescCostsInDrug and Drug-

PrescCostsInOAD. The expression de�nition of gDrugPrescCosts is de�ned as the
sum of all drug prescription costs that involve the drug speci�ed by the generic
quali�er %q. The domain of the generic quali�er is speci�ed as concepts that are
subsumed by the multi-dimensional concept InDrug, which has the interpretation of
any node contained in the dimension role drug. Measure DrugPrescCostsInDrug in-
stantiates the generic measure by binding the concrete concept InDrug to the generic
measure quali�er %q, resulting in a measure with the interpretation of the sum of
all drug prescription costs. Measure DrugPrescCostsInOAD instantiates the same
generic measure by binding the concept InOAD to the generic quali�er %q. The
concept InOAD is interpreted as containing all points of the dimension role drug
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that can be subsumed by the node oral anti-diabetic drugs. InOAD is subsumed
by concept InDrug and is therefore a valid binding for the measure instantiation.
The resulting measure DrugPrescCostsInOAD is interpreted as the sum of all drug
prescription costs for facts that involve some oral anti-diabetic drug.

gRatioOfDrugPrescCosts : 

GenericScore

RatioOfDrugPrescCostsInOAD : 

Score

%qoc : GenericQualifier InDrug : Concept

InOAD : Concept InOAD : Concept: QualifierBinding : QualifierBinding

restricted by subsumption

{subsumedBy} {subsumedBy}

%qoi : GenericQualifierInDrug : Concept

restricted by subsumption

InstantiationOf

Figure 2.5: Relationship of generic score gRatioOfDrugPrescCosts and the instanti-
ated score RatioOfDrugPrescCostsInOAD

Generic scores are score de�nitions that use generic quali�ers instead of concrete
concepts in the score expression de�nition. Like generic measures, the domain of
each generic quali�er of a generic score has to be restricted by a md-metaconcept.
If the de�nition of a generic score uses generic measures, then the binding of the

generic quali�ers and concepts to the quali�ers of the used generic measures has to
be de�ned, as in the case of a higher-level generic measure.

Example 15 (Generic Score). Figure 2.5 shows the quali�er bindings of the score
RatioOfDrugPrescCostsInOAD de�ned as an instantiation of the generic score gRa-

tioOfDrugPrescCosts. The generic score is de�ned as the ratio of the generic measure
gDrugPrescCosts for the GoI and the same generic measure for the GoC. The generic
score de�nes two variable generic quali�ers (%qoi and %qoc), which are bound to
the variable generic quali�ers of the underlying goi-measure (%q) and goc-measure
(%q). The instantiation of the generic score, therefore, has to de�ne a concept for
each of the two generic quali�ers. Depending on the used quali�ers the resulting
score has a di�erent interpretation. In the case illustrated in �gure 2.5 the concept
InOAD is used for both generic quali�ers. As the score quali�ers are bound to the
underlying generic measures, the resulting score can also be de�ned as the ratio of
measure DrugPrescCostsInOAD and DrugPrescCostsInOAD with an interpretation as
the ratio of drug prescription costs that involve some node from dimension role drug
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that is in the interpretation of the concept InOAD, calculated for the cross product
of the points in the GoI and GoC.

The concept of a generic comparative cube is used in order to de�ne a generic
comparative analysis situation, which in turn can de�ne the scope of rules (see
section 3.3). A generic comparative cube is a comparative cube that is de�ned using
one or more generic scores.
The signature of a generic comparative cube is de�ned by a comparative dimension

space. The concept de�nition expression consists of (1) a comparative concept, (2) a
set of generic scores and (3) a set of md-metaconcepts, which represent the quali�er
domains of the generic quali�ers de�ned by the generic scores of the cube.
A generic comparative cube can de�ne additional restrictions to the domain of

the generic quali�ers used in the de�nition of its generic scores. For each generic
quali�er of a generic score encompassed by the generic cube de�nition a domain
can be speci�ed using a md-metaconcept. This md-metaconcept can further restrict
the domain of the generic quali�er as speci�ed in the generic score de�nition. This
circumstance allows to de�ne comparative cubes that are restricted to the de�ned
domain in the sense that rules for their facts are only evaluated if each concrete
quali�er is valid with respect to the speci�ed cube domain of the generic quali�er
it is bound to. In order to enable a valid instantiation the restriction speci�ed in
the generic cube de�nition has to be consistent with the restriction imposed by the
md-metaconcept of the generic score quali�er.

Example 16 (Generic Comparative Cube). In the previous section, the comparative
cube CostRatio2012 has been de�ned containing the ratio of the sum of drug pre-
scription costs over districts and provinces for the year 2012 compared to 2011 over
all drug prescription transactions. A similar analysis might want to gauge this ratio
for a speci�c type of drugs. In order to support this demand without having to
de�ne a comparative cube for each drug type a priori, a generic comparative cube
can be de�ned. This generic comparative cube is de�ned using the generic score
gRatioOfDrugPrescCosts. As the points that should be compared are the same as
for the non-generic comparative cube CostRatio2012, the same comparative concept
insDistrProv2012vs2011 is used for the de�nition of the generic cube. A generic com-
parative cube allows to further restrict the quali�er domain of the generic scores
underlying its de�nition. For example, the quali�er domain of the generic quali�er
%qoi of the generic score gRatioOfDrugPrescCosts is de�ned by subsumption of the
concept InDrug. This domain could be further restricted, for example, to a set of
speci�c drug type concepts like InOAD. Instantiation of a generic comparative cube
is only valid, if the concrete quali�ers obey the most restricted domain de�nition for
the bound generic quali�ers.
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2.5 MDO-DWH Mapper

The MDO-DWH Mapper is responsible for the communication between the sem-
Cockpit data warehouse and the multi-dimensional ontology. This includes the ex-
ecution of statements derived from MDO construct de�nitions in the semDWH and
the loading of information from the semDWH into the MDO database. Retrieving
information from the semDWH is primarily used during the initialisation process
in order to model the DWH structure in terms of MDO constructs. Execution of
SQL statements in the semDWH is used to create MDO concepts as objects in the
semDWH.
Introduction of an independent mapping component allows a loose coupling be-

tween semDWH and MDO-DB. Therefore, technologies used for the implementation
of semDWH and MDO do not strictly depend on each other as long as the Mapper
is able to handle the necessary communication methods. This has been an ex-
plicit consideration during the conceptualisation of the prototype implementation,
as this allows to replace the technology used for implementation of one component
without heavily e�ecting other components. Therefore, subsequent research can
be conducted on the suitability of di�erent technologies for di�erent semCockpit
components.
The most important function of the Mapper is to provide methods for translat-

ing MDO concept de�nitions to data de�nition language (DDL) statements. The
language de�nition for translating MDO concepts to SQL is speci�ed in Neumayr
et al. [2013]. The mapping component provides an interface that allows to control
the mapping process, that is, executing the generated statements in the semDWH
and loading information from the semDWH into the MDO-DB.
The execution of the generated statements in the semDWH transfers MDO con-

cepts to the data warehouse so that the concepts can be used in the semDWH. As
soon as the DDL statements for the creation of a speci�c concept have been executed
in the semDWH, the concept is available for DWH queries.
Due to the intended loose coupling of MDO and semDWH, and di�erent character

constraints for identi�ers in di�erent technologies, the Mapper also needs to maintain
a name registry. The name registry maps the name of a concept in the MDO to
the semDWH object that represents the concept in the data warehouse and vice
versa. Therefore, the naming of MDO concepts does not necessarily have to abide
by technology-speci�c constraints such as the 30 character length limit for construct
identi�ers in Oracle database systems.
It is important to execute the SQL statements in the correct order in the semDWH

as MDO constructs might be de�ned based on other MDO constructs. To ensure
that a statement can be correctly executed in the semDWH it is necessary that the
statements for each underlying construct have already been executed. The Mapper

28



2 The Semantic Cockpit Approach Steiner

ensures the correct execution order by assigning an incremental sequence number to
each mapping command, which de�nes the order of the statement execution in the
semDWH.
The MDO-DWHMapper also provides command-pattern like functionality for un-

doing and redoing previous mapping steps. This allows, for example, to reconstruct
the state of the semDWH at a previous point in time. In order to do so the Mapper
uses the sequenced list of commands that have to be executed in the semDWH. Each
command de�nes a corresponding statement that constitutes the nulli�cation of the
initial command. An additional variable keeps track of the last statement that has
been executed in the semDWH. The Mapper allows to move along this command
sequence in order to recreate previous states of the semDWH.
If a construct is deleted from the semDWH, then all constructs that directly or

indirectly contain this construct in their de�nition are invalidated and are no longer
executable in the semDWH.
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In this chapter the basic concepts that underlie the semCockpit rule engine are
described. We explain the characteristics and behaviour of rules in the context of the
semCockpit system. This includes the de�nition of judgement and analysis rules. As
extension to these types we provide the de�nition of generic judgement and analysis
rules as rules that are de�ned on generic comparative cubes representing generic
analysis situations. This will lead to an understanding of the fundamental structure
of the prototype implementation, which will be discussed in detail in chapter 4.
As mentioned previously, the rule engine implementation described in this thesis is

built on top of the semCockpit data warehouse (semDWH) and its multi-dimensional
ontology database (MDO-DB).
In OLTP database systems the Event-Condition-Action (ECA) model introduced

by McCarthy and Dayal [1989] is used for modelling business rules. An event is the
trigger of a rule in the sense that it causes the system to evaluate the rule condition.
The condition of a rule, according to McCarthy and Dayal [1989, p. 216], is de�ned
as a set of queries, which is evaluated when an event triggers the rule. If an event
triggers a rule and its condition is satis�ed, then the action is executed. Analogous,
the ECA model can also be applied to data warehouse systems. Thalhammer et al.
[2001] speci�cally discuss the realisation of ECA rules in the context of active data
warehousing. Thalhammer et al. established the notion of analysis rules as data
warehouse speci�c rules.
Research in the �eld of active data warehousing focuses primarily on two com-

plementary aspects, the ETL process and the analytical aspect. In order to fully
utilise the reactive capabilities of an active data warehouse (ADW) it is necessary
to ensure that the underlying data is updated in a timely fashion. Therefore, the
ETL process received considerable attention, which lead to the notion of right-time
and real-time data warehouses [Araque, 2003; Mohania and Narang, 2003; Golfarelli
et al., 2004]. The second option is to approach active data warehousing from an an-
alytical point of view and focus on the reactive decision system capable to perform
automatic analytical tasks. According to Thalhammer et al. [2001, p. 267] anal-
ysis rules provide a mechanism to analyse data multi-dimensionally and to make
decisions based on analysis results. Analysis rules use the ECA model and extend
it with data warehouse speci�c functionality for coping with the inherent multidi-
mensionality of data warehouses. The event of an analysis rule speci�es the time
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points at which the rule should be evaluated; the condition is a boolean predicate
or a query, which leads to execution of the speci�ed action; the action is a directive
to execute a transaction for some entities in the OLTP database. Based on this
proposal several implementations of ADWs have been proposed. Thalhammer and
Schre� [2002] show how analysis rules can be implemented on top of o�-the-shelf
database technology. Zwick et al. [2007] use work�ow engines in order to implement
automated analyses in active data warehouse systems. They implement the decision
making process of data analysis based on analysis graphs consisting of three primi-
tives; AnalysisStep, AnalysisLoop, and Action. Bouattour et al. [2009] de�ne a new
formalism of analysis rules and a general framework of an active data warehouse.
Their approach focuses on the use of XML to model the logical and physical level
of analysis rules.
Neumayr et al. [2011] �rst introduced judgement rules and guidance rules for

supporting business analysts in comparative data analysis. Judgement rules are
used to annotate domain speci�c knowledge in order to explain extraordinary score
values for a set of comparative facts. Guidance rules operate on BI analysis graphs
[Neuböck et al., 2012]. A BI analysis graph describes promising navigation steps for
a speci�c analysis situation. Therefore, a BI analysis graph provides some guidance
for the business analyst by suggesting promising OLAP-steps. Guidance rules are
used to augment BI analysis graphs by enabling the de�nition of conditions under
which a speci�c analysis step is suggested [Neuböck et al., 2013, p. 37f.]. Based on
the concept of analysis rules, Neuböck et al. [2013] identi�ed various variations of
rules that can be implemented and used in a data warehouse environment, including
reporting rules and action rules [Neuböck et al., 2013, pp. 37-42]. Reporting rules
report, based on de�ned evaluation strategies, the result of a multi-dimensional
analysis to the business analyst. Action rules are similar to reporting rules in the
sense that they apply multi-dimensional analysis. However, instead of reporting the
analysis results to the analyst, some prede�ned actions are executed. Due to their
similarity, Neuböck et al. [2013] also use the term analysis rule interchangeably for
both reporting and action rules.
Current business intelligence solutions provide some support for rule functionality

in terms of de�ning thresholds and reporting threshold exceedings [Browne et al.,
2010; Greenwald et al., 2007]. For example, current Oracle databases support a
feature called Delivers by de�ning alerts that trigger based on user-speci�ed con-
ditions and lead to, for example, an email noti�cation to the analyst [Greenwald
et al., 2007, p. 242]. As a di�erent example, IBM Cognos supports a sophisticated
comment function, which can be used to annotate judgements to speci�c reports and
report parts [Browne et al., 2010, p. 212]. Note, however, that this functionality
is di�erent to judgement rules in that annotations for each cell have to be created
and maintained by the user and are not automatically generated based on a rule
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de�nition.
Our work draws ideas from active data warehouses, especially from analysis rules

[Thalhammer et al., 2001] and focuses on the analytical aspect of data analysis. We
enable to de�ne rules for comparative analysis situations and to raise judgements
and reports in order to initiate further user interactions. With the prototype im-
plementation, we augment the ontology-based business intelligence approach of the
semCockpit system with rules that provide some active data warehouse function-
ality. As part of the semCockpit approach explicitly de�ned concepts describing
business terms can be used for the de�nition of rules.
This work focuses on rules for comparative is-to-is analysis situations. However,

the principles described here are also applicable for is-to-target comparison, as well
as for non-comparative analysis situations. This focus is motivated by the limited
support for comparative data analysis in current BI tools. Additionally, if the pre-
sented approach can be implemented for comparative is-to-is analysis, then it can be
deduced that an implementation for other, less complex, analysis situations based
on the same principles is also feasible.
The prototype supports two di�erent types of rules, namely judgement and anal-

ysis rules. Analysis rules in this work are not strictly divided into reporting and
action rules. As our prototype lacks an action execution model arguably only re-
porting rules are really implemented (see chapter 4). The necessary steps in order
to fully implement the functionality of action rules are discussed in section 4.7.
In addition to a distinction based on the type of a rule, rules are also distinguished

into generic and non-generic rules. In the remainder of this work, non-generic rules
are also referred to as base rules. Generic judgement and generic analysis rules
de�ne the same features as their non-generic counterparts with the exception that
a generic rule is de�ned based on a generic comparative analysis situation instead
of a non-generic one. Further details with respect to generic rules are provided in
section 3.3.
De�nitions of rules in the semCockpit system are also part of the MDO. Like other

MDO concepts, rule de�nitions are stored in the repository in order to explicate
them. The entirety of all business rule de�nitions in the MDO is de�ned as the
semCockpit rulebase.
Each rule belongs to a rule family and de�nes a generic or non-generic comparative

cube as well as a rule condition. Additional characteristics depend on the speci�c
rule type.
The scope of a rule is de�ned by a comparative cube. This cube quali�es the set

of comparative facts for which the rule applies. Comparative cubes can be arranged
in subsumption hierarchies based on their respective sets of comparative facts. The
comparative points contained in a comparative cube are de�ned by a comparative
concept. Therefore, the hierarchy of comparative concepts can be used in order to

32



3 Judgement and Analysis Rules Steiner

insDistrProv2012v2011
[time:year, 

ins:district..province].
RatioOfDrugPrescCosts

CostRatio2012

insDistrProv2012v2011UA
[time:year, 

ins:district..province].
RatioOfDrugPrescCosts

CostRatio2012UA

FOR CostRatio2012
IF RatioOfDrugPrescCosts > 1
JUDGE 'There is on avg a general increase 

in Drug Prescription Costs of 5%
per year'

jrAvgCostIncr2012

FOR CostRatio2012UA
IF RatioOfDrugPrescCosts > 1.2
JUDGE 'In Upper Austria a health care 

reform has lead to...'

jrAvgCostIncr2012UA

Ccube Hierarchy Judgement Rule Hierarchy for Rule 
Family jrAvgCostIncr

Defined on

Defined on

FOR CostRatio2012
REPORT FACT
IF RatioOfDrugPrescCosts > 1.2
UNLESS RatioOfDrugPrescCosts < 1

arCostRatio2012

FOR CostRatio2012UA
REPORT FACT
IF RatioOfDrugPrescCosts > 1.4
UNLESS RatioOfDrugPrescCosts < 1.2

arCostRatio2012UA

Analysis Rule Hierarchy for Rule 
Family arCostRatio

Defined on

Defined on

Figure 3.1: Analysis and judgement rules

decide the hierarchical order of comparative cubes as long as they are de�ned on
the same scores. Again, the details of the reasoning process are described in the
Master's thesis of Christoph Ellinger, which is work in progress. In this work, we
simply assume the existence of a reasoning component that provides sound reasoning
results. The scopes of multiple rules belonging to di�erent rule families can be
de�ned by a single comparative cube.

Example 17 (Comparative Cube Hierarchy). Figure 3.1 shows the two compara-
tive cubes CostRatio2012 and CostRatio2012UA in the same cube hierarchy with
the cube CostRatio2012UA lying below cube CostRatio2012 in the cube hierarchy.
Cube CostRatio2012UA contains a subset of the comparative facts contained in cube
CostRatio2012, namely only those facts that are contained in the interpretation of
the concept InUpperAustria. The comparative cubes can be used for the de�ni-
tion of rule scopes. The hierarchy is derived from the subsumption relation of the
comparative concepts insDistrProv2012v2011 and insDistrProv2012v2011UA, which
specify the comparative points contained in the example cubes. The comparative
cube CostRatio2012 speci�es the scope of the two rules arCostRatio2012 and jrAvg-

CostIncr2012. The cube CostRatio2012UA represents the scope for the analysis rule
arCostRatio2012UA and the judgement rule jrAvgCostIncr2012UA.

The condition part of rules consists of score-value-comparisons for non-generic
rules and generic score-value-comparisons for generic rules (see �gure 3.2). Con-
ditions can only involve scores de�ned by the rule's comparative cube. Several
score-value-comparisons can be concatenated by boolean expressions AND and OR,
in order to form more complex conditions. If the condition of a rule is satis�ed by
a comparative fact then the rule �res and executes the rule-speci�c action. The
detailed action depends on the type of the rule, its de�nition, and in the case of
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Figure 3.2: Conceptual model of non-generic (left) and generic (right) rule conditions

analysis rules on the selected evaluation strategy. Details of the di�erent actions are
discussed in the following sections with regard to each type.
In order to support the de�nition of context-speci�c rules, rules are arranged

in rule families. Each rule family consists of one or more rules sharing the same
type. Three di�erent rule family types are distinguished: (1) base rule family, (2)
generic rule family, and (3) rule family by generic instantiation. A base rule family
consists of non-generic rules, whereas a generic rule family consists of generic rules.
A rule family by generic instantiation is a special non-generic rule family type that
represents an instantiation of a generic rule family. Note, that rules can only be
assigned to base rule families (non-generic rules) or generic rule families (generic
rules). The rules that belong to a rule family by generic instantiation are derived
from the generic rule family that is instantiated. Rules within a rule family have
di�erent scopes, which determine their context. It is not possible to de�ne two rules
for the same set of comparative facts within the same rule family. Rule conditions
are de�ned for each rule individually.
Rules within a rule family are hierarchically ordered from most general to most

speci�c. This rule hierarchy can be derived from the hierarchy relations of the
comparative cubes that underlie the rule de�nitions. The reasoning strategy for rule
hierarchies is part of the ontology reasoner component, and therefore not covered
by this thesis.

Example 18 (Rule Hierarchy). The judgement rule family jrAvgCostIncr, depicted
in �gure 3.1, consists of two rules, one de�ned on cube CostRatio2012 and one
de�ned on cube CostRatio2012UA. The rule hierarchy for jrAvgCostIncr can be derived

34



3 Judgement and Analysis Rules Steiner

from the hierarchy of the relevant cubes. As cube CostRatio2012UA is below cube
CostRatio2012 in the cube hierarchy it is derived that rule jrAvgCostIncr2012UA

is below rule jrAvgCostIncr2012 in the rule hierarchy of the judgement rule family
jrAvgCostIncr. Analogously, the rule hierarchy for analysis rule family arCostRatio

can be derived. Therefore, analysis rule arCostRatio2012 is the root rule of the rule
family with rule arCostRatio2012UA being below rule arCostRatio2012 in the rule
hierarchy.

In order to allow a de�ned rule evaluation it is assumed that rule de�nitions de�ne
a consistent hierarchy in the sense that each hierarchy has a single root rule that
subsumes all other rules that are part of the rule family.
Additionally, some constraints concerning overlaps in rule hierarchies are nec-

essary in order to ensure a de�ned evaluation of rule families. Without further
constraints the scopes of rules in sub-hierarchies of a single rule family may overlap.
Therefore, two comparative cubes in di�erent sub-hierarchies of a rule family may
have some comparative points in common. Such overlaps can lead to unexpected
behaviour during rule evaluation of analysis rules as it is not possible to obtain a
single most speci�c rule for evaluation. In order to prevent unintended behaviour,
some validation is needed that assures that the sets of comparative points in di�erent
sub-hierarchies of an analysis rule family are disjoint. This validation process is not
implemented in the current prototype implementation of the rule engine. If the ne-
cessity arises, the constraint can be implemented as part of the user interface input
validation. Note, that this restriction only applies to analysis rules. For judgement
rules overlaps in the rule scopes do not prevent a de�ned rule evaluation, however,
the concrete behaviour has to be de�ned. A detailed description of the evaluation
behaviour will be discussed with regard to the speci�c rule types in the subsequent
sections.
The application of rules is based on rule families. A single rule within a rule

family is generally only evaluated in the context of its rule family. During rule family
evaluation, for each fact the most speci�c rule within the family's rule-hierarchy is
applied. If a comparative point is within the scope of two di�erent hierarchies of a
judgement rule family, then the most speci�c rule of both hierarchies is evaluated
for this point.
In the following sections the two di�erent base types of rules, analysis rules and

judgement rules, that are part of the prototype implementation together with the
corresponding base rule families are discussed in detail. Following this, a description
of generic judgement and analysis rules is provided.
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3.1 Judgement Rules

This section presents the concept of judgement rules as implemented by the rule
engine. First, we provide the general idea of judgement rules and their motivation.
Then, we give the de�nition of judgement rules and judgement rule families. Finally,
we discuss the evaluation process for judgement rules.
Judgement rules can be used to annotate certain groups of facts with speci�c

information and knowledge, and therefore express some, otherwise tacit, knowledge
about the underlying data [Neuböck et al., 2013, p. 3]. For example, a judgement
rule might inform the analyst about the average yearly increase in drug prescription
costs for comparative analysis situations that compare drug prescription costs of the
current year to the costs of the previous year.
The textual judgement of a rule is displayed for a comparative fact when its score

values satisfy the condition of the rule. Most state-of-the-art business intelligence
tools support a comparable mechanism with alerters for thresholds [Browne et al.,
2010; Greenwald et al., 2007]. Judgement rules allow more sophisticated de�nitions
as they are naturally de�ned over comparative analysis situations. Further, they
allow the usage of MDO business terms for rule de�nition. Judgement rules are also
explicitly de�ned and stored in the MDO repository, allowing for an overview of the
currently de�ned rules at every time.
A judgement rule is de�ned by (1) a comparative cube, (2) a condition, and (3)

a corresponding judgement and (4) belongs to exactly one judgement rule family
[Neuböck et al., 2013, p. 38]. A rule's comparative cube de�nes the comparative
facts that are in the scope of the rule. The rule condition de�nes the thresholds
that lead to a judgement for facts within the rule scope. The judgement is a useful
information or annotation in textual form, which is displayed for facts that satisfy
the rule condition. The rule family de�nes the context of the rule. Rules belonging
to the same rule family override each other so that for each comparative point only
the judgements of the most speci�c rules are contained in the evaluation result.
A judgement rule family consists of a set of judgement rules organised in a rule

hierarchy de�ning a single root rule. Additionally, a judgement rule family de�nes a
set of scores that contains all scores that are used by at least one of the comparative
cubes of the rules that belong to the rule family.
Figure 3.3 shows the conceptual structure of judgement rules. Note, that only

base judgement rule families and the corresponding non-generic rules are described
in this section. For a detailed description of generic judgement rule families and
judgement rule families by generic instantiation refer to section 3.3.
Evaluation of judgement rules is initiated implicitly for all rule families that match

a given analysis situation. Depending on the concrete implementation, judgement
rule evaluation might be activated by default and deactivated on demand for single
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Figure 3.3: Conceptual model of judgement rules and judgement rule families

analysis situations or vice versa. Such an analysis situation is always speci�ed as
non-generic comparative cube. Each time an analysis is executed, all judgement rule
families de�ned for facts contained in the analysis situation are evaluated. For those
facts that satisfy the condition of the corresponding rule the speci�c judgement is
displayed together with the results of the initial analysis.
In terms of the ECA model a judgement rule family might be described as follows:

The event of a judgement rule family is the execution of an analysis situation that
contains all of the scores over which the rule family is de�ned and has potentially
overlapping comparative points. The process of determining such potential overlaps
will be discussed later in this section. The condition part is a boolean expression
that has to hold in order to activate the rule's action. Finally, the action triggered
by a judgement rule consists, for each triggering fact, of the additional report of the
speci�ed textual judgement in the analysis result.

Example 19 (Judgement Rule). Judgement rule family jrAvgCostIncr consists of the
two judgement rules jrAvgCostIncr2012 and jrAvgCostIncr2012UA, with rule jrAvg-

CostIncr2012 being the more general, and therefore the root rule of the rule family
hierarchy. The rule family is de�ned over the score RatioOfDrugPrescCosts. Judge-
ment rule jrAvgCostIncr2012 de�nes a general judgement for the average drug cost
increase from year 2011 to 2012 for districts and provinces of the dimension role ins.
The more speci�c rule jrAvgCostIncr2012UA de�nes a more detailed judgement for
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the increase in drug prescription costs in the province of Upper Austria and its dis-
tricts due to a health care reform. As the two rules belong to the same rule family,
only the most speci�c rule is evaluated for each comparative point. A comparative
point contained in the comparative cube CostRatio2012UA can either lead to the
judgement de�ned by jrAvgCostIncr2012UA if the corresponding value of RatioOf-
DrugPrescCosts is above the de�ned threshold of 1.2, or no judgement at all. Even
if such a point would have a corresponding score value of 1.1, which is above the
threshold de�ned by the general rule jrAvgCostIncr2012, no judgement is provided,
as the general rule is overridden by the more speci�c rule jrAvgCostIncr2012UA.

A rule applies to an analysis situation if the facts of the comparative cube that de-
�nes its scope overlap with the comparative cube of the analysis situation. Therefore,
the scores of the rule's comparative cube have to appear in the analysis situation and
additionally some comparative points have to appear in both the analysis situation
and the comparative cube of the rule.
For deciding whether the facts of a rule family and a given analysis situation

overlap, both the scores de�ned by the rule family and the comparative cube of its
root rule are used. First, the scores of the analysis situation are compared to the
scores of the rule family. Second, we use the comparative concepts of the comparative
cubes of both the analysis situation and the root rule in order to decide whether
some comparative points of the analysis situation are within the scope of the de�ned
analysis rule family. Combining the results of these comparisons, rule families that
do not contain overlaps can be detected and subsequently excluded from further
judgement rule evaluation.
During evaluation, rule families are �ltered for families de�ned over the same

scores, or a subset thereof, as contained in the analysis situation. Each score of a
rule family has to be part of the analysis situation for the rule family to be evaluated.
If one or more of the scores of a rule family do not appear in the analysis situation,
then the rule family is not considered applicable for this analysis situation and can
be excluded from evaluation. Further speci�cs on the score matching for generic
judgement rule families are discussed in section 3.3.
In the context of rule families it is su�cient to check the most general, or root

rule, of a rule family for overlapping comparative points with the analysis situation.
If some overlaps are detected for the root rule, the rule family is applicable to the
analysis situation, and therefore evaluated. On the other hand, if an overlap can
be ruled out, the corresponding rule family can be ruled out as well, as all other
rules in the family, according to the de�ned properties of rule hierarchies, can only
contain a subset of the comparative points of the root rule, and therefore cannot
overlap either.
After the selection of relevant judgement rule families, all potentially relevant

rules left are evaluated for the given analysis situation by adding judgements based
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on the rule de�nitions. Each comparative fact of the initial analysis situation is part
of the evaluation result, whether a judgement is available or not. This re�ects the
concept of judgements as additional information, which analysts can use in addition
to conventional analysis results. For each fact for which a judgement is available, its
judgement and the speci�c rule that triggered the judgement is reported together
with the conventional analysis result for the fact. A fact in the evaluation result
can have multiple judgements from di�erent rule families. Multiple judgements are
represented by multiple instances of the comparative fact in the evaluation result,
one for each available judgement and its triggering rule.
For judgement rules an easy and consistent way to handle overlaps in rule hierar-

chies can be de�ned by evaluating both rules for the concerned points. Therefore, it
is not necessary to constrain judgement rule hierarchies in order to avoid overlapping
sub-hierarchies. Three di�erent cases can occur during evaluation when two rules
in di�erent branches of the same judgement rule family overlap in the sense that
they are de�ned for the same comparative point. If the condition for neither rule
applies, then there is no reported judgement for the comparative fact. Conversely,
if the condition evaluates to true for both rules, then the judgement of both rules
is reported in the same way as if two rules of di�erent rule families �re. If only
the condition of one of the rules applies, then only the judgement of that rule is
reported.
Exclusion of not applicable rule families might be incomplete, leading to the eval-

uation of rules that do not apply to the evaluated analysis situation. The design of
a potentially incomplete exclusion function is based on the following considerations:
The MDO is designed to support the de�nition of concepts in many di�erent ways.
This includes, for example, the possibility to directly de�ne a concept in the MDO
by providing the concept's SQL implementation in the semDWH. As the reasoning
component only has access to the de�nitions in the MDO it cannot compute the
corresponding OWL representation of such a concept. This leads to an incomplete
reasoning result. As the results provided by the reasoning component might be
incomplete it is not possible to implement a complete exclusion function for the
�ltering of relevant rule families.
The described exclusion function leads to the same evaluation result no matter

if the reasoning is complete or not, as long as the reasoned relations are sound.
Evaluation of rules that in fact do not overlap with facts of the analysis situation
do not lead to any additional judgements. The evaluation of such rules only raises
the computational cost during rule evaluation. On the other hand, removing a rule
family from evaluation even though overlapping of facts could not be eliminated, can
lead to a di�erent evaluation result, as the excluded rule family might contain some
relevant judgements for the analysis situation in question. In order to guarantee
correct evaluation results, the described exclusion approach has been de�ned.
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This exclusion approach does not apply to the matching of scores. Conceptually,
the analyst is only interested in judgements that are based on one or more scores of
the current analysis situation. Evaluation of rule families that de�ne di�erent scores
than the analysis situation but do have overlapping comparative points might lead
to irrelevant and distracting judgements and is therefore avoided.
For the matching of scores no reasoning support that can be used to decide whether

two scores that are de�ned di�erently are equal, exists. As the MDO allows to
de�ne scores in several di�erent ways and no canonical form of score de�nition
exists, it is di�cult to compare and match scores that intrinsically lead to the same
results if they have been de�ned in di�erent ways. The discussed prototype does not
support sophisticated equality-checks for scores as it is assumed that such checks
are implemented within the MDO. For simplicity it is assumed that score de�nitions
within the MDO are unique in the sense that two scores are equal only if they share
the same name. Therefore, the prototype would treat two scores that are de�ned
in the same way but do not share the same name as di�erent, non-matching, scores
for the selection of relevant rule families.

3.2 Analysis Rules

In this section we discuss the concept of analysis rules. First, we provide the general
idea of analysis rules in the context of the rule engine prototype and provide a
de�nition of the components of an analysis rule. Further, we explain the evaluation
of analysis rules and discuss two di�erent evaluation strategies, prerogative and
presumed evaluation.
Analysis rules o�er a method for analysing speci�c data in a hierarchical order

and result in recommended actions (action rules) or an analysis report (reporting
rules). Analysis rules can be used to model routine and semi-routine decision tasks
in order to support business analysts [Neuböck et al., 2013, p. 37].
An analysis rule is de�ned by (1) a comparative cube; (2) two conditions, one

representing positive activation (IF) and one representing negative activation (UN-
LESS); and (3) belongs to exactly one rule family [Neuböck et al., 2013, p. 40]. The
comparative cube de�nes the comparative facts that are in the scope of the rule.
The conditions de�ne thresholds for positive and negative activation respectively.
The two di�erent conditions are needed in order to implement the desired behaviour
of hierarchical analysis and will be explained later in this section with regard to the
di�erent evaluation strategies.
An analysis rule family consists of a set of analysis rules organised in a rule

hierarchy de�ning a single root rule and a set of scores, which contains all scores
used by one of the comparative cubes of its analysis rules. An analysis rule family
optionally de�nes a set of recommended actions that should be executed based on
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Figure 3.4: Conceptual model of analysis rules and analysis rule families

the analysis result. If an analysis rule family does not de�ne a speci�c action, then
the analysis result is reported to the business analyst without recommending any
action, thus leaving the decision to induce a speci�c action to the business analyst.
Analysis rule families that do not de�ne any action are also referred to as reporting
rules. The de�nition of actions in the context of rule families, in contrast to the
de�nition of judgments for single judgement rules, is due to the inherent di�erence
in the application context of the two rule types. Rather than judgements, which
concern individual facts, actions and reports are compiled for a speci�c set of facts
at a time whereby the evaluation result for a speci�c fact depends on the evaluation
of its roll-up fact.
Figure 3.4 shows the structure of analysis rule families. For more information on

generic analysis rule families and instantiations thereof see section 3.3.
In order to evaluate analysis rule families the user has to specify a number of

parameters: (1) a comparative cube specifying the set of comparative facts that
should be evaluated; (2) a set of analysis rule families to evaluate; (3) a list of
granularities, from coarse to �ne, which speci�es the hierarchical order of the rule
evaluation; and (4) one of two evaluation strategies, presumed or prerogative. The
result of the evaluation depends on these parameters and contains the comparative
points for which an analysis rule �red according to the speci�ed evaluation strategy.
Analysis rule families can be described in terms of the ECA model as follows:
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The event of an analysis rule family is either the activation event of a de�ned trig-
ger or the explicit evaluation call that contains the de�ned parameters needed for
evaluation. The condition part is the combination of the activation conditions of
the rules belonging to the rule family, the provided evaluation strategy, and the
provided set of granularities, which de�nes the evaluation path. Finally, the action
that the condition of a judgement rule triggers, consists of the actions speci�ed by
the rule family or a report if no speci�c action is de�ned.
Analysis rules are speci�ed similar to judgement rules, but in contrast to judge-

ment rules they do not de�ne a judgement and de�ne two conditions instead of
just one. The same organisation of rules into rule families applies to analysis rules.
The two distinct conditions are used by the di�erent evaluation strategies and are
required in order to reduce information overload in the context of hierarchical data
analysis. In general, if the positive activation condition is satis�ed, then the action
should be executed or the point should be reported. On the other hand, negative
activation outlaws action execution or reporting.
Evaluation of analysis rule families is consistent with judgement rule evaluation

in the sense that for each comparative point the most speci�c rule of a rule family
is evaluated. Additionally, analysis rule evaluation requires more sophisticated rule
evaluation strategies in order to apply multi-dimensional data analysis. In contrast
to the implicit evaluation of judgement rules, analysis rule evaluation has to be
explicitly triggered by a method call or a de�ned trigger. The evaluation call has to
contain the previously listed inputs, which are necessary for rule evaluation.
Due to the inclusion of roll-up relations in the analysis process it is necessary to

impose further restrictions to analysis rule hierarchies. In addition to the de�nition
of a single root rule, an analysis rule family must not contain rules with overlapping
rule scopes in di�erent sub-hierarchies. Such overlaps would lead to an unde�ned
evaluation behaviour, as analysis rule evaluation for a single fact depends on the
evaluation result of its roll-up fact along the analysis path. Depending on the con-
crete example, overlaps might lead to two di�erent evaluation results for the same
fact. Multiple diverging results for a single fact would prevent a de�ned evaluation
for facts that roll up to this fact.

Example 20 (Analysis Rule). Analysis rule family arCostRatio (see �gure 3.1) consists
of two analysis rules arCostRatio2012 and arCostRatio2012UA. The rule family does
not de�ne a speci�c action, and therefore is considered a reporting rule. The rule is
de�ned to report facts with extraordinarily high increases in drug prescription costs
from year 2011 to 2012, and therefore high values of RatioOfDrugPrescCosts, for in-
surants aggregated to the dimension role levels district and province. For the province
of Upper Austria and districts thereof the more speci�c rule arCostRatio2012UA is
de�ned. The result of an evaluation of this rule family depends on the provided
inputs for the evaluation function. During evaluation for comparative points that
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are contained in the cube CostRatio2012UA, the conditions de�ned by analysis rule
arCostRatio2012UA apply. The conditions de�ned by rule arCostRatio2012 apply to
comparative points that are contained in the comparative cube CostRatio2012 and
do not appear in cube CostRatio2012UA.

For evaluation of analysis rules a concept commonly applied by government leg-
islation and administration bodies is used. Schre� et al. [2013] showed the appli-
cability of this decision scope approach to specialisation of business rules and its
application in data warehousing. This approach is used as evaluation strategy for
the hierarchical analysis of comparative facts.
The main idea of the decision scope approach as de�ned in Schre� et al. [2013]

is that di�erent decisions can be made at di�erent hierarchy levels. Much like in
lawmaking, laws on higher administration levels have precedence over laws on any
lower level, and therefore outlaw contradicting laws. A decision scope, however, does
not regulate the correct decision for every fact but merely de�nes a frame for the
next lower administration level to operate in. Decisions on lower hierarchy levels
must operate within the decision scope granted by the higher hierarchy level.
Application of the decision scope approach leads to analysis rules de�ning two

independent hierarchies at the time of rule evaluation. The rule hierarchy within
a rule family expresses the knowledge that di�erent conditions apply to di�erent
data. Rules within this hierarchy are not limited to a single granularity level and
can therefore express multi-dimensional di�erences. In contrast, the granularity list
needed for analysis rule evaluation does not impose any assertions on rule conditions
but merely de�nes the speci�c evaluation path. Nevertheless, this evaluation path
can have important e�ects on the result of the evaluation as it de�nes the hierarchy
of precedence for analysis rule evaluation.
The basic idea of the decision scope approach is used in order to decide during

the evaluation of an analysis rule whether the action, for example, to report the
fact, should be executed or not. As described above, each analysis rule has two
activation conditions, one negative and one positive, which are evaluated in order to
make this decision. From the decision scope perspective, if a fact satis�es the rule's
positive activation condition, it implies execution of the rule's action for all facts
on lower hierarchy levels that roll up to this fact. In a sense the same is true for a
fact satisfying the negative activation condition, only that this leads to the opposite
e�ect; the rule's action is not executed. If neither activation condition is true for a
given fact, then the activation conditions for facts on the next lower hierarchy level
have to be evaluated, therefore modelling the desired behaviour that undecidable
decisions are relegated to the next �ner decision level.
Schre� et al. [2013] propose two di�erent evaluation strategies that employ the

presented decision scope approach, presumed and prerogative evaluation. Both ap-
proaches are implemented by our prototype for use in analysis rule evaluation.
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Figure 3.5: Analysis rule evaluation strategies

3.2.1 Prerogative Evaluation

The prerogative evaluation strategy [Schre� et al., 2013] states that rules de�ned
on a higher or more general level always precede rules on lower levels, and therefore
constitutes a top-down evaluation. This is true for positive activation as well as
for negative activation. Therefore, if either the positive or the negative activation
condition is satis�ed by a fact on the top granularity level, evaluation for this fact as
well as for facts that roll up to this fact stops. Rules on the next lower granularity
level as de�ned by the evaluation path, are only evaluated for facts that roll up to a
previously undecided fact, that is, neither positive nor negative activation condition
evaluated to true.
Starting at the �rst granularity the set of facts on that granularity is evaluated

against the analysis rule family. This results in a division of facts into three sets. The
�rst set contains all facts that satisfy the positive activation condition. These are
the facts for which the de�ned action is triggered. The second set contains all facts
that satisfy the negative condition; no action is executed for these facts. Evaluation
does not continue for facts that roll up to one of the facts contained in either of these
two sets, as the same activation is assumed for subsequent granularities. The third
set is the set of facts that neither satisfy the positive nor the negative activation
condition; no action is executed on this granularity level, but a further detailed
analysis is triggered for all facts that roll up to one of these undecided facts. On
the next �ner granularity level the same principle is applied to the remaining facts
that roll up to a previously undecided fact. If no activation condition is satis�ed for
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a fact and no more granularities are de�ned in the analysis path, then no action is
recommended for this fact.

Example 21 (Prerogative Evaluation). The top part of �gure 3.5 shows the basic idea
of the prerogative evaluation approach. Suppose the previously de�ned analysis rule
arCostRatio (see �gure 3.1) is evaluated using the comparative cube CostRatio2012,
the strategy prerogative and the list of granularities {[ins:province], [ins:district]}.
Starting at the granularity [ins:province] the set of facts on that granularity is eval-
uated against the analysis rule family arCostRatio. Suppose a comparative fact for
the province of Lower Austria with a score value of 1.3, which results in a positive
activation. Therefore, the point of Lower Austria is reported and no detail analysis
is conducted for the distinct districts of Lower Austria as the same positive activa-
tion is implied for Lower Austrian districts. In contrast, a comparative fact for the
province of Vienna with a corresponding score value of 0.9 leads to negative activa-
tion. Therefore, the point is not reported and as in the case of Lower Austria, no
detail analysis is conducted. Finally, consider the province of Upper Austria with a
score value of 1.3 (note that the more speci�c rule arCostRatio2012UA applies to Up-
per Austria and Upper Austrian districts). This value evaluates to neither a positive
nor a negative activation. Therefore, no action for the province of Upper Austria is
reported, however, a detail analysis can be conducted on the next granularity level
along the speci�ed evaluation path, [ins:district]. Therefore, for districts in Upper
Austria the evaluation continues and the districts that satisfy the positive activation
condition are reported. For example, the Upper Austrian district Linz-Stadt with a
corresponding score value of 1.5 would trigger the de�ned action. A di�erent district
Wels-Stadt with a score value of 1.3 does satisfy neither activation condition and is
not reported. In general, this would lead to a more detailed analysis on the next
�ner granularity level. However, the de�ned analysis path does not contain further
granularities. Therefore, no further detail analysis is possible.

3.2.2 Presumed Evaluation

An alternative evaluation strategy is the presumed evaluation. Schre� et al. [2013]
argue, that this strategy is best suited for reports as it allows to augment the results
of prerogative evaluation with detailed results on �ner granularities. The underlying
idea is that only those results on �ner granularities that contradict the previously
reported evaluation on a coarser granularity are reported. This behaviour enables
detailed insights for business analysts, while preventing information overload by only
reporting contradicting results.
Starting at the �rst granularity, the set of facts on this granularity is evaluated

against the analysis rule family. Contrary to the presumed evaluation strategy, rule
evaluation does not stop for facts that satisfy an activation condition. By using the

45



3 Judgement and Analysis Rules Steiner

presumed evaluation strategy, evaluation continues on each additional granularity
de�ned by the analysis path. However, on �ner granularities an action or report is
only triggered for those facts that contradict a previous activation of a roll-up fact
by satisfying the opposite activation condition.

Example 22 (Presumed Evaluation). Suppose the evaluation of analysis rule family
arCostRatio (see �gure 3.1) using the presumed evaluation strategy on the compar-
ative cube CostRatio2012 with the analysis path {[ins:province], [ins:district]}. The
comparative fact for the province of Lower Austria with a score value of 1.3 results
in a positive activation. Therefore, the province of Lower Austria is reported as in
the case of prerogative evaluation. Though, in contrast to the prerogative strategy,
analysis does not stop but is also conducted for districts of Lower Austria in order
to check for contradicting activations on the district level. Therefore, on granularity
level [ins:district] all Lower Austrian districts are evaluated in order to �nd districts
that satisfy the negative activation condition and would therefore contradict the pos-
itive activation of their roll-up fact. If such a fact satis�es the negative condition,
then the district is reported in order to indicate a contradiction to the activation for
Lower Austria on level [ins:province]. Conversely, if a province, for example, Vienna,
satis�es the negative activation condition, then Vienna districts are evaluated in
order to �nd and report the districts with contradicting positive activation.

A variation of the presumed evaluation strategy is to de�ne a granularity limit for
the report of contradicting facts. It is conceivable that a contradicting activation is
more signi�cant for facts that lie directly below the fact responsible for the initial
activation compared to facts that lie two or three granularity levels below the initial
fact in the roll-up hierarchy. Therefore, it might be desirable to only report contra-
dicting activations if they lie directly below the initial activation. Contradictions
on even lower granularity levels are not relevant for speci�c use cases and do not
provide valuable information to the business analyst and might be omitted in order
to further reduce information overload.
For some speci�c use cases it might be appropriate to implement additional evalu-

ation strategies that employ a hybrid approach by combining the discussed preroga-
tive and presumed evaluation. For example, a presumed positive evaluation strategy
can be de�ned that uses the prerogative evaluation strategy for facts matching the
negative activation condition, that is, no further evaluation for facts that roll up to
a fact with negative activation; for facts matching the positive activation, however,
the presumed evaluation strategy is employed by evaluating facts that roll up to
facts satisfying positive activation in order to �nd contradicting facts with negative
activation.
In the presented prototype implementation the two discussed evaluation strategies

have been implemented in their pure form as described in this section.
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3.3 Generic Rules

In this section we extend the previously de�ned concepts for rules by introducing
generic judgement and analysis rules as well as the corresponding generic rule fam-
ilies. First, we discuss the motivation behind our concept of generic rules. Then,
the de�nition of generic rules based on generic scores and generic comparative cubes
is de�ned. We also provide information on how to instantiate generic rule families
for speci�c concrete analysis situations. Further, we show the di�erences between
generic and non-generic rules and discuss the resulting consequences for the evalu-
ation of a generic rule family.
Generic rules, much like generic measures and generic scores, avoid the necessity

to de�ne similar concepts multiple times from scratch by providing a concept that
can be de�ned using variables or generic quali�ers instead of concrete concepts.
Additionally, the concept of generic rules allows to de�ne rules that apply to generic
analysis situations as previously de�ned in section 2.4. Therefore, instead of limiting
the scope to a speci�c analysis situation, generic rules allow to de�ne a broader,
generic scope.
Two generic rule types, generic judgement rule and generic analysis rule, are dis-

tinguished. Each of these types de�nes the generic embodiment of their non-generic
counterparts. Generic rules are organised in corresponding generic rule families, that
is, generic judgement rule family and generic analysis rule family. Each generic rule
family consists of a set of generic rules that is organised in a rule hierarchy based
on the hierarchy of the rule's scopes. As the scopes of generic rules are de�ned by
generic comparative cubes, the generic rule hierarchy is based on generic compar-
ative cubes, too. A generic rule family de�nes a set of generic scores, contrary to
base rule families, which de�ne only non-generic scores.
The condition of generic rules, analogous to non-generic rules, is de�ned us-

ing generic score-value-comparisons de�ned over generic scores contained in its
generic comparative cube. Similar to non-generic conditions, multiple comparisons
of generic scores can be concatenated by boolean expressions (see �gure 3.2).
Generic and non-generic rules di�erentiate in their de�nition as each generic rule

(1) belongs to a generic rule family, (2) de�nes a generic comparative cube and
(3) de�nes its condition in terms of generic score-value-comparisons. Generic rules
are evaluated against non-generic analysis situations as generic analysis situations
cannot be executed in the semDWH due to their generic nature.
Generic rule families, like all other generic concepts, have to be instantiated in

order to allow a translation into the semDWH. This implies that only instantiations
of a generic rule family can be evaluated by the rule engine. Therefore, in order to
compute an evaluation result for a generic rule family, the generic rule family has
to be instantiated beforehand. The scores de�ned by the concrete analysis situation
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are used to match each generic score de�ned by the generic rule family with an
instantiation of the score de�ned by the analysis situation. With the concrete scores
of the analysis situation the generic rule family can be instantiated. Further, the
instantiated rule family can then be evaluated against the analysis situation.
Together with the instantiated scores, the generic comparative cubes of the rules

in the rule family can be instantiated as long as the actual quali�ers used comply
with the generic quali�er domains speci�ed by the generic comparative cubes. If
the actual quali�ers do not comply with the speci�ed cube domain, then the generic
cube is not instantiated. As a consequence, the rule de�ned based on this speci�c
generic comparative cube does not apply to any facts of the analysis situation and
is therefore ignored for this rule family instantiation. The generic scores used for
the de�nition of the rule conditions are substituted with the concrete scores for rule
evaluation and translated into concrete score-value-comparisons. After the instan-
tiation of all generic components the now instantiated rule family can be translated
into the semDWH and used for evaluation. For each subsequent use of the generic
rule family this instantiation process is executed again with the scores de�ned by the
respective analysis situation. Note, that there is no explicit instantiation for generic
rules, but only for generic rule families. Instantiations of generic rules are implicitly
de�ned by the de�nition of the rule family that instantiates a generic rule's rule
family.

Example 23 (Generic Rule Family Instantiation). Figure 3.6 depicts the conceptual
result of the instantiation of generic judgement rule family gjrAvgCostIncr de�ned
over the generic score gRatioOfDrugPrescCosts with the concrete score RatioOfDrug-
CostsInDrug, which in turn is de�ned as instantiation of the generic score gRatioOf-
DrugPrescCosts with the concrete quali�er InDrug. The instantiated rule family is
de�ned as non-generic judgement rule family by generic instantiation of judgement
rule family gjrAvgCostIncr and the binding of the generic score gRatoOfDrugPresc-

Costs to the non-generic score RatioOfDrugPrescCostsInDrug. The generic rule family
comprises two rules de�ned on generic comparative cubes with di�erent domains for
their generic quali�ers. Generic comparative cube gCostRatio2012 de�nes the generic
quali�er domain using a md-metaconcept de�ned by the subsuming concept InDrug
compared to a md-metaconcept de�ned by the subsuming concept InOAD for the
generic quali�er domain of cube gCostRatio2012UA. Due to the de�ned generic qual-
i�er domains, only rule gjrAvgCostIncr2012 is applicable for the score RatioOfDrug-

PrescCostsInDrug. The scope of rule gjrAvgCostIncr2012UA de�ned by the generic
cube gCostRatio2012UA does not comply with the concrete score and its quali�er,
as the concept InDrug is not subsumed by concept InOAD and is therefore not in
the scope of the cube. The interpretation of the instantiation result is a non-generic
judgement rule family consisting of a non-generic rule representing the instantiation
of the rule gjrAvgCostIncr2012 with the score RatioOfDrugCostsInDrug.
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Figure 3.6: Conceptual instantiation of generic judgement rule family gjrAvg-
CostIncr with score RatioOfDrugPrescCostsInDrug

The instantiation of a generic rule family yields a non-generic rule family by
generic instantiation. Evaluation of the instantiated rule family is analogous to
the evaluation described in the previous sections for judgement rules and analysis
rules. Even though the evaluation is equivalent once the generic rule family has been
instantiated, there are di�erences in the evaluation process between generic and non-
generic rule families prior to the instantiation. These di�erences will be discussed
in the following subsections together with an explicit de�nition of the generic rule
types.

3.3.1 Generic Judgement Rules

A generic judgement rule is de�ned by (1) a generic comparative cube, (2) a generic
condition (3) a corresponding textual judgement, and (4) belongs to exactly one
generic judgement rule family. The judgement, just like for non-generic judgement
rules provides the information or annotation that is reported for facts that satisfy the
rule condition. The judgement text is thereby independent of the concrete analysis
situation for which the rule is evaluated.
Due to the fact that generic judgement rules are de�ned using generic comparative

cubes and generic scores, the process for deciding whether a generic judgement
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rule family is evaluated changes. Similar to the decision for non-generic judgement
rules both the scores and the comparative concept have to be examined for possible
overlaps. For each generic score of the rule family de�nition a non-generic score that
is de�ned as instantiation of that generic score has to be contained in the analysis
situation in order to allow for a match. If one or more of the generic scores do not
have a non-generic counterpart in the analysis situation, the generic rule does not
apply to the analysis situation and is therefore neither instantiated nor evaluated.
The comparative concepts of the generic comparative cube of the root rule and
the comparative cube of the analysis situation are used in order to decide whether
an overlap of comparative points can be eliminated. This process does not change
for generic judgement rules. Combining the results of these comparisons a set of
generic judgement rule families remains for which an overlap cannot be eliminated.
These remaining rule families are therefore instantiated and their instantiations are
subsequently evaluated for the analysis situation analogous to the other applicable
judgement rule families.

3.3.2 Generic Analysis Rules

A generic analysis rule is de�ned accordingly by (1) a generic comparative cube;
(2) two generic conditions, one for positive and one for negative activation; and (3)
belongs to exactly one generic analysis rule family.
Evaluation of generic analysis rule families is explicitly called as in the case of

non-generic analysis rule families. The parameters for this explicit evaluation call do
not change. The list of analysis rule families that should be evaluated can contain
both generic and non-generic analysis rule families. During rule evaluation, all
generic analysis rule families that are applicable to the concrete analysis situation
are instantiated. If a generic analysis rule family cannot be instantiated based
on the analysis situation, it is removed from further rule evaluation. A generic
rule family cannot be instantiated if a generic score of the generic rule family does
not have a matching non-generic score in the analysis situation, or if the quali�er
domain of the rule family's root rule is violated by a quali�er of one of the non-
generic scores of the analysis situation. If additional analysis rule families that do
apply to the analysis situation have been provided for evaluation, they are evaluated
normally. After instantiating the generic analysis rule families, the instantiated rule
families together with the de�ned base analysis rule families are evaluated against
the analysis situation as described in section 3.2.
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3.4 Discussion

In this chapter we described generic and non-generic judgement and analysis rules
and how they can be de�ned based on MDO concepts.
Judgement rules are used to annotate judgements to comparative data analy-

sis situations and are similar to threshold alerts provided by state-of-the-art data
warehousing systems. Judgement rules, however, allow to de�ne more sophisticated
rules in the context of comparative data analysis. Judgements de�ned by judgement
rules are automatically annotated to the results of comparative analysis situations.
Structuring of judgement rules in rule hierarchies enables overriding of general rules
with more speci�c ones. In addition, generic judgement rules can be used to de�ne
judgements for generic analysis situations.
Analysis rules perform hierarchical analysis of multi-dimensional comparative data

and can be evaluated using di�erent evaluation strategies based on the decision scope
approach [Schre� et al., 2013] in order to prevent information overload and obtain
relevant information depending on the current use case. Analysis rules can de�ne
speci�c actions that should be executed based on the evaluation result. At this stage
the actions de�ned by analysis rules merely provide hints on recommended actions
whereas their execution together with associated tasks like con�ict resolution is left
to the business analyst. Further remarks on this topic are provided in section 4.7.
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4 Rule Engine Implementation

In this chapter we describe the implementation of the rule engine functionality as
part of the semCockpit system prototype. The approach is implemented using the
Oracle DB 11.2g database technology. The prototype architecture is geared towards
functionality, rapid prototyping and experimentation. Performance considerations
are widely neglected.
This chapter starts with a brief description of the implementation of the core

semCockpit components and the semCockpit system architecture. After the core
components we concentrate on the implementation of the rule engine. We show how
rules and rule families are represented within the MDO-DB, how they are imple-
mented in the semDWH and how the translations between these two components
are derived. Then, we describe the implementation of the evaluation algorithms for
judgement and analysis rules. After that, the results of a preliminary performance
study for the rule engine implementation are presented. Finally, we discuss the
presented prototype implementation and its limitations.

4.1 semCockpit Architecture

In this section we provide an overview of the architecture of the semCockpit system
prototype and the technologies used for its implementation.
Figure 4.1 depicts the semCockpit system architecture and shows the main phys-

ical components and technologies used. The main components, MDO-DB and
semDWH are each implemented in a separate Oracle Database schema. Most of
the additional components have been implemented as PL/SQL packages located
within the MDO-DB schema. These include the rule engine and the MDO-DWH
Mapper. The semCockpit reasoner is partly implemented using PL/SQL as well but
also consists of a small Java program in order to be able to use an o�-the-shelf OWL
reasoner for Java. The frontend is implemented as a web-based interface.
The semDWH component of the prototype has been created from scratch by

de�ning the necessary SQL DDL statements. The data warehouse has been �lled
with a factitious data set. Consistent initial states for MDO-DB and semDWH are
obtained through an initialisation process, which creates the necessary MDO Base
de�nitions, for example, dimensions, levels, and base measures.
The base work�ow of the system prototype is as follows: (1) The user de�nes new
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Figure 4.1: semCockpit system architecture

concepts or builds a new analysis query using the user interface. (2) After completing
the de�nition the user saves the created concepts, which leads to the frontend writing
the concept de�nitions into the MDO-DB. (3) Triggers on the MDO-DB ensure that
corresponding SQL statements for the realisation of the de�ned concepts in the
semDWH are created and persisted by the MDO-DWH Mapper. In the semDWH,
MDO concepts are, depending on the concept type, realised as views or materialised
views over the underlying data warehouse. (4) The frontend triggers the process for
executing the SQL statements for the newly de�ned MDO concepts in the semDWH.
(5) The frontend reads the de�ned concepts or analysis queries from the semDWH
by querying the concept views and displays the result to the user.
In order to add judgement and analysis rules to the semCockpit system prototype,

extensions of the MDO-DB and the MDO-DWHMapper were necessary. The MDO-
DB stores the de�nitions for all explicitly de�ned concepts, and therefore stores the
de�nitions of rules and rule families as well. Thus, a model for rule de�nitions
had to be added to the MDO-DB. The MDO-DWH Mapper, as component that
manages the translation and communication between MDO-DB and semDWH, has
to handle the same functionality for rules as well. Therefore, rule speci�c extensions
to the MDO-DWH Mapper were necessary. In the rule engine module the evaluation
process for rules is encapsulated. It uses the rule speci�c extensions to the other
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components in order to compute rule evaluations and provides an interface for the
invocation of rule evaluations to the semCockpit frontend. The structure of the
semDWH has not been a�ected by the rule engine implementation.

4.2 Rule Representation in the MDO-DB

Rules and all other object de�nitions needed in the context of the rule engine are
represented as tuples in relational tables in the MDO-DB. Rule types are repre-
sented by di�erent relations sharing some similarities. These relational schemata
will be presented in this section. Within the MDO, rules and rule families are fully
de�ned through their attributes and references to other MDO constructs as de�ned
in chapter 3.

condition(conditionID = (conditionName), rootCondtermID)
conditionTerm(condtermID = (conditionID, sequenceNr), discriminator)
simpleCondition(condtermID, scoreID, compOperator, compValue)
complexCondition(condtermID, leftCondtermID, rightCondtermID, concatOperator)
simpleGenericCondition(condtermID, gscoreID, compOperator, compValue)

Table 4.1: MDO-DB representation of rule conditions

The di�erent types of rules have one thing in common: the rule condition. Rule
conditions are composed of one or more score-value-comparisons, which are con-
catenated by simple boolean expressions. Depending on whether the condition is
for a generic or a non-generic rule, the referenced score is a generic or non-generic
score. This leads to the following relational representation of a rule condition (see
table 4.1).
Relations are represented by a set of attributes enclosed by brackets. A derived

attribute de�nes through a bracketed equation term the attributes from which it
is derived. The attributes that form the primary key of a relation are underlined;
foreign keys are set in italics.
The base relation for a rule condition de�nes an identi�er for the condition and

a root condition term. There are three di�erent types of condition terms. (1) sim-
ple condition terms, (2) complex condition terms, and (3) simple generic condition
terms. Types 1 and 3 only di�er in the referenced score type, that is, non-generic
for simple conditions and generic for simple generic conditions, and are de�ned by
a single score, a comparison operator, and a single comparison value. Complex
condition terms represent the concatenation of two simple terms and de�ne a left
condition term, a concatenation operator, and a right condition term.
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Rule families are de�ned by a rule name and a type discriminator de�ning whether
a rule family consists of generic rules, non-generic rules, or is de�ned as instantiation
of a generic rule family. Additionally, in a separate relation, for each rule family
the scores within its scope are de�ned. The de�nition of available scores for rule
families allows for easier checks for computing possible overlaps with the resulting
cube of an analysis situation. Judgement and analysis rule families are maintained
in separate relations. Score references for generic and base rule families are stored
in separate relations, too, as generic rule families de�ne generic scores whereas base
rule families de�ne non-generic scores. Rule families de�ned by instantiation of
a generic rule have to store score bindings, which relate each generic score of the
generic rule family to a non-generic score that is used for rule instantiation.
Rule hierarchy tables store the subrule-superrule relations of rules within the same

rule family. The entries for these tables are derived from the reasoning component.
There are four hierarchy tables, one for each of the di�erent rule types. We assume
that a hierarchy reasoning method that populates the provided rule hierarchy tables
with correct reasoning results for rules is available in some form. If no reasoning
functionality is implemented, the rule hierarchies have to be provided manually by
the user.

judgementrulefamily(jrulefamilyID = (name), discriminator)

basejudgementrulescore(jrulefamilyID, scoreID)
basejudgementrule(jruleID = (jrulefamilyID, ccubeID), judgement, conditionID)
basejudgementrulehierarchy(sub_jruleID, sup_jruleID)

bygenericinstantiation(jrulefamilyID, gjrulefamilyID)
scorebinding(jrulefamilyID, gjrulescoreID, scoreID)

gjudgementrulescore(gjrulescoreID = (jrulefamilyID, gscoreID))
genericjudgementrule(gjruleID = (jrulefamilyID, gccubeID), judgement, conditionID)
gjudgementrulehierarchy(sub_gjruleID, sup_gjruleID)

Table 4.2: MDO-DB representation of judgement rules and judgement rule families

All judgement rule families that are currently contained in the MDO are stored
in the judgementrulefamily relation. A discriminator denotes for each family whether
it is a base judgement rule family, a generic judgement rule family or a judgement
rule family by generic instantiation.
Base judgement rule families consist of rules represented by the basejudgementrule
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relation. Each judgement rule has to de�ne a reference to a comparative cube
de�ning the scope of the rule. The rule family name together with the identi�er of the
comparative cube form the identi�er for a judgement rule. Additionally, judgement
rules de�ne a judgement in textual form, which de�nes the actual judgement that is
shown for facts that activate the rule. Finally, a reference to a rule condition models
the rules activation condition. As shown in table 4.2, the hierarchy of judgement
rules is stored in table basejudgementrulehierarchy. As addressed before, the set
of scores of a base judgement rule family is stored in the basejudgementrulescore

relation.
The de�nitions for a generic judgement rule family and its containing rules are

stored in a di�erent set of relations, genericjudgementrule, gjudgementrulescore and
gjudgementrulehierarchy. The genericjudgementrule relation consists of a reference to
a generic rule family from the rule family relation, a reference to a generic com-
parative cube, a reference to a condition and, like non-generic judgement rules, a
textual judgement. Therefore, the only di�erences between the genericjudgementrule

and basejudgementrule relation are the di�erent references to generic concepts for
the comparative cube and the condition of a generic judgement rule. The relation
gjudgementrulehierarchy captures the derived rule hierarchy information for generic
judgement rules. Finally, in relation gjudgementrulescore the generic scores of a
generic judgement rule family are de�ned.
The instantiation of a generic judgement rule family is represented as a speci�c

type of rule family with the de�ned discriminator byGenericInstantiation and is de-
�ned based on the generic rule family that it instantiates. This relationship is
recorded in the relation bygenericinstantiation. In order to fully specify a generic rule
instantiation, the relation scorebinding has to de�ne a non-generic score for each of
the generic scores of the generic rule family. This binding information together with
the initial de�nition of the generic rule family su�ciently de�nes an instantiated
rule family in the MDO-DB.
Analysis rule families, just like judgement rule families, are stored in a single

relation analysisyrulefamily. This relation contains the currently de�ned analysis
rule families together with the respective family type. These are base analysis rule
family, generic analysis rule family and analysis rule family by generic instantiation.
Analysis rule families can also de�ne an action, which, depending on the evaluation
strategy, should be executed for facts that ful�l the positive condition of an analysis
rule within the rule family. Actions are kept in separate relations and each action
tupel references the analysis rule family to which it applies (see table 4.3). If no
speci�c action is de�ned, the rule engine assumes a reporting action, which returns
the facts as evaluation results without suggesting a speci�c action.
The baseanalysisrule relation contains the necessary de�nition of a non-generic

analysis rule. As for judgement rules each rule de�nes a comparative cube and
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analysisrulefamily(arulefamilyID = (name), discriminator)
action(arulefamilyID, action)

baseanalysisrulescore(arulefamilyID, scoreID)
baseanalysisrule(aruleID = (arulefamilyID, ccubeID), posconditionID, negcondi-
tionID)
baseanalysisrulehierarchy(sub_aruleID, sup_aruleID)

bygenericinstantiation(arulefamilyID, garulefamilyID)
scorebinding(arulefamilyID, garulescoreID, scoreID)

ganalysisrulescore(garulescoreID = (arulefamilyID, gscoreID))
genericanalysisrule(garuleID = (arulefamilyID, gccubeID), posconditionID, negcondi-
tionID)
ganalysisrulehierarchy(sub_garuleID, sup_garuleID)

Table 4.3: MDO-DB representation of analysis rules and analysis rule families

belongs to a rule family. Analysis rules store references to two conditions, one
triggering positive activation, and one for negative activation. Analogous to non-
generic judgement rules, the tables baseanalysisrulehierarchy and baseanalysisrulescore

store the hierarchy of rules within a rule family, and the scores that appear in a rule
family, respectively.
Accordingly, generic analysis rule de�nitions are stored in their own relation gener-

icanalysisrule, which de�nes the rule's generic analysis rule family, its scope in form of
a generic comparative cube and its two conditions. In the relation ganalysisrulehier-

archy information about the hierarchical ordering of rules within the same generic
rule family are stored and the relation ganalysisrulescore holds the generic scores for
which the generic analysis rule family is de�ned.
The instantiation of a generic analysis rule family is represented analogous to

the instantiation of a judgement rule family by de�ning an additional rule family
type and storing the binding information in separate relations. The rule family
is de�ned as analysis rule family with the discriminator byGenericInstantiation and
de�nes generic rule family that is instantiated in the relation bygenericinstantiation.
Additionally, the relation scorebinding holds the bindings of non-generic scores to the
generic scores of the rule that is instantiated in the same way as for the instantiation
of a generic judgement rule family.
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4.3 Rules in the semDWH

Rules, like other MDO concepts, are represented as views over the underlying data
of the semDWH. Neumayr et al. [2013] describe the transformation of MDO concept
de�nitions to semDWH views.
A rule view consists of the facts of the comparative cube used for rule de�nition

that ful�l the rule's condition. Depending on the rule type some additional informa-
tion, for example, the judgement of a judgement rule, is part of the rule view. Rule
views represent the interpretation of single rules without considering their hierar-
chical order within a rule family. Rule hierarchies of rule families are represented in
rule family views also referred to as aggregated rule views.
A judgement rule view consists of those facts of its comparative cube that ful�l

the rule condition. For each fact the de�ned textual judgement is annotated by
creating a column Judgement in the rule view. To be able to track the speci�c rule
that caused a judgement, additionally to the judgement the identi�er of the rule is
added to the view in a separate column Rule. Assuming that a rule does not have
any other rules within its rule family a rule view can be joined to the result of an
analysis situation in order to gain all facts of the analysis situation for which the
rule �res together with the de�ned judgement and the rule identi�er.
Each analysis rule is represented by two rule views in the semDWH, with one view

consisting of those facts that ful�l the positive activation condition and the other
view consisting of the facts ful�lling the negative activation condition. As analysis
rules do not de�ne other rule speci�c information the only added column to the rule
view is the Rule column in order to be able to track the corresponding rule. Analysis
rule actions are de�ned based on rule families and not for single rules. Therefore,
this information is also added during evaluation and is not represented in individual
rule views.
As the evaluation of rules is always based on rule families, a view is needed that

aggregates all rule views of a rule family with respect to their hierarchy within the
rule family. The previous paragraphs only described the information contained in
a rule view for single rules independent of their hierarchical order within a rule
family. As de�ned in section 3, for each fact only the most speci�c rule within a rule
family should be evaluated. The rule hierarchy provides the necessary information
on which rule is more speci�c than others in order to create an aggregated view that
is consistent with this de�nition. An aggregated rule view is the representation of
a MDO rule family in the semDWH. Note, that for analysis rule families two such
aggregated rule views, one for positive and one for negative activation, are de�ned.
An aggregated rule view is the union of all rule views of a rule family, whereby

each rule view is restricted to those comparative points for which it is the most
speci�c de�ned rule within the rule hierarchy. The resulting interpretation of an
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aggregated rule view is a set of comparative points, annotated with the previously
de�ned information for triggering rule and judgement for judgement rules, whereby
each comparative point contained in the set satis�es the condition of the most speci�c
rule de�ned for that point. If a comparative point does not satisfy this condition it is
not contained in the aggregated rule view. A comparative point might be contained
multiple times in an aggregated rule view for di�erent rules, if the scope of rules in
di�erent hierarchies of the same rule family overlap. Note, that such overlaps are
only allowed for judgement rule families. Overlaps in the hierarchy of an analysis
rule family can lead to ambiguous or unde�ned evaluation outcomes.
Due to their generic nature, generic rules do not have a corresponding representa-

tion in the semDWH. Generic rules, much like generic measures and generic scores,
have to be instantiated, by binding non-generic concepts to all generic elements,
before a semDWH representation can be computed. The instantiation of a generic
rule is achieved by de�ning a corresponding rule family by generic instantiation of
a generic family through binding a concrete score to each of the generic scores de-
�ned by the generic rule family. The need to de�ne a new non-generic rule family
for representing the instantiation of a generic rule family is necessary as a generic
rule family can have multiple instantiations, each specifying a di�erent set of score
bindings. Note, that the instantiation of generic rules requires the instantiation of a
generic rule family. Single generic rules cannot be instantiated independent of their
rule family.

4.4 Rule Mapping

The MDO-DWH Mapper is the component responsible for deriving correct SQL
statements from MDO de�nitions and providing functionality for the execution
of those statements in the semDWH. The Mapper is implemented using Oracle
PL/SQL and is integrated in the MDO-DB schema. The decision to build the Map-
per in this way is attributed to the employed prototyping approach. The PL/SQL
implementation allows, through the use of triggers, for an easy and fast communi-
cation between the MDO and the mapping component.
A number of triggers on MDO relations initiates the mapping process as soon as

a new object is inserted into the MDO-DB. As concepts are normally represented in
di�erent relations within the MDO-DB, it is possible that not all relevant de�nitions
are available in the MDO at the time the mapping process is triggered. Therefore,
the �rst step of the mapping process is to check whether all relevant de�nitions
for the creation of the mapping are available. If some information is missing, the
mapping process returns a placeholder statement for the concept, which is repre-
sented by an empty view. Further SQL insert statements then trigger the mapping
process again and, if all information is available, the Mapper computes the correct
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SQL DDL representation of the concept. For each concept a drop statement, which
allows to remove the concept from the semDWH, is computed additionally to its
create statement. These drop statements can be used to rollback to a previous
semDHW state.
The computed statements are stored in the MDO-DB, split into create and drop

statements, further referred to as mapping sequence. The chronology of concept
de�nitions is stored in a relation in the MDO-DB. Each entry in the relation consists
of a sequence number, the concept type, the concept identi�er, a reference to the
corresponding create statements and a reference to the drop statements. Through
backward execution of the drop statements along the sequence number a previous
semDWH state can be reconstructed.
The mapping component provides a name registry relation in order to cope with

di�erences in the naming of concepts within the MDO and the semDWH. For the
naming of MDO concepts the user can use arbitrary character strings that are stored
as VARCHAR2 strings in the MDO-DB and are used as the identi�er or part of the
identi�er of the concepts. Conceptually, for each MDO concept a corresponding view
is created in the semDWH. Using the MDO identi�er as name of the view is not
feasible as most database systems enforce some constraints on the allowed structure
of identi�ers. For example, in Oracle it is not possible to use strings with more than
30 characters as name for a view or relation. In order to support both individual
concept names and correct identi�ers the mapping component provides functionality
for mapping the user de�ned names to valid database identi�ers. Those mappings
are stored and can be used to translate the name of a concept in the MDO to the
name of its semDWH view and vice versa.
Execution of the created mappings in the semDWH does not occur until a spe-

ci�c procedure, GENERATE_DWH_OBJECTS, of the MDO-DWH Mapper is called.
Whether this procedure is executed immediately after a new concept is de�ned, in
regular intervals, or in some other way is determined outside the core semCockpit
system. For example, the current frontend implementation for the prototype ex-
ecutes the mapping procedure before a new query is executed in order to ensure
that all concepts that might be referenced by the query have been created in the
semDWH. This design provides some �exibility as to how close the MDO-DB and
the semDWH are connected.
For the generation of rule mappings di�erent strategies can be applied depending

on the timing of the aggregated rule view mappings. The mapping of base rules
independent of their rule hierarchy is straightforward and similar to the mapping of
any other MDO concept. For more details on the mapping of other MDO concepts
refer to Neumayr et al. [2013]. They provide a description of how to map di�erent
MDO concepts to a SQL representation.
As previously described, the mapping process is based on triggers. A trigger on
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each relevant relation �res if a new tupel is inserted and calls the corresponding
mapping function. The mapping function checks whether all necessary information
is available and, if so, computes the SQL DDL statements for creating and dropping
the corresponding rule view. Finally, the computed statements are stored in the
mapping sequence relation and wait for their execution in the semDWH.

conditionTerm (’cond01’, 1, ’simplecondition’)
conditionTerm (’cond02’, 1, ’simplecondition’)
simpleCondition (’cond01.1’, ’RatioOfDrugPrescCosts’, ’>’, 1)
simpleCondition (’cond02.1’, ’RatioOfDrugPrescCosts’, ’>’, 1.2)
condition (’cond01’, ’cond01.1’)
condition (’cond02’, ’cond02.1’)

judgementrulefamily (’jrAvgCostIncr’, ’base’)
basejudgementrulescore (’jrAvgCostIncr’, ’RatioOfDrugPrescCosts’)
basejudgementrule (’jrAvgCostIncr’, ’CostRatio2012’, ’There is on avg a general in-
crease in drug prescription costs of 5% per year’, ’cond01’)
basejudgementrule (’jrAvgCostIncr’, ’CostRatio2012UA’, ’In Upper Austria a health
care reform has lead to an avg increase in drug prescription costs of 20%’, ’cond02’)
basejudgementrulehierarchy (’jrAvgCostIncr.CostRatio2012UA’, ’jrAvgCostIncr.Cost-
Ratio2012’)

Table 4.4: MDO-DB representation of judgement rule family jrAvgCostIncr

Example 24 (Rule Mapping). Table 4.4 shows the relational representation of judge-
ment rule family jrAvgCostIncr within the MDO-DB. The mapping of rules is trig-
gered as soon as the tupel is inserted into the basejudgementrule relation. The map-
ping results for the two rules of rule family jrAvgCostIncr are listed in the top part
of table 4.5. Note, that the rule identi�ed by the comparative cube CostRatio2012 is
mapped to name jrAvgCostIncr2012 in the semDWH. The more speci�c rule de�ned
on the cube CostRatio2012UA is mapped to name jrAvgCostIncr2012UA. These map-
pings are stored in the name registry of the MDO-DWH Mapper. The bottom part
of table 4.5 shows the necessary statements in order to compute the aggregated view
for rule family jrAvgCostIncr, based on the knowledge that rule jrAvgCostIncr2012UA
is below rule jrAvgCostIncr2012 in the rule hierarchy.

There are two possible strategies for mapping the aggregated rule views for rule
families based on individual rule views by either computing the aggregated view after
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CREATE VIEW "jrAvgCostIncr2012" AS
SELECT c."goi_actdoc", c."goi_drug", c."goi_ins", c."goi_leaddoc", c."goi_ttime",
c."goc_actdoc", c."goc_drug", c."goc_ins", c."goc_leaddoc", c."goc_ttime", ’jrAvg-
CostIncr.CostRatio2012’ AS "Rule", ’There is on avg a general increase in drug prescription costs
of 5% per year’ AS "Judgement"

FROM (
SELECT *
FROM "CostRatio2012"
WHERE "RatioOfDrugPrescCosts" > 1

) c;

CREATE VIEW "jrAvgCostIncr2012UA" AS
SELECT c."goi_actdoc", c."goi_drug", c."goi_ins", c."goi_leaddoc", c."goi_ttime",
c."goc_actdoc", c."goc_drug", c."goc_ins", c."goc_leaddoc", c."goc_ttime", ’jrAvg-
CostIncr.CostRatio2012UA’ AS "Rule", ’In Upper Austria a health care reform has lead to
an avg increase in drug prescription costs of 20%’ AS "Judgement"

FROM (
SELECT *
FROM "CostRatio2012UA"
WHERE "RatioOfDrugPrescCosts" > 1.2

) c;

CREATE VIEW "jrAvgCostIncr2012only" AS
SELECT *
FROM "jrAvgCostIncr2012"
NATURAL JOIN (

SELECT goi_actdoc, goi_drug, goi_ins, goi_leaddoc, goi_ttime, goc_actdoc, goc_drug,
goc_ins, goc_leaddoc, goc_ttime

FROM "jrAvgCostIncr2012"
MINUS
SELECT goi_actdoc, goi_drug, goi_ins, goi_leaddoc, goi_ttime, goc_actdoc, goc_drug,
goc_ins, goc_leaddoc, goc_ttime

FROM "CostRatio2012UA"
);

CREATE VIEW "jrAvgCostIncr" AS
SELECT *
FROM "jrAvgCostIncr2012only"
UNION
SELECT *
FROM "jrAvgCostIncr2012UA";

Table 4.5: semDWH mappings for judgement rule family jrAvgCostIncr
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a change in the rule hierarchy occurs or by computing the aggregated view just before
rule evaluation. The �rst strategy is to create a mapping for the aggregated rule
view as soon as the �rst rule of a rule family is de�ned. Subsequently, the aggregated
view has to be updated whenever the hierarchy of the rule family changes, that is,
each time a change in a rule hierarchy relation concerning rules of the rule family
occurs. If the aggregated view is not executed between changes in the hierarchy the
update of the aggregated view is super�uous. The prototype implements the second
strategy of computing the aggregated view just before rule evaluation. This strategy
partly prevents unnecessary mappings of aggregated views. The idea is to compute
the aggregated rule view just before evaluation of a rule family based on the, at
this point, available rule hierarchy. This approach ensures that the aggregated rule
view is only mapped when it is certain that the view is needed. For subsequent
evaluation the aggregated view is computed again in order to account for possible
changes in the rule hierarchy. Unnecessary mappings with this strategy occur when
there are no changes in the hierarchy of a rule family between evaluations. In such
a case the result of the aggregated view mapping is exactly the same as the result
of the previous mapping. Recording the changes of the rule hierarchy tables can be
used to avoid unnecessary mappings. If a change has occurred to the hierarchy of
the rule family in question a new mapping is computed; otherwise, if the hierarchy
did not change with respect to the previous computation, the previously computed
mapping is used. As the cost of mapping aggregated rule views appears to be
negligible (see section 4.6), our prototype does not implement the described checks
and naively computes the aggregated rule view each time before a rule family is
evaluated without checking if a new aggregated mapping is actually needed.

CostRatio2012

CostRatio2012UA

jrAvgCostIncr2012

jrAvgCostIncr2012UA

Ccube Views Judgement Rule Views

Defined on

Defined on

jrAvgCostIncr := jrAvgCostIncr2012only ∪  
jrAvgCostIncr2012UA

jrAvgCostIncr2012only := jrAvgCostIncr2012 ⋈ 
(jrAvgCostIncr2012 -  CostRatio2012UA)

Aggregated Judgement Rule View

Figure 4.2: Aggregated rule view mapping

Mapping of an aggregated rule view is based on the individual rule views and
the views of the comparative cubes of the individual rules. An aggregated rule
view consists of the union of all individual rule views whereby all facts of a rule
view that appear in the comparative cube of a rule that is below this rule in the
hierarchy are removed from the aggregated view result. This results in the desired
behaviour that for each fact only the most speci�c rule within the rule family is
applied and contained in the aggregated rule view. The mapping process is currently
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implemented as follows (see �gure 4.2): For each rule that is not a leaf in the rule
family hierarchy, a subquery that contains only those facts for which the rule is the
most speci�c rule in the hierarchy is computed. The aggregated rule view is the
union of all those subqueries and all rule views of leaf rules of the hierarchy.
Generic rules require a di�erent mapping strategy as it is not possible to generate

the mappings for individual generic rules at the time of their de�nition. To be able
to compute the mapping for a generic rule the concrete scores are needed. Therefore,
the mapping for generic rules can only occur during rule evaluation, after the analysis
query has been de�ned. The mapping for generic rules is triggered by the rule engine
during rule evaluation. The analysis query, which de�nes the concrete scores, is used
as input for the rule engine. The rule engine computes the relevant rule families and
triggers their instantiation using the scores de�ned by the analysis situation.
Due to the possibility of quali�er domain constraints de�ned by the generic com-

parative cubes and depending on the non-generic scores used for instantiation, only
a part of the hierarchy of a rule family might apply to a speci�c analysis situation,
and therefore has to be mapped. If the concrete quali�ers of the scores are not
consistent with the quali�er domain of a rule's generic comparative cube, the rule
is not applicable, and therefore neither the rule nor its cube has to be instantiated
and mapped. Furthermore, due to the assumption that rule and cube hierarchies
are consistent and con�ict free, all rules that lie below this rule in the rule hierar-
chy are also not applicable as well. This insight guides the implemented mapping
strategy as not applicable rules do not need to be considered for the mapping of the
aggregated rule family view.
Instantiation and mapping of generic rules is a two stage process. First, the rule

engine evaluates the domains of the generic quali�ers of the generic cubes within
an applicable rule family. Those cubes which domain is consistent with the scores
employed by the analysis situation are instantiated using the scores of the analysis
situation. This instantiation triggers the MDO-DWH Mapper to generate SQL
statements for the, now non-generic, comparative cubes. After instantiating the
comparative cubes, the rule family can be instantiated by binding of the concrete
scores of the analysis situation to the generic scores de�ned by the generic rule
family. This instantiation triggers the mapping of the rule family. The Mapper
uses the instantiated cubes in order to compute the aggregated rule view. Note,
that there are no views for generic rules, or an instantiation thereof, de�ned in the
semDWH. Only the aggregated view of the instantiation of a generic judgement rule
family, or two aggregated views in the case of the instantiation of a generic analysis
rule family, are represented as views in the semDWH.
The aggregated view of a generic rule family instantiation has an equivalent struc-

ture and appearance as the aggregated view of a base rule family, and therefore can
be treated equivalent during further rule evaluation.
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4.5 Rule Evaluation

In this section we present the implementation of the rule evaluation process. First,
we discuss the more straightforward evaluation of judgement rules, which also in-
cludes �ltering for rule families that are relevant to a speci�c analysis situation.
Then, we cover the evaluation of analysis rule families for both prerogative and
presumed evaluation.
Rule evaluation is generally achieved by joining the view representing the analysis

situation with the relevant aggregated rule views. The concrete evaluation of rules
varies for the di�erent rule types and parameters of the rule evaluation, however, the
general process �ow is rather similar as both rule types are evaluated on a speci�c
analysis situation, that is, a comparative cube. This cube de�nes the facts for which
rules are evaluated. The evaluation functions for the di�erent rule types use this
cube and the, depending on the type, explicitly or implicitly de�ned relevant rule
families in order to compute a SQL DDL statement for a semDWH view, which
contains the result of the rule evaluation. This statement is added to the mapping
sequence like the mapping of a MDO concept. This mapping still has to be executed
in the semDWH. Once the statement has been executed, the evaluation result can
be retrieved by querying the semDWH for the rule evaluation view.

4.5.1 Judgement Rule Evaluation

In this subsection we discuss the implementation of judgement rule evaluation. We
describe the �ltering in order to identify applicable judgement rule families and show
how to compute the result view for a speci�c judgement rule evaluation.
As de�ned in section 3.1 the evaluation of judgement rules occurs implicitly with-

out specifying the speci�c judgement rule families to evaluate. To model this be-
haviour the rule engine provides a function that takes a comparative cube as input
and returns the name of the judgement rule evaluation result for this cube. As each
analysis query is modelled as cube this allows a seamless integration of the rule en-
gine by routing all analysis situations through the provided evaluation function. The
evaluation result can then be used for querying instead of querying the semDWH
directly for the analysis situation.
Because of the implicit evaluation the �rst step of the rule evaluation is to compute

a set of all judgement rule families suitable to the analysis situation at hand. An
applicable judgement rule family is a rule family that is de�ned over facts contained
in the analysis situation. Depending on the concrete situation it might be di�cult
to decide whether a speci�c analysis cube overlaps with a judgement rule family.
Therefore, instead of identifying the overlapping rule families, the rule engine starts
with a set of all rule families de�ned in the MDO and excludes those for which an
overlap can be eliminated (see �gure 4.3). This approach aligns with the employed
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prototyping approach as it allows to gradually improve the exclusion function in
subsequent iteration steps.
Exclusion of un�tting rules is sound but incomplete, that is, all excluded rule

families do not overlap with the analysis situation, but there might be some rule
families that do not overlap with the analysis situation but are not excluded from
the set of relevant rules. An advantage of this method of exclusion is that the usage
of incomplete but sound reasoning of MDO concept relations does not lead to a
di�erent result compared to a complete and sound reasoning. The only di�erence is
that in the case of incomplete reasoning more rule families than strictly necessary are
evaluated against the analysis query without a�ecting the evaluation outcome. This
is useful as the reasoning process currently implemented in the prototype system does
not cover all di�erent forms of concept de�nitions. For example, no reasoning can
be computed for constructs that are de�ned in the MDO-DB by directly providing
the concept's SQL representation.
As a tradeo� this incomplete exclusion algorithm can lead to an overhead in

computation costs for rule evaluations as aggregated views might be computed and
joined to an analysis result even though they do not contain any comparative facts in
common. However, performance is not a focus of the prototype implementation and
as the generation of aggregated judgement rule views and their evaluation did not
lead to an apparent performance issue (see section 4.6) this behaviour is acceptable
for the prototype implementation.
The exclusion function is implemented as a two-tier function that takes an analysis

situation as input and returns a set of applicable judgement rule families for which
an overlap cannot be ruled out. The �rst criteria for rule exclusion is the set of scores
de�ned by the analysis situation. A rule family can be excluded from evaluation
if a score of the rule family is not de�ned in the analysis situation. The second
criteria is the comparative concept of the analysis situation in question. If the
comparative concept of the analysis situation and of the rule family's root cube (the
comparative cube of the root rule of the rule family) are disjoint, an overlap can be
eliminated. The function for computing the relevant rule families is invoked during
judgement rule evaluation, which in turn is triggered for each analysis situation
whenever judgement rule evaluation is enabled, in line with the de�ned implicit
evaluation of judgement rules.
To decide whether the scores of a given analysis situation and a rule family match

it is necessary to de�ne the matching behaviour for scores in the prototype imple-
mentation. Conceptually, a score is equal to another score, if both scores yield the
exact same results for every fact under all circumstances. However, the semCockpit
approach allows to de�ne scores that yield the same results in di�erent ways and in
the current implementation it is not possible to decide whether two scores that are
de�ned in di�erent ways are conceptually equal. For the remainder of this work it
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Figure 4.3: Evaluation process for judgement rule families
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Figure 4.4: Matching of scores between analysis situation and judgement rule family

is assumed, with one explicit exception, that a score is only equal to another score,
if they share the same MDO identi�er. The exception of this rule is the handling of
generic scores and the non-generic scores generated by instantiating generic scores
with concrete quali�ers. Since there is no doubt that two scores instantiating the
same generic score with the same quali�ers are conceptually equal, these two scores
are treated as equal.
For non-generic judgement rule families the exclusion based on the scores of the

analysis situation is implemented as follows: First, the two sets of scores in question,
one for the analysis situation and one for the judgement rule family, are retrieved.
Then, each score of the analysis situation is compared to the scores of the judgement
rule family in order to �nd matching scores (see �gure 4.4). If for all scores of the
rule family a matching score has been found, then the rule family cannot be excluded
based on its scores. Note, that the analysis situation can de�ne more scores than the
rule family without leading to exclusion as the additional scores are simply ignored
during rule evaluation. However, if there are one or more scores de�ned by the
rule family that have no matching score in the analysis situation the rule has to
be excluded. If such a rule family would not be excluded, its judgements would be
irritating or even misleading as they are, at least partially, based on score values
that are not part of the analysis situation.
Generic judgement rule families need a slightly more sophisticated score matching

as the generic comparative cubes of generic rules can additionally de�ne score qual-
i�er domains. The score matching starts with the set of concrete scores de�ned by

68



4 Rule Engine Implementation Steiner

the analysis situation (see �gure 4.4). The �rst step in deciding whether the scores
match is to �nd for each generic score de�ned by the rule family a corresponding
non-generic score in the analysis situation that is de�ned as an instantiation of the
rule families generic score. If one or more generic scores of the rule family are not
represented by a score instantiation in the analysis situation, the rule family can
be excluded from evaluation. After �nding those score pairs the quali�er domain
restrictions of the comparative cube of the rule family's root rule have to be anal-
ysed. Only if the domain restrictions are not violated, the scores match. Quali�er
domain restrictions are evaluated by checking whether the concrete quali�ers used
for the score instantiation in the analysis situation are consistent with the quali�er
domain concept de�ned by the generic comparative cube. If either a generic score
of the rule family is not instantiated by the analysis situation or a generic score is
instantiated with quali�ers that are not consistent with the quali�er domain of the
root rule, then the generic rule family can be excluded from the list of relevant rules.
If the scores of a rule family and the analysis situation match, the comparative

concept of the comparative analysis situation and the root rule of the rule family
are compared. Checking the comparative concepts is easy to achieve when the
needed information is provided, for example, through the reasoning component.
First, the root rule of the rule family in question is selected using the hierarchy
relations. Second, the comparative concept of the comparative cube of the rule as
well as the comparative concept of the analysis situation are selected. Finally, it is
evaluated whether those two concepts are disjoint using a speci�c disjoint relation,
which is populated by the reasoning component and contains information about the
disjointness of MDO concepts. If there is no entry in the relation comprising the
two comparative concepts, then it is not certain that they are disjoint in alignment
with the sound but incomplete reasoning approach employed. If there is an entry
consisting of the two concepts in question, an overlap of the comparative points,
and therefore of analysis situation and rule family can be eliminated. The exclusion
function for generic and non-generic rule families based on the comparative concept
only di�ers with regard to the relations in which the rule information is stored within
the MDO-DB (see section 4.2). A generic comparative cube de�nes a comparative
concept just like a non-generic comparative cube, and therefore the check can be
conducted analogous.
Only rule families with matching scores that do not have a disjoint comparative

concept for their root rule de�nition are added to the result set of the exclusion
function, which contains the applicable judgement rule families for the current anal-
ysis situation. Due to the di�erent structure of generic and non-generic rule families
there are two separate exclusion functions, one computing the set of relevant generic
rule families and one computing the set of relevant non-generic rule families.
As a result of the exclusion functions two sets of applicable judgement rule fami-
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lies, one containing generic and one containing non-generic families, remain, which
now contain the rule families that are evaluated against the analysis situation. As
described in section 4.4, the aggregated views of rule families are computed only
when needed. Before computing the rule evaluation results, for each rule family in
the sets of applicable rules, the SQL statement for its aggregated rule view has to
be computed. The signi�cance of the previously described exclusion process is that
those statements are only needed for the remaining families for which an applica-
bility could not be precluded. The computation of the aggregated view statements
as well as the process of instantiating the generic rule families has already been
described in section 4.4.

goi_time goi_ins/goc_ins goc_time Ratio Rule Judgement

2012 Styria 2011 0.99 (null) (null)

2012 Leoben 2011 1.04 jrAvgCostIncr2012 There is on. . .

2012 Lower Austria 2011 1.30 jrAvgCostIncr2012 There is on. . .

2012 Melk 2011 0.97 (null) (null)

2012 Korneuburg 2011 1.07 jrAvgCostIncr2012 There is on. . .

2012 Horn 2011 1.06 jrAvgCostIncr2012 There is on. . .

2012 Upper Austria 2011 1.30 jrAvgCostIncr2012UA In Upper Austria. . .

2012 Linz-Stadt 2011 1.50 jrAvgCostIncr2012UA In Upper Austria. . .

2012 Wels-Stadt 2011 1.30 jrAvgCostIncr2012UA In Upper Austria. . .

2012 Eferding 2011 0.98 (null) (null)

2012 Steyr-Stadt 2011 1.13 (null) (null)

Table 4.6: Judgement rule evaluation result

After the mapping of the aggregated views has been completed for both generic
and non-generic judgement rule families, the evaluation result can be computed by
combining the aggregated views with the analysis situation. The result of the rule
evaluation is a SQL DDL statement for the evaluation result view, which represents
the rule evaluation in the semDWH. The rule evaluation consists of all facts covered
by the original analysis situation. Additionally, for each fact for which one or more
judgements applies, those judgements, together with the speci�c rule that caused
the judgement, are added to the evaluation result. There are three basic outcomes
for a single fact. First, if no judgement applies, then the fact is contained in the
evaluation result showing no judgement and no rule that triggered. Second, if exactly
one judgement applies, then that judgement together with the triggering rule is
annotated. Third, if more then one judgement applies to a speci�c fact, either
through di�erent rule families or through overlapping rules within a single rule
family, the fact is included multiple times in the evaluation result, whereby each
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occurrence is annotated with one judgement and the corresponding triggering rule.

Example 25 (Judgement Rule Evaluation Result). Table 4.6 shows a simpli�ed ex-
cerpt of a judgement rule evaluation result. The table shows the evaluation results
for an analysis of the comparative cube CostRatio2012 with a single applicable judge-
ment rule family jrAvgCostIncr. As the values for goi_ins and goc_ins are equal based
on the cube de�nition, they are shown in a single column. The indentation shows
the roll-up relationships of districts and provinces. For example, the district Leoben
rolls-up to province Styria. Likewise, the districts Melk, Korneuburg, and Horn roll-
up to province Lower Austria. Additionally, dimension roles that are restricted to
the dimension speci�c all-node are omitted. The comparative point for the province
of Styria does not satisfy the rule condition de�ned by rule jrAvgCostIncr2012, and
therefore no judgement is included in the evaluation result. Conversely, the de�ned
judgement is annotated for district Leoben by providing the triggering rule jrAvg-

CostIncr.CostRatio2012 and the corresponding judgement text. For the province of
UpperAustria and its districts the more speci�c rule jrAvgCostIncr2012UA, with the
activation condition RatioOfDrugPrescCosts > 1.2, applies. Therefore, no judgement
is provided for district Steyr-Stadt, as the condition of the speci�c rule is not satis�ed.

4.5.2 Analysis Rule Evaluation

In this subsection the implementation of analysis rule evaluation is presented. We
provide the interface speci�cation for analysis rule evaluation and show the imple-
mentation of the two evaluation strategies, presumed evaluation and prerogative
evaluation.
Analysis rule evaluation is triggered explicitly for a speci�ed set of analysis rule

families. Therefore, the process of identifying the appropriate rules is super�uous as
the set of rule families that should be evaluated is provided as input to the evaluation
function. As the current prototype does not implement a rule execution model, the
evaluation is described based on reporting rules. If a rule family de�nes speci�c
actions, these are additionally annotated in the evaluation result but do no lead to
any further actions or executions. The di�erences between the implementation of
the evaluation strategies will be discussed later on in this section. First, the roles of
the other input parameters of the evaluation function are examined.
The input required by the analysis rule evaluation function are: (1) an analysis

situation in the form of a concrete comparative cube; (2) a list of granularities, which
de�ne the evaluation path; (3) the desired evaluation strategy; and (4) a non-empty
set of analysis rule families. The comparative cube de�nes the scope of the analysis
rule evaluation. An ordered list of granularities provides the hierarchical order used
for evaluation. It is assumed that the granularity list is consistent in the way that it
contains valid granularity de�nitions that form a roll-up hierarchy and are ordered
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from coarser to �ner granularities. A set of analysis rule families, generic and non-
generic, de�nes the set of rules that are evaluated in the analysis rule evaluation
process.
Independent of the chosen evaluation strategy the rule evaluation starts with

the generation of the aggregated rule view statements for non-generic analysis rule
families and the instantiation and mapping for generic analysis rule families. For the
instantiation of generic analysis rule families the concrete scores, respectively the
quali�ers used for the de�nition of those scores, of the provided analysis situation
are used. The instantiation of a generic analysis rule family uses the same principles
as instantiation of a generic judgement rule family. First, it is checked if for each
generic score of the rule family a corresponding instantiated score is de�ned by the
analysis situation. Second, the generic comparative cube of each generic rule within
the family is instantiated with the concrete quali�ers if the quali�ers are consistent
with the quali�er domain of the respective cube. Third, a non-generic analysis rule
family by generic instantiation is created based on the generic analysis rule and
the non-generic scores of the analysis situation, which triggers the mapping for the
aggregated rule views. Remember, that an analysis rule family de�nes two rule
views, one constructed using the positive activation conditions, and one using the
negative activation conditions.
After the instantiation of the required generic cubes and generic rule families is

completed, the evaluation di�ers depending on the selected evaluation strategy. The
di�erences in the behaviour and application of the implemented evaluation strategies
are discussed in detail in section 3.2. As for a judgement rule evaluation the result
of an analysis rule evaluation is a SQL DDL statement that has to be executed in
the semDWH. The created evaluation object represents the results of the analysis
rule evaluation as view over the data stored in the semDWH.
In order to compute the evaluation within a single SQL construct several nested

subqueries are used. Subqueries are needed independent of the used evaluation
strategy. First, a subquery is de�ned, which augments the initial comparative cube
representing the analysis situation with columns for the level and roll-up nodes of
each fact. Then, a subquery is generated for each granularity of the de�ned evalua-
tion path by restricting the cube created in the �rst step to the speci�ed granularity
levels. Further actions depend on the evaluation strategy and are computed for each
analysis rule family that is part of the rule evaluation.
For the prerogative strategy, positive activations are reported in the result, neg-

ative activations lead to no action and facts without activation are evaluated on
the next lower granularity. Starting at the coarsest granularity two subsets are com-
puted: First, the set containing facts with positive activation (positive1) is the result
of a join between the subcube of the current granularity with the positive aggregated
rule view. Second, the set of undecided facts (undecided1) is computed by subtract-
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Figure 4.5: Fragmentation of prerogative analysis rule evaluation

goi_time goi_ins/goc_ins goc_time Ratio Rule Act. Report

2012 Styria 2011 0.99 arCostRatio2012 -

2012 Leoben 2011 1.04 not evaluated

2012 Lower Austria 2011 1.30 arCostRatio2012 + x

2012 Melk 2011 0.97 not evaluated

2012 Korneuburg 2011 1.07 not evaluated

2012 Horn 2011 1.06 not evaluated

2012 Upper Austria 2011 1.30 arCostRatio2012UA o

2012 Linz-Stadt 2011 1.50 arCostRatio2012UA + x

2012 Wels-Stadt 2011 1.30 arCostRatio2012UA o

2012 Eferding 2011 0.98 arCostRatio2012UA -

Table 4.7: Example set for prerogative analysis rule evaluation of rule family arCost-
Ratio along dimension role insurant
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ing facts contained in either the aggregated positive or negative rule view from the
subcube of the granularity. For each further granularity the following subsets are
computed in subqueries: First, the set containing the previously undecided facts
(prevundecided2) is computed by selecting all facts of the current granularity that
roll up to facts contained in the set of undecided facts of the previous granularity.
Second, the set containing facts with positive activation for the current granularity
(positive2) is computed by joining the positive aggregated rule view with the set of
previously undecided facts. Finally, if there is a �ner granularity de�ned for evalua-
tion, the set of undecided facts on the current level (undecided2) has to be computed
by subtracting the facts contained in either the positive or negative aggregated rule
view from the set prevundecided2. Finally, the union of all subqueries containing
facts with positive activation on the di�erent granularities (positive1 and positive2)
yields the desired evaluation outcome of a set of facts, which are reported and for
which the action speci�ed by the analysis rule family is recommended.

Example 26 (Prerogative Analysis Rule Evaluation Result). Table 4.7 shows the
prerogative analysis rule evaluation for rule family arCostRatio along the insurant
dimension on a sample set of comparative facts. Columns goi_ins and goc_ins

are condensed to a single column and dimension roles that are restricted to their re-
spective all-node are omitted. Indentation shows the roll-up relationships of districts
and provinces. Highlighted tupels constitute the actual information contained in the
evaluation result. The fact for the province of Styria satis�es the negative activa-
tion condition and is therefore not contained in the evaluation result. In addition,
for Styrian districts, for example Leoben, the analysis rule is not evaluated. The
province of Lower Austria satis�es the positive activation condition and is therefore
added to set positive1. For Lower Austrian districts Melk, Korneuburg, and Horn,
the analysis rule is not evaluated. The province of Upper Austria is contained in
the set undecided1 as neither applicable activation condition is satis�ed. On level
district the set prevundecided2 therefore contains the Upper Austrian districts Linz-
Stadt, Wels-Stadt, and Eferding, and for each district the analysis rule is evaluated.
District Linz-Stadt is contained in set positive2, as it satis�es the positive activation
condition. The union of the sets positive1 and positive2 constitutes the rule evalua-
tion result. In the example, the result consists of the facts for the province of Lower
Austria and the Upper Austrian district Linz-Stadt.

By using the presumed evaluation strategy positive activations are reported for
all facts that are undecided along their roll-up path and if either a positive or a
negative activation occurs at a speci�c granularity, then on �ner granularities only
those facts with opposite activation are reported. Therefore, starting at the �rst
granularity two sets of facts are computed. The �rst set contains the facts matching
the positive activation condition (rpos1) and the second one those that do not match
the positive activation (lastneg1) and therefore are either undecided or match the
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negative activation condition. Facts that satisfy the positive activation condition
on the coarsest granularity are also reported and added to a separate set lastpos1
for further evaluation. Evaluation on the next �ner granularity depends on the
results of the previous granularity level. The facts on the current granularity are
divided into two sets, one containing all facts that roll up to a fact with positive
activation, de�ned as rolluppos2 and one set containing the facts that roll up to an
undecided fact or a fact with negative activation, de�ned as rollupneg2. For facts in
the set rolluppos2, the facts satisfying the negative activation condition (rneg2) are
reported, as those facts contradict the previously reported positive activation for
their roll-up facts. Analogous, for the set rollupneg2 the facts matching the positive
activation condition (rpos2) are reported. On the next �ner granularity the same
distinction of facts into rolluppos and rollupneg is made. Note, however, that the
evaluation result of previous granularities might or might not have changed. In
order to compute the intended result two additional fact sets have to be computed.
The set lastpos2 contains all facts with the last matching activation condition along
their roll-up hierarchy being positive. Accordingly, the set lastneg2 contains all facts
with the last matching condition being negative. The only exception to these rules
is that all facts with neither activation condition along their whole roll-up hierarchy
are also included in the set of lastneg2 as they can be treated identically during
further evaluation. The evaluation result for a presumed analysis rule evaluation
consists of the union of (1) the facts on the coarsest granularity that satisfy the
positive activation condition (rpos1), (2) all facts contained in the de�ned rolluppos

sets that satisfy the negative activation condition (rneg2) and (3) all facts contained
in the de�ned rollupneg sets that satisfy the positive condition (rpos2). For each
of these facts the speci�c rule responsible for activation and whether the activation
was positive or negative is included in the evaluation result.

Example 27 (Presumed Analysis Rule Evaluation Result). Table 4.8 shows the anal-
ysis rule evaluation for rule family arCostRatio using the presumed evaluation strat-
egy along the insurant dimension on a sample set of comparative facts. The fact
for the province of Styria satis�es the negative activation condition and is therefore
contained in the set lastneg1. Styrian districts Leoben, Murau, and Weiz are part
of the set rollupneg2. Leoben and Weiz do not satisfy the positive activation condi-
tion and are added to set lastneg2. However, Murau satis�es the positive activation
condition and is added to set rpos2 and reported in the evaluation result. Province
Lower Austria is contained in sets rpos1 and lastpos1 as it satis�es the positive activa-
tion condition of rule arCostRatio2012. Consequently, the Lower Austrian districts
Melk, Korneuburg, Horn, and Scheibbs are part of set rolluppos2 and are checked for
a negative activation. District Melk satis�es the negative activation condition and is
added to set rneg2. The province Upper Austria satis�es neither the positive nor the
negative activation condition of rule arCostRatio2012UA. Therefore, Upper Austrian
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Figure 4.6: Fragmentation of presumed analysis rule evaluation

goi_time goi_ins/goc_ins goc_time Ratio Rule Act. Report

2012 Styria 2011 0.99 arCostRatio2012 -

2012 Leoben 2011 1.04 arCostRatio2012 o

2012 Murau 2011 1.21 arCostRatio2012 + x

2012 Weiz 2011 0.89 arCostRatio2012 -

2012 Lower Austria 2011 1.30 arCostRatio2012 + x

2012 Melk 2011 0.97 arCostRatio2012 - x

2012 Korneuburg 2011 1.07 arCostRatio2012 o

2012 Horn 2011 1.06 arCostRatio2012 o

2012 Scheibbs 2011 1.35 arCostRatio2012 +

2012 Upper Austria 2011 1.30 arCostRatio2012UA o

2012 Linz-Stadt 2011 1.50 arCostRatio2012UA + x

2012 Wels-Stadt 2011 1.30 arCostRatio2012UA o

2012 Eferding 2011 0.98 arCostRatio2012UA -

Table 4.8: Example set for presumed analysis rule evaluation of rule family arCost-
Ratio along dimension role insurant
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districts are contained in set rollupneg2 and are evaluated against the analysis rule
family in order to report districts that satisfy the positive activation condition. In
the example, the district Linz-Stadt satis�es the positive activation condition and
is therefore added to set rpos2. The �nal evaluation result for the example set
contains the facts for Murau, Lower Austria and Linz-Stadt, which are reported as
positive activation, and the fact for Melk, which is reported as negative activation
as it contradicts the positive report for Lower Austria.

As stated before, the prototype implementation of the rule engine does not provide
an action execution model for the actions de�ned by analysis rule families. The
presented implementation is limited to report the a�ected facts according to the
used evaluation strategy and annotate the stored action for reported facts with
positive activation. Execution of the de�ned action with the appropriate parameters
depending on the fact values together with an appropriate con�ict resolution has
to be conducted manually. Some additional remarks with respect to this topic are
discussed in section 4.7.
Description of the rule evaluation for analysis rules is based on the assumption

that the evaluation function is explicitly called. However, until now it has not been
de�ned how this function call is triggered. In the most basic case the user directly
calls the evaluation through some interface provided by the semCockpit frontend.
Alternatively, cascading triggers can be used to start rule evaluations at speci�c
events, for example, after new data has been loaded into the data warehouse or at
speci�c times. Because of the limited implementation of an action execution model
for analysis rules, the practical use for such triggers is very limited in the current
prototype implementation.

4.6 Preliminary Performance Studies

In this section we discuss the results of several performance tests based on the
current prototype implementation. As performance and performance optimisation
was not speci�cally considered during prototype implementation, some de�ciencies
were observed during preliminary performance tests. We provide a summary of these
tests in order to guide future work on performance optimisation by identifying the
components of the implementation that impact performance the most. First, we
provide information on the setup we used for the tests as well as the test method
employed. Then, we present the performance results for the computation of rule
mappings and the execution of mappings in the semDWH.
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4.6.1 Test Setup

The performance tests have been conducted using Oracle Database 11.2g with the
following test con�guration. Both the MDO-DB and the semDWH were physi-
cally located on the same server in two di�erent database schemata. All tests were
conducted using a local database server running on a Microsoft Windows 7 (x64)
machine with 4 GB RAM and a 2.20 GHz Intel Core 2 Duo CPU. The database
server has been con�gured with an allocated memory of 1.4 GB RAM. The database
has been accessed through Oracle SQL Developer.
The conducted performance measures are based on the total execution time of

the tested transactions; other performance indicators such as hard drive accesses
or memory usage were not measured. The execution times of invoked function
and method calls have not been measured individually. Therefore, the measured
execution times might contain considerable errors. However, a precise measuring of
performance was neither necessary nor intended for this preliminary tests in order
to achieve the intended insights. Test result values constitute the average execution
time over multiple (at least �ve) test executions.
The main focus of the test method is to identify the components with the largest

e�ects on overall performance. In order to do so, rough performance measurements
are su�cient. For the most part, the presented tests are limited to the concepts that
are used and have been introduced for rule de�nitions, that is, rules, rule families
and rule evaluations. Other MDO concepts that are used in rule de�nitions, like
comparative concepts and comparative cubes, are assumed to be already de�ned in
the MDO-DB and in the semDWH if not stated otherwise.

4.6.2 Rule Mapping Performance

In this subsection we show the execution times for the mapping of di�erent rule
concepts. The rule mappings are independent of the data stored in the semDWH
and solely depend on the objects that are stored in the MDO-DB.
In �gure 4.7 the average execution times for the mapping of analysis and judge-

ment rules are depicted. This test encompasses the insertion of a new rule de�nition
expression in the MDO-DB, the in this way triggered mapping computation and the
insert of the computed mapping into the mapping sequence where the statement is
stored for later execution in the semDWH. The di�erence in the measured times is
primarily explained by the fact that for a single analysis rule two mappings, one for
positive evaluation and one for negative evaluation, have to be computed compared
to a single mapping for judgement rules. Note, that the depicted mappings are for
single rule views and not for the aggregated rule view of a rule family, which will be
discussed later on. The execution time for computing mappings for single rules is
independent of the rule's rule family or the ordering of the rule within the hierarchy
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Figure 4.7: Mapping execution time for judgement and analysis rules based on num-
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of its rule family.
The mapping for single rules does only occur once at the time of the rule's de�-

nition and additionally whenever the entry of the rule's representation in the MDO
is updated.
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Figure 4.8: Mapping execution time for aggregated rule views for balanced and un-
balanced rule hierarchies

Mapping of aggregated rule views depends on the derived rule hierarchies and the
number of rules within the rule family. Figure 4.8 tries to illustrate these depen-
dencies by showing the di�erences in the execution times for aggregated rule view
mappings for rule families with di�erent attributes. The �gure shows the mapping
execution at each data point for a single rule family. The diagram shows the linear
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relation of the mapping time compared to the number of rules within a given rule
family. Additionally, �gure 4.8 shows some di�erences between the mapping time
depending on the structure of the family's rule hierarchy. The two speci�c cases
represent (1) a linear hierarchy, that is, each rule (excluding top and bottom) de-
�nes exactly one direct superrule and one direct subrule and (2) a balanced case as
a hierarchy in the form of a binary tree, where each rule de�nes one direct superrule
and two direct subrules. Note, that the existence of the correct entries in the rule
hierarchy tables are assumed to be already present in the MDO-DB. As in the case
of single rules, the mapping computation is slower for analysis rule families as two
aggregated mappings are computed.
The mapping time for aggregated rule views is important in the current imple-

mentation as they are computed during rule evaluation, for each applicable rule
family in the case of judgement rule evaluation, and for each de�ned rule family in
the case of analysis rule evaluation. Therefore, the mapping costs add directly to
the performance costs of rule evaluation in contrast to the mappings for single rules,
which are computed beforehand at the time of the rule's de�nition. This might be
especially true for judgement rules, as the concept of implicit evaluation might lead
to a high number of applicable rule families, and therefore to a high number of ag-
gregated rule mappings. However, as most rule families probably do not have very
complex hierarchies the estimated e�ect on rule evaluation time is not prohibitive.
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Figure 4.9: Execution time for �ltering for applicable judgement rules and aggre-
gated rule view mapping

Next, �gure 4.9 shows the result of a test concerning the �lter function responsible
for �ltering for applicable judgement rules. The plotted lines stand for di�erent test
settings with a di�erent number of actually applicable rule families added in addition
to the amount of not applicable rules in the rulebase. This test case encompasses the
process of judgement rule evaluation in the MDO-DB and consists of the �ltering of
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applicable rules, the computation of the aggregated rule views for applicable rules
(note that all applicable rule families in the test case consisted of a single rule), and
the mapping for the judgement rule evaluation view.
The results of this test show that the implemented �lter function does scale well

with an expanding rulebase.
The conducted tests regarding the mapping of rule constructs suggest, that the

rule mapping performance is su�cient and currently does not require speci�c at-
tention regarding performance optimisation. The rule mappings only seize the per-
formance costs realised in the MDO-DB. Therefore, the next subsection focuses on
performance costs in the semDWH.

4.6.3 Evaluation Performance in semDWH

This subsection discusses the performance of the generation of rule views and the
querying of rule evaluations in the semDWH. The presented test results are based
on a factitious data set containing 300.000 drug prescription facts for about 95.000
insurants.
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Figure 4.10: Execution time for judgement rule evaluation based on materialised
comparative cubes

Figure 4.10 shows the required time for a judgement rule evaluation in the
semDWH, by creating the previously mapped rules in the semDWH and querying the
rule evaluation view for the results. It is important to note, that the depicted results
are based on the fact that all comparative cubes that underlie the rule evaluation
are already in existence and are available as materialised views in the semDWH.
The necessary calculations for the computation of comparative cubes as described

in section 2.3 are by far the most expensive operation of the system prototype. As
the rule engine implementation is built on top of the semCockpit system, which
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de�nes comparative cubes, optimising their computation is not within the scope of
this work. Nevertheless, it is necessary to at least highlight this issue as it is not
always easily possible to calculate and materialise comparative cubes prior to rule
evaluation.
In the described test environment the computation of a single comparative cube,

like the one used as illustrating example in section 2.3, takes around 40 minutes, and
therefore dwarfs all other performance costs. The optimisation of the calculation
of comparative cubes is still work in progress and some considerable improvements
have already been achieved, which bring down the computation time for comparable
cubes to somewhere between �ve to ten minutes. However, this is still prohibitively
expensive for some use cases.
Note, that the test environment constitutes a rather minimal system in the context

of data warehousing and that through the application of more powerful servers with
more dedicated resources the computation times can be lowered signi�cantly. Nev-
ertheless, the data acquired during development suggest that further performance
improvements through query optimisation and possibly more signi�cant changes of
the semCockpit prototype are necessary in order to achieve practicable results.

4.7 Discussion

In this section we discuss the presented implementation and consider possible exten-
sions and enhancements as well as current limitations of the rule engine prototype by
covering the topics of multi-user access, action execution, rule events and rulebase
management. This section covers functionality that has to be implemented in order
to allow for an useful application of the current prototype features in a production
environment as an active database system. Limitations from a performance stand-
point are not covered in this section, as we discussed the results of a preliminary
performance study in detail in the previous section.
The presented prototype constitutes a �rst implementation of judgement and

analysis rules in the context of comparative data analysis. Not only this, but addi-
tionally the implementation of rules are built in a way that allows rule de�nitions
based on the concepts contained in a multi-dimensional ontology that explicitly de-
�nes business terms. We also showed, to our knowledge, the �rst implementation
of the decision scope approach for data analysis. Still, several questions, which we
did not elaborate on in this work, remain to be considered before the semCockpit
system can be used in a production environment.
Further topics discussed in this section consist of the main shortcomings of the

prototype implementation with regard to the features an active database manage-
ment system should provide according to Act-Net Consortium [1996]. Note, that
the aim of the prototype implementation was to show that the implementation of
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judgement and analysis rules on top of the semCockpit approach is possible with
an o�-the-shelf database management system and not to implement a full-�edged
active database management system. Nevertheless, in order to fully use the imple-
mented concepts, some form of active database system is needed. Therefore, the
features de�ned in Act-Net Consortium [1996] provide a useful guideline for future
development of the rule engine prototype.
One limitation of the presented system is the lack of multi-user functionality. In

the current state the prototype system does not provide a sophisticated support
for multiple users. The multi-user capabilities therefore are limited to the general
functions provided by the Oracle database system, which do not su�ce in the context
of the prototype application. Multi-user capabilities would encompass functionalities
in order to de�ne rules that are visible only for certain users and user groups as well
as some additional consistency checks in order to assert a valid state for the MDO-
DB across multiple users. As multi-user functionality was not within the scope of the
�rst prototype implementation, additional research is necessary in order to identify
necessary implementation steps.
As mentioned before, a main limitation of the presented prototype in terms of

functionality is the lack of an appropriate action execution model that allows to
automatically execute actions based on the result of analysis rule evaluations. The
action of an analysis rule should act on objects that are available in the data ware-
house and in OLTP systems [Thalhammer and Schre�, 2002, p. 1204]. However, the
semCockpit system prototype does not contain an OLTP system as the implemen-
tation of automatic action execution was not in the scope of the presented research.
Thalhammer and Schre� [2002] and Thalhammer et al. [2001] contain considerable
thoughts on the functionality needed to support such an action execution feature.
Two essential features that are not contained in the current rule engine prototype
concern (1) a more precise de�nition of the action of a rule, possibly by de�ning a
primary dimension level, and (2) some functionality for detection and resolution of
con�icting decisions. The primary dimension level is a particular dimension level,
which determines the application domain of the rule's action. In this approach,
the action represents a transaction in an OLTP system as method for instances of
the primary dimension level [Thalhammer and Schre�, 2002, p. 1198]. If the rule
engine should support such actions, then the de�nition of the primary dimension
level for actions is necessary. The application of actions on an instance level addi-
tionally requires some functionality for con�ict resolution as di�erent analysis rule
evaluations can lead to con�icting actions for the same instance. Thalhammer et al.
[2001, p. 255] propose to handle such con�icts by de�ning con�ict resolution tables,
which specify for each pair of con�icting methods a corresponding con�ict resolution
method that will be executed in the OLTP system. Implementation of the proposed
action execution system is one of the essential features that would be expected from
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a complete active data warehouse system.
The de�nition of events that lead to the execution of analysis rules has not been

discussed thus far in detail. Due to their conceptualisation and implicit evaluation,
judgement rule families are not triggered by any event other than the execution of
an analysis situation with activated judgement rule evaluation. In contrast, analysis
rules should provide some event functionality as they de�ne speci�c actions to be
executed based on the evaluation result. The current prototype does not de�ne
explicit events for analysis rules. In the current implementation state, triggers within
Oracle database can be used in order to model events leading to prede�ned analysis
rule evaluations. However, such triggers would have to contain a lot of information
buried within their de�nition. Based on this triggers alone it would be hard for
business analysts to get an overview on the de�ned triggering events for a set of
rules that are active at a given point in time. Therefore, the maintenance and
evolution of the rulebase would be exceptionally time-consuming and error-prone.
Some guidelines and thoughts on how to implement a dedicated event model for
analysis rules, which would mitigate these problems, can be found in Thalhammer
and Schre� [2002] and Thalhammer et al. [2001].
An additional topic constitutes the adequacy of the prototype with respect to

rulebase management and rulebase evolution. In order to provide a full rulebase
management, the following features have to be considered [Act-Net Consortium,
1996, p. 43]: (1) Information about the current rules within the database can be
retrieved at any time. (2) The rulebase is changeable over time, which includes
the de�nition of new rules as well as the removal of others. (3) It is possible to
modify the event, condition and action de�nitions of existing rules and (4) rules can
be disabled and enabled. Only the �rst feature is fully supported by the current
implementation as the de�nition expressions of rules are stored within the MDO-
DB and can be retrieved at any time. It is also possible to add new rules to the
rulebase by inserting new rule de�nition expressions into the database. The removal
of rules and rule families from the rulebase is not fully implemented but would
require minor e�ort. In order to remove a single rule from the rulebase, the rule's
entry in the MDO-DB has to be deleted. Additionally, the rule hierarchy for the
rule's rule family has to be updated and the appropriate delete statement for the
rule view has to be generated and stored in the mapping sequence. The removal of
a whole rule family requires the deletion of all of the rules in the rule family as well
as the entries for the rule family from the MDO-DB. As in the case of removing a
single rule from the rulebase a delete statement for all of the a�ected rule views and
the aggregated rule family view has to be generated. Changes within rules are not
actively supported in the current implementation but if the entries of the rule tables,
which store the rule de�nitions are altered, the computation of a new mapping for
the a�ected rule is triggered. However, the rule condition tables are not covered
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by triggers, and therefore changes within these relations go unnoticed and are not
transferred to the semDWH representation of the rule. Enabling and disabling of
rules and rule families is currently not implemented. This feature might be modeled
by an additional relation that stores the activation state for each rule and rule family.
During rule evaluation an additional check would verify that the rule is active and
would remove the rule from evaluation if it is not enabled independent of the event
that lead to the rule evaluation.
In the current state of the prototype implementation considerable limitations exist

as described in this section. From a functional point of view, these limitations are
explained by the fact that the system constitutes a research prototype.
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5 Summary and Outlook

In this thesis we have presented the prototype implementation of a system that al-
lows to de�ne and evaluate rules as concepts of a multi-dimensional ontology. These
rules are speci�cally designed for comparative data analysis in the context of data
warehousing. The rule engine is part of the semCockpit system prototype, which
de�nes a multi-dimensional ontology for explicitly capturing business terms in a cen-
tral repository and provides an integrated approach towards more comprehensible
analyses. Formalised business terms can be used for the de�nition of judgement and
analysis rules.
The semCockpit approach underlying the rule engine implementation includes

both the concept and structure of a semCockpit data warehouse and the concept
of a multi-dimensional ontology, which enriches the data warehouse with a set of
explicitly de�ned concepts. In the context of the MDO di�erent concept types,
namely entity concepts, dimensional concepts, multi-dimensional concepts, com-
parative concepts and multi-dimensional metaconcepts can be de�ned. Measures
quantify facts of interest, and scores relate measure values of a group of interest to
a group of comparison. Generic measures and scores are de�ned by using generic
quali�ers, which are substituted with concrete concepts for instantiation. Cubes
and comparative cubes are used to de�ne a measure or score application and repre-
sent analysis situations. Generic comparative cubes can be used to model a generic
analysis situation. The MDO-DWH Mapper handles the communication between
the MDO and the semDWH and translates MDO construct de�nitions to executable
SQL statements.
Judgement and analysis rules can be de�ned based on MDO concepts. Judgement

rules are used to annotate previously gained insights to comparative data analysis
situations. Therefore, otherwise tacit knowledge can be de�ned explicitly. Analysis
rules can be used for the hierarchical analysis of multi-dimensional comparative
data and allow for di�erent evaluation strategies in order to prevent information
overload and obtain relevant information depending on the current use case. Rules
are organised in hierarchies within rule families, which allow to apply overriding
in the sense that for each point only the most speci�c rule within a rule family
is evaluated. Generic rules are used to de�ne rules based on generic comparative
analysis situations in order to de�ne rules that are valid over a broad range of similar
comparisons, and therefore reduce the number of rules that have to be de�ned.
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We have shown that the established concepts can be implemented with an o�-
the-shelf database management system by implementing a research prototype using
Oracle database. The motivation of this work was to show that an implementation of
the rule engine is feasible with a conventional DBMS. A prototype covering the base
functionality for the realisation of the rule engine has been developed and evaluated.
Functional limitations of the current prototype implementation include the lack

of multi-user access, a rule execution model for automatic execution of analysis
rule actions, a de�ned event model and shortcomings in the �exibility of rulebase
management.
Preliminary performance measurements suggest, that considerable work has to be

done in order to improve the performance of cube calculations to a satis�able level.
However, the data suggests, that the performance costs incurred by operations of
the rule engine are negligible compared to the performance costs of creating and
instantiating comparative cubes. The implementation of comparative cubes is part
of the semCockpit prototype but does not belong to the rule engine component and
was therefore not within the scope of this work.
From a conceptual standpoint, one promising extension of the rule engine consti-

tutes the implementation of guidance rules in combination with analysis graphs as
envisioned by Neuböck et al. [2013]. An analysis graph is the model of an analysis
process and comprises multiple analysis situations and their relationship in terms of
navigation steps. Guidance rules are used to guide the business analyst during data
analysis. Guidance rules de�ne depending on the current analysis situation and the
measure and score values, recommended, potentially promising navigation steps for
the analyst to follow in subsequent analyses. A similar behaviour can be modeled
using the structure of analysis rules as de�ned in this thesis and combine them to
an evaluation similar to the described implicit evaluation of judgement rules. Some
work has to be done in order to de�ne and model the action execution for guidance
rules in a way that allows the execution of the desired navigation steps.
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