
Cost Model for the SAP Gami�cation

Platform

Author: Svenja Brunstein

MASTER THES I S

to obtain the academic degree of �Master of Science (MSc)�
in the Master Degree Program

Business Informatics

Department of Business Informatics � Data & Knowledge Engineering
Johannes Kepler University Linz

Altenberger Str. 69, 4040 Linz, Austria

Submission: June 2013
Supervisor: o. Univ.-Prof. Dipl.-Ing. Dr. techn. Michael Schre�, JKU Linz
Co-Supervisor: Dr. Stefan Berger, JKU Linz

Declaration

I hereby declare under oath that the submitted Master's thesis has been written
solely by me without any third-party assistance, information other than provided
sources or aids have not been used and those used have been fully documented.
Sources for literal, paraphrased and cited quotes have been accurately credited.
The submitted document here present is identical to the electronically submitted
text document.

Dresden, June 19, 2013

Svenja Brunstein

i

Acknowledgment

This master's thesis was supported and supervised at SAP by Philipp Herzig from
SAP Mobile Research Dresden.

ii

Abstract

In this master's thesis, a generic platform to support gami�cation of applications is
the object of study. This Gami�cation Platform was recently invented and imple-
ments a new type of architecture. The performance of the platform is unknown since
no prior knowledge exists for this complex type of architecture. Conducted exper-
iments have shown that the response time and throughput are varying extremely,
which has to be analyzed and described more precisely with a cost model.

To support decision-making and be able to calculate costs of a gami�cation con-
cept beforehand, performance and throughput of the Gami�cation Platform should
be known prior to its implementation. Additionally, it has to be decided whether
the applications and the platform should prefer to communicate in synchronous or
asynchronous mode. The synchronous mode consumes less memory, whereas the
asynchronous mode operates faster. A cost model allows the pre-calculation of per-
formance and throughput for the generic Gami�cation Platform.

First, a queueing network model is built based on the architecture of the platform,
which estimates the performance. Subsequently, cost factors are researched and mea-
sured in three categories: Users, rules, and infrastructure. The in�uence of each sig-
ni�cant cost factor on performance is modeled with polynomials.

The accuracy of the presented cost model in synchronous mode has a Mean Mag-
nitude of Relative Error of 0.15, the asynchronous cost model's Mean Magnitude of
Relative Error is 0.115. For a real use case the Magnitude of Relative Error are 0.436
in synchronous mode and 0.148 in asynchronous mode. Errors due to exclusion of
factors and simplifying assumptions will need to be overcome in future research.

Even though the Gami�cation Platform is generic, the presented cost model only
covers the most relevant parts. However, even this cost model is already complex,
and, more importantly, delivers accurate estimations of the platform's performance.
Further need for research is emphasized to include more cost factors as well as their
e�ects on each other, and to support the automation of model usage.

iii

Contents

Declaration i

Acknowledgment ii

Abstract iii

List of Figures viii

List of Tables x

List of Abbreviations xii

List of Listings xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Gami�cation Platform . 2

1.2.1 Purpose . 2

1.2.2 Architecture . 3

1.3 Research Questions . 4

1.4 Approach . 4

1.5 Scope . 6

1.6 Concrete Example . 6

1.7 Outline . 7

2 Theoretical Foundations 8

2.1 Modeling . 8

2.1.1 Data/Knowledge . 9

2.1.2 Modeling Techniques . 12

2.1.3 Cost Model . 14

2.1.4 Model Application Method 18

2.1.5 Estimation . 18

iv

Contents v

2.1.6 Modeling Terminology . 18

2.2 Queueing Networks . 20

2.2.1 Kendall's Notation . 20

2.2.2 Illustration . 21

2.2.3 Network Types . 21

2.2.4 Queueing Network Simulation 23

2.3 RETE . 24

2.3.1 RETE Terminology . 24

2.3.2 RETE Tree . 25

2.3.3 Response Times and Cost Model for RETE 27

2.4 Statistics . 29

2.4.1 Mann-Whitney U Test . 29

2.4.2 Polynomial Regression . 30

2.4.3 Information Criteria . 30

3 System Analysis 32

3.1 Components . 32

3.2 Queueing Networks . 33

3.2.1 Synchronous Mode . 34

3.2.2 Asynchronous Mode . 34

3.2.3 Measuring Points . 35

4 Cost Factors 38

4.1 User-Related Cost Factors . 39

4.1.1 Number of Users . 39

4.1.2 Number of Events/s per User 40

4.1.3 Event Type Distribution . 40

4.2 Rule-Related Cost Factors . 40

4.2.1 Number of Rules . 42

4.2.2 Number of Alpha Nodes . 42

4.2.3 Number of Beta Nodes . 43

4.2.4 Node Types . 45

4.2.5 Number of Abstractions . 45

4.2.6 Working Memory Growth . 46

4.2.7 Independent Rule Streams . 47

4.2.8 UpdateAPI calls in RHS . 47

4.2.9 QueryAPI calls in LHS . 48

4.2.10 Size of Tables . 49

Contents vi

4.2.11 Structure of Tables . 50

4.3 Infrastructure-Related Cost Factors 50

4.3.1 Database . 50

4.3.2 Queue Scheduling Algorithm 51

4.3.3 Connection Pools . 51

4.3.4 Transmission Packet Sizes . 52

4.3.5 RAM of Server . 52

4.4 Statistically Signi�cant Cost Factors 54

5 Experiments 55

5.1 Experiment Modeling Technique . 55

5.2 Experiment Design . 57

5.3 Experiment Data . 58

5.4 Workload . 59

5.5 Experiment Results . 60

5.5.1 Distributions . 60

5.5.2 Cost Factor Number of Users 63

5.5.3 Cost Factor Number of Events Per Second Per User 65

5.5.4 Cost Factor Event Type Distribution 66

5.5.5 Cost Factor Number of Alpha Nodes 67

5.5.6 Cost Factor Number of Beta Nodes 69

5.5.7 Cost Factor Number of Abstractions 70

5.5.8 Cost Factor Number of updateAPI calls 71

5.5.9 Cost Factor Number of queryAPI calls 72

5.5.10 Summary . 72

6 Cost Model 73

6.1 Modeling Method . 73

6.2 Cost Model . 73

6.3 Model Application Method . 75

7 Validation of the Cost Model 77

7.1 Quantitative Validation . 77

7.2 Qualitative Validation: Model Criteria 78

7.3 Validation Based On a Use Case . 80

7.4 Conclusion . 82

8 Summary 84

Contents vii

9 Outlook 86

Bibliography 88

A Test Results � Polynomial Model Charts 93

B Use Case Rules 104

C R Skript 118

List of Figures

1.1 Gami�cation Platform Architecture [Herzig et al., 2012a] 3

2.1 Modeling Terminology [Briand and Wieczorek, 2002] 9

2.2 De�nition of Response Time [Jain, 1991] 15

2.3 Queueing Network of a Multiple Process Server [Menasce and Almeida,
2001] . 22

2.4 Queueing Network Resource Types [Menasce and Almeida, 2001] . . 22

2.5 RETE Tree Example . 25

2.6 Distribution of Response Times for Di�erent Number of Users 29

3.1 Gami�cation Platform in Synchronous Mode 32

3.2 Gami�cation Platform in Asynchronous Mode 33

3.3 Queueing Network of Gami�cation Platform in Synchronous Mode . 34

3.4 Queueing Network of Gami�cation Platform in Asynchronous Mode 35

3.5 Measuring Points in Queueing Network, Synchronous Mode 36

3.6 Measuring Points in Queueing Network, Asynchronous Mode 36

4.1 Event Type Variation . 41

4.2 RETE Tree for Testing Cost Factor Number of Alpha Nodes 43

4.3 RETE Tree for Testing Cost Factor Number of Beta Nodes 44

4.4 Distribution of Response Times for Various RAM Sizes 53

4.5 Number of Points for Various RAM Sizes 54

5.1 Example of Service Times per Cost Factor Level 56

5.2 Interarrival Time Distribution for 250 User and 0.5 Events/s/User . 60

5.3 Distribution of Service Times in Components in Synchronous Mode . 61

5.4 Distribution of Service Times in Components in Asynchronous Mode 62

5.5 Histograms CEP Service Times Users Synchronous Mode 64

viii

List of Figures ix

6.1 Schematic Overview of Cost Model 74

7.1 Synchronous Simulated Response Time for Use Case 81

7.2 Asynchronous Simulated Response Time for Use Case 82

A.1 User Sync Component Models . 94

A.2 User Async Component Models . 95

A.3 Events Per Second Per User Sync Component Models 96

A.4 Events Per Second Async Component Models 97

A.5 Alpha Nodes Sync Component Models 98

A.6 Alpha Nodes Async Component Models 99

A.7 Beta Nodes Sync Component Models 100

A.8 Beta Nodes Async Component Models 101

A.9 Abstractions Sync Component Models 102

A.10 Abstractions Async Component Models 103

B.1 RETE Tree for Application Rules . 117

List of Tables

2.1 Parameter Categories [Menasce and Almeida, 2001] 10

2.2 Elements with In�uence on Performance [Menasce and Almeida, 2001] 10

2.3 Model Types [Menasce and Almeida, 2001] 15

2.4 Model Criteria [Briand and Wieczorek, 2002] 16

2.5 Kendall's Notation Parameters [Kendall, 1953; Jain, 1991] 20

2.6 Distribution Symbols in Kendell's Notation [Kendall, 1953; Jain, 1991] 21

2.7 Space and Time Complexity of RETE Algorithm [Forgy, 1982] . . . 27

3.1 Measuring Points . 37

3.2 Service Times Calculation for Components Based on Measuring Points 37

4.1 Response Time Metrics for Cost Factor User 39

4.2 Response Time Metrics for Cost Factor Events/s 40

4.3 Response Time Metrics for Cost Factor Event Type Distribution . . 41

4.4 Response Time Metrics for Cost Factor Number of Alpha Nodes . . 42

4.5 Response Time Metrics for Cost Factor Number of Beta Nodes . . . 45

4.6 Response Time Metrics for Cost Factor Abstractions 45

4.7 Response Time Metrics for Cost Factor Working Memory Growth . . 47

4.8 Response Time Metrics for Cost Factor UpdateAPI Calls 48

4.9 Response Time Metrics for Cost Factor QueryAPI Calls 48

4.10 Response Time Metrics for Cost Factor Table Sizes (Table Player) . 49

4.11 Response Time Metrics for Cost Factor Table Sizes (Table Mission) . 50

4.12 Response Time Metrics for Cost Factor Maximum Number of Threads 51

4.13 Response Time Metrics for Cost Factor Accept Count 52

4.14 Response Time Metrics for Cost Factor RAM Size 52

5.1 Service Time Polynomials for an Exemplary Cost Factor 56

5.2 Service Time Polynomials for Cost Factor Number of Users in Syn-
chronous Mode . 64

x

List of Tables xi

5.3 Service Time Polynomials for Cost Factor Number of Users in Asyn-
chronous Mode . 65

5.4 Service Time Polynomials for Cost Factor Number of Events Per Sec-
ond Per User in Synchronous Mode 65

5.5 Service Time Polynomials for Cost Factor Number of Events Per Sec-
ond Per User in Asynchronous Mode 66

5.6 Service Time Polynomials for Cost Factor Number of Alpha Nodes in
Synchronous Mode . 68

5.7 Service Time Polynomials for Cost Factor Number of Alpha Nodes in
Asynchronous Mode . 68

5.8 Service Time Polynomials for Cost Factor Number of Beta Nodes in
Synchronous Mode . 69

5.9 Service Time Polynomials for Cost Factor Number of Beta Nodes in
Asynchronous Mode . 70

5.10 Service Time Polynomials for Cost Factor Number of Abstractions in
Synchronous Mode . 70

5.11 Service Time Polynomials for Cost Factor Number of Abstractions in
Asynchronous Mode . 71

6.1 Service Time Estimation Using Multiple Cost Factors 76

7.1 Quantitative Validation of Cost Model Comparing Measured and Pre-
dicted Response Times . 78

7.2 Model Estimate Criteria . 79

7.3 Model Method Criteria . 79

7.4 Application Criteria . 80

7.5 Validation of Cost Model Comparing Measured and Predicted Re-
sponse Times for Use Case . 81

8.1 Summary of Studied Cost Factors . 85

List of Abbreviations

AIC Akaike Information Criterion
ANOVA Analysis of Variance
BEP Business Entity Provider
BIC Bayesian Information Criterion
CART Classi�cation and Regression Trees
CEP Complex Event Processor
COCOMO . . . Constructive Cost Model
CPU Central Processing Unit
CV Cross-Validation
DBMS Database Management System
e.g. exempli gratia (for example)
ECA Event Condition Action
ERP Enterprise Resource Planning
et al. et alii (and others)
FCFS First Come, First Served
i.e. id est (that is)
JMS Java Message Service
JMT Java Modelling Tools
LAN Local Area Network
LHS Left-Hand Side
LJS Lean Java Server
MB1 Message Broker I
MB2 Message Broker II
MdMRE Median Magnitude of Relative Errors
MMRE Mean Magnitude of Relative Error
MRE Magnitude of Relative Error
OLS Ordinary Least Squares
OSR Optimized Set Reduction
QoS Quality of Service
RAM Random-Access Memory
RHS Ride-Hand Side
RPC Remote Procedure Call
SLA Service-Level Agreement
TP Transaction Processing
tpm Transactions per Minute

xii

List of Abbreviations xiii

TPS Transactions Per Second
WAN Wide Area Network
WME Working Memory Element

List of Listings

2.1 Co�ees+1 Rule . 27
4.1 Simple Rule Example . 39
4.2 Join Rule Example . 41
4.3 Alpha Nodes Rule Example . 42
4.4 Beta Nodes Rule Example . 44
4.5 Abstractions Rule Example . 46
4.6 Rule with 10 UpdateAPI Calls . 47
4.7 Rule with 10 QueryAPI Calls . 48
5.1 CEP Rules . 59
B.1 New User Rule . 104
B.2 Met Person Rule . 104
B.3 Added Buddy Rule . 105
B.4 Added Tag Rule . 105
B.5 Added Note Rule . 105
B.6 Added Availability Rule . 105
B.7 Accepted Meeting Rule . 105
B.8 Declined Meeting Rule . 106
B.9 1:1 Lunch Attended Rule . 106
B.10 4 Person Lunch Attended Rule . 106
B.11 Co�ee Attended Rule . 106
B.12 Group Topic Lunch Rule . 107
B.13 Met New Person Rule . 107
B.14 Ready To Network Rule . 107
B.15 10 Tags Rule . 108
B.16 5 Prominent Tags Rule . 108
B.17 20 Tags Rule . 108
B.18 Accepted First Meeting Rule . 108
B.19 Accepted 5 Meetings in a Row Rule 109
B.20 First Note Rule . 109
B.21 Accepted 15 Meetings in a Row Rule 109
B.22 10 Buddies Rule . 110
B.23 25 Buddies Rule . 110
B.24 First 1:1 Lunch Attended Rule . 110
B.25 10 1:1 Lunches Attended Rule . 110
B.26 25 1:1 Lunches Attended Rule . 111

xiv

List of Listings xv

B.27 First 4 Person Lunch Attended Rule 111
B.28 10 4 Person Lunches Attended Rule 111
B.29 25 4 Person Lunches Attended Rule 112
B.30 First Co�ee Attended Rule . 112
B.31 10 Co�ees Attended Rule . 112
B.32 25 Co�ees Attended Rule . 112
B.33 First Group Topic Lunch Attended Rule 113
B.34 5 Group Topic Lunches Attended Rule 113
B.35 10 Group Topic Lunches Attended Rule 113
B.36 First Group Topic Lunch Hosted Rule 114
B.37 5 Group Topic Lunches Hosted Rule 114
B.38 10 Group Topic Lunches Hosted Rule 114
B.39 Met 1 Person From Di�erent Cost Center Rule 114
B.40 Met 10 Persons From Di�erent Cost Centers Rule 115
B.41 Met 25 Persons From Di�erent Cost Centers Rule 115
B.42 Met 50 Persons From Di�erent Cost Centers Rule 115
B.43 Attended 4 Di�erent Meeting Types Rule 116
C.1 R Skript . 118

Chapter 1

Introduction

The introduction gives an overview on the motivation for the thesis, describes the
generic Gami�cation Platform, which is the basis for the cost model, de�nes the
research questions, and presents the approach from theory and data to the cost
model. Additionally, the scope is de�ned, the concrete and real example used within
the thesis is introduced and the outline is explained.

1.1 Motivation

Gami�cation is de�ned as the use of game elements and mechanics in non-gaming ap-
plications, which are introduced to improve user experience and user commitment in
the �gami�ed� applications [Deterding et al., 2011]. Herzig et al. [2012b] showed that
gami�cation of Enterprise Resource Planning (ERP) software can improve factors
such as software enjoyment and perceived ease of use. Moreover, enterprise gami�-
cation can be used to encourage desired user behavior [Thom et al., 2012] and to
increase commitment with applications or services [Zichermann and Cunningham,
2011].

As many companies plan to introduce gami�cation in their applications in the near
future, the market size of gami�cation is expected to reach $2.8 billion by 2016 [M2
Research, 2012]. Existing gami�cation solutions only implement subsets of possible
features and are not as �exible as required by enterprises [Herzig et al., 2012a].
Hence, a generic Gami�cation Platform was invented and implemented lately to
overcome the restrictions given by other solutions. The platform aims at introducing
gami�cation in existing or new business applications as easily and economically as
possible. Game mechanics such as rules, missions, and rewards can be de�ned for
each application individually [Herzig et al., 2012a].

One requirement of gami�cation in general is that feedback has to be provided im-
mediately based on the users' actions and interactions. However, as this platform
will be used by several applications, the response time becomes critical with a higher

1

1. Introduction 2

amount of events generated by various applications and users. It has to be ensured
that in any case the response time is below a determined boundary (e.g., 400ms for
collaborative scenarios [Kurose and Ross, 2013]).

Using a generic Gami�cation Platform for several applications according to the client-
server-model is a new type of gami�cation architecture. Currently, no scienti�c ap-
proach or cost model exists for this architecture to predict the run-time costs of a
speci�c scenario within the platform. Hence, for the �rst version of the platform,
analyses were conducted in order to �nd the best runtime con�guration for one ap-
plication. However, this is a very cost-intensive process and cannot be done for every
new application. For future implementations, a reusable, universal cost model has to
support and facilitate the decision prior to deployment and runtime.

1.2 Gami�cation Platform

In this subsection the purpose and architecture of the generic Gami�cation Platform
are explained.

1.2.1 Purpose

The generic platform is developed to provide gami�cation as a service. Due to the
generic implementation, many common game mechanics are made available, which
can be used by applications for their speci�c purposes. These mechanics include, for
example,

� Badges

� Leader Boards

� Level

� Missions

� Points

� and Teams.

Each application can determine its own rule set consisting of several rules to de�ne
its gami�cation concept. Rules make use of events, conditions and actions (ECA)
[Paton and Díaz, 1999], or only of conditions and actions as in production rules
[Davis et al., 1977].

Events are sent to the Gami�cation Platform to inform the platform about an
action (caused by a user) in the application.

Conditions determine whether the action has to be triggered based on received
event(s) or context information.

Actions de�ne the task which the Gami�cation Platform will perform upon every
time an event matching the conditions is detected.

1. Introduction 3

Gamification Platform

Rule

Management

System

Game Rules &

Mechanics

Rule Engine

(CEP)

Database

Gamification

Repository

(BEP)

Analytics

Database

Message Broker

Source

System

Admin UI

Figure 1.1: Gami�cation Platform Architecture [Herzig et al., 2012a]

Each application can be loosely coupled to the Gami�cation Platform by using a
speci�c rule set and therewith easily introduce its own gami�cation concept. As
the content of the rule set is completely �exible according to the requirements of
the applications gami�cation concept, any application can introduce gami�cation
by applying the provided gami�cation mechanics for its own purpose. The loosely
coupled approach enables reusability and fast deployment as well as many possible
�elds of application.

1.2.2 Architecture

The architecture of the Gami�cation Platform is depicted in Fig. 1.1. The platform
consists of two web applications written in Java and currently deployed on a Lean
Java Server (LJS)1. On the one hand, a Gami�cation Repository encapsulates game
mechanics as well as data of players and their progress. This gami�cation repository
is also called Business Entity Provider (BEP). On the other hand, the Rule Engine
contains a context-aware Complex Event Processor (CEP). Drools Expert is used

1LJS is an Apache Tomcat server including several additional features.

1. Introduction 4

as implementation for the CEP, which, in turn, is based on the RETE algorithm
(Sect. 2.3) for e�cient execution of many rules with many objects. Context infor-
mation is stored in the BEP. Both CEP and BEP persist their data to databases.
Analytics of gami�cation data is performed on data of the BEP. To manage rules, a
user interface (Admin UI) gives access to modify and create rules in a Rule Manage-
ment System directly. These rules are then combined with game mechanics provided
by the Gami�cation Platform (Game Rules & Mechanics) and made available in the
CEP.

For communication between the components BEP, CEP, and source system either
synchronous Remote Procedure Calls (RPCs) or an asynchronous message broker,
e.g., Java Message Service (JMS), is used. The asynchronous communication is de-
picted using dashed lines in Fig. 1.1. For synchronous communication, on the one
hand, latencies are likely to occur, because context data has to be fetched from the
BEP every time it is needed. For asynchronous communication, on the other hand,
context data from the BEP has to be duplicated and maintained twice to ensure
consistency. Since both cases have drawbacks, a decision for one of the cases (or a
combination, e.g., context updates triggered by certain events) has to be made for ev-
ery particular application. In this thesis, both modes, synchronous and asynchronous,
are researched and cost models are created for both types of communication.

CEP, BEP, and, in asynchronous mode also the Message Broker are from now on
referred to as components and are analyzed more precisely in the thesis. Rule Man-
agement System, Admin UI and Analytics are not considered any further, because
these do not in�uence the response time of the Gami�cation Platform and are only
used to maintain and analyze content.

1.3 Research Questions

Consequently, research questions to be answered within the master's thesis can be
de�ned as follows:

� Which cost factors in the cost categories users, rules, and infrastructure in�u-
ence the performance of the Gami�cation Platform?

� How much is the performance of each component of the Gami�cation Platform
being in�uenced by these cost factors?

� How can the response time of the Gami�cation Platform be predicted using a
cost model, which is based on the identi�ed cost factors?

1.4 Approach

To predict response time and throughput of the Gami�cation Platform based on a
cost model, several steps need to be taken. Hence, Sect. 2.1 presents the general

1. Introduction 5

process of modeling with a particular focus on cost and performance modeling from
a theoretical point of view.

The cost model is designed as a two-layer model. A queueing network model in
the upper layer predicts the total response time and consists of several resources,
which are de�ned by the architecture of the Gami�cation Platform. The resource
parameters (e.g., service times, interarrival times) de�ning the queueing network
more precisely have to be gained either from the lower layer models or from forecasted
data. Lower layer models are polynomial models for each cost factor, and forecasted
data is de�ned by the speci�c usage scenario and gami�cation concept.

The �rst step is to determine the relevant parts of the architecture, which a�ect the
performance (Chap. 3), and to transform them into queueing network models. The
theoretical background of queueing networks is explained in Sect. 2.2. As the RETE
algorithm is used in the CEP component and is expected to considerably in�uence
the response time of the Gami�cation Platform, the theoretical background of the
RETE algorithm is summarized in Sect. 2.3.

Secondly, all cost factors in�uencing the response time have to be identi�ed (Chap.
4). In Subsect. 2.1.1 it is explained how this can be done theoretically based on expert
knowledge and on previous cost and performance model research. For all identi�ed
factors it has to be decided whether their in�uence on system performance is signi�-
cant or negligible. Furthermore, some cost factors are excluded due to the restricted
time frame of the thesis. For every cost factor to be considered, its signi�cance is
determined by measuring the response time at two factor levels di�erentiating in
several orders of magnitude and investigating the change of the response time. Sub-
sequently, cost factors which are identi�ed to signi�cantly in�uence the response time
will be included in the cost model and are examined more closely.

Having identi�ed the cost factors and components as well as the queueing network
structure, the service times of the components in the queueing network need to be
measured (Chap. 5). Measurements of service times are needed for the calibration of
the queueing networks to speci�c scenarios. More precisely, service times have to be
related to the cost factors, so that it is possible to predict the service times for other
con�gurations from the polynomial models based on measured data. The statistical
background for �tting and selecting polynomials is explained in Sect. 2.4.

The measurements are carried out as experiments for each cost factor, each compo-
nent and each mode (synchronous and asynchronous) individually. For every experi-
ment a polynomial model is constructed to describe the in�uence of the cost factor on
the service time of a component. Additionally, distributions of service times and in-
terarrival times have to be measured, as these are also necessary input values for the
queueing network. The theoretical backgrounds of the test design and measurements
are both explained in Subsubsect. 2.1.1.

After the polynomial models are built, the usage of the polynomial and queueing
network models, and how required inputs can be gained from a use case are explained
in Chap. 6. In the �nal step, the cost model is evaluated by simulating the real use

1. Introduction 6

case introduced in Sect. 1.6. Furthermore, the cost model is evaluated at abstract
level with the modeling criteria de�ned in Subsubsect. 2.1.3.

1.5 Scope

The scope of the thesis is to provide a preliminary, slightly simpli�ed cost model for
the Gami�cation Platform. This cost model is not expected to provide a complete
and generic solution, but rather should provide an approximate estimation of system
response times. The thesis presents the approach used to create the �rst version of
the cost model. The platform is generic and supports a large variety of possibilities
through the use of the CEP. However, the cost model is restricted in its usage to
simple cases, i.e., not covering all possible CEP features, but the basic and most
frequently applied features.

As the average response time of complex event processing is a large area of study
itself, only the fundamental features are covered in the thesis. The in�uence of alpha
node equality checks and beta node joins are investigated. Many of the complex event
features, however, are not considered within the thesis, namely temporal reasoning,
and sliding windows.

Additionally, queueing networks as modeling technique do not allow to cover all types
of scenarios accurately. For example, changing or context dependent probabilities
cannot be modeled in queueing networks. This means that rules which become invalid
or valid based on a speci�c event or time can only be modeled using a simpli�ed and
potentially inaccurate solution. For the same reason it is impossible to simulate loops
or a speci�c routing of the requests/events in the system, which are necessary for
rules with cyclic references.

1.6 Concrete Example

To illustrate di�erent parts and functions of the system in the thesis a comprehen-
sive, real example is chosen. The described application heads towards integration of
gami�cation to ensure a higher and long-lasting commitment of the users. Colleagues
are matched for joint lunches by the application. Each user may enter time slots in
the future when and where he is available either for lunch or co�ee meetings. The
application automatically combines these di�erent times slots and suggests meetings
of several partners by sending invitations to all participants of this meeting. After a
participant received the invitation, he can accept or decline the proposed meeting.
Once the meeting took place, the attendance at the meeting has to be con�rmed by
every participant. Moreover, users can use tags to specify interests, add buddies and
notes.

The Gami�cation Platform will be used to assign missions to the users, e.g., add 10
tags. After completing a mission, the user usually is rewarded with a badge, saying

1. Introduction 7

that he completed the mission successfully. In many cases, the user also unlocks
further missions when completing one. The small examples used within the thesis
are combined into a larger use case for the validation of the cost model in the end.

1.7 Outline

This master's thesis is structured as follows.

Chapter 2 presents the theory on which the thesis is based. Modeling (Sect. 2.1),
queueing networks (Sect. 2.2), RETE (Sect. 2.3), and statistics used to create the
polynomial models and and to evaluate cost factors (Sect. 2.4) are explained from a
theoretical perspective.

In Chap. 3 the systems' components are analyzed and queueing networks representing
the system are discussed.

Chapter 4 focuses on the cost factors of the cost model. Cost factors are divided into
three categories: Users (Sect. 4.1), rules (Sect. 4.2), and infrastructure (Sect. 4.3).
In each of the categories, several cost factors are de�ned, described, and tested with
regard to their signi�cance.

Experiments performed to determine the in�uence of the cost factors on the service
times are described in Chap. 5.

Chapter 6 presents the results of the experiments, and the development of the per-
formance and cost model from the measured data.

The validation of performance predicted by the cost model with a use case is con-
ducted in Chap. 7.

The thesis is concluded with a summary (Chap. 8) and an outlook (Chap. 9).

Chapter 2

Theoretical Foundations

In this chapter, the underlying theory for this master's thesis is presented. Addition-
ally, all speci�c terms needed for the understanding of the thesis are de�ned. The
chapter is structured as follows. First, theory on modeling in general with focus on
cost and performance modeling is provided. The next section focuses on queueing
theory and queueing networks, which is a common modeling technique for perfor-
mance analysis and will be used for the cost model in this thesis. An introduction
to the RETE algorithm, which is used as implementation of the rule engine in the
Gami�cation Platform and is expected to be a major in�uence factor on the perfor-
mance of the platform, follows in the second last section. The last section presents
statistical methods applied within the thesis.

2.1 Modeling

Similar to the estimation of costs in software engineering projects, where badly es-
timated projects might result in poor resource allocations [Briand and Wieczorek,
2002], a bad estimation of complexity or computational e�ort in information systems
usually leads to various drawbacks. For example, if a web service is con�gured to han-
dle peak loads well, it is oversized and wasteful when normal load occurs. On the
contrary, a web service con�gured to handle the mean load well might not perform
as expected if peak loads occur [Menasce and Almeida, 2001].

The Quality of Service (QoS) or performance delivered by a system closely correlates
with the cost of the infrastructure needed to provide the service. For example, if
the number of users increases, more resources (e.g., servers, communication links,
storage devices) are needed to provide the same QoS to all users. Moreover, if the
performance modeling and planning is done inaccurately, it might lead to unexpected
unavailability of the system. To avoid such a behavior, the system's performance
needs to be observed and planned in a proactive manner [Menasce and Almeida,
2001], for example, with a performance model. A performance or cost model helps
in estimating the performance and cost of a system.

8

2. Theoretical Foundations 9

Model Application

Method

Modeling Technique 1

…

Modeling Technique n

Data/

Knowledge
Model Estimation

Modeling Method

Estimation Method

A B

1 10.8

1 11.1

1 10.9

2 11.7

2 12.1

...

B(A)

= 10 + A B(10) = 20

B(12) = 22

B(15) = 25

…

A

B

Figure 2.1: Modeling Terminology [Briand and Wieczorek, 2002]

The approach to create an estimation with a model in general is depicted in Fig. 2.1.
One or more modeling techniques (Subsect. 2.1.2) are used on data (Subsect. 2.1.1) to
create a model (Subsect. 2.1.3). Examples for modeling techniques are linear regres-
sion and ordinary least squares. As more than one modeling technique can be used,
the combination of used modeling techniques is called modeling method. Afterwards,
the model application method (Subsect. 2.1.4) is applied to the model in order to
get an estimation (Subsect. 2.1.5). The whole process from data to an estimation is
called estimation method.

2.1.1 Data/Knowledge

Before a performance or cost model can be built, it is important to comprehend
the system which will be analyzed [Jain, 1991]. Therefore, cost factors need to be
established, the test design has to be de�ned and measurements have to be taken.

Cost Factors

Cost factors and values, which shall be estimated (in Fig. 2.1: Factor A and value
B), have to be determined before taking measurements. Cost factors or parameters
in soft- and hardware can be divided into four categories (Table 2.1). For a com-
prehensive model, cost factors of each category need to be considered. De�ning the
possible cost factors separately before composing a holistic cost model is a bottom
up approach of building a model. Intuitively appealing cost factors and their rela-
tionships have to be veri�ed by research. Previous research has identi�ed several
distinct elements, listed in Table 2.2, as signi�cant in�uence factors on performance
of a system and, hence, should be considered for every cost model.

In order to �nd the most important cost factors besides the obvious ones known from
research, expert opinions should be obtained to �nd the particular cost factors for

2. Theoretical Foundations 10

Parameter Category Description Examples

System Parameters system characteristics that
a�ect the performance

max. number of threads in
database management sys-
tem, max. number of connec-
tions on server

Resource Parameters resource characteristics in-
�uencing the performance

disk seek time, CPU speed
rating

Workload Intensity Pa-
rameters

load placed on the system number of requests/s, num-
ber of clients

Workload Service De-
mand Parameters

service time required by each
basic component at each re-
source

CPU time of transactions in
database, transmission time
between components

Table 2.1: Parameter Categories [Menasce and Almeida, 2001]

Element Description

Client platform Quantity and type

Server platform Quantity, type, con�guration, and function

Middleware Type (e.g., TP monitors)

DBMS Type

Services/applications Main Web services and applications supported

Network connectivity Network connectivity diagram showing all LANs,
WANs, network technologies, routers, servers, load bal-
ancers, �rewalls, and number of clients per LAN seg-
ment

Network protocols List of protocols used

Usage patterns Peak periods (e.g., hour of day, day of week, week of
month, month of year)

Service-level agreements Existing SLAs per Web service. When formal SLAs are
absent, industry standards can be used

LAN management and support LAN management support structure, size, expertise,
and responsiveness to users

Procurement procedures Elements of the procurement process, justi�cation
mechanisms, and duration of the procurement cycle

Table 2.2: Elements with In�uence on Performance [Menasce and Almeida, 2001]

the analyzed system. For example, expert opinions were used to create COCOMO,
which is one of the most utilized models for cost estimation of software engineering
projects [Briand and Wieczorek, 2002]. Experts, due to their good insight into the
system and its relevant components, are able to give valuable hints on possible cost
factors. A complete list of cost factors is crucial, because if only one important factor
is not considered, the results may render useless [Jain, 1991].

2. Theoretical Foundations 11

Type and value of estimation metrics (e.g., response time in ms, throughput in events
per second) have to be de�ned beforehand [Jain, 1991]. Subsequently, each cost factor
has to be analyzed separately before constructing a predictive cost model comprising
all cost factors [Boehm, 1984]. Signi�cant relationships between cost factors should
be included in the cost model as well [Chrysler, 1978].

Test Design

Upon identi�cation of all relevant in�uence factors the next step in building the cost
model involves choosing the subset of cost factors to be studied as well as the estima-
tion method: analytical modeling, simulation, or measurements in the real system.
Afterwards, the workload has to be de�ned in terms of number of requests and prob-
abilities for each di�erent request type. For the purpose of including all possible real
situations, a performance test should include several di�erent test scenarios. One
test should be performed under normal conditions, one under extreme conditions
(stress testing) and one test should simulate peak loads with peaks several orders of
magnitude larger than the average (spike test) [Menasce and Almeida, 2001].

According to Gray [1993], throughput of a system should not only be investigated in
steady state, but also during ramp-up. In his de�nition, the state is steady when the
system performs normal and as expected, and ramp-up is the phase between starting
the system and reaching the steady state.

To test the in�uence of k factors with l levels on system's performance, a full factorial
design has to be used. The number of experiments in a full factorial design, where
all possible con�gurations are combined, is de�ned by Jain [1991]:

k∏
i=1

li (2.1)

In most cases the e�ort of this design is too high, e.g., 5 factors with 3 levels each
would lead to 35 = 243 tests! If several combinations can be excluded, as cost factors
might be known to be independent from each other, a lk−p fractional factorial design
can be used. l, again, is the number of levels and p represents the size of the fraction of
the full factorial used [Box and Hunter, 2000]. This test design signi�cantly reduces
the number of tests to be conducted, while having the drawback to remove the
possibility to determine all dependencies between cost factors. After the tests have
been accomplished, measured data has to be analyzed, interpreted and used to build
a cost model with modeling techniques presented in Subsect. 2.1.2 [Jain, 1991].

In this thesis, data to build the polynomial models will be collected using the real
system. A full factorial design cannot be accomplished since the number of relevant
cost factors and factor levels is too high to conduct all tests within the time frame
of the thesis. Because of this, every cost factor is researched independently from
the others. Additionally, all tests are conducted under normal conditions, but the
queueing network model can also simulate extreme or peak loads.

2. Theoretical Foundations 12

Measurements

To derive a predictive performance model, real training data for the model has to
be collected. In the case of performance modeling, several samples are measured. In
Fig. 2.1, three measurements of B were taken for A = 1 (B is measured at 10.8, 11.1,
and 10.9), at least two for A = 2 (B is measured at 11.7 and 12.1) and so on.

As a consequence, if the performance is measuredm times,m di�erent measurements
will be found which are most likely to be varying. It is impossible to �nd the actual
mean value with a �nite number of measurements, but a probabilistic statement can
be de�ned as follows.

Pr[c1 ≤ µ ≤ c2] = 1− α (2.2)

µ is the population mean, (c1, c2) is the con�dence interval for the mean estimation,
and (1−α) the con�dence coe�cient. This formula states that the probability of the
population mean being inside the con�dence interval, i.e., between c1 and c2, can
only be ensured with a certain con�dence [Jain, 1991].

With the help of the Central Limit Theorem, under the assumption that the obser-
vations of the sample are independent and are drawn from the same distribution, the
con�dence interval is de�ned as

(c1, c2) = (x− z1−α/2 × s/
√
n, x+ z1−α/2 × s/

√
n) (2.3)

In this term, x is de�ned as the sample mean, s is the sample standard deviation, n
the sample size, and z1−α/2 the (1 − α)-quantile of a normal distribution [Menasce
and Almeida, 2001; Jain, 1991]. By using this formula, it is possible to extrapolate
an estimation from a sample of measurements, because it is impossible to conduct
an in�nite number of measurements. The smaller the con�dence interval is chosen,
the higher is the precision of estimated values [Jain, 1991].

Moreover, it is possible to calculate the necessary number of measurements to be
conducted to reach a con�dence level of 100(1−α)% with a maximum variability of
r × x [Menasce and Almeida, 2001]:

n ≥ (
100× z1−α/2 × s

r × x
)2 (2.4)

2.1.2 Modeling Techniques

To infer a cost model from data, di�erent modeling techniques can be used. First, if
a model is developed by measuring and analyzing data, a data driven modeling tech-
nique is chosen. Second, composite modeling techniques are also based on measured
data, but a prediction for new cases is made based only on a speci�c set of old cases,
in particular, on the most similar case(s).

Alternatively, it is also possible to predict the behavior with a non-model based
technique, e.g., expert judgment. Jorgensen and Shepperd [2007] criticize that this

2. Theoretical Foundations 13

method is often used in companies, but only little research has been conducted on
expert judgment. As these methods do not provide a model, but rather use forecasts
from experts who are estimating based on their knowledge and experience, it is not
considered further in the thesis. It should only be mentioned that expert judgment
or other non-model based methods can also be combined with estimations based on
data.

Data Driven Modeling Techniques

Data driven models are directly derived from data by performing data analysis
[Briand and Wieczorek, 2002]. When �a considerable amount of data describing this
problem is available� [Solomatine et al., 2008, p. 27] and also �no considerable changes
to the modeled system during the period covered by the model� [Solomatine et al.,
2008, p. 27] are expected, a data driven model can be used. Data driven modeling
techniques are, e.g., (Stepwise) Analysis of Variance (ANOVA), Classi�cation and
Regression Trees (CART), Ordinary Least Squares (OLS), and Polynomial Regres-
sion. With ANOVA, the most signi�cant, independent factors can be found [Cohen,
1968]. It helps in deciding which cost factors have the highest impact on the perfor-
mance. To determine the impact of unknown, independent parameters on dependent
variables, OLS can be applied [Hayashi, 2000]. The data-driven technique polynomial
regression (Subsect. 2.4.2) is used in Chap. 2.1.2 to determine the impact of each
cost factor in the cost model from the measured data.

Data driven models can be divided further into using a parametric or non-parametric
modeling method. With a parametric method the model parameters are de�ned a
priori and distributions of the data are assumed. Non-parametric methods derive
the model from data and do not make assumptions on the amount and deviation of
parameters beforehand [Briand and Wieczorek, 2002; Whitley and Ball, 2002]. For
example, ANOVA is a parametric modeling method, and CART is a non-parametric
modeling method.

Briand et al. [1999] studied a number of modeling techniques. They conclude that
the quality and adequacy of data collection is much more important for the cost
model's accuracy than the modeling technique used. In other words, the usage of
di�erent modeling techniques might lead to the same or a very similar result.

Composite Modeling Methods

Composite modeling methods are, for example, Analogy, Optimized Set Reduction
(OSR), and COBRA. The latter two are especially designed for usage in software
engineering cost estimation. For a project cost estimation OSR takes into account
a subset of most similar projects [Briand and Wieczorek, 2002]. Mean values from
this subset might be more accurate for an estimation of the project than other
methods, since individual characteristics of projects are shared in similar projects.
Of course, a knowledge base of �nished projects has to exist beforehand, so that

2. Theoretical Foundations 14

the OSR method may access data of similar projects. Analogy basically uses the
same approach as OSR, but it is not limited to software engineering cost estimations
[Skousen et al., 2002]. For these modeling methods a signi�cant knowledge base has
to exist beforehand. Since no knowledge base exists for the Gami�cation Platform,
the composite modeling methods are not considered any further.

2.1.3 Cost Model

A cost model is the result of applying several modeling techniques on the data and
knowledge. This cost model can then predict or estimate future cases. For example,
in Fig. 2.1, the model consists of the simple formula B(A) = 10 +A. For each value
of A, B can be estimated. Similarly, a model can be built for more than one factor.

To ensure that the cost model itself or cost factors are not super�uous, the estimations
of the cost model should be compared to the estimations of a simple �straw man�
model [Menzies et al., 2006]. In the example, a comparison of the accuracy of B(A) =
10 +A and a simpler model, e.g., B = 11.5 should be conducted.

In this section, cost and performance models are discussed in detail. Moreover, model
criteria to determine the quality of a model are presented. Finally, it is explained
how a model can be validated.

Cost and Performance Models

Response time is one of the main values to be estimated with a performance model.
Two di�erent de�nitions for response time are depicted in Fig. 2.2. The �rst de�ni-
tion de�nes response time as the time between sending the request and sending the
response. The second de�nition de�nes response time as the time frame started by
the user sending the request and ended by the systems response being completely
received by the user. In addition, reaction time is the time between user �nishing
the request and start of the execution at the system. Think time is de�ned as the
time when the system completes a request for a speci�c user and this user starting
the next request.

Throughout the thesis, the second de�nition of response time is used. The di�erence
between the �rst and the second de�nition of response time is the time to transfer
the response. The transfer time depends on the distance between user and system
as well as on the size of the response. In the thesis, the distance between user and
system is assumed to remain constant over time and is kept at a minimum. No other
applications use the connection between user and system, which otherwise could also
in�uence the transfer time. The size of the response is also �xed at this point, so
that the di�erence between �rst and second de�nition is expected to be a small, �xed
value with very little variance.

Throughput is a measure for completed requests per unit of time, which is usually
measured in transactions per second (TPS) in transactions processing [Jain, 1991].
This measure will be estimated in addition to the response time.

2. Theoretical Foundations 15

Time

User

starts

request

User

finishes

request

System

starts

execution

System

starts

response

System

completes

response

User

starts next

request

Think TimeReaction time

Response Time (Definition 1)

Response Time (Definition 2)

Figure 2.2: De�nition of Response Time [Jain, 1991]

Model Type Description

Workload Model �captures the resource demands and workload intensity character-

istics of the load brought to the system by the di�erent types of

transactions and requests� [Menasce and Almeida, 2001, p.176], the
collection of measured values should be combined on basic compo-
nent level [Menasce and Almeida, 2001].

Performance Model estimates response times, throughput (requests/s), workload, and
resource queue lengths based on the description of the system.

Cost Model converts the performance requirements into costs for software,
hardware, third-party services, and sta�ng and estimates overall
costs.

Table 2.3: Model Types [Menasce and Almeida, 2001]

Menasce and Almeida [2001] employ three models for workload, performance and cost
modeling, which are described in detail in Table 2.3. A workload model describes the
load placed on a system in order to measure the performance. If the real system
is available, a workload model can be built using measurements. If no data can be
measured beforehand, the workload has to be modeled using literature and knowledge
[Feitelson, 2002]. Performance models predict the performance of new systems by
using workload models to estimate demands on the systems [Menasce and Gomaa,
2000]. Cost models are used to estimate costs, e.g., COCOMO estimates the costs of
software engineering projects beforehand based on several cost factors [Briand and
Wieczorek, 2002]. Alternatively, a metric can be provided to convert the performance
requirements into costs.

The TCP-C benchmark, for example, �provides a dollar per tpm ($/tpm) metric,
which indicates how much needs to be spent per unit of throughput measured in

2. Theoretical Foundations 16

Model and Estimate
Criteria

Estimation Method Cri-
teria

Application Criteria

• Quality of model and • Assumptions • Application Coverage

estimate • Repeatability • Generalizability
• Inputs required • Complexity • Comprehensiveness

• Completeness • Automation (Modeling) • Availability of estimates

• Type of estimates • Transparency • Automation (Method

• Calibration Usage)

• Interpretability

Table 2.4: Model Criteria [Briand and Wieczorek, 2002]

transactions per minute (tpm)� [Menasce and Almeida, 2001, pp. 117-118]. This
benchmark is an example of how to derive a cost model directly from the performance
model.

In this thesis, the performance is modeled by using a queueing network. The queueing
network theory is further explained in Sect. 2.2. As the input needed for applying
the queueing network model is dependent on cost factors, which are in turn modeled
using polynomial models, the comprehensive model combining both is called cost
model. The workload is modeled based on experience and, wherever available, real
data.

Model Criteria

The quality of a model can be described and evaluated using model criteria speci�ed
by Briand and Wieczorek [2002]. Each cost model should be veri�ed with the criteria.
The cost model developed in the thesis is evaluated with these criteria in Sect. 7.2.

There are several criteria for models, which can be divided into three categories:
Model and Estimate Criteria, Estimation Method Criteria and Application Criteria
(Table 2.4). Model and estimate criteria evaluate the model and the estimations as
de�ned in Fig. 2.1. Estimation method criteria describes the quality of the whole
process (from data to the estimation). Application criteria assesses the model appli-
cation method.

Quality of model and estimate is often seen as the most important criteria, as this
compares the estimated values with the actual values. Inputs required concerns about
the kinds of input and how they can be assessed. Completeness de�nes how many
estimations the model is able to give, i.e., whether all needed values can be done with
the same model. Type of estimates signify the numerical precision, i.e., whether a
continuous or discrete scale is available to illustrate the uncertainty of the estimation.
Sometimes models allow a Calibration to di�erent environments in order to �t a very
generalized model to a more speci�c environment. Interpretability describes to which

2. Theoretical Foundations 17

extent a person who is not familiar with the model is still able to interpret it [Briand
and Wieczorek, 2002].

The Assumptions criterion allows to state how realistic the underlying assumptions
of the method are. If the same estimation method obtains the same result on various
test runs, the Repeatability of the estimation method is high. Complexity is a measure
to point out how simple or complicated it is to use the method, and, hence, indicates
whether the method is prone to errors. Automation of Modeling describes how many
manual steps are required to construct a model with the method and how much
support is given by a tool. Transparency deals with the replicability of a model, that
is whether the algorithms and statistics used in the method are well documented
[Briand and Wieczorek, 2002].

Application Coverage states how generalized the model is and whether it is possible
to reuse it in other scenarios (e.g., prediction, benchmarking, risk-assessment). Gen-
eralizability is similar, but focused on reusability in di�erent development environ-
ments. Comprehensiveness covers the granularity of the estimation (e.g., estimations
at component level or for the whole system). Availability of Estimates is a criterion
to describe at which point the estimation can be done. A model might be used in
di�erent phases of implementation by �rst using rough data and later using more de-
tailed and accurate input. The �nal criterion, Automation of Method Usage, de�nes
the extent of tool support available for applying the model [Briand and Wieczorek,
2002]. Furthermore, according to Jain [1991], it is important to observe the measure-
ment activities and overhead produced by making measurements, as measurements
are using resources which could otherwise be allocated to the users. An overhead of
up to 5% is regarded as acceptable [Menasce and Almeida, 2001].

Model Validation

The cost model should also be validated after it was built. The aim of validation is
to ensure that the cost model not only �ts to the existing training data, but also
to new data. The two most common model validation criteria are Mean Magnitude
Relative Error (MMRE) and Percentage Relative Error Deviation (PRED) [Port
and Korte, 2008]. The evaluation criteria compare an actual value (e.g., measured
response time) with a predicted value (e.g., response time estimated by the model).
MMRE is calculated by using the mean Magnitude of Relative Error (MRE) [Briand
et al., 1999]:

MREi =
|Actual Valuei − Predicted Valuei|

Actual Valuei
(2.5)

MMRE =
1

n

n∑
i=1

|Actual Valuei − Predicted Valuei|
Actual Valuei

(2.6)

n is the number of pairs available with measured and predicted values. Another
possibility is to use MdMRE, which is the median of all MRE values [Briand et al.,
1999].

2. Theoretical Foundations 18

PRED is calculated as follows [Menzies et al., 2006]:

PRED(x) =
1

n

n∑
i=1

{
1, if MREi ≤ x

100

0, otherwise
(2.7)

x is a value between 0 and 100, usually set to 25 or 30. It should be considered that
a good value for MMRE and MdMRE is close to 0, while a good value for PRED
is close to 1. MMRE is very sensitive to outliers, whereas PRED and MdMRE are
more reliable even when outliers occur [Port and Korte, 2008; Menzies et al., 2006].

2.1.4 Model Application Method

The model application method de�nes in detail how to obtain an estimation from
the cost model. In simple cases, the model application method means choosing values
for the parameters. These values are inserted into the cost model and a result (the
estimation) can be calculated.

In a more complex case, the model might need to be adapted to the environment
before inserting values for the parameters. For example, COCOMO consists of three
sub models, each one being valid for a certain project phase. Here, model application
method means �rst choosing the sub model according to the project phase and then
setting values for the parameters [Boehm et al., 1995]. In the example of Fig. 2.1,
the model application method means choosing a value for A. This value is inserted
into the formula to get the estimation.

2.1.5 Estimation

The estimation is the result of the cost model for one case (e.g., a value for each
parameter). For the example of Fig. 2.1, the estimation for A = 10 is B = 20, for
A = 15, B is expected to be 25, and so on. In most cases not only the mean or median
is of interest, but also the expected distribution of the estimated value. Hence, a level
of accuracy such as standard deviation or variance should be given together with the
mean estimation. It is important to highlight that the estimation is inaccurate and
the real mean value will be close to the estimated value, but not exactly the same
[Briand and Wieczorek, 2002]. In the example, a standard deviation s, e.g., s = 0.3
could be delivered as well to emphasize the measurement's inaccuracies.

2.1.6 Modeling Terminology

To delimit terms used within this thesis from each other, and also from terms used
in literature, the terminology is de�ned precisely in this subsection.

2. Theoretical Foundations 19

Cost Model The aim of the thesis is to provide a cost model for the Gami�cation
Platform. This model is including several cost factors, which in�uence the perfor-
mance of the system, and therewith generate costs in terms of response time. Since
the cost model is predicting the response time and throughput of the Gami�cation
Platform, it is also a performance model. However, within the thesis, the model is
referenced as cost model with regard to the cost factors. Additionally, polynomial
models and queueing network models are used as parts of the cost model. Polynomial
models describe the in�uence of cost factors on service times of components. These
components are utilized in the queueing network models, which are used to predict
the total response time and throughput. The cost model is the combination of both
models.

Cost Factor Cost factors are used in the cost model. They have an in�uence on
the performance of the Gami�cation Platform. Several cost factors are identi�ed for
the cost model, and each cost factor is characterized in its precise in�uence by using
polynomial models.

Model Criteria Briand and Wieczorek [2002] de�ne criteria to qualitatively evalu-
ate a model. These criteria are referenced as model criteria in the thesis and described
in detail in Subsect. 2.1.3. Furthermore, they are applied to the cost model in Sect.
7.2.

2. Theoretical Foundations 20

No. Name Description

1 Arrival Process Distribution of interarrival times (time between two
arrivals)

2 Service Time Distribution Distribution of service times (time one response
spends at a component)

3 Number of Servers De�nes how many components of the same type are
available in the queueing network

4 System Capacity Maximum amount of requests within the system, this
can be restricted by space availability or to avoid
longer waiting times

5 Population Size Number of service requesters

6 Service Discipline Scheduling Mode (e.g., FCFS)

Table 2.5: Kendall's Notation Parameters [Kendall, 1953; Jain, 1991]

2.2 Queueing Networks

Queueing Networks are a common technique for investigating and modeling the per-
formance of a system, e.g., response time and throughput. The performance can be
examined either at a high level by looking at the system as if it was a black box,
or by examining the components of the system at a more detailed level. Systems
answering client requests with a �nite-capacity resource can be regarded as queueing
network [Kleinrock, 1975]. �Queueing theory helps in determining the time that the
jobs spend in various queues in the system.� [Jain, 1991, p. 507] The response time
of a request is the total time a request spends inside the system [Jain, 1991].

Delays can be decomposed into service times and waiting times. Service times are
times spent consuming resources (e.g., processors, disks), waiting times are times a
request has to wait before it is being served at a resource [Gray, 1993]. Waiting times
occur because the resource is used by other requests [Menasce and Almeida, 2001].
The total response time for a request can be calculated by combining waiting and
service times of all components, which are visited by the request.

Kleinrock [1976] emphasizes the di�culties in transforming the queueing theory into
practice. This is because queueing theory is based on assumptions and conditions
rarely to be met in reality, and in reality often much more complex systems are used
than those treated in theory. As a consequence, if simpli�ed assumptions are used,
estimations with queueing networks can lead to inaccurate results when compared
to measured data.

2.2.1 Kendall's Notation

Queueing theory de�nes six characteristics of systems as de�ned in Table 2.5 and
illustrated in Fig. 2.3. Distributions of arrival times and service times are denoted
by the symbols de�ned in Table 2.6.

2. Theoretical Foundations 21

Symbol Name

M Exponentially/Markovian distributed

Ek Erlang distribution with parameter

Hk Hyperexponential distribution with parameter k

D Deterministic (without variance)

G General (not speci�ed)

Table 2.6: Distribution Symbols in Kendell's Notation [Kendall, 1953; Jain, 1991]

The parameters are concatenated with a slash character, e.g., G/G/1/∞/∞/FCFS.
If the notation only consists of three parameters, which is the usual case, the system
capacity and population size are assumed to be in�nite, and the service discipline is
assumed to be First Come, First Served (FCFS). For example, a queue of type G/G/1
has an arbitrary interarrival time distribution, and arbitrary distributed service time,
one server, an in�nite system capacity and population size, and FCFS as its service
discipline [Kleinrock, 1975]. A queue of type M/G/1 has a markovian interarrival time
(Poisson, exponential), an arbitrary service time distribution, and 1 server [Kleinrock,
1975].

2.2.2 Illustration

Queueing networks are illustrated in a simple way. In Fig. 2.3, n clients are sending
requests to a server. Every client is illustrated by a circle. Requests sent by the clients
form a queue at the server, which is depicted by a striped rectangle. If the server is
able to create multiple processes to execute the requests in di�erent threads, these
m threads are represented by circles. Arrows show the �ow of requests through the
system.

Resources can be load-independent, load-dependent or delay resources. Fig. 2.4 illus-
trates all three possibilities. The load-independent resource (Fig. 2.4a) has the same
service time independently of load arriving at the queue. A load-dependent resource
(Fig. 2.4b) performs di�erently for a high load and a small load, whereby in most
cases the service rate is smaller for a higher load. A delay resource (Fig. 2.4c) has no
queue, so that service times and rates are constant at di�erent loads.

2.2.3 Network Types

Queueing networks can either be open or closed. A closed queueing network has no
external input, whereas an open queueing network has an external input. On the one
hand, in a closed model, the number of jobs does not change over time, because they
keep circulating in the system. On the other hand, the number of jobs in an open
model does vary over time [Jain, 1991].

2. Theoretical Foundations 22

queue of

requests

1

2

n

1

2

m

clients server

threads

Arrival Process
Service Time

Distribution

Number of

Servers

System

Capacity
Population

Size

Service

Discipline

Figure 2.3: Queueing Network of a Multiple Process Server [Menasce and Almeida,
2001]

n

S(n)

n

S(n)

n

S(n)

(a) Load independent

resource
(b) Load dependent

resource
(c) Delay resource

S(n) = average service time for n requests; n = number of requests

Figure 2.4: Queueing Network Resource Types [Menasce and Almeida, 2001]

2. Theoretical Foundations 23

The scheduling of queues has an impact on the average response time as well as the
distribution of the response times [Adiri, 1969]. Requests are normally scheduled in a
FCFS mode at the nodes. This can lead to very di�erent response time distributions
based on the service demands as requests are treated equally and have to wait in the
queues for the same amount of time independently of their expected service demand.
In fact, there are several other scheduling algorithms that can be used in a queueing
network, which are listed in [Kleinrock, 1976].

2.2.4 Queueing Network Simulation

The response time calculation is supported by Java Modeling Tools (JMT). JMT
consists of six programs helping in simulating queueing networks. In this thesis the
graphical editor and simulation tool JSIMgraph is used. With JSIMgraph, a graphical
representation of the queueing network model can be created, and after con�guring
all system parameters such as service time distributions, classes and interarrival
times, this model can be simulated. Of course, an analytical evaluation of a queueing
network is also possible, but with a growing complexity of the model, a simulation is
more e�cient. Each simulation calculates a de�ned set of performance indexes, such
as response times or throughput. These performance indexes are presented together
with a calculated con�dence interval [Bertoli et al., 2009].

Additionally, a what-if analysis can provide helpful information for di�erent scenarios
such as varying interarrival times or service times. This functionality can be used to
detect the point at which the system is overloaded [Bertoli et al., 2009]. To simulate
a queueing network and predict response time/throughput using JSIMgraph, the
following inputs are necessary:

� Structure (resources/components, queues, connections)

� Classes (of requests), each one having

� a mean interarrival time

� an interarrival time distribution

� Probabilities for routing of the request classes

� Resources/Components, each one having

� a mean service time

� a service time distribution

2. Theoretical Foundations 24

2.3 RETE

This section is about the RETE algorithm introduced by Charles L. Forgy in the
1980s [Forgy, 1979, 1982]. The RETE algorithm is designed to quicken the times
for evaluating many patterns for many objects [Forgy, 1982]. The algorithm trades
o� time against memory usage to evaluate conditions of rules [Stuckenschmidt and
Broekstra, 2005; Albert and Régnier, 1991]. In this section, a general explanation
of the RETE algorithm and its advantages is given at the beginning. Subsequently,
cost and performance estimation of the algorithm are discussed.

2.3.1 RETE Terminology

A production system uses several productions or rules, each consisting of an if-then
statement. The if-part is called LHS (left-hand side) or condition, the then-part is
called RHS (right-hand side) or action. A working memory element (WME) is an
object in the working memory which has several attribute-value pairs [Forgy, 1982],
like an event in terms of ECA [Paton and Díaz, 1999]. In Drools, which is based on
the RETE algorithm and used as implementation of the CEP in the Gami�cation
Platform, WMEs are called facts [The JBoss Drools Team, 2013].

The LHS of a rule can be further broken down into a sequence of patterns, where
every pattern is a partial description of a working memory element [Forgy, 1982].
The patterns are represented by nodes in a tree. The algorithm is e�cient for many
rules and many objects, because nodes are shared between rules and do not need to
be maintained twice [Doorenbos, 1995].

RETE uses two disjoint memories, production memory and working memory. Produc-
tion memory holds the rules in a tree-structured sorting network, which is compiled
according to the patterns of the rules. Working memory holds a list of objects sat-
isfying the pattern of the node for each node of the tree at run time. As a result,
it is unnecessary to continuously iterate over the objects to check whether they �t
the patterns. This information is stored between the cycles, so that large amounts of
objects can be handled e�ciently. The lists are updated any time a WME is inserted,
updated or deleted from the working memory [Forgy, 1982]. Conditions are mainly
based on the content of the working memory, whereas actions normally change the
working memory by adding, changing, or deleting facts [Forgy, 1979, 1982].

Tokens are descriptions of working memory changes. Each token consists of a tag, +
or �, and a list of data elements. A + tag is used for adding a WME, a � tag for a
deletion of a WME from the working memory. Hence, an update is a sequence of �
and + tag [Forgy, 1982].

2. Theoretical Foundations 25

 Root Node
Root Node

 Alpha Nodes

Class ==

EventObject
Class == Player

 Beta Nodes

eventType ==

attendedMeeting

eventType ==

addBuddy

meetingType ==

1to1Lunch

meetingType ==

Coffee

Join

playerID == ID

Join

playerID == ID

 Terminal Nodes Coffees+1 1to1Lunches+1newBuddies

Figure 2.5: RETE Tree Example

2.3.2 RETE Tree

A RETE tree can be divided into a root node, several alpha nodes, beta nodes and a
terminal node for each rule. One example is given in Fig. 2.5. The root node receives
tokens and passes copies of it to all of its successors [Forgy, 1982].

Alpha Nodes

Alpha nodes only consider intra-element features, so they involve only one input
and evaluate only one working memory element [Forgy, 1982]. The �rst alpha nodes
usually check for the class of the object. In the other alpha nodes, literal conditions
are evaluated in a linear sequence de�ned by the patterns of a rule [The JBoss Drools
Team, 2013; Forgy, 1982]. In each alpha node, one feature of the WME is tested. The
most bottom nodes of the alpha nodes are called alpha memory [Barachini, 1994].

2. Theoretical Foundations 26

Facts stored in the alpha memory are propagated to its successors, which are either
beta or terminal nodes.

In the example of Fig. 2.5, each inserted fact is being duplicated and sent to the two
alpha nodes connected to the root node. Its left successor propagates only facts of
class EventObject, whereas its right successor propagates only facts of class Player.
For instance, if the fact is of class Player, it is sent to the right inputs of the two beta
nodes. A fact of type EventObject is sent to the two successor alpha nodes of the
EventObject class check node. These next nodes check for the event type. If the event
type is addBuddy, the fact is sent to the terminal node newBuddies. If the event type
is attendedMeeting, the fact is sent to the next two successors of this node. These
nodes, in turn, check for the meeting type. If the fact ful�lls one of the conditions,
it is propagated to the left input of the corresponding beta node.

Beta Nodes

In beta nodes, the inter-element features are tested. Each beta node has two inputs,
whereby each input maintains a list of facts. The two lists are called left and right
memory. It is also possible that a beta node serves as input for another beta node
[Forgy, 1982].

Facts stored in the alpha memory are used in the input nodes for two beta nodes
in the example in Fig. 2.5. For the join node on the left, facts of type EventObject,
event type attendedMeeting and meeting type Co�ee are inserted as a list into the
left input. At the right input of this beta node, all facts of type Player are used.
Each fact from the left input is joined with each fact in the right input. The facts
are combined on playerID of the EventObject and ID of the Player, and this new
combined fact is propagated to the terminal node Co�ees+1. The join node on the
right behaves similarly, the di�erence being that on the left input facts have to be
of meeting type 1to1Lunch, and resulting facts from the join are copied and sent to
the 1to1Lunches+1 terminal node.

Terminal Nodes

The terminal nodes are the leaf nodes in the RETE tree. Each rule is represented
by one terminal node, and the pattern belonging to the rule leads the way to the
terminal node [Forgy, 1982]. Every path in the tree has to end in a terminal node. If
an object reaches a terminal node, it is inserted into the con�ict set [Gupta, 1984].
The con�ict set is a collection of ordered pairs of a rule and lists of facts which match
the LHS of this rule [Forgy, 1982, 1979]. If an object is inserted into the con�ict set,
the RHS of the corresponding rule is executed [Barachini et al., 1992].

In the example of Fig. 2.5, three terminal nodes exist (newBuddies, Co�ees+1, and
1to1Lunches+1), with every node representing a rule. Each fact arriving at the new-
Buddies terminal node initiates the execution of the action part of the newBuddies
rule, e.g., which gives the player one point. The same is true for the other terminal
nodes, whose inputs are beta nodes.

2. Theoretical Foundations 27

1 rule "Coffees+1"

2 when

3 $p : Player($playerid : uid)

4 $evt : EventObject($playerid==playerid, type=='attendedMeeting', data['

meetingType']=='Coffee') from entry-point eventstream

5 then

6 updateAPI.givePoints($playerid, 'Coffees', 1, 'Attended a Coffee Meeting');

7 end

Listing 2.1: Co�ees+1 Rule

Complexity Measure Best Case Worst Case

E�ect of working memory size on number of tokens O(1) O(WC)

E�ect of production memory size on number of nodes O(P) O(P)

E�ect of production memory size on number of tokens O(1) O(P)

E�ect of working memory size on time for one �ring O(1) O(W 2C−1)

E�ect of production memory size on time for one �ring O(log2 P) O(P)

Table 2.7: Space and Time Complexity of RETE Algorithm [Forgy, 1982]

Rules

The rule Co�ees+1 from the example in Fig. 2.5 is de�ned in List. 2.1 as it would be
implemented in Drools. In this rule, a player (line 3) is joined with the EventObject
(line 4) based on the playerid. Additionally, the type of the EventObject is limited to
attendedMeeting, and the meetingType to Co�ee. The RHS is then giving the player
a point, but this precise action is not illustrated in the RETE tree.

2.3.3 Response Times and Cost Model for RETE

Forgy [1982] de�ned time and space complexity in the RETE algorithm for best
and worst case in big O notation as summarized in Table 2.7. C is the number
of patterns in a rule, P the number of rules in production memory, and W is the
number of elements in working memory. The worst case for one �ring depends on
both production and working memory, in total

O(W 2C−1) +O(P) = O(W 2C−1 + P) (2.8)

RETE's complexity is in the worst case linear to the number of rules, and polynomial
to the number of facts; in the best case the complexity is constant. In practice,
RETE's run-time complexity lies somewhere between best and worst case, and is
highly dependent on rule characteristics and fact distribution [Albert and Fages,
1988]. The most time consuming step in the RETE algorithm is the join step in
the beta nodes, which, according to Gupta et al. [1986], constitutes about 90% of
the time. As a consequence, the time span during which facts move through the

2. Theoretical Foundations 28

alpha nodes is negligible. Hashing techniques can reduce complexity of search in
local memory, whereby joins are performed on the hashed facts [Albert, 1989].

Albert [1989] de�nes the average cost of the RETE algorithm based on generating
function theory. Although the scienti�c relevance remains unclear, Albert reaches
interesting conclusions about the average costs of the RETE algorithm. Since the
formulas and approach presented in his paper are too general and complex for the
thesis' purpose, they will not be taken into consideration any further. For example,
all results presented in the paper are based on the assumption that each path is
traversed with the same probability. In paragraph 5.2 this assumption is reversed by
introducing a probability for each path, which should be used to modify all previous
results. As this is not described closely enough, the reader is left uncertain on how
exactly the constant should be applied to the previous results. As a result, the average
cost of the RETE algorithm for alpha nodes and join beta nodes has to be researched
and calculated without being able to use previously generated knowledge.

2. Theoretical Foundations 29

(a) 10 User

Response Time in ms

F
re

qu
en

cy

5 10 15 20 25

0
50

0
10

00
15

00

(b) 1000 User

Response Time in ms
F

re
qu

en
cy

0 10000 30000 50000

0
10

0
20

0
30

0
40

0
50

0

Figure 2.6: Distribution of Response Times for Di�erent Number of Users

2.4 Statistics

In this section, statistical methods used within the thesis are explained. The Mann-
Whitney U test is used in Chap. 4 to determine which cost factors signi�cantly a�ect
the response time and throughput. Samples will be drawn for two distinct levels of
each cost factor, and sample medians and distributions will be compared to detect
di�erences caused by the cost factor. Polynomial Regression allows to determine the
in�uence of each cost factor in Chap. 6. In order to avoid over�tting, the polynomial
models are evaluated with Information Criteria to select the most parsimonious
model.

2.4.1 Mann-Whitney U Test

TheMann-Whitney U Test compares the means of two independent samples. The null
hypothesis for this test is that both samples belong to the same population [Kirk,
2007]. The alternative hypothesis states that the samples belong to two di�erent
populations. In this test the distribution of the values can be arbitrary. It is similar
to a t-test, whereas for the t-test the data has to follow a normal distribution [Black,
2009].

As response times in the Gami�cation Platform are not normally distributed, the
Mann-Whitney U test has to be used. For example, for 10 users (Fig. 2.6a), the dis-
tribution is highly right-skewed; for 1,000 users (Fig. 2.6b) the right-skewed distribu-
tion is still indicated. However, the distribution and mean value change signi�cantly,
which is con�rmed by using the Mann-Whitney U test in Subsect. 4.1.1.

2. Theoretical Foundations 30

Each Mann-Whitney U test concludes with a value for p. �The p-value de�nes the
smallest value of alpha for which the null hypothesis cannot be rejected.� [Black,
2009, p. 308] In the U test the samples are compared using an α of 1% (two-sided,
i.e., 0,5% on each side). So, if the p-value is below 0.01, the hypothesis has to be
rejected and both samples are assumed to belong to di�erent populations.

2.4.2 Polynomial Regression

The relationship of a single independent variable on a dependent variable can be
described with a polynomial of order k. It is an expression of the form

y = c0 + c1x+ c2x
2 + · · ·+ ckx

k =
k∑
i=0

cix
i (k ≥ 0) (2.9)

having ci as its k coe�cients. In general, the curve of a kth degree polynomial �tting
best to the data is considered as the kth model [Kleinbaum, 2007]. In R1, the best
�t is calculated using a least squares approach [The R Foundation for Statistical
Computing, 2013b].

To determine the quality of the polynomial models, the coe�cient of determination,
R2, is given [Rawlings et al., 1998]. It is calculated as follows [The R Foundation for
Statistical Computing, 2013c]:

R2 = 1−
∑
R2
i∑
y2i

(2.10)

with Ri as residuals, and yi as y-values.

Since for n measured sample values, a perfect curve with sum of all residuals being
zero can be found by using a nth degree polynomial, the best model is chosen by
using three information criteria.

2.4.3 Information Criteria

To select the best polynomial model while disallowing over�tted models, information
criteria are used. The most common two, Akaike Information Criterion and Bayesian
Information Criterion, are used. Additionally, the error rates of cross-validations are
compared as a third criterion for selecting the best non-over�tted model.

For the purpose of making the polynomial model selection process as transparent as
possible, the results of all three model criteria are used. Typically, the model with the
smallest amount of parameters suggested by one of the three criteria will be chosen
in order to keep the cost model as simple as possible.

1�R is a language and environment for statistical computing and graphics�[The R Foundation for
Statistical Computing, 2013a], which is used to perform polynomial regression and other statistical
tasks in this thesis.

2. Theoretical Foundations 31

Akaike Information Criterion

The polynomial model selection process is supported by the Akaike Information
Criterion (AIC). This criterion �provides a mathematical formulation of the principle
of parsimony in the �eld of model construction� [Akaike, 1974, p. 722] AIC is de�ned
as

AIC = −2log(Li) + 2pi (2.11)

with L as maximum likelihood for the model i, and p as independently adjusted
parameters in model i [Wagenmakers and Farrell, 2004; Akaike, 1974]. The aim is to
minimize AIC for a model, which is then selected as the best model. The larger a
model is, the more it is penalized [Faraway, 2002]. At a speci�c point the penaliza-
tion of adding another parameter is higher than the explanation gain caused by the
parameter. The polynomial model with the lowest AIC is selected eventually and,
thus, avoids over�tting [Wagenmakers and Farrell, 2004].

Bayesian Information Criterion

The Bayesian Information Criterion (BIC) is used similarly to AIC. BIC is de�ned
as

BIC = −2log(Li) + pilog(n) (2.12)

with, again, L as maximum likelihood for the model i, p as independently adjusted
parameters in model i and n as number of observation used for the likelihood calcu-
lation [Wagenmakers and Farrell, 2004; Kenneth P. Burnham, 2004]. BIC is seen as
being more consistent as AIC, and that BIC penalizes parameters more than AIC.
As a result, BIC will often prefer a model with less parameters compared to AIC
[Wagenmakers and Farrell, 2004].

Cross-Validation

Polynomial model selection is also supported by cross-validation. A k-fold cross-vali-
dation splits the data into k subsets of the same size. The polynomial model is built
based on data from k − 1 subsets and validated on the remaining data set. This is
performed k times, while each of the k subsets is used once as validation set [Kohavi,
1995].

In order to avoid over�tting, cross validation is used as a third criterion to determine
the best model. In this case, a 5-fold cross-validation is chosen, since k = 5 is the
standard value in the R function cvFit [Alfons, 2013]. The prediction error of two
models using di�erent numbers of parameters are compared, and the model with the
smaller prediction error is preferred.

Chapter 3

System Analysis

In this chapter, the systems' components are analyzed and queueing networks repre-
senting the system are discussed. The structures of the queueing networks are derived
directly from the architecture of the Gami�cation Platform. These queuing networks
are used to estimate the performance.

3.1 Components

The Gami�cation Platform comprises several components, which are in�uencing the
performance. Those components are depicted in Fig. 3.1 for the synchronous mode.
A source system with several users, which is the application accessing the Gami�-
cation Platform, sends events to the rule engine (CEP). A gami�cation repository
(BEP) handles context information such as the number of points for each player.
The queryAPI reads data from the BEP, while the updateAPI updates data in the
BEP.

In asynchronous mode (Fig. 3.2), a message broker handles communication between
the components. In order to avoid delays and race conditions, a duplicate of the

Gamification Platform

Rule Engine

(CEP)

Database

Gamification

Repository

(BEP)

Database

Source

System

queryAPI

updateAPI

Figure 3.1: Gami�cation Platform in Synchronous Mode

32

3. System Analysis 33

Gamification Platform

Rule Engine

(CEP)

Database

Gamification

Repository

(BEP)

Database

Message Broker

Source

System

updateAPI

queryAPI

Figure 3.2: Gami�cation Platform in Asynchronous Mode

context is held in the CEP. The updateAPI updates the internal context, to keep
the data in the CEP up to date, and also updates the BEP via message broker. The
queryAPI accesses the context directly stored in the CEP, if available. Additionally,
if the BEP is changed externally, the CEP synchronizes with the BEP in order to
achieve a consistent state. But, for the purpose of the thesis, such external changes
are not considered. In both modes, player data used in the BEP and, e.g., rule
knowledge used in the CEP, are persisted in databases.

3.2 Queueing Networks

This part gives an overview about the queueing networks for the synchronous as well
as for the asynchronous mode of the Gami�cation Platform. Both queueing networks
are designed as open networks (Subsect. 2.2.3), because the number of requests in the
Gami�cation Platform changes over time and is not �xed. Additionally, all resources
are either depicted as load independent or delay resources as de�ned in Subsect. 2.2.2.

Even though all components are modeled as being load independent, they are de-
pending on several cost factors, including the load (represented by the number of
events per second). The service time not only increases if more requests need to be
handled, but also if the rules are more complex or other cost factors of the cost model
vary. That is why load is regarded as one of the factors, instead of using load depen-
dent resources. Hence, all cost factors are modeled equally by changing the service
times of load independent resources manually. Furthermore, with this approach it is
possible to use service time distributions other than constants for the resources, as
the service times in reality are varying based on exponential distributions.

The notation for both queueing networks as described in Table 2.5 is de�ned as
M/M/1/∞/∞/FCFS. Interarrival and service times are exponentially distributed as
it will be shown based on the measured data in Sect. 5.4 and Subsect. 5.5.1. The
system capacity and population size are assumed to be in�nite for simpli�cation, and
the service discipline is set to FCFS.

3. System Analysis 34

CEP BEP

query result

query/

update

Proxy

Figure 3.3: Queueing Network of Gami�cation Platform in Synchronous Mode

3.2.1 Synchronous Mode

The queueing network for the synchronous mode is depicted in Fig. 3.3. It includes
both CEP and BEP as components. Every component employs its own queue to
manage waiting requests. Depending on the rules, queryAPI and updateAPI can be
called for each event. Additionally, a proxy is implemented, which in the synchronous
mode is only a component delaying the requests and forwarding each request to the
BEP.

A simple rule might only trigger an update of the BEP. For such a rule, an event
(request in queueing network terminology) enters the system, passes the queue of
the CEP component and is being served at the CEP. Afterwards, an update is sent
to the BEP through the proxy. The request �rst passes the queue and is then being
served at the BEP. Finally, the request leaves the system. If rules change the context
of the scenario, the updated object returns to the CEP.

A more complex rule might use both updateAPI and queryAPI. If the rule contains
several calls to the queryAPI, the BEP is visited multiple times to collect context
information for evaluating the condition. A request enters the system and passes
queue and CEP. Subsequently, for every queryAPI call, the request is sent to the
BEP (through proxy and BEP queue), and the result is directly returned to the
CEP, from where the next queryAPI call is started. Additionally, a BEP query can
trigger another BEP query, for example, the function hasPlayerMission uses the
function getMissionsForPlayer to receive all missions of the player and loop through
them determining whether the mission is assigned to the player. Queries and updates
to the BEP are served at the same component and, hence, waiting in the same queue.

3.2.2 Asynchronous Mode

The queueing network for the asynchronous mode is depicted in Fig. 3.4. Again, CEP,
BEP, and proxy are included as components in the queueing network. Additionally,
two message broker components and the CEP context component are integrated.
JMS, which is used as implementation of the message broker, is o�ering both Point-
to-Point and Publish-Subscribe Model. The former works with queues for requests,
whereas the latter works with topics. Messages can be published to a topic and

3. System Analysis 35

CEP CEP Context

BEP

Message Broker

Message Broker

query result

update

query/

update

Proxy

Figure 3.4: Queueing Network of Gami�cation Platform in Asynchronous Mode

consumed by subscribers of that speci�c topic [Sun Microsystems, Inc, 2012; Apache
Software Foundation, 2013]. Within the Gami�cation Platform, the message broker
distributes messages to all interested receivers using the Publish-Subscribe Model.

If a request is sent asynchronously to the system, the message broker forwards the
request without delay to the queue of the CEP. Depending on the rules and whether
context information is needed for the request, it uses the queryAPI. As the context is
duplicated in the CEP, the query is processed at the CEP Context component. The
CEP Context component is addressed via the proxy, which processes every request
immediately as it is a delay resource without a queue. After the result is sent back
to the CEP, the next queryAPI call is started. When all context retrievals are com-
pleted, the BEP and context might be updated through the updateAPI. The proxy
distributes the calls to CEP Context and BEP (through the message broker) simul-
taneously to update the duplicated context. After this update is �nished, the request
leaves the system. Again, if the application includes rules based on the context, the
updated object is returned to the CEP.

3.2.3 Measuring Points

Measuring points are inserted before and after each component as shown for the syn-
chronous mode in Fig. 3.5 and for the asynchronous mode in Fig. 3.6. The measuring
points are also described in Table 3.1. Using the measuring points, the service times
of each component can be calculated as de�ned in Table 3.2. CEP and BEP service
times are subdivided into update time and query time, since cost factors might in-
�uence the service times of accessing or updating data only. Based on the measured
service times as well as their distributions polynomial models can be built which
allows the calculation of service times before implementation. The calculated values
can be inserted into a simulation tool for queueing networks to estimate the total
response times and �nd bottlenecks in the system.

In the next chapter, the service times are analyzed for each cost factor in order
to determine which cost factors in�uence the service times. Subsequently, service
times are researched for each of these cost factors more closely using the measuring

3. System Analysis 36

CEP BEP

query/

update

query result

BEP_c3

CEP_c1

CEP_c2

BEP_c2

BEP_c1

Proxy

PRO_c1
PRO_c2

Figure 3.5: Measuring Points in Queueing Network, Synchronous Mode

CEP CEP Context

BEP

Message Broker

Message Broker

query result

update

query/

update

CEP_c1

CEP_c2

BEP_c3

BEP_c2

BEP_c1

MB1_c1

MB1_c2

MB2_c1
MB2_c2

CEP_c3

CEP_c4

CEP_c5

Proxy

PRO_c1
PRO_c2

Figure 3.6: Measuring Points in Queueing Network, Asynchronous Mode

points and components introduced here. It is then possible to determine the service
times of each component beforehand based on the cost factor level demanded by an
application.

3. System Analysis 37

Measuring Point Description

BEP_c1 entering BEP component

BEP_c2 request with query result leaving BEP component

BEP_c3 leaving BEP component

CEP_c1 entering CEP component

CEP_c2 leaving CEP component

CEP_c3 entering CEP context component

CEP_c4 request with query result leaving CEP context component

CEP_c5 leaving CEP context component

MB1_c1 entering message broker 1

MB1_c2 leaving message broker 1

MB2_c1 entering message broker 2

MB2_c2 leaving message broker 2

PRO_c1 entering proxy

PRO_c2 leaving proxy

Table 3.1: Measuring Points

Calculation Service Time of Component

BEP_c2 - BEP_c1 BEP query

BEP_c3 - BEP_c1 BEP update

CEP_c2 - CEP_c1 CEP

CEP_c4 - CEP_c3 CEP query

CEP_c5 - CEP_c3 CEP update

MB1_c2 - MB1_c1 message broker 1

MB2_c2 - MB2_c1 message broker 2

PRO_c2 - PRO_c1 proxy

Table 3.2: Service Times Calculation for Components Based on Measuring Points

Chapter 4

Cost Factors

This chapter focuses on the factors of the cost model. The cost factors are divided into
three categories: Users, rules, and infrastructure. In each of the categories, several
cost factors are de�ned and described. A few cost factors are assumed to in�uence
the performance, but are excluded from the cost model nevertheless. In each such
case, the reasons for excluding the cost factor are explained.

The in�uence of each cost factor on response time is tested at two di�erent orders
of magnitude of its intensity, for a time span varying from factor to factor to create
su�cient amounts of events. With those two samples a Mann-Whitney U Test (Sect.
2.4.1) is conducted to decide whether the cost factor has a signi�cant in�uence. If
the cost factor has a statistically signi�cant impact on response time or throughput,
it will be included in the test series to further investigate the exact e�ect.

For the �rst tests, which are performed to immediately identify and exclude irrele-
vant cost factors, the Gami�cation Platform is operated in synchronous mode. As the
Gami�cation Platform in synchronous mode performs slower than in asynchronous
mode, changes of total response times can be found by considering only the syn-
chronous mode. If no di�erence between the two samples in synchronous mode can
be found, the cost factor is discarded because it will have turned out as insigni�cant
for the performance of the Gami�cation Platform.

Even though Menasce and Almeida [2001] listed several factors with in�uence on
performance (Table 2.2), most of their very general factors are not considered in
the cost model. In the �rst version, the aim is to evaluate the in�uence of cost
factors de�ned by the architecture and applications using the Gami�cation Platform,
whereas the more general cost factors can be further investigated in future work.

To present the results, mean, median and maximum response times (in ms) are
listed in a table for each cost factor. The p-value is gained from the Mann-Whitney
U Test by comparing both samples. The null hypothesis in this test declares that
both samples are taken from the same population. If the null hypothesis is rejected,
the samples do not belong to the same population with a certain error probability.
The latter means that the cost factor modi�es the response time.

38

4. Cost Factors 39

1 rule "newBuddy"

2 when

3 $addBuddy : EventObject(type=='addBuddy', $playerid:playerid) from entry-

point eventstream

4 then

5 updateAPI.givePoints($playerid, 'Buddies', 1, 'added 1 buddy');

6 retract($addBuddy);

7 update(queryAPI.getPlayer($playerid)); //only in synchronous mode

8 end

9

10 rule "tenBuddies"

11 when

12 p : Player($playerid : uid)

13 eval(queryAPI.hasPlayerMission($playerid, 'I Have Got Buds!') == true)

14 eval(queryAPI.getPointsForPlayer($playerid, 'Buddies').getAmount() >= 10)

15 then

16 updateAPI.completeMission($playerid, 'I Have Got Buds!');

17 update($p); //only in synchronous mode

Listing 4.1: Simple Rule Example

Cost Factor Mean (ms) Median (ms) Max. (ms) p-Value

10 User 5.13 4.93 26.77
< 2.2 ∗ 10−16

1000 User 25096.28 23120.73 61885.84

Table 4.1: Response Time Metrics for Cost Factor User

4.1 User-Related Cost Factors

In this section, the cost factors concerning users are described, which include number
of users, events per second per user and event type distribution. These cost factors are
workload intensity parameters as de�ned in Table 2.1 and change the load placed on
the system. To test these cost factors, two rules are used: newBuddy and tenBuddies
(List. 4.1). In the newBuddy rule, an event of type addBuddy causes an action. In
this action, the player is rewarded 1 Buddies point. The tenBuddies rule completes
the I Have Got Buds! mission once the player has collected 10 buddies.

4.1.1 Number of Users

It is assumed that each user performs a distinct number of events per second on
average. Therefore, the number of users is expected to in�uence the response time
and throughput, as more users generate a higher amount of events per second.

In the test case, every user creates 0.5 events/s. The number of users is varied from 10
to 1,000, the test is performed for a time span of 500s or 5s to create 2500 Events in
both cases. Test results are shown in Table 4.1. As the p-value is 2.2 ∗ 10−16 � 0.01,

4. Cost Factors 40

Cost Factor Mean (ms) Median (ms) Max. (ms) p-Value

0.5 Events/s 5.43 5.05 90.68
< 3.211 ∗ 10−16

50 Events/s 26139.11 22098.96 72320.28

Table 4.2: Response Time Metrics for Cost Factor Events/s

the null hypothesis has to be rejected, which means that the number of users has a
signi�cant in�uence on the response time.

4.1.2 Number of Events/s per User

The more events a user or application sends to the Gami�cation Platform, the higher
the system's workload. Hence, the event rate per user is expected to in�uence the
response time and throughput as well.

In the test case, 10 users are simulated. The number of events/s created by every
user is varied from 0.5 to 50, the test is performed for a time span of 600s or 6s to
create the same amount of events. Test results are shown in Table 4.2. As the p-value
is 2.2 ∗ 10−16 � 0.01, the number of events per second has a signi�cant in�uence on
the response time. It is expected that the cost factor number of users and events per
second are convertible or that they could be summarized into one factor.

4.1.3 Event Type Distribution

It is asuumed that events of di�erent event types, sent in di�erent frequencies, in-
�uence the response time. A rule with a join node is used to test this assumption
(List. 4.2). The events, which are joined on the playerid, are inserted in di�erent
frequencies to measure the in�uence of the event type distribution. For the �rst case,
1 event of type addTag is inserted at the beginning, and all other events are of type
addBuddy. In the second case, events of type addBuddy and addTag are inserted in
turns. The event distribution is shown in Fig 4.1. Fig. 4.1a shows the unbalanced
event types and Fig. 4.1b the balanced event types.

The test simulates 10 users. The number of events/s created by every user is 0.5, the
test is performed for a time span of 100 seconds. Test results are shown in Table 4.3.
As the p-value is 2.2 ∗ 10−16 � 0.01, the null hypothesis stating that both samples
belong to the same population has to be rejected, which means that the event type
distribution has a signi�cant in�uence on response time.

4.2 Rule-Related Cost Factors

In this section, the cost factors concerning rules are described. In this category, the
cost factors number of rules, number of alpha and beta nodes, node types, number

4. Cost Factors 41

addBuddy addTag

(a) Unbalanced

A
m

ou
nt

 o
f E

ve
nt

s

0
10

0
20

0
30

0
40

0

addBuddy addTag

(b) Balanced

A
m

ou
nt

 o
f E

ve
nt

s

0
50

10
0

15
0

20
0

25
0

Figure 4.1: Event Type Variation

1 rule "AddedBuddyAndAddedTag"

2 when

3 $addBuddy : EventObject(type=='addBuddy', $playerid:playerid) from entry-

point eventstream

4 $addTag : EventObject(type=='addTag', playerid==$playerid) from entry-point

eventstream

5 then

6 updateAPI.givePoints($playerid, 'Experience', 1, 'TestReason');

7 end

Listing 4.2: Join Rule Example

Cost Factor Mean (ms) Median (ms) Max. (ms) p-Value

Unbalanced 7.86 6.88 27.45
< 2.2 ∗ 10−16

Balanced 667.82 93.92 21940.93

Table 4.3: Response Time Metrics for Cost Factor Event Type Distribution

of abstractions, working memory growth, independent rule streams, updateAPI and
queryAPI calls, size of tables, and structure of tables are analyzed. These cost factors
are workload service demand parameters as de�ned in Table 2.1 and in�uence the
service times of the components.

4. Cost Factors 42

1 rule "AddedBuddy1"

2 when

3 $addBuddy : EventObject(type=='addBuddy1', $playerid:playerid) from entry-

point eventstream

4 then

5 updateAPI.givePoints($playerid, 'Experience', 1, 'TestReason');

6 end

Listing 4.3: Alpha Nodes Rule Example

Cost Factor Mean (ms) Median (ms) Max. (ms) p-Value

10 Alpha Nodes 297.26 11.93 24399.0
< 2.2 ∗ 10−16

300 Alpha Nodes 22145.96 17.18 237846.8

Table 4.4: Response Time Metrics for Cost Factor Number of Alpha Nodes

4.2.1 Number of Rules

The number of rules, according to Yu and Jajodia [2007], does not signi�cantly in�u-
ence the performance. However, the rule set determines the number of alpha nodes
and the number of beta nodes. Therefore, not the rules themselves are measured as a
cost factor, but the RETE tree and its alpha and beta nodes de�ned by the rule set.
The number of alpha and beta nodes can be derived from the rules, e.g., by using
the graphical RETE tree view in Drools, which displays the corresponding RETE
tree for each speci�c rule set.

4.2.2 Number of Alpha Nodes

It is expected that the number of alpha nodes in the RETE tree has an in�uence on
the response time. Several rules are used to test this assumption. In the �rst case,
10 rules with distinct LHS are used. In the second case, 300 rules with distinct LHS
are used. Each rule is very similar to the rule in List. 4.3, and rules only di�er in
the type of events which trigger this rule. The associated RETE tree is depicted in
Fig. 4.2. For example, the �rst rule is triggered for events of type addBuddy1, the
second one for events of type addBuddy2 and so on. This leads to 10 or 300 di�erent
alpha nodes. Events are sent to the system with the same probability for each of the
existing rules.

The test simulates 250 users. The number of events/s created by every user is 0.5, the
test is performed for a time span of 300 seconds. Test results are shown in Table 4.4.
As the p-value is 2.2 ∗ 10−16 � 0.01, the null hypothesis stating that both samples
belong to the same population has to be rejected, which means that the number of
alpha nodes has a signi�cant in�uence on response time.

4. Cost Factors 43

 Root Node
Root Node

 Alpha Nodes

Class ==

EventObject

eventType ==

addBuddy1

 Terminal Nodes addBuddy2addBuddy1

eventType ==

addBuddy2

eventType ==

addBuddyX
...

... addBuddyX

Figure 4.2: RETE Tree for Testing Cost Factor Number of Alpha Nodes

4.2.3 Number of Beta Nodes

The number of beta nodes is, similarly to the number of alpha nodes, expected to
in�uence the response time. Join nodes are considered as one example for beta nodes,
whereas other beta nodes, e.g., not nodes, are excluded. Di�erent rules are used to
test the in�uence of beta nodes on the service times. In the �rst case, 10 rules with
distinct LHS are used. In the second case, 300 rules with distinct LHS are used.

Each rule is very similar to the rule in List. 4.4 and rules only di�er in the type of
events which trigger this rule. The corresponding RETE tree is depicted in Fig. 4.3.
For example, the �rst rule is triggered for events of type addBuddy1 in combination
with addTag1, the second one for event combinations of type addBuddy2 and addTag2
and so on. This leads to 10 or 300 di�erent beta nodes. Events are sent to the system
with the same probability for every rule, but every time in pairs of one addBuddyX
and one addTagX event, for each of the existing rules. It is important to note that
both events are retracted after the rule is �red to avoid increasing of working memory
elements.

The test simulates 250 users. The number of events/s created by every user is 1,
and the test is performed for a time span of 300 seconds. Test results are shown in
Table 4.5. As the p-value is 2.2 ∗ 10−16 � 0.01, the null hypothesis stating that both
samples belong to the same population has to be rejected, which means that the
number of beta nodes has a signi�cant in�uence on response time.

4. Cost Factors 44

1 rule "AddedBuddyAndAddedTag1"

2 when

3 $addBuddy : EventObject(type=='addBuddy1', $playerid:playerid) from entry-

point eventstream

4 $addTag: EventObject(type=='addTag1', playerid==$playerid) from entry-point

eventstream

5 then

6 updateAPI.givePoints($playerid, 'Experience', 1, 'TestReason');

7 retract($addBuddy);

8 retract($addTag);

9 end

Listing 4.4: Beta Nodes Rule Example

 Root Node
Root Node

 Alpha Nodes

Class ==

EventObject

 Beta Nodes

eventType ==

addTag1

eventType ==

addBuddy1

Join

playerID == ID

 Terminal Nodes addBuddy+Tag1

eventType ==

addTag2

eventType ==

addBuddy2

Join

playerID == ID

addBuddy+Tag2

...

Figure 4.3: RETE Tree for Testing Cost Factor Number of Beta Nodes

4. Cost Factors 45

Cost Factor Mean (ms) Median (ms) Max. (ms) p-Value

10 Beta Nodes 37.54 11.94 3231.25
< 2.2 ∗ 10−16

300 Beta Nodes 202.28 13.39 38702.79

Table 4.5: Response Time Metrics for Cost Factor Number of Beta Nodes

Cost Factor Mean (ms) Median (ms) Max. (ms) p-Value

20 abstractions 7.17 6.51 400.69
< 2.2 ∗ 10−16

300 abstractions 13.20 7.08 634.00

Table 4.6: Response Time Metrics for Cost Factor Abstractions

4.2.4 Node Types

Equality tests in alpha nodes and join nodes as beta nodes are only some of the
node types possible. The rule engine allows, for example, many other node types,
such as �greater than�, �less than�, �not�, �between� or other complex event processing
operators. All these operators in�uence the response time to a very di�erent extent,
according to their complexity. Hence, the other node types should be researched as
well. Due to the limited time available for the thesis, however, only the two most
common operators are considered, namely join nodes as beta nodes and equality as
alpha nodes.

4.2.5 Number of Abstractions

Rules can create new events and insert them into the working memory. After a new
event is inserted, the RETE tree is evaluated again. An event created by a rule
is called abstraction, and the event is called abstract event. The response time is
expected to depend on the number of abstractions, as each evaluation is demanding
time.

To test the in�uence, several rules are used to test a certain amount of abstractions
as shown in List. 4.5. Every rule creates an abstract event, which is processed by the
next rule. Only the last rule gives one experience point to the player. For example,
if 20 abstractions are tested, the �rst rule is reacting to an event addBuddy1 and
creates an event addBuddy2 if triggered. The next rule reacts to addBuddy2 events
and creates an addBuddy3 event every time. The last rule reacts to the last abstract
event (in case of 20 abstractions: addBuddy21) and rewards the player with one
point.

The test is performed for 1 user, 300 seconds, and an event rate of 0.5 event/s.
The test results are listed in Table 4.6. As the p-value is 2.2 ∗ 10−16 � 0.01, the

4. Cost Factors 46

1 rule "AddedBuddy1"

2 when

3 $addBuddy : EventObject(type=='addBuddy1', $playerid:playerid) from entry-

point eventstream

4 then

5 EventObject obj = new EventObject();

6 obj.setType("addBuddy2");

7 obj.setPlayerid($playerid);

8 retract($addBuddy);

9 entryPoints["eventstream"].insert(obj);

10 end

11

12 rule "AddedBuddyX"

13 when

14 $addBuddy : EventObject(type=='addBuddyX', $playerid:playerid) from entry-

point eventstream

15 then

16 updateAPI.givePoints($playerid, 'Experience', 1, 'TestReason');

17 retract($addBuddy);

18 end

Listing 4.5: Abstractions Rule Example

null hypothesis stating that both samples belong to the same population has to be
rejected, which means that the number of abstractions has a signi�cant in�uence on
response time.

4.2.6 Working Memory Growth

The working memory, as de�ned by Forgy [1982] and explained in Subsect. 2.3.3,
has a signi�cant in�uence on the performance of RETE and on the Gami�cation
Platform. If all events are retracted after being used in join nodes, the system's
slowdown will remain manageable, but if events are not retracted and the WM grows
constantly, every event is processed slower than the previous events. Retracted events
avoid slowing down the evaluation of beta nodes on a long-term basis, but if events
are not retracted upon their use in join nodes, the possible join matches are increasing
and so is the processing time. To demonstrate the in�uence of the working memory
size on response time, one rule with exactly one beta node is used, similar to the rule
in List. 4.4. For this test, however, the retractions of events in line 9 and 10 were
removed to ensure a constantly growing working memory.

The test is performed for 1 user, 300 seconds and an event rate of 1 event/s. The
test results are listed in Table 4.7. The mean, median and maximum values are
computed for the �rst 20 events and compared to the �rst 2000 events. As the p-
value is 2.2 ∗ 10−16 � 0.01, the null hypothesis stating that both samples belong
to the same population has to be rejected, which means that the working memory
growth has a signi�cant in�uence on response time, as previously stated by Forgy
[1982].

4. Cost Factors 47

Cost Factor Mean (ms) Median (ms) Max. (ms) p-Value

20 events 64.64 61.20 124.18
< 2.2 ∗ 10−16

2000 events 433.94 310.27 1466.90

Table 4.7: Response Time Metrics for Cost Factor Working Memory Growth

1 rule "newBuddy"

2 when

3 $addBuddy : EventObject(type=='addBuddy', $playerid:playerid) from entry-

point eventstream

4 then

5 for (int i = 0; i < 10; i++) {

6 updateAPI.givePoints($playerid, 'Experience', 1, 'TestReason');

7 }

8 end

Listing 4.6: Rule with 10 UpdateAPI Calls

This cost factor is highly dependent on the events previously sent to the system.
Queueing networks are stateless and independent from requests prior to the current
one. This means that the working memory growth cannot be included as a cost factor
in the cost model, which is based on a queueing network. In order to take the working
memory size into consideration as a cost factor, a di�erent modeling technique would
have to be used.

4.2.7 Independent Rule Streams

It is possible to send events to di�erent rule streams, so that rules can use events only
from speci�c rule streams. This enables a more e�cient event handling, as distinct
branches in the RETE tree can be used for each rule stream. This feature of Drools
is currently sparsely used, so it is not evaluated any further.

4.2.8 UpdateAPI calls in RHS

To test the in�uence of updateAPI calls, the user is rewarded with 10 Experience
points in 10 successive updates for each buddy added (List. 4.6). This case is com-
pared to the the previous one, where only one point was given to the user, and
therefore only used one single updateAPI call. The test is performed for 100 users,
100 seconds, 0.5 events/s and 1 or 10 updateAPI calls. Test results are shown in
Table 4.8. As the p-value is 2.2 ∗ 10−16 � 0.01, the null hypothesis stating that both
samples belong to the same population has to be rejected, which means that the
number of updateAPI calls has a signi�cant in�uence on the response time.

4. Cost Factors 48

Cost Factor Mean (ms) Median (ms) Max. (ms) p-Value

1 update 9.57 5.32 350.99
< 2.2 ∗ 10−16

10 updates 2.37 ∗ 105 1.95 ∗ 105 6.72 ∗ 105

Table 4.8: Response Time Metrics for Cost Factor UpdateAPI Calls

1 rule "newBuddy"

2 when

3 $addBuddy : EventObject(type=='addBuddy', $playerid:playerid) from entry-

point eventstream

4 eval(queryAPI.hasPlayerMission($playerid, 'Mission 1'))

5 eval(queryAPI.hasPlayerMission($playerid, 'Mission 2'))

6 eval(queryAPI.hasPlayerMission($playerid, 'Mission 3'))

7 ...

8 eval(queryAPI.hasPlayerMission($playerid, 'Mission 10'))

9 then

10 updateAPI.givePoints($playerid, 'Experience', 1, 'TestReason');

11 retract($addBuddy);

12 end

Listing 4.7: Rule with 10 QueryAPI Calls

Cost Factor Mean (ms) Median (ms) Max. (ms) p-Value

1 query 9.18 6.98 253.08
< 2.2 ∗ 10−16

10 queries 70528.34 68989.55 158938.81

Table 4.9: Response Time Metrics for Cost Factor QueryAPI Calls

4.2.9 QueryAPI calls in LHS

It is assumed that the player only gets Buddy points if he has 10 di�erent missions
(Mission 1-10). The rule in List. 4.7 calls the queryAPI to check if the the mission
is assigned to the user each time a new addBuddy event is inserted. The test is
performed for 100 users, 100 seconds, 0.5 events/s and 1 or 10 queryAPI calls. Test
results are shown in Table 4.9. As the p-value is 2.2∗10−16 � 0.01, the null hypothesis
stating that both samples belong to the same population has to be rejected, which
means that the number of queryAPI calls has a signi�cant in�uence on the response
time.

4. Cost Factors 49

Cost Factor Mean (ms) Median (ms) Max. (ms) p-Value

1.000 players 29.35 25.47 47.94
0.6882

100.000 players 29.64 27.78 49.31

Table 4.10: Response Time Metrics for Cost Factor Table Sizes (Table Player)

4.2.10 Size of Tables

It is assumed that the size of the tables storing the context information in�uences
the access time to one database entry. The following tables are used by updateAPI
and queryAPI :

� Player

� PlayerPoints

� Badge2Player

� Mission2Player

� Mission

� Badge

� Point

For the �rst version of the cost model and due to the restricted time frame of the
thesis, only Player and Mission table sizes will be investigated in their in�uence on
the response time.

Player

The test is performed for 1 user, 300 seconds, 0.5 events/s and 1.000 or 100.000
players in the database. Test results are shown in Table 4.10. As the p-value is
0.6882 > 0.01, the null hypothesis stating that both samples belong to the same
population cannot be rejected, which means that the table size of the Player table
may not signi�cantly in�uence the response time.

Mission

To test the in�uence of the table size of table Mission, a test is performed involving
1 user for 300 seconds, 0.5 events/s, and 1.000 or 100.000 missions in the database.
The test results are shown in Table 4.11. The p-value is 0.2241 > 0.01, which means
that the null hypothesis stating that both samples belong to the same population
cannot be rejected, which means that the table size of the Mission table may not
signi�cantly in�uence the response time.

Without measuring the other table sizes due to the restricted time frame, it can be
said that at least the measured tables do not signi�cantly change the response time

4. Cost Factors 50

Cost Factor Mean (ms) Median (ms) Max. (ms) p-Value

1.000 missions 28.66 25.42 48.36
0.2241

100.000 missions 29.52 25.75 47.49

Table 4.11: Response Time Metrics for Cost Factor Table Sizes (Table Mission)

of the Gami�cation Platform. Hence, this cost factor is excluded in the cost model.
In further research it will either have to be proven that other table sizes do not have
an in�uence as well, or this cost factor needs to be included in a future version of
the cost model.

4.2.11 Structure of Tables

The structure of tables has an in�uence on access time of the data in the tables.
Indexes optimize access to the tables. The table structure is automatically handled
by the persistence framework (EclipseLink JPA) and database (SAP MaxDB), and
is, hence, not evaluated.

4.3 Infrastructure-Related Cost Factors

In this section, the cost factors concerning infrastructure are described. Database (pa-
rameters), queue scheduling algorithm, connection pools, transmission packet sizes,
and random-access memory (RAM) of the server are included in this analysis. As
de�ned in Table 2.1, these cost factors are classi�ed as system parameters which
a�ect the performance.

4.3.1 Database

The Gami�cation Platform uses SAP MaxDB as its default database management
system (DBMS), but the DBMS can be easily replaced with another solution, e.g.,
SAP HANA. Since evaluating the di�erences, advantages, or disadvantages of di�er-
ent DSMS is beyond the scope of this thesis, this cost factor is not evaluated any
further.

In addition, SAP MaxDB can be con�gured and tweaked in many di�erent ways
[SAP AG, 2013]. For example, the maximum number of user tasks, which de�nes
the maximum number of locks for database objects, can lead to delays if set to a
small value, or the cache memory size can speed up requests which are performed
frequently. Many more parameters can be varied which might in�uence the response
time of the database. Investigating all di�erent parameters cannot be achieved in the
restricted time frame, so that the database con�guration is also not evaluated any

4. Cost Factors 51

Cost Factor Mean (ms) Median (ms) Max. (ms) p-Value

25 Threads 8.63 4.98 394.49
0.0001986

2500 Threads 8.29 5.15 275.70

Table 4.12: Response Time Metrics for Cost Factor Maximum Number of Threads

further. Further research needs to identify the relevant parameters and determine
the optimal database con�guration for usage in the Gami�cation Platform.

4.3.2 Queue Scheduling Algorithm

As indicated by Adiri [1969], the scheduling algorithm of queues has an impact
on the response time distribution and average response time. In the Gami�cation
Platform based on a Tomcat server, the FCFS scheduling algorithm is chosen, and
di�erences to other scheduling algorithms will not be evaluated [The Apache Software
Foundation, 2013].

4.3.3 Connection Pools

Connection pools manage the communication between the components in the appli-
cation. Each request needs a connection to the Gami�cation Platform. These con-
nections are pooled, so that only a maximum of parallel connections can be handled
e�ciently. The maximum number of threads as well as the accept count are expected
to in�uence the response time.

Maximum Number of Threads

The maximum number of request processing threads to be created on the server
is expected to in�uence the response time. When all connections are used in the
synchronous case, a new request needs to wait until one of the requests is �nished.
To test this cost factor a maximum thread count is varied from 25 to 2500. The test
is performed for 100 users, 100 seconds, and 0.5 events/s. Test results are shown in
Table 4.12. As the p-value is 0.0001986 < 0.01, the null hypothesis stating that both
samples belong to the same population has to be rejected, which means that the
maximum number of threads has a signi�cant in�uence on the response time. From
the details in Table 4.12, especially from the small changes for mean and median,
it can be concluded that this in�uence in comparison to other cost factors is very
little. However, the measured di�erences indicate that a threshold exists for this cost
factor, which needs to be researched in future work. For the �rst version of the cost
model this cost factor is, hence, excluded.

4. Cost Factors 52

Cost Factor Mean (ms) Median (ms) Max. (ms) p-Value

Value 10 8.44 5.17 219.96
0.02877

Value 1,000 8.66 5.14 403.92

Table 4.13: Response Time Metrics for Cost Factor Accept Count

Cost Factor Mean (ms) Median (ms) Max. (ms) p-Values

8GB 8.12 5.18 206.68
0.7492

1GB 8.25 5.19 125.25
0.03381

256MB 8.43 5.18 248.27
< 2.2 ∗ 10−16

64MB 287.88 39.29 11753.73

Table 4.14: Response Time Metrics for Cost Factor RAM Size

Accept Count

The accept count de�nes the maximum queue length of requests waiting for connec-
tions. If a request has to wait for a connection thread, it is queued. If the queue is
already full, the request is rejected; otherwise it waits until a connection is provided.

The test is performed for 100 users, 100 seconds, 0.5 events/s, and a maximum
accept count of 10 resp. 1000. Test results are shown in Table 4.13. As the p-value is
0.02877 > 0.01, the accept count does not signi�cantly in�uence the response time.

4.3.4 Transmission Packet Sizes

The transmission packet size, describing which protocols are used and how transferred
data is encapsulated, is expected to a�ect the response time. Since the current version
of the Gami�cation Platform uses lightweight RPC calls in JSON objects to transmit
data, and minimized transmission times are expected in a non-distributed scenario,
this cost factor is not evaluated any further.

4.3.5 RAM of Server

The maximum RAM size of the server is expected to in�uence the performance.
This hypothesis is checked by varying the RAM of the server between 8GB, 1024MB,
256MB, and 64MB. The test is performed for 100 users, 100 seconds, and 0.5 events/s.
Test results are shown in Table 4.14. The p-values illustrate that only between 256MB
to 64MB a signi�cant change in the distribution can be found.

Fig. 4.4a-c show more precisely that the response time between 256 MB and 8GB of
RAM is consistent and exponentially distributed. For 64MB (Fig. 4.4d) RAM, the

4. Cost Factors 53

(a) 8GB

Response Time in ms

F
re

qu
en

cy

0 50 100 150 200

0
10

00
20

00
30

00
40

00
(b) 1024MB

Response Time in ms
F

re
qu

en
cy

0 20 40 60 80 100 120

0
10

00
20

00
30

00
40

00
(c) 256MB

Response Time in ms

F
re

qu
en

cy

0 50 100 150 200 250

0
10

00
20

00
30

00
40

00

(d) 64MB

Response Time in ms

F
re

qu
en

cy

0 2000 4000 6000 8000 10000 12000

0
10

20
30

40
50

60

Figure 4.4: Distribution of Response Times for Various RAM Sizes

response time distribution changes, and, more importantly, the total frequency of
events has dropped dramatically from 5.000 to around 70. Fig. 4.5 further investigates
this e�ect, showing that for 64MB RAM the number of points is not as high as
expected from the other cases. This is a consequence of the server running out of
space, which leads to incorrect behavior. As such a behavior has to be avoided by
all means, an appropriate RAM size must be ensured. However, besides this impact
on the server's behavior, the RAM size does not seem to in�uence the response time
and will, hence, be excluded from the cost model.

4. Cost Factors 54

64MB 256MB 1024MB 8GB

Memory Size

N
um

be
r

of
 P

oi
nt

s

0
10

00
20

00
30

00
40

00
50

00

Figure 4.5: Number of Points for Various RAM Sizes

4.4 Statistically Signi�cant Cost Factors

In this chapter, the cost factors

� number of users,

� number of events/s per user,

� event type distribution,

� number of alpha nodes,

� number of beta nodes,

� number of abstractions,

� number of updateAPI calls,

� and number of queryAPI calls

have been proven to have a statistically signi�cant in�uence on the response time.
On the contrary, the cost factors

� node types,

� working memory growth,

� independent rule streams,

� structure of tables,

� and all infrastructure-related cost factors

were discussed to be excluded due to statistical insigni�cance or because they cannot
be varied easily or modeled with the chosen modeling technique.

In the next chapter, the in�uence of each of the statistically signi�cant cost factors
is researched and measured for each component of the queueing network models
presented in Chap. 3.

Chapter 5

Experiments

This chapter describes the experiments which are conducted to determine how strong
each cost factor correlates with the service times of the components in the queueing
networks presented in Sect. 3.2. First, our experiment modeling technique is pre-
sented. Subsequently, the experiment design is described, and experiment data as
well as experiment workload are presented. Finally, the results of the experiments
are discussed in depth for each cost factor in both synchronous and asynchronous
mode.

5.1 Experiment Modeling Technique

The experiment results contain multiple values for service times of each component,
and for certain levels of each cost factor. In order to determine the in�uence of a
particular cost factor on the service time, the values are modeled in relation to the
factor level for each component. These value-pairs can be placed in a coordinate
system as shown in Fig. 5.1, where the cost factor users is correlated to the means
and medians of service time in the proxy component. In this case, service times are
shown for the component proxy in synchronous mode.

In the next step a model to represent the values has to be found, which can also
predict unknown values. For this purpose, polynomial regression (Subsect. 2.4.2) is
used in combination with the information criteria presented in Subsect. 2.4.3. The
best �tted polynomial for the example in Fig. 5.1 is the second degree polynomial,
which was chosen by using AIC.

The best �tted polynomial is determined for every component and every cost factor
in both modes (synchronous and asynchronous). As de�ned in Eq. 2.9, the coe�-
cients ci of the polynomial are listed for each component in a table. Additionally,
the information criterion, which was used to choose the most sparse polynomial, is
included in the table. An example is given in Table 5.1.

In the �rst column, the component is listed. In this case, the �rst row is used for
the CEP component, and the second row gives service time coe�cients for the proxy

55

5. Experiments 56

50 100 150 200 250

0.
01

25
0.

01
30

0.
01

35

Proxy − 2. Polynomial (AIC)

Users

T
im

e
in

 m
s

●
● ●

●

●

●

●
●

●

●
●

●

● ● ●
●

●

●
●

●

●

●

●

●

●
● ●Median Mean Model

Figure 5.1: Example of Service Times per Cost Factor Level

Component Inf. Cri. R2 c0 c1 c2

CEP All 0.95 0.2*** 0.01* -

Proxy CV 0.75 2.8 ∗ 10−2** 7.1 ∗ 10−5. 2.5 ∗ 10−7

Table 5.1: Service Time Polynomials for an Exemplary Cost Factor

component. MB1 and MB2 are abbreviations for message broker 1 and 2, used later
in this chapter.

In the second column, the information criterion used to select the polynomial is
listed. This can either be AIC, BIC, or CV (cross-validation) as de�ned in Sub-
sect. 2.4.3. Moreover, combinations like AIC/BIC are used if two criteria prefer the
same polynomial. If all three criteria prefer the same polynomial, this is noted as All.

In the third column, R2 as the coe�cient of determination and model quality is given.
An R2 close to 1 stands for a good model �t, whereas an R2 close to 0 represents
a poor model �t, indicating that the parameters chosen to model the values do not
provide an accurate estimation and that other in�uencing parameters were excluded
in the polynomial model.

5. Experiments 57

The other columns list the coe�cients c0...ci of the polynomial. The values of the
polynomials as well as the signi�cance levels are listed. These signi�cance levels are
calculated using the t-statistic to determine the corresponding two-sided p-value [The
R Foundation for Statistical Computing, 2013c]. The signi�cance levels are de�ned
as follows:

� ***: p < 0.1%

� **: p < 1%

� *: p < 5%

� .: p < 10%

� otherwise: p ≤ 100%

Based on this information, the service time s for cost factor level x at a component
can be calculated using the polynomial, e.g., for the CEP component of the example:

sCEP (x) = 0.2 + 0.01x

For the proxy component of the example, the service time can be calculated with the
formula

sProxy(x) = 2.8 ∗ 10−2 + 7.1 ∗ 10−5 ∗ x+ 2.5 ∗ 10−7 ∗ x2.

All values are given in ms.

With the formulas, the service times can be calculated for every speci�c case. If the
cost factor level (e.g., the amount of users) is, for example, forecasted to be 100, the
service times are

sCEP (100) = 0.2 + 0.01 ∗ 100 = 1.2

and

sProxy(100) = 2.8 ∗ 10−2 + 7.1 ∗ 10−5 ∗ 100 + 2.5 ∗ 10−7 ∗ 1002 = 0.0376.

The service times can be used to simulate the queueing network as described further
in the model application method in Sect. 6.3. Supplementary graphical representa-
tions of all polynomials discussed in this chapter are to be found in Appendix A.

5.2 Experiment Design

With the experiment, each cost factor's in�uence on service time is checked for all
components in the queueing networks individually. It is assumed that cost factors
of one category (users, rules, or infrastructure) are predominantly independent from
cost factors in another category. Additionally, since the time frame of the thesis is
restricted, a full factorial design combining all cost factors and all levels of factors in
a cross product is unmanageable. For only 5 cost factors with each having 10 levels
the number of experiments would be 105 based on Eq. 2.1. For cost factors, which
are assumed to in�uence each other, the relationship will have to be investigated in
further research.

5. Experiments 58

Wrong or inaccurate measurements caused by Garbage Collection, Dead Code Elim-
ination and Dynamic Optimization as mentioned by Boyer [2008a] while taking the
measurements are tried to be kept at minimum. This is achieved by measuring enough
data to detect outliers, which could be caused by JVM behavior. Additionally, sug-
gestions to avoid typical pitfalls are applied as discussed in Boyer [2008a,b]. For
example, we ignore the �rst 10 seconds of each experiment, as this is considered
to be the warm-up period. Furthermore, a test with 200 users is run for 300 sec-
onds before starting measurements to initialize all classes and allow optimizations to
take place. Each experiment is run on a machine with two 6-core Intel Xeon L5640
processors in hyper-threading mode and 8GB of RAM.

5.3 Experiment Data

The experiment environment is set up with two rules (List. 5.1) to measure the
service times. The �rst rule, newBuddy (line 1-10), reacts to events of type addBuddy.
If such an event occurs, the updateAPI is called to add one Buddies point to the
users' points. The event is then retracted and an update is sent to the player object
in synchronous mode. This update starts a reevaluation of all rules using the player
as input. In asynchronous mode, the update is not required as the players' data is
updated internally in the CEP and, thus, automatically triggers a reevaluation of all
rules depending on the player. The second rule, tenBuddies (line 12-20), reacts to
every update of a player. If the mission I Have Got Buds! is assigned to the player
and he has more than 10 Buddies points, the mission is completed. Afterwards, an
update is sent to the player object in synchronous mode, for the same reasons as in
the newBuddy rule explained above.

To trigger the rules, events of type addBuddy are sent to the system. Each event will
trigger the rule newBuddy to run once. The player is updated in line 9 to trigger an
evaluation of the second rule (tenBuddies) thereafter. If both the expected mission is
assigned to the player and he has enough points, the mission is completed and with
the update of the player, the LHS of the rule is evaluated once again.

To test the number of alpha nodes, rules similar to the rule in List. 4.3 are used, where
each alpha node is represented by a separate rule. In this experiment, events of each
event type (addBuddy1, addBuddy2, . . .) are sent to the system by each user with
the same probability. The in�uence of the number of beta nodes is experimentally
tested with rules similar to the rule in List. 4.4, where, again, each beta node is
created by a distinct rule. Events are sent in pairs to the system in this experiment,
e.g., one addBuddy1 and one addTag1 event. Rules similar to the rule in List. 4.5
are deployed to test the number of abstractions. Each user only creates addBuddy1
events in this experiment.

5. Experiments 59

1 rule "newBuddy"

2 when

3 $addBuddy : EventObject(type=='addBuddy', $playerid:playerid) from entry-

point eventstream

4 then

5 updateAPI.givePoints($playerid, 'Buddies', 1, 'added 1 buddy');

6 retract($addBuddy);

7 update(queryAPI.getPlayer($playerid)); //only in synchronous mode

8 end

9

10 rule "tenBuddies"

11 when

12 p : Player($playerid : uid)

13 eval(queryAPI.hasPlayerMission($playerid, 'I Have Got Buds!') == true)

14 eval(queryAPI.getPointsForPlayer($playerid, 'Buddies').getAmount() >= 10)

15 then

16 updateAPI.completeMission($playerid, 'I Have Got Buds!');

17 update($p); //only in synchronous mode

18 end

Listing 5.1: CEP Rules

5.4 Workload

The workload is determined by the number of users. Each user sends m events per
second to the system. In total, the number of events can be described as

n user×m event

second× user
× 300 seconds = 300× n×m events

with n as the number of users. n = 250 and m = 0.5 are chosen as default values.
Accordingly, the default number of events is 37,500 for a duration of 300 seconds.
Therefore, the interarrival rate is approximately exponentially distributed with sam-
ple mean at 8ms as shown in Fig. 5.2.

Of course, it is hard to imagine that every user creates an event every 2 seconds in a
real-world application. These numbers are consciously exaggerated to, for example,
simulate the behavior for multiple applications operating on the platform with each
having distinct users and rule sets. Additionally, the event rates can be converted
into other units. For the example above the event rate can be converted as follows:

125 Events/s = 450, 000 Events/h = 10, 800, 000 Events/day

If not only 250 users are registered, but rather 250,000, every user would send on
average 1.8 events per hour. Since the threading of so many user objects would create
a signi�cant overhead in the experiments, the high amount of events is created by
only a few users, but the results may be extrapolated to other amounts of users and
event rates.

5. Experiments 60

Interarrival Time Distribution

Interarrival Time in ms

D
en

si
ty

0 20 40 60 80

0.
00

0.
04

0.
08

0.
12

● exp. distr. lambda=0.1140762203

Figure 5.2: Interarrival Time Distribution for 250 User and 0.5 Events/s/User

5.5 Experiment Results

This section presents the results of the experiment series. At �rst, the distributions
of the service times are investigated. Next, the cost factors identi�ed in Chap. 4 are
measured in both synchronous and asynchronous mode. In synchronous mode, the
in�uence of all cost factors on service times of the components CEP, proxy, and BEP
(query and update) as introduced in Subsect. 3.2.1 are presented. In asynchronous
mode, the in�uence of all cost factors on the service times of message broker, CEP,
proxy, CEP context (query and update), and BEP (update) as introduced in Sub-
sect. 3.2.2 are considered.

5.5.1 Distributions

The distributions of the service times in the components are analyzed �rst. Graphical
examples showing the distributions of service times for all involved components are
presented in Fig. 5.3 for synchronous mode and in Fig. 5.4 for asynchronous mode.

5. Experiments 61

(a) BEP Query − 100 Users

time in ms

D
en

si
ty

0 20 40 60 80

0.
00

0.
05

0.
10

0.
15

● exp. distr. lambda=0.3974945561

(b) BEP Update − 100 Users

time in ms

D
en

si
ty

0 100 200 300 400 500

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

● exp. distr. lambda=0.2194411337

(c) CEP − 100 Users

time in ms

D
en

si
ty

0 100 200 300 400 500 600

0.
00

0.
02

0.
04

0.
06

0.
08

● exp. distr. lambda=0.2639584251

(d) Proxy − 100 Users

time in ms

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
10

20
30

40
50

60

Figure 5.3: Distribution of Service Times in Components in Synchronous Mode

Synchronous Mode

In synchronous mode, all distributions tend to consist of many small values and a
few larger values. The larger the value, the smaller its probability. As a consequence,
the distributions can be described with an exponential distribution, which is de�ned
as

f(x) = λe−λx.

The mean value of the measured service times is then used as the mean value of the
exponential distribution, whereby

λ = 1/mean(service times)

can be calculated.

As shown in Fig. 5.3, the service times of the components BEP query (a), BEP up-
date (b) and CEP (c) are best modeled with exponential distributions. However, for
the proxy component (d) the service time is best represented by a constant value
de�ned by the observed mean, for two reasons. First, the distribution is too inaccu-
rate. Second, this component's absolute values are very low compared to the other

5. Experiments 62

(a) Message Broker I − 100 Users

time in ms

D
en

si
ty

0 50 100 150 200

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

(b) Message Broker II − 100 Users

time in ms

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
1

2
3

4
5

6

(c) CEP − 100 Users

time in ms

D
en

si
ty

0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

● exp. distr. lambda=2.2280292628

(d) CEP Context Query − 100 Users

time in ms

D
en

si
ty

0.022 0.024 0.026 0.028 0.030 0.032 0.034 0.036

0
20

0
40

0
60

0
80

0

(e) CEP Context Update − 100 Users

time in ms

D
en

si
ty

0.00 0.05 0.10 0.15 0.20

0
50

10
0

15
0

(f) Proxy − 100 Users

time in ms

D
en

si
ty

0.0 0.2 0.4 0.6 0.8

0
2

4
6

8
10

(g) BEP Update − 100 Users

time in ms

D
en

si
ty

0 50 100 150 200 250

0.
00

0.
04

0.
08

● exp. distr. lambda=0.1974174974

Figure 5.4: Distribution of Service Times in Components in Asynchronous Mode

5. Experiments 63

components. Therefore only little deviation will be produced by using a constant
service time for the proxy component.

For each distribution, a few outliers with values multiple magnitudes larger than
median and mean value can be observed. This behavior is also taken into account by
modeling the service time distributions exponentially. A great number of experiment
values will cause these rare outliers with extreme values to appear.

Asynchronous Mode

In Fig. 5.4, the distributions of service times in the components are shown for the
asynchronous mode. Compared to the synchronous mode, distributions cannot as eas-
ily be described with exponential distributions. For example, message broker II (b)
and CEP context query (d) show a right-skewed, but somehow arbitrary distribution.
As the values are negligible compared to the others, a constant or arbitrary (general)
distribution should be chosen to model the service time distribution as realistically
as possible. Message broker I (a), CEP context update (e) and proxy (f) component
also show service times that are di�cult to generalize, i.e., for which an underlying
distribution is hard to �nd. But they also consist of many small and only a few large
values. Hence, these components can be modeled using exponential distributions,
also with regard to the outliers produced. Moreover, CEP (c) and BEP update (g)
components can also be modeled using exponential distributions.

5.5.2 Cost Factor Number of Users

The number of users has been determined in Subsect. 4.1.1 to signi�cantly in�u-
ence the total response time. Hence, this cost factor is analyzed more precisely for
synchronous as well as for asynchronous mode.

Synchronous Mode

In the histograms of the service times (Fig. 5.5) a signi�cant visual change of dis-
tribution can be observed already for service times in the CEP component at 300
users. A closer examination of the experiment data reveals that for more than 130
users the system is overloaded, whereas below this threshold the performance curve
is relatively constant. In stable state, the distribution can be characterized as expo-
nentially distributed, but above 130 users many extreme outliers can be observed.
This means that the component is overloaded and cannot handle the responses im-
mediately, while the queue of the component is constantly growing. Based on this
fact, the cost factor user the synchronous mode is modeled based on experiment data
up to 130 users. The overload case has to be investigated more precisely in further
research.

The results are service times as functions of the number of users, as presented in
Table 5.2. Clearly, the CEP component is in�uenced most by the number of users

5. Experiments 64

(a) 50 Users

time in ms

Q
ua

nt
ity

0 20 40 60 80 100

0
10

00
30

00
50

00

(a) 300 Users

time in ms

Q
ua

nt
ity

0e+00 2e+05 4e+05 6e+05 8e+05

0
50

00
15

00
0

25
00

0

(a) 600 Users

time in ms

Q
ua

nt
ity

0 500000 1500000 2500000

0
20

00
60

00
10

00
0

Figure 5.5: Histograms CEP Service Times Users Synchronous Mode

Component Inf. Cri. R2 c0 c1 c2

CEP CV 0.7977 −0.72436 0.06647*** -

Proxy CV 0.8325 2.358 ∗ 10−2*** −7.158 ∗ 10−5** 2.751 ∗ 10−7.

BEP Query BIC/CV 0.9694 1.1439854 0.0124863*** -

BEP Update All 0.257 4.924098*** −0.003896. -

Table 5.2: Service Time Polynomials for Cost Factor Number of Users in Synchronous
Mode

with c1 = 0.06647. BEP (query more than updates) and proxy components are
in�uenced to a lesser extent, both having having a c1 < 0.015. All polynomial models
can be built with �rst degree polynomials, except for the proxy component, which is
built with a second degree polynomial. BEP update component has a low R2 = 0.257,
since the measured values show high variations and no obvious trend.

Asynchronous Mode

When operating in asynchronous mode, the stable state can be measured up to 650
users. The results and service times as functions of the number of users are shown in
Table 5.3. The most time-consuming and therewith most strongly in�uenced compo-
nent is the BEP Update having a coe�cient c1 = 0.06209. All other components are
in�uenced to a lesser extent, with c1 and c2 smaller than 0.002. All polynomials are
of �rst or second degree. As illustrated by the graphs (Fig. A.2), the variations of
the measured values are high for all components except message broker 1 and CEP,
which is also represented by the low R2 values (R2 < 0.35) for these components.

5. Experiments 65

Component Inf. Cri. R2 c0 c1 c2

MB1 All 0.9743 7.703 ∗ 10−1*** 1.476 ∗ 10−3* 1.175 ∗ 10−6

CEP All 0.9711 4.884 ∗ 10−1*** −2.101 ∗ 10−4 1.897 ∗ 10−6***

Proxy AIC/BIC 0.00037 3.138 ∗ 10−2*** 2.127 ∗ 10−7 -

CEP Query All 0.1653 2.069 ∗ 10−2*** −3.975 ∗ 10−6 -

CEP Update All 0.1269 1.654 ∗ 10−2*** 2.611 ∗ 10−6 -

MB2 All 0.04496 2.051 ∗ 10−1*** 1.818 ∗ 10−5 -

BEP Update All 0.3435 −5.63988 0.06209* -

Table 5.3: Service Time Polynomials for Cost Factor Number of Users in Asynchronous
Mode

Component Inf. Cri. R2 c0 c1 c2

CEP CV 0.9858 88.01*** −467.59*** 660.82***

Proxy CV 0.1957 0.016465*** −0.004503 -

BEP Query BIC 0.9985 0.3772 130.3701*** -

BEP Update All 0.06802 4.0061*** 0.2885 -

Table 5.4: Service Time Polynomials for Cost Factor Number of Events Per Second
Per User in Synchronous Mode

5.5.3 Cost Factor Number of Events Per Second Per User

The number of events per second triggered per user has been determined in Sub-
sect. 4.1.2 to signi�cantly in�uence the total response time. Thus, the cost factor is
analyzed more precisely in the following.

Synchronous Mode

For the synchronous mode, the stable state can be observed up to 0.52 events/s/user
with 250 users, and only values below that threshold are taken into account for
creating the polynomial models. The results and service times as functions of the
number of events per second per user are shown in Table 5.4.

All polynomials are of �rst degree except the polynomial for the CEP component,
which is of second degree. The absolute values of service times of CEP and BEP
components are in�uenced most by this cost factor. CEP component has coe�cients
c1 = −467.59 and c2 = 660.82 in the second degree polynomial, and BEP query
component has coe�cient c1 = 130.3701. The proxy component is in�uenced less by
this cost factor, even having a negative coe�cient, c1 = −0.004503, and also having
a low model quality with R2 = 0.06802.

5. Experiments 66

Component Inf. Cri. R2 c0 c1 c2

MB1 All 0.7553 −12.517*** 39.926*** -

CEP CV 0.979 63.67*** −301.30*** 364.22***

Proxy AIC/BIC 0.8843 0.022798*** 0.042260*** -

CEP Query All 0.001079 0.019709*** 0.009878*** -

CEP Update All 0.6752 0.005124 0.034046*** -

MB2 CV 0.8243 −4.5173*** 15.5789*** -

BEP Update CV 0.9861 16.317** −73.881*** 118.072***

Table 5.5: Service Time Polynomials for Cost Factor Number of Events Per Second
Per User in Asynchronous Mode

Asynchronous Mode

In asynchronous mode, the system is relatively stable up to 0.76 events/s/user for 250
users, whereas all other values have been excluded from creation of the polynomial
models. The results and service times as functions of the events per second per user
are shown in Table 5.5. Only CEP and BEP update component can be modeled
best using second degree polynomials, all other components can be represented by
using �rst degree polynomials. Again, the CEP component is in�uenced strongly by
this cost factor with coe�cients c1 = −301.30 and c2 = 364.22 in a second degree
polynomial, but also both message broker components and the BEP component are
in�uenced to a large extent with coe�cient values greater than 15. The quality of
the models is good for the most components having R2 > 0.75, only CEP query
and CEP update component show smaller values: R2 = 0.001079 for CEP query and
R2 = 0.6752 for CEP update.

5.5.4 Cost Factor Event Type Distribution

The event type distribution does not in�uence the service times of the components,
but the routing of events through the system. Only for join nodes, the service time
of the CEP component is dependent on the event type distribution. But as queueing
networks are stateless, the service time cannot be increased if many events of the
same type are stored in the component.

Events of di�erent types can be routed through the queueing network in di�erent
ways depending on the LHS (queryAPI calls) and RHS (updateAPI calls) of the rules.
For example, one rule might simply update the context depending on an event of type
addBuddy. Another more complex rule might use an event of type attendedMeeting
and several queryAPI calls to determine whether the LHS is ful�lled, and if all
conditions are met, the BEP is updated. Therefore two distinct routings through
the system are needed in order to describe the behavior of di�erent event types
accordingly. Events of type addBuddy, on the one hand, should only pass the BEP

5. Experiments 67

without even triggering a queryAPI call in the BEP component. On the other hand,
events of type attendedMeeting circle through the BEP component for each queryAPI
call to determine the context and to decide whether a BEP update is necessary. Only
if the condition is ful�lled, the updateAPI is called once for this rule.

To model the distinct behavior of events of di�erent types, several classes have to be
used in the queueing network. In the above example, one class would be used to model
addBuddy events and their routing and service times, and another class to represent
attendedMeeting events and their routing as well as service times. Interarrival times
must be chosen for every class independently, so that the di�erent frequencies of
events occurrences can be mapped accurately and the event type distribution is
considered. Routing of events can only be mapped using probabilities in queueing
networks, for example, the event behaving with a probability of 25% like a queryAPI
call to the BEP component and with 75% like an updateAPI call, which is being
routed to the sink afterwards.

In summary, this cost factor can be modeled using one class for each event type and
setting interarrival times and distributions as well as probabilities for routing for
each of the de�ned classes appropriately. To model this cost factor, no adaptations
of service times are necessary, the total response time is rather compounded by
multiple visits to the components with each visit requiring time.

5.5.5 Cost Factor Number of Alpha Nodes

The number of alpha nodes has been determined in Subsect. 4.2.2 to in�uence the
total response time. Thus, the cost factor is analyzed more precisely for synchronous
as well as for asynchronous mode in the following.

Synchronous Mode

For up to 200 alpha nodes the system performs in stable state. Above this threshold,
the system is overloaded and becomes unpredictable. Hence, only values up to 200
alpha nodes are considered to construct the polynomial models. The results and
service times as functions of the number of alpha nodes are shown in Table 5.6.
Service times in BEP query and BEP update components are both of �rst degree,
in the CEP component the service times are modeled best with a second degree
polynomial, and for the proxy component a third degree polynomial is used.

As expected, the number of alpha nodes only has slight to none in�uence on the
proxy and BEP components. The only crucially in�uenced component is the CEP
component, in which the alpha node validation and activation of the according
rules takes place. For this component, the coe�cients are c1 = −1.511596 and
c2 = 0.015103. The quality of all models is poor, only the CEP component has
a reasonable R2 = 0.7923, while all other components have an R2 < 0.5.

5. Experiments 68

Component Inf. Cri. R2 c0 c1 c2

CEP All 0.7923 292.226434*** −1.511596 0.015103**

Proxy CV 0.4856 2.055 ∗ 10−2*** −1.167 ∗ 10−5* 1.002 ∗ 10−7.

BEP Query All 0.08521 116.74004*** 0.01379 -

BEP Update All 0.2699 4.5995978*** −0.0004797* -

Component Inf. Cri. R2 c3 c4 c6

Proxy CV 0.4856 −2.666 ∗ 10−10. - -

Table 5.6: Service Time Polynomials for Cost Factor Number of Alpha Nodes in
Synchronous Mode

Component Inf. Cri. R2 c0 c1 c2

MB1 All 0.8266 4.408* −1.306 ∗ 10−2 3.039 ∗ 10−5**

CEP All 0.8379 5.867*** −1.318 ∗ 10−2** 2.130 ∗ 10−5***

Proxy CV 0.8516 4.166 ∗ 10−2*** 4.255 ∗ 10−5*** -

CEP Update BIC/CV 0.3584 1.716 ∗ 10−2*** 1.536 ∗ 10−5** -

MB2 CV 0.6701 −1.134 1.213 ∗ 10−2** −7.981 ∗ 10−6.

BEP Update CV 0.6547 5.755990*** 0.006609** -

Table 5.7: Service Time Polynomials for Cost Factor Number of Alpha Nodes in Asyn-
chronous Mode

Asynchronous Mode

The system performs in a stable state up to 950 alpha nodes, therefore these results
have been used to create the polynomial models. The results and service times as
functions of the number of alpha nodes are shown in Table 5.7. Service times in
proxy, CEP update and BEP update are modeled by using �rst degree polynomials,
and both message broker components as well as CEP component are using second
degree polynomials.

All components are only slightly in�uenced compared to the synchronous mode,
having coe�cients c1 and c2 smaller than 0.2. The most in�uenced component is
in this case, again, the CEP component, having coe�cients c1 = −1.318 ∗ 10−2

and c2 = 2.130∗10−5. The polynomial models for message broker 1, CEP, and proxy
component show a good quality with R2 > 0.8,message broker 2 and BEP update are
still acceptable with R2 > 0.65. Only the CEP update component is badly modeled
(R2 = 0.3584), which is caused by the variations in the measurements (Fig. A.6).

5. Experiments 69

Component Inf. Cri. R2 c0 c1

CEP CV 0.7789 −24.0026 0.7879***

Proxy All 0.04047 2.239 ∗ 10−2*** −2.903 ∗ 10−7

BEP Query AIC/BIC 0.0001058 90.04*** 1.144 ∗ 10−4

BEP Update All 0.04326 4.6182616*** 0.0001678

Table 5.8: Service Time Polynomials for Cost Factor Number of Beta Nodes in
Synchronous Mode

5.5.6 Cost Factor Number of Beta Nodes

The number of beta nodes has been determined in Subsect. 4.2.3 to in�uence the total
response time. Accordingly, the cost factor is analyzed more precisely for synchronous
as well as for asynchronous mode.

Synchronous Mode

In synchronous mode, the system is relatively stable up to 300 beta nodes, for which
reason all other values have been excluded for the creation of the polynomial models.
The results and service times as functions of the beta nodes are shown in Table 5.8.
All service time polynomials are �rst degree polynomials for this cost factor. The
component most in�uenced by the cost factor is, as expected, the CEP component
having a coe�cient c1 = 0.7879. This component is used to process the joins in the
beta nodes. From the other components only the BEP update is in�uenced noticeably,
it is modeled with coe�cient c1 = 0.0001678. Additionally, the quality of the models
is poor with R2 < 0.05. Only the CEP component, which is the most important
component for this cost factor, can be modeled accurately (R2 = 0.7789).

Asynchronous Mode

In asynchronous mode, the system is relatively stable up to 600 beta nodes, and only
values below this threshold are taken into account for creating the polynomial models.
Results and service times as functions of the beta nodes are shown in Table 5.9.
Only proxy and BEP update component service times can be modeled using �rst
degree polynomials, all other components are modeled best by using second degree
polynomials. This cost factor has the largest in�uence on CEP, having coe�cients
c1 = −6.468 ∗ 10−3 and c2 = 2.242 ∗ 10−5), and also on the BEP update component
with coe�cient c1 = 0.0052295.

5. Experiments 70

Component Inf. Cri. R2 c0 c1 c2

MB1 All 0.759 1.769* −1.081 ∗ 10−2. 3.717 ∗ 10−5***

CEP All 0.6552 8.562 ∗ 10−1 −6.468 ∗ 10−3 2.242 ∗ 10−5**

Proxy All 0.2648 4.011 ∗ 10−2*** 8.287 ∗ 10−6** -

CEP Update AIC/BIC 0.2357 1.531 ∗ 10−2*** 3.145 ∗ 10−6* −4.417 ∗ 10−9*

MB2 AIC/BIC 0.9401 1.738 ∗ 10−1*** 1.736 ∗ 10−4* 3.652 ∗ 10−7**

BEP Update BIC 0.5193 4.5140333*** 0.0052295*** -

Table 5.9: Service Time Polynomials for Cost Factor Number of Beta Nodes in
Asynchronous Mode

Component Inf. Cri. R2 c0 c1 c2

CEP CV 0.9993 3.343 5.924 ∗ 10−1*** −1.607 ∗ 10−4

Proxy BIC 0.7377 3.177 ∗ 10−2*** −2.367 ∗ 10−5*** -

BEP Query All 0.5205 8.192*** −4.470 ∗ 10−3** 5.113 ∗ 10−6*

BEP Update AIC/BIC 0.9605 1.045 ∗ 101*** −1.669 ∗ 10−2*** 1.564 ∗ 10−5***

Component Inf. Cri. R2 c3 c4 c5

CEP CV 0.9993 5.637 ∗ 10−7*** - -

Table 5.10: Service Time Polynomials for Cost Factor Number of Abstractions in Syn-
chronous Mode

5.5.7 Cost Factor Number of Abstractions

The number of abstractions has been determined in Subsect. 4.2.5 to in�uence the
total response time. Accordingly, the cost factor is analyzed more precisely for syn-
chronous and asynchronous mode.

Synchronous Mode

The system performs stable up to 580 abstractions, and all measured values below
this value have been used to create the polynomial models. The results and service
times as functions of the number of abstractions are shown in Table 5.10. For ab-
stractions, the CEP component is, again, the biggest cost driver having coe�cients
c1 = 5.924 ∗ 10−1, c2 = −1.607 ∗ 10−4, and c3 = 5.637 ∗ 10−7 in a third degree poly-
nomial. Service times in BEP query and BEP update components are modeled using
second degree polynomials, and for the proxy component a �rst order polynomial is
used. CEP and BEP update components are adequately modeled having R2 > 0.95,
the proxy component has a reasonable quality of R2 = 0.7377, and the BEP query
components' quality is R2 = 0.5205 due to the variations observable in the graphs
(Fig. A.9).

5. Experiments 71

Component Inf. Cri. R2 c0 c1 c2

MB1 All 0.5809 1.632*** −7.775 ∗ 10−4*** 1.588 ∗ 10−6***

CEP All 0.9993 5.377*** 2.673 ∗ 10−1*** 2.904 ∗ 10−4***

Proxy AIC/BIC 0.07004 1.095 ∗ 10−1*** 6.629 ∗ 10−5 -

CEP Update All 0.9833 8.362 ∗ 10−2*** −9.313 ∗ 10−5 1.627 ∗ 10−6***

MB2 All 0.8214 4.069 ∗ 10−1*** 1.080 ∗ 10−3*** −1.356 ∗ 10−6***

BEP Update All 0.6684 8.6175269*** −0.0044881*** -

Component Inf. Cri. R2 c3 c4 c5

CEP Update All 0.9833 −3.873 ∗ 10−9** 2.903 ∗ 10−12** -

Table 5.11: Service Time Polynomials for Cost Factor Number of Abstractions in Asyn-
chronous Mode

Asynchronous Mode

In asynchronous mode, the system also performs in a stable state for up to 580
abstractions. All values below have been used to create the polynomial models for
this cost factor. Service times as functions of the number of abstractions are shown in
Table 5.11. Only the CEP context update component is modeled with a polynomial of
forth degree, all others are modeled either in second degree (both message broker and
CEP components) or in �rst degree (proxy and BEP update components). Similar to
the synchronous case, the CEP component is in�uenced most, the polynomial model
has coe�cients c1 = 2.673 ∗ 10−1 and c2 = 2.904 ∗ 10−4. The second most in�uenced
component is the BEP component, having a negative coe�cient c1 = −0.0044881.
The CEP and CEP update components are modeled with a good quality (R2 > 0.95),
whereas both message brokers and the BEP update component have an acceptable
quality with R2 > 0.55. Only the proxy component is poorly modeled because of
several variations (R2 = 0.07004).

5.5.8 Cost Factor Number of updateAPI calls

The number of updateAPI calls has been determined in Subsect. 4.2.8 to in�uence
the total response time. To consider the cost factor in the cost model, it is now
discussed further. As the number of updateAPI calls does not change the service
time of particular components, but rather the paths that requests take through the
queueing networks, the visits to the stations and the routing need to be adapted to
model this cost factor adequately.

In synchronous mode, each updateAPI call is one visit to the BEP component. In
the asynchronous case, where both the BEP and local context in the CEP need
to be updated, the request is duplicated and sent to CEP context component and
BEP component. Each update of the context triggers a reevaluation of the CEP if
rules are based on the previously updated context. For example, if a rule triggers

5. Experiments 72

100 updateAPI calls, each update is done separately. In synchronous mode the BEP
component would be visited 100 times, and thus taking 100 times longer than a
request performing only one updateAPI call. Queueing networks do not provide a
mechanism to let the requests traverse through paths in loops, only probabilities for
each path can be set. Hence, requests repeatedly circulating through the BEP before
they leave the system are hard to simulate. The higher the number of loops, the
bigger the variance in the queueing network, which leads to more inaccurate total
response times. Nevertheless, based on experience from former use cases, rules with
a high number of updateAPI calls were not required so far and are expected to be
rarely used. For smaller numbers of updateAPI calls the mapping with probabilities
seems to be accurate enough.

5.5.9 Cost Factor Number of queryAPI calls

The number of queryAPI calls has been determined in Subsect. 4.2.9 to in�uence
the total response time. The cost factor is therefore discussed in more detail. For
the number of queryAPI calls, the same observations as for the updateAPI calls
hold accordingly. Generally, the behavior can be mapped only by using probabilities.
Hence, a distinct number of updates can not be described in the queueing network.

5.5.10 Summary

In this chapter, experiments to determine the in�uence of cost factors were described
and polynomial models for cost factors

� number of users

� number of events per second

� number of alpha

� number of beta nodes,

� and number of abstractions

have been presented. Additionally, a possible solution for integrating the cost factors

� event type distribution

� number of updateAPI calls,

� and number of queryAPI calls

has been discussed. Within the next chapter, the cost model is presented, using
the experimental results gained in this chapter. The required model inputs and the
model application method are explained, so that an estimation of response time and
throughput can be made.

Chapter 6

Cost Model

This chapter summarizes the modeling method and the resulting cost model, for
which the cost factors have been identi�ed and modeled as polynomial functions in
the previous chapter. Furthermore, the last section of this chapter explains how to
apply the cost model to estimate the response time for a speci�c use case.

6.1 Modeling Method

The cost model has been derived in two steps. First, the queueing networks based
on the structure and architecture of the Gami�cation Platform have been de�ned
in Sect. 3.2. To predict response times with the generated queueing networks, the
service times and service time distributions of each component used in the queueing
networks were determined by performing experiments. Subsequently, the experiment
results were used to model the in�uence of each cost factor on service times of each
component and mode with polynomial regression (Sect. 5.5) in combination with
information criteria AIC, BIC and cross-validation.

6.2 Cost Model

The overall approach and connections between required and delivered inputs are
illustrated in Fig. 6.1. The required inputs to describe the queueing network (as
listed in Subsect. 2.2.4) are shown as rounded rectangles. Models are depicted as
gray rectangles. The dotted shapes represent inputs which can be delivered based
on either the architecture or the use case. From these inputs, the required inputs for
the queueing network models can be calculated or provided directly.

For each cost factor, a polynomial model is delivered based on the experimental
measurements. With these polynomial models and the input of a speci�c use case,
the service times can be calculated, which, in turn, are used in the queueing network
model. If all input values needed in the queueing network models are available,

73

6. Cost Model 74

Cost Factor

Architecture

Interarrival

Times

Service Time

Component

Service Time

Distribution

Probabilities

for Routing

Classes

Use Case/

Application

Rules

Event Types

Events/s

Interarrival Times

Distributions

Measurements

Polynomial

Model
Factor Value

Queueing

Network

Model

Structure

Performance

Estimation

Figure 6.1: Schematic Overview of Cost Model

the performance in terms of response time and throughput can be calculated or
simulated, e.g., by using the queueing network simulation program JSIMgraph.

The architecture is one of the two main inputs. The architecture of the Gami�cation
Platform determines the structure of the queueing network models. A system analysis
(Chap. 3) is used to gain insights into the system and to determine the important
components of the Gami�cation Platform, which are used in the queueing networks.
The architecture is transferred into two queueing networks, one for synchronous and
one for asynchronous communication between the components.

Classes are de�ned by the types of events which are sent by the application, whereby
each event type is represented by one class. Each class has its own service times,
interarrival times, and probabilities for routing. The interarrival time of a class (time
between two events of the same type) as well as the interarrival time distribution is
given by the application's expected event rate. Probabilities for routing that de�ne
which route an event takes through the queueing network, are determined based on
the rules.

Loops such as multiple visits at one component, e.g., at the BEP or CEP Context
component for multiple queryAPI calls, are problematic to illustrate correctly in
queueing networks. Rules whose behavior changes over time, e.g., only the �rst ten
events of a type trigger an updateAPI call, also cannot be modeled correctly in
queueing networks as probabilities de�ned for classes remain constant over time.

6. Cost Model 75

Queueing networks perform independently of former events. Join nodes, for example,
are dependent on previous events and usually slow down as more events are already
saved in left and right memories of the join node. This behavior cannot be accurately
represented in the queueing network, too.

6.3 Model Application Method

The cost model has been developed to cover several scenarios or use cases in esti-
mating response time and throughput. To generate an estimation, certain steps need
to be performed.

First, the values of all cost factors need to be forecasted. For instance, the expected
number of users has to be chosen, e.g., 200 users are expected to use the application
regularly. Each cost factor has to be forecasted as accurately as possible. Of course,
it is also possible to compare two di�erent settings by varying values and performing
all following steps twice.

Furthermore, it has to be decided whether the Gami�cation Platform should be used
in synchronous or asynchronous mode. Usually, the response time in asynchronous
case is faster, but as the context is duplicated, this is achieved at the expense of an
increased memory space consumption.

The forecasted values have to be inserted into the polynomial formulas de�ned in
Sect. 4 to estimate service times for each component. As for each cost factor a di�erent
value is estimated, these values need to be combined. For example, for 200 users the
service time of the CEP component is expected to be 18ms. For the next cost factor,
e.g., the event rate of 450 events/hour, the service time of the CEP component is
expected to be 5ms. Since the base line is set at 250 users and 0.5 events/s, the cost
factors have to be combined using these values.

The adaptation factor can be calculated by comparing the predicted value to the
base line value, e.g.

18ms/20ms = 0.9

for the cost factor user. With this adaptation factor, the results from other estima-
tions, which are based on di�erent cost factors, can be adapted. For example, with
cost factor events/s/user the estimated value is 5ms. By multiplying this estimation
value with the adaptation factor, an estimation result can be calculated including
both cost factors:

0.9 ∗ 5ms = 4.5ms

Alternatively, the same approach can be used starting with the cost factor even-
t/s/user. The adaptation factor for this cost factor is

5ms/20ms = 0.25,

6. Cost Model 76

Key Figure Cost Factor User Cost Factor Events/s/User

Base Line 250 0.5

Base Line Value 20ms 20ms

Estimation 200 0.1

Estimation Value 18ms 5ms

Adaptation Factor 18/20 = 0.9 5/20 = 0.25

Result 0.25 ∗ 18ms = 4.5ms = 0.9 ∗ 5ms

Table 6.1: Service Time Estimation Using Multiple Cost Factors

which can be multiplied with the 18ms estimated by the cost factor user to get to
the same estimation of

0.25 ∗ 18ms = 4.5ms.

The approach is summarized in Table 6.1, where as a simpli�cation the adaptation
factors are only multiplied. To estimate the relationships more precisely, a full facto-
rial design has to be used in order to determine the exact interactions. Since no full
factorial design was carried out, the cost factors are assumed to be multiplicative as
a simpli�cation. Every polynomial is based on a certain con�guration and has to be
adapted to the given scenario.

Chapter 7

Validation of the Cost Model

In this chapter, the cost model is validated. First, a quantitative validation is per-
formed, in which the performance predictions of the cost model are compared to
measured data. Subsequently, a qualitative validation is carried out, in which the
cost model is rated based on model estimate criteria, model method criteria, and
application criteria. Furthermore, to illustrate the validation in a authentic environ-
ment, a concrete example (Sect. 1.6) is chosen as validation of one real use case.

7.1 Quantitative Validation

The quantitative validation is done for two di�erent cases. Case I describes the
predicted value using the queueing network models and service times of the compo-
nents as measured. Case II describes the complete usage with two model layers: The
queueing network models, and service times are predicted by the polynomial models.
Both cases are compared to the actually measured values.

In Table 7.1 several di�erent, randomly selected scenarios are presented with the
measured response time (in ms), the predicted response time (in ms) using Case I and
II, and the calculated MREs for both approaches. The scenarios are measured using
the same rules and workload as described in Sect. 5.3 and Sect. 5.4. For example,
for 50 users in synchronous mode, 11.462ms were measured. By using the measured
service times for the components, 11.733ms are predicted with a MRE of 0.024. With
the calculated service times, a response time of 10.624ms is estimated, compared to
the measured response time the MRE is 0.073.

The validation is separated into validation of the cost model in synchronous mode
at the top and asynchronous mode below. For each mode, 4 di�erent scenarios are
compared in measured and simulated values. In synchronous mode, the MMRE for
Case I is 0.106 and for Case II it is 0.150. Additionally, PRED(25) of both cases
is 1, since no extreme outliers are found. If more cases are simulated, the value for
PRED(25) is expected to be smaller, because outliers will occur in a larger amount
of scenarios.

77

7. Validation of the Cost Model 78

Scenario Measured Case I MRE I Case II MRE II
S
y
n
c

50 Users 11.462 11.733 0.024 10.624 0.073

100 Alpha Nodes 402.480 491.999 0.222 348.071 0.135

100 Beta Nodes 49.561 47.354 0.045 61.015 0.231

500 Abstractions 343.821 394.412 0.147 398.904 0.160

MMRE 0.106 0.150

PRED(25) 1 1

A
sy
n
c

200 Users 7.548 7.251 0.039 8.993 0.191

500 Alpha Nodes 22.454 21.285 0.052 22.131 0.014

100 Beta Nodes 7.710 7.148 0.073 8.935 0.159

500 Abstractions 223.665 246.824 0.104 245.301 0.097

MMRE 0.067 0.115

PRED(25) 1 1

Table 7.1: Quantitative Validation of Cost Model Comparing Measured and Pre-
dicted Response Times

In asynchronous mode, the results are even better: MMRE of Case I is 0.067 and
for Case II it is 0.115. PRED(25) is in both cases 1, since again, no scenario has
outliers.

The di�erence in prediction quality between Case I and Case II is due to the vari-
ations in the measurements, which are smoothed in the polynomial models. As the
variance is high in the measurements, the polynomial models which represent the
service time function often show poor quality having R2 near to 0. This leads to
inaccurate service times in the simulations compared to the measured ones. Hence,
the di�erence between simulated and measured response time is large in a few cases.

7.2 Qualitative Validation: Model Criteria

In this section, the cost model will be discussed using the model criteria from Sect.
2.1.3. This validation emphasizes room for improvement for further versions of the
cost model as well as in the automation of the approach, which is further discussed
in the outlook (Chap. 9).

For the model estimate criteria (Table 7.2), all criteria are met at a high intensity.
However, also the inputs required to create the estimations are high, since for each
cost factor a forecasted value is required, even all rules have to be known in detail
to be able to predict the number of alpha and beta nodes.

The model method criteria (Table 7.3) show, on the one hand, that the repeatability
of the method is high, i.e. the test can be repeated easily, and the transparency is
also high. On the other hand, several assumptions need to be made (for example,

7. Validation of the Cost Model 79

Model and Estimate Criteria Intensity Description

Quality of model and estimate high MMRE of four simulations are 0.111
(synchronous mode) and 0.167 (asyn-
chronous mode), PRED(25) is 1 in both
cases

Inputs required high values for all cost factors needed

Completeness high response time and throughput are de-
livered

Type of estimates high both average measure plus standard er-
ror are provided

Calibration high calibration needed to di�erentiate syn-
chronous and asynchronous mode, no
further calibration needed

Interpretability high results are response times and through-
put, which can be interpreted easily
even if one is unfamiliar with the cost
model

Table 7.2: Model Estimate Criteria

Estimation Method Criteria Intensity Description

Assumptions high several restrictions and simpli�cations
had to be used

Repeatability high test results are repeatable, queueing net-
works are de�ned by the architecture of
the platform

Complexity high estimation method consists of several
complex steps

Automation (Modeling) low each cost factor had to be tested indi-
vidually, and polynomial models had to
be applied thereafter, support by tools
(java, R, JMT) are used wherever possi-
ble

Transparency high applied statistics are described and the
whole process from data to cost model is
transparently described

Table 7.3: Model Method Criteria

distribution of the service times based on few results), the complexity of the modeling
method is high and also the automation of modeling is low, even though programming
and scripts (e.g., Appendix C) are used, but they need to be adapted slightly for
modeling every cost factor.

With the application criteria (Table 7.4), the application of the cost model is eval-
uated. The application coverage is medium, since many cost factors have been ex-

7. Validation of the Cost Model 80

Application Criteria Intensity Description

Application Coverage medium a few cost factors were excluded, full facto-
rial design has to be implemented in order
to detect in�uences between cost factors

Generalizability low cost model is not reusable in other contexts
as it is dependent on the architecture of the
platform

Comprehensiveness high response time in total as well as service
time of components can be estimated, bot-
tlenecks can be found

Availability of estimates medium estimation can be done as early as forecasts
for the cost factors levels are available

Automation (Method Usage) low manual calculation of service times before
inserting these values into queueing network
model to generate the response time estima-
tion is necessary

Table 7.4: Application Criteria

cluded, and the applied test design lacks information on relationships between cost
factors. Further measurements are needed in order to improve this point. Generaliz-
ability and automation of the method usage are low, the latter one could be improved
by developing a tool which automatically calculates service times based on the cost
factors and inserts these values into the queueing network model. Comprehensiveness
is high since the response time can be easily interpreted, the availability of estimates
is medium since the estimation can be done as soon as cost factor levels are available.

7.3 Validation Based On a Use Case

The application and its purpose used for this validation have been described in
Sect. 1.6. For the implementation of the gami�cation concept, 43 rules (List. B.3-
B.13) as de�ned in Appendix B are deployed. 11 rules are used to reward or count
points based on events, for example, giving a buddy point for each added buddy.
Additionally, 30 rules (List. B.14-B.43) check whether the user completed missions,
and, if so, reward badges and assign new missions. A new user rule (List. B.1) is used
to create the user in the BEP and assign him the �rst missions. The met person rule
(List. B.2) uses a join node to count how many people from di�erent departments
one has met. To ensure that people are not rewarded twice if they meet again, an
abstract event is created.

The real use case is simulated and measured for 300 seconds with 200 users in both
synchronous and asynchronous mode. In synchronous mode, the interarrival time of
all event types is approx. 500ms, which is an event rate of 0.01 events per second per
user. The interarrival time in asynchronous mode is simulated being approx. 50ms,

7. Validation of the Cost Model 81

Scenario Measured (ms) Estimation (ms) MRE

200 User Sync Mode 200.259 287.506 0.436

200 User Async Mode 11.561 13.272 0.148

Table 7.5: Validation of Cost Model Comparing Measured and Predicted Response
Times for Use Case

Figure 7.1: Synchronous Simulated Response Time for Use Case

that is an event rate of 0.1 events per second per user. The RETE tree for the deployed
rules is shown in Fig. B.1. This tree has been extracted from the RETE tree view in
Drools. In total, 14 alpha nodes, eight beta nodes and one abstraction are used within
the rules. A warmup phase with four users is simulated before taking measurements.
Furthermore, the �rst ten seconds have been excluded from the measurement results.

Results for asynchronous and synchronous mode are summarized in Table 7.5. The
measured response time in synchronous mode for 200 users is 200.259ms. The sim-
ulation provides a result of 287.506ms (Fig. 7.1), so that the MRE is 0.436. For the
asynchronous mode, which is simulating 200 users, too, the measured response time
is 11.561ms, whereas the simulation estimates a response time of 13.272ms (Fig. 7.2).
The MRE in that case is 0.148.

Deviations between measured and estimated response time are not negligible, but
explicable. For example, the rulemetPerson (List. B.13) includes a beta nodes joining
speci�c events. This join node lets the working memory grow, as events are not

7. Validation of the Cost Model 82

Figure 7.2: Asynchronous Simulated Response Time for Use Case

retracted and more and more events need to be joined in the node. Additionally, the
probabilities of rules �ring their actions do change over time. Most of the rules are
provided to be �red only once for every user (to complete the mission and reward the
user with a badge), so that the probabilities change over time. As already mentioned,
such a behavior cannot be modeled accurately using stateless queueing networks.
Furthermore, the factors in this use case are assumed to be multiplicative since
the relationships between factors have not been measured. This very simplifying
assumption is expected to also lead to inaccuracies.

7.4 Conclusion

The quantitative validation of the cost model shows that the response time can be
predicted accurately. The MMRE is 0.167 and PRED(25) is 1 in synchronous mode,
and in asynchronous mode an MMRE of 0.111 and PRED(25) of 1 are calculated for
the response time prediction. The error is based on both variances in the polynomial
models and queueing network models. Additionally, the validation based on the more
complex use case provides an acceptable result for synchronous mode (MRE =
0.436) and a good result in asynchronous mode (MRE = 0.148).

The qualitative validation shows need for improvement in several areas, for example,
automating the method usage, using less assumptions and restrictions, and including
more cost factors to improve the accuracy of the estimations. In the outlook it is

7. Validation of the Cost Model 83

further discussed how these points can be addressed. The next chapter summarizes
the main results of the thesis and gives an overview on the researched cost factors.

Chapter 8

Summary

This summary concludes the main results of the thesis. A two-layered cost model,
consisting of a queueing network model and several polynomial models, is provided
and was validated to show that the estimation accuracy and model quality is ac-
ceptable. Response time and throughput can be estimated for di�erent scenarios by
using the presented cost model. The accuracy of the cost model was calculated by
comparing simulated and measured response time, and it shows an MMRE of 0.150
in synchronous mode, and an MMRE of 0.115 in asynchronous mode. For the use
case involving several more complex rules, an MRE of 0.436 in synchronous mode
and an MRE of 0.148 have been determined.

Several cost factors were discussed and researched within the thesis, which are listed
in Table 8.1. For every cost factor, the relevant subsections of the thesis are linked,
in which the cost factor is discussed and its exact in�uence is determined. A sign
shows whether the cost factor is relevant, and, hence, included in the cost model.

In the user-related category three factors have been found to be relevant and are
included in the cost model: Number of users, events/s/user and the event type dis-
tribution. For the category concerning rule-related cost factors, several cost factors
have been found to signi�cantly in�uence the response time, mostly because they
a�ect the CEP behavior. In this category, the number of alpha and beta nodes, the
number of abstractions, updateAPI calls, and queryAPI calls have been included in
the cost model. Node types and growth of the working memory have been found to
signi�cantly in�uence the response time, but could not be modeled due to time lim-
itations. Additionally, the in�uence of independent rule streams and table structure
on the response time could not be taken into account. Several infrastructure-related
cost factors were found not to in�uence the response time. Indeed, for a insu�ciently
dimensioned server RAM the rule engine does not perform correctly any longer, e.g.,
not rewarding the expected amount of points to the user. As such an incorrect behav-
ior has to be avoided in any case, the infrastructure has to be adequately dimensioned
at any time. A few factors, such as database (con�guration) and queue scheduling
algorithm are expected to in�uence the response time, but were also excluded in the
cost model.

84

8. Summary 85

Cost Factor Relevant Modeled
U
se
rs

Number of Users (4.1.1/5.5.2) X X

Events/s/User (4.1.2/5.5.3) X X

Event Type Distribution (4.1.3/5.5.4) X X

R
u
le
s

Number of Rules (4.2.1) � �

Number of Alpha Nodes (4.2.2/5.5.5) X X

Number of Beta Nodes (4.2.3/5.5.6) X X

Node Types (4.2.4) X �

Number of Abstractions (4.2.5/5.5.7) X X

Working Memory Growth Rate (4.2.6) X �

Independent Rule Streams (4.2.7) ? �

Number of UpdateAPI calls (4.2.8/5.5.8) X X

Number of QueryAPI calls (4.2.9/5.5.9) X X

Size of Tables (4.2.10) � �

Structure of Tables (4.2.11) ? �

In
fr
a
st
ru
ct
u
re

Database (4.3.1) X �

Queue Scheduling Algorithm (4.3.2) X �

Connection Pools: max. Number of Threads (4.3.3) � �

Connection Pools: Accept Count (4.3.3) � �

Transmission Packet Sizes (4.3.4) ? �

RAM of Server (4.3.5) � �

X = yes; � = no; ? = unknown

Table 8.1: Summary of Studied Cost Factors

Regarding the research questions, the most relevant cost factors have been identi�ed
and measured in their in�uence on the performance of the Gami�cation Platform.
The cost model presented in the thesis and its usage were described and exemplarily
applied for a use case.

Chapter 9

Outlook

This chapter discusses further research areas, which have been identi�ed throughout
the thesis. It also discusses problems and restrictions of the thesis and how these can
be treated in future. The aspects which o�er room for improvement are the following.

Automation of Model Usage Estimating the response time with the model
is a sophisticated process consisting of many steps. Facilitating the usage of the
cost model is of high priority. Automatic analysis of rules or whole gami�cation
concepts, but also the integration of the cost model into the Gami�cation Platform
are possible. With an automated cost model usage, decisions between alternatives
and comparisons of di�erent gami�cation concepts would also be simpli�ed.

Investigate Relationships Between Factors In the presented cost model, all
factors are assumed to be multiplicative. The measured error for the use case al-
ready demonstrates that this assumption is in need of improvement. Cost factors are
in�uencing each other, and the relationships need to be researched, e.g., by using
a full factorial design. With this test design, independent factors can be identi�ed,
too. This knowledge can be utilized to optimize gami�cation concepts to exploit such
independent relations.

Calibrate and Improve the Cost Model The cost model is very �exible and al-
lows easy calibration and adaptations. As soon as more cost factors are investigated,
they need to be added to the cost model. Cost factors which have been excluded,
such as network and transmission times, or working memory growth, de�nitely need
to be included to assess whether a feedback can be given in less than 400ms to the
user in any case. The current cost model is using queueing networks as its modeling
technique, but in order to include other factors, a di�erent or extended modeling
technique, for example, queueing petri nets need to be considered as well. Besides,
data from new applications using the Gami�cation Platform should be used to cali-
brate the model and to even build a knowledge base which would enable to calibrate
the cost model automatically.

86

9. Outlook 87

Earlier Estimation of Performance The presented cost model can only give
an accurate estimation if precise information is already available. A cost and perfor-
mance estimation might be useful for funding a gami�cation concept even though
the details needed for the cost model are not de�ned yet. Hence, a cost model pro-
viding estimations in an earlier phase is desirable, e.g. similar to COCOMO, which
provides three models, each for a di�erent project phase. Bottlenecks and problems
would already become obvious at early stages and could, thus, be solved easier.

Investigate a Broader Range of Workloads In this thesis, only workload caus-
ing a steady state has been investigated. Since workloads in real applications are
seldom as smooth as the simulated and measured ones, other workloads should be
researched. Spike tests with heavy peak loads or stress tests under extreme condi-
tions need to be conducted just like the investigation of the ramp-up phase. Service
times and response times need to be observed under di�erent circumstances to be
predictable for any workload. Additionally, workload data generated by real applica-
tions should also be used to simulate real scenarios.

Allow Optimization of the Gami�cation Platform Based on Cost Model

Estimations The Gami�cation Platform is con�gurable in several ways. For ex-
ample, the scheduling of queues can be optimized for a given scenario as discussed
in Kleinrock [1976]. The optimal con�guration for queue scheduling could be ascer-
tained by simulating di�erent scheduling algorithms in the cost model. Furthermore,
database parameters, RAM size, cache size, and several other con�guration parame-
ters could be optimized by including them into the cost model and determining the
best possible con�guration with the cost model.

Bibliography

Adiri, I. (1969). Computer Time-Sharing Queues with Priorities. J. ACM, 16(4):631�
645.

Akaike, H. (1974). A new look at the statistical model identi�cation. Automatic
Control, IEEE Transactions on, 19(6):716 � 723.

Albert, L. (1989). Average Case Complexity Analysis of RETE Pattern-Match Algo-
rithm and Average Size of Join in Database. In Proceedings of the Ninth Conference
on Foundations of Software Technology and Theoretical Computer Science, pages
223�241, London, UK, UK. Springer-Verlag.

Albert, L. and Fages, F. (1988). Average Case Complexity Analysis of the Rete Multi-
Pattern Match Algorithm. In Proceedings of the 15th International Colloquium on
Automata, Languages and Programming, ICALP '88, pages 18�37, London, UK,
UK. Springer-Verlag.

Albert, L. and Régnier, M. (1991). Complexity of recursive production rules ex-
ecution. In Proceedings of the 3rd symposium on Mathematical fundamentals of
database and knowledge base systems, MFDBS 91, pages 188�200, New York, NY,
USA. Springer-Verlag New York, Inc.

Alfons, A. (2013). R Documentation - Cross-validation tools for regression mod-
els. Available online at http://cran.r-project.org/web/packages/cvTools/cvTools.pdf
(visited on 12.03.2013).

Apache Software Foundation (2013). ActiveMQ. Available online at http://activemq.
apache.org/how-does-a-queue-compare-to-a-topic.html (visited on 14.02.2013).

Barachini, F. (1994). Frontiers in run-time prediction for the production-system
paradigm. AI Mag., 15(3):47�61.

Barachini, F., Mistelberger, H., and Gupta, A. (1992). Run-time prediction for
production systems. In Proceedings of the tenth national conference on Arti�cial
intelligence, AAAI'92, pages 478�485. AAAI Press.

Bertoli, M., Casale, G., and Serazzi, G. (2009). JMT - Performance Engineering
Tools for System Modeling. SIGMETRICS Perform. Eval. Rev., 36(4):10�15.

88

http://cran.r-project.org/web/packages/cvTools/cvTools.pdf
http://activemq.apache.org/how-does-a-queue-compare-to-a-topic.html
http://activemq.apache.org/how-does-a-queue-compare-to-a-topic.html

Bibliography 89

Black, K. (2009). Business Statistics: Contemporary Decision Making. Wiley Plus
Products Series. John Wiley & Sons.

Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., and Selby, R. (1995).
Cost Models for Future Software Life Cycle Processes: COCOMO 2.0. In ANNALS
OF SOFTWARE ENGINEERING, pages 57�94.

Boehm, B. W. (1984). Software Engineering Economics. Software Engineering, IEEE
Transactions on, SE-10(1):4 �21.

Box, G. E. and Hunter, J. S. (2000). The 2k-p fractional factorial designs part I.
Technometrics, 42(1):28�47.

Boyer, B. (2008a). Robust Java benchmarking, Part 1: Issues Understand the
pitfalls of benchmarking Java code. Available online at http://www.ibm.com/
developerworks/java/library/j-benchmark1/index.html (visited on 07.03.2013).

Boyer, B. (2008b). Robust Java benchmarking, Part 2: Statistics and solutions:
Introducing a ready-to-run software benchmarking framework. Available online
at http://www.ibm.com/developerworks/library/j-benchmark2/index.html (visited on
07.03.2013).

Briand, L. C., El Emam, K., Surmann, D., Wieczorek, I., and Maxwell, K. D. (1999).
An assessment and comparison of common software cost estimation modeling tech-
niques. In Software Engineering, 1999. Proceedings of the 1999 International Con-
ference on, pages 313 �323.

Briand, L. C. andWieczorek, I. (2002). Resource Estimation in Software Engineering.
John Wiley and Sons, Inc.

Chrysler, E. (1978). Some basic determinants of computer programming productiv-
ity. Commun. ACM, 21(6):472�483.

Cohen, J. (1968). Multiple regression as a general data-analytic system. Psychological
Bulletin, 70:426�443.

Davis, R., Buchanan, B., and Shortli�e, E. (1977). Production rules as a representa-
tion for a knowledge-based consultation program. Arti�cial Intelligence, 8(1):15�
45.

Deterding, S., Sicart, M., Nacke, L., O'Hara, K., and Dixon, D. (2011). Gami�cation.
using game-design elements in non-gaming contexts. In CHI '11 Extended Abstracts
on Human Factors in Computing Systems, CHI EA '11, pages 2425�2428, New
York, NY, USA. ACM.

Doorenbos, R. B. (1995). Production matching for large learning systems. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, USA.

Faraway, J. J. (2002). Practical Regression and Anova using R. CRC Press. Avail-
able online at http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf (visited on
14.02.2013).

http://www.ibm.com/developerworks/java/library/j-benchmark1/index.html
http://www.ibm.com/developerworks/java/library/j-benchmark1/index.html
http://www.ibm.com/developerworks/library/j-benchmark2/index.html
http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf

Bibliography 90

Feitelson, D. (2002). Workload Modeling for Performance Evaluation. In Calzarossa,
M. and Tucci, S., editors, Performance Evaluation of Complex Systems: Techniques
and Tools, volume 2459 of Lecture Notes in Computer Science, pages 114�141.
Springer Berlin Heidelberg.

Forgy, C. (1982). Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem. Arti�cial Intelligences, 19(1):17�37.

Forgy, C. L. (1979). On the e�cient implementation of production systems. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, USA.

Gray, J., editor (1993). The Benchmark Handbook for Database and Transaction
Systems (2nd Edition). Morgan Kaufmann.

Gupta, A. (1984). Parallelism in Production Systems: The Sources and Ex-
pected Speed-up. Technical report, Fifth International Workshop Agence de
l'Informatique.

Gupta, A., Forgy, C., Newell, A., and Wedig, R. (1986). Parallel algorithms and ar-
chitectures for rule-based systems. In Proceedings of the 13th annual international
symposium on Computer architecture, ISCA '86, pages 28�37, Los Alamitos, CA,
USA. IEEE Computer Society Press.

Hayashi, F. (2000). Econometrics. Princeton Univ. Press, Princeton, NJ [u.a.].

Herzig, P., Ameling, M., and Schill, A. (2012a). A Generic Platform for Enterprise
Gami�cation. In Software Architecture (WICSA) and European Conference on
Software Architecture (ECSA), 2012 Joint Working IEEE/IFIP Conference on,
pages 219 �223.

Herzig, P., Strahringer, S., and Ameling, M. (2012b). Gami�cation of ERP Systems
� Exploring Gami�cation E�ects on User Acceptance Constructs, pages 793�804.
GITO.

Jain, R. (1991). The art of computer systems performance analysis: techniques for
experimental design, measurement, simulation, and modeling. Wiley professional
computing. Wiley.

Jorgensen, M. and Shepperd, M. (2007). A Systematic Review of Software Devel-
opment Cost Estimation Studies. Software Engineering, IEEE Transactions on,
33(1):33 �53.

Kendall, D. G. (1953). Stochastic Processes Occurring in the Theory of Queues and
their Analysis by the Method of the Imbedded Markov Chain. The Annals of
Mathematical Statistics, 24(3):pp. 338�354.

Kenneth P. Burnham, D. R. A. (2004). Multimodel Inference: Understanding AIC
and BIC in Model Selection. Sociological Methods & Research, 33(2):261�304.

Bibliography 91

Kirk, R. (2007). Statistics: An Introduction. International student edition. Thom-
son/Wadsworth.

Kleinbaum, D. (2007). Applied Regression Analysis and Other Multivariable Methods.
Duxbury applied series. Brooks/Cole.

Kleinrock, L. (1975). Queueing Systems: Theory. Queueing Systems. Wiley.

Kleinrock, L. (1976). Queueing Systems: Computer applications. Wiley-Interscience
Publication. Wiley.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation
and model selection. pages 1137�1143. Morgan Kaufmann.

Kurose, J. F. and Ross, K. (2013). Computer Networking: A Top-down Approach.
Pearson Education, Limited, Boston, MA, USA, 6th edition.

M2 Research (2012). Gami�cation in 2012. Available online at http:
//gamingbusinessreview.com/wp-content/uploads/2012/05/Gami�cation-in-2012-
M2R3.pdf (visited on 05.02.2013).

Menasce, D. and Gomaa, H. (2000). A method for design and performance mod-
eling of client/server systems. Software Engineering, IEEE Transactions on,
26(11):1066�1085.

Menasce, D. A. and Almeida, V. (2001). Capacity Planning for Web Services: metrics,
models, and methods. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st
edition.

Menzies, T., Chen, Z., Hihn, J., and Lum, K. (2006). Selecting Best Practices for
E�ort Estimation. Software Engineering, IEEE Transactions on, 32(11):883 �895.

Paton, N. W. and Díaz, O. (1999). Active database systems. ACM Comput. Surv.,
31(1):63�103.

Port, D. and Korte, M. (2008). Comparative studies of the model evaluation crite-
rions mmre and pred in software cost estimation research. In Proceedings of the
Second ACM-IEEE international symposium on Empirical software engineering
and measurement, ESEM '08, pages 51�60, New York, NY, USA. ACM.

Rawlings, J., Pantula, S., and Dickey, D. (1998). Applied Regression Analysis: A
Research Tool. Springer Texts in Statistics. Springer.

SAP AG (2013). MaxDB - Database Parameter. Available online at http://
maxdb.sap.com/doc/7_8/44/bd1ec6a5d51388e10000000a155369/content.htm (vis-
ited on 12.04.2013).

Skousen, R., Lonsdale, D., and Parkinson, D. (2002). Analogical Modeling: An
Exemplar-Based Approach to Language. Human cognitive processing. J. Benjamins
Pub.

http://gamingbusinessreview.com/wp-content/uploads/2012/05/Gamification-in-2012-M2R3.pdf
http://gamingbusinessreview.com/wp-content/uploads/2012/05/Gamification-in-2012-M2R3.pdf
http://gamingbusinessreview.com/wp-content/uploads/2012/05/Gamification-in-2012-M2R3.pdf
http://maxdb.sap.com/doc/7_8/44/bd1ec6a5d51388e10000000a155369/content.htm
http://maxdb.sap.com/doc/7_8/44/bd1ec6a5d51388e10000000a155369/content.htm

Bibliography 92

Solomatine, D. P., See, L. M., and Abrahart, R. J. (2008). Data-Driven Modelling:
Concepts, Approaches and Experiences. In Abrahart, R. J., See, L. M., and Solo-
matine, D. P., editors, Practical Hydroinformatics, volume 68 of Water Science
and Technology Library, pages 17�30. Springer Berlin Heidelberg.

Stuckenschmidt, H. and Broekstra, J. (2005). Time � Space Trade-o�s in Scaling up
RDF Schema Reasoning. In Proceedings of the 2005 international conference on
Web Information Systems Engineering, WISE'05, pages 172�181, Berlin, Heidel-
berg. Springer-Verlag.

Sun Microsystems, Inc (2012). Java Message Service Speci�cation Version 1.1.
Available online at http://download.oracle.com/otndocs/jcp/7195-jms-1.1-fr-spec-
oth-JSpec/ (visited on 13.02.2013).

The Apache Software Foundation (2013). Apache Tomcat Con�guration Reference.
Available online at http://tomcat.apache.org/tomcat-6.0-doc/con�g/http.html (vis-
ited on 29.04.2013).

The JBoss Drools Team (2013). Drools Expert User Guide, Version 5.5.0.Final.
Available online at http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-
docs/pdf/drools-expert-docs.pdf (visited on 29.01.2013).

The R Foundation for Statistical Computing (2013a). Introduction to R. Available
online at http://www.r-project.org/about.html (visited on 27.02.2013).

The R Foundation for Statistical Computing (2013b). R Documentation - Fitting
Linear Models. Available online at http://stat.ethz.ch/R-manual/R-patched/library/
stats/html/lm.html (visited on 27.02.2013).

The R Foundation for Statistical Computing (2013c). R Documentation - Sum-
marizing Linear Model Fits. Available online at http://stat.ethz.ch/R-manual/R-
patched/library/stats/html/summary.lm.html (visited on 08.05.2013).

Thom, J., Millen, D., and DiMicco, J. (2012). Removing gami�cation from an en-
terprise SNS. In Proceedings of the ACM 2012 conference on Computer Supported
Cooperative Work, CSCW '12, pages 1067�1070, New York, NY, USA. ACM.

Wagenmakers, E.-J. and Farrell, S. (2004). AIC model selection using Akaike weights.
Psychonomic Bulletin & Review, 11:192�196.

Whitley, E. and Ball, J. (2002). Statistics review 6: Nonparametric methods. Critical
Care, 6:1�5.

Yu, T. and Jajodia, S. (2007). Secure Data Management in Decentralized Systems.
Advances in Information Security. Springer Science+Business Media, LLC.

Zichermann, G. and Cunningham, C. (2011). Gami�cation by Design: Implementing
Game Mechanics in Web and Mobile Apps. O'Reilly Media.

http://download.oracle.com/otndocs/jcp/7195-jms-1.1-fr-spec-oth-JSpec/
http://download.oracle.com/otndocs/jcp/7195-jms-1.1-fr-spec-oth-JSpec/
http://tomcat.apache.org/tomcat-6.0-doc/config/http.html
http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/pdf/drools-expert-docs.pdf
http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/pdf/drools-expert-docs.pdf
http://www.r-project.org/about.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/lm.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/lm.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/summary.lm.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/summary.lm.html

Appendix A

Test Results � Polynomial Model

Charts

93

A. Test Results � Polynomial Model Charts 94

20 40 60 80 100 120

2
4

6
8

10

CEP − 1. Polynomial (CV)

Users

T
im

e
in

 m
s

● ● ●

●

●

●

●

●

●
●

●

●

●

● ●Median Mean Model

20 40 60 80 100 120

0.
01

4
0.

01
8

0.
02

2

Proxy − 2. Polynomial (CV)

Users

T
im

e
in

 m
s

●
●

●

● ●

●

●
● ●

● ● ● ●

● ●Median Mean Model

20 40 60 80 100 120

1.
0

1.
5

2.
0

2.
5

BEP Query − 1. Polynomial (BIC)

Users

T
im

e
in

 m
s

●

●
●

●

●

●
● ●

●

●
●

●

●
● ●Median Mean Model

20 40 60 80 100 120

4.
2

4.
4

4.
6

4.
8

5.
0

5.
2

BEP Update − 1. Polynomial (AIC)

Users

T
im

e
in

 m
s

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●Median Mean Model

Figure A.1: User Sync Component Models

A. Test Results � Polynomial Model Charts 95

100 200 300 400 500 600

1.
0

1.
5

2.
0

Message Broker I − 2. Polynomial (AIC)

Users

T
im

e
in

 m
s

●
●

●

●

●

●

●

●
●

●

●

●

●
● ●Median Mean Model

100 200 300 400 500 600

0.
4

0.
6

0.
8

1.
0

CEP − 2. Polynomial (AIC)

Users

T
im

e
in

 m
s

● ●
●

●

●

●
●

●

●
●

●

●

●
● ●Median Mean Model

100 200 300 400 500 600

0.
02

0
0.

02
5

0.
03

0
0.

03
5

Proxy − 1. Polynomial (AIC)

Users

T
im

e
in

 m
s

●
●

● ●

●

●
●

●

●

●

● ●

●

● ●Median Mean Model

100 200 300 400 500 600

0.
01

6
0.

02
0

0.
02

4

CEPC Query − 1. Polynomial (AIC)

Users

T
im

e
in

 m
s

●

●

●

●

●

●

●

●

●

● ● ●
●

● ●Median Mean Model

100 200 300 400 500 600

0.
01

5
0.

01
7

0.
01

9
0.

02
1

CEPC Update − 1. Polynomial (AIC)

Users

T
im

e
in

 m
s

●

●
●

●

●

●

● ●

●
● ●

●

●

● ●Median Mean Model

100 200 300 400 500 600

0.
18

0.
20

0.
22

0.
24

Message Broker II − 1. Polynomial (AIC)

Users

T
im

e
in

 m
s ●

●

●

●

●

●

●
●

●

● ●

●
●

● ●Median Mean Model

100 200 300 400 500 600

20
40

60
80

BEP Update − 1. Polynomial (AIC)

Users

T
im

e
in

 m
s

● ● ● ●

●
● ●

●
●

●

●

●

●

● ●Median Mean Model

Figure A.2: User Async Component Models

A. Test Results � Polynomial Model Charts 96

0.35 0.40 0.45 0.50

5
10

15
20

25

CEP − 2. Polynomial (CV)

Events/s/user

T
im

e
in

 m
s

●

●

●

●

●

●●
●

●●●●

● ●Median Mean Model

0.35 0.40 0.45 0.50

0.
01

3
0.

01
4

0.
01

5
0.

01
6

Proxy − 1. Polynomial (CV)

Events/s/user

T
im

e
in

 m
s

●
●●●

●

●●
●

●

●
●

●
● ●Median Mean Model

0.35 0.40 0.45 0.50

0
10

20
30

40
50

60
70

BEP Query − 1. Polynomial (BIC)

Events/s/user

T
im

e
in

 m
s

●

●
●

●
●

●
●

●
●

●●●

● ●Median Mean Model

0.35 0.40 0.45 0.50

3.
95

4.
05

4.
15

4.
25

BEP Update − 1. Polynomial (AIC)

Events/s/user

T
im

e
in

 m
s

●●
●

●

●

●

●

●

●

●●

●
● ●Median Mean Model

Figure A.3: Events Per Second Per User Sync Component Models

A. Test Results � Polynomial Model Charts 97

0.4 0.5 0.6 0.7

0
5

10
15

20
25

Message Broker I − 1. Polynomial (AIC)

Events/s/user

T
im

e
in

 m
s

●

●

●

●
●●

●●

●

●

●

●●
●●●

●

● ●Median Mean Model

0.4 0.5 0.6 0.7

0
10

20
30

40

CEP − 2. Polynomial (CV)

Events/s/user

T
im

e
in

 m
s

●

●

●

●

●●

●
●

●
●

●●●●●●●

● ●Median Mean Model

0.4 0.5 0.6 0.7

0.
02

0.
03

0.
04

0.
05

Proxy − 1. Polynomial (AIC)

Events/s/user

T
im

e
in

 m
s

●
●

●●

●●
●

●●

●

●

●●●●
●●

● ●Median Mean Model

0.4 0.5 0.6 0.7

0.
01

5
0.

02
0

0.
02

5

CEPC Query − 1. Polynomial (AIC)

Events/s/user

T
im

e
in

 m
s

●

●

●
●●

●

●

●

●●
●

●
●

●
●

●●

● ●Median Mean Model

0.4 0.5 0.6 0.7

0.
01

5
0.

02
5

0.
03

5

CEPC Update − 1. Polynomial (AIC)

Events/s/user

T
im

e
in

 m
s

●

●

●
●

●

●
●

●●

●
●

●●●●
●●

● ●Median Mean Model

0.4 0.5 0.6 0.7

0
2

4
6

8

Message Broker II − 1. Polynomial (CV)

Events/s/user

T
im

e
in

 m
s

●

●

●

●

●

●

●

●●

●
●

●●
●

●
●●

● ●Median Mean Model

0.4 0.5 0.6 0.7

5
10

15
20

25
30

BEP Update − 2. Polynomial (CV)

Events/s/user

T
im

e
in

 m
s

●

●

●

●
●

●●

●●

●●

●●●●●●

● ●Median Mean Model

Figure A.4: Events Per Second Async Component Models

A. Test Results � Polynomial Model Charts 98

50 100 150 200

0
10

0
30

0
50

0
70

0

CEP − 2. Polynomial (AIC)

Alpha Nodes

T
im

e
in

 m
s

●
●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●
● ●Median Mean Model

50 100 150 200

0.
02

00
0.

02
10

0.
02

20
0.

02
30

Proxy − 3. Polynomial (CV)

Alpha Nodes

T
im

e
in

 m
s

●
●

● ●
● ●

●
●

● ●

●

● ●
● ● ●

●
● ● ●

● ●Median Mean Model

50 100 150 200

12
0

13
0

14
0

15
0

16
0

BEP Query − 1. Polynomial (AIC)

Alpha Nodes

T
im

e
in

 m
s

● ●
●

●

● ●

●

●

●

● ● ●

● ●
●

●
●

●

●

●

● ●Median Mean Model

50 100 150 200

4.
1

4.
2

4.
3

4.
4

4.
5

4.
6

4.
7

BEP Update − 1. Polynomial (AIC)

Alpha Nodes

T
im

e
in

 m
s

●

● ●

●
● ●

●
● ●

●

●

●

●

●

●

● ●
● ●

●

● ●Median Mean Model

Figure A.5: Alpha Nodes Sync Component Models

A. Test Results � Polynomial Model Charts 99

200 400 600 800

0
5

10
15

20

Message Broker I − 2. Polynomial (AIC)

Alpha Nodes

T
im

e
in

 m
s

● ●
● ●

● ●

●

● ● ●
●

●

●

●
●

●

●

●

●

● ●Median Mean Model

200 400 600 800
0

2
4

6
8

10
12

14

CEP − 2. Polynomial (AIC)

Alpha Nodes

T
im

e
in

 m
s

● ●
●

●
● ●

●

●

●
●

●
●

●

●

● ●

●

●

●
● ●Median Mean Model

200 400 600 800

0.
04

0.
06

0.
08

Proxy − 1. Polynomial (CV)

Alpha Nodes

T
im

e
in

 m
s

● ●
●

●
●

● ● ●

●
●

●

● ●
●

● ●

●

●

●
● ●Median Mean Model

200 400 600 800

0.
01

5
0.

02
5

0.
03

5
0.

04
5

CEPC Update − 1. Polynomial (BIC)

Alpha Nodes

T
im

e
in

 m
s

● ●
●

●
●

● ● ●

●
● ●

●

●

●

●

●

●

● ●

● ●Median Mean Model

200 400 600 800

−
2

−
1

0
1

2
3

4

Message Broker II − 2. Polynomial (CV)

Alpha Nodes

T
im

e
in

 m
s

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●● ●Median Mean Model

200 400 600 800

4
6

8
10

12
14

BEP Update − 1. Polynomial (CV)

Alpha Nodes

T
im

e
in

 m
s

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●Median Mean Model

Figure A.6: Alpha Nodes Async Component Models

A. Test Results � Polynomial Model Charts 100

50 100 150 200 250 300

0
50

10
0

15
0

20
0

25
0

CEP − 1. Polynomial (CV)

Beta Nodes

T
im

e
in

 m
s

● ●
● ●

●

●

●
●

●

●

●

●
●

●

●

● ●Median Mean Model

50 100 150 200 250 300

0.
02

25
0.

02
30

0.
02

35

Proxy − 1. Polynomial (AIC)

Beta Nodes

T
im

e
in

 m
s

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

● ●Median Mean Model

50 100 150 200 250 300

90
95

10
0

10
5

11
0

11
5

BEP Query − 1. Polynomial (AIC)

Beta Nodes

T
im

e
in

 m
s

● ●
● ●

●

●

●
●

●
● ●

●

●

●
●

● ●Median Mean Model

50 100 150 200 250 300

4.
45

4.
55

4.
65

BEP Update − 1. Polynomial (AIC)

Beta Nodes

T
im

e
in

 m
s

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

● ●Median Mean Model

Figure A.7: Beta Nodes Sync Component Models

A. Test Results � Polynomial Model Charts 101

0 100 200 300 400 500 600

2
4

6
8

10
12

Message Broker I − 2. Polynomial (AIC)

Beta Nodes

T
im

e
in

 m
s

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ●

● ●

● ●

●

●

●

●

●

● ●

●

●

● ●Median Mean Model

0 100 200 300 400 500 600
2

4
6

8

CEP − 2. Polynomial (AIC)

Beta Nodes

T
im

e
in

 m
s

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ●
● ● ●

●

●

●

●

●
●

●

●

● ●Median Mean Model

0 100 200 300 400 500 600

0.
04

0
0.

04
4

0.
04

8
0.

05
2

Proxy − 1. Polynomial (AIC)

Beta Nodes

T
im

e
in

 m
s

● ● ●
●

● ● ● ●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●Median Mean Model

0 100 200 300 400 500 600

0.
01

3
0.

01
4

0.
01

5
0.

01
6

CEPC Update − 2. Polynomial (AIC)

Beta Nodes

T
im

e
in

 m
s

●

●

●
●

●

●
● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●Median Mean Model

0 100 200 300 400 500 600

0.
15

0.
25

0.
35

Message Broker II − 2. Polynomial (AIC)

Beta Nodes

T
im

e
in

 m
s

●

● ●
● ● ●

●
●

● ●
● ●

●

● ●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●Median Mean Model

0 100 200 300 400 500 600

5
6

7
8

9

BEP Update − 1. Polynomial (BIC)

Beta Nodes

T
im

e
in

 m
s

●

●
●

●
●

● ●
● ● ● ● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●Median Mean Model

Figure A.8: Beta Nodes Async Component Models

A. Test Results � Polynomial Model Charts 102

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0

CEP − 3. Polynomial (CV)

Abstractions

T
im

e
in

 m
s

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

● ●Median Mean Model

0 100 200 300 400 500 600

0.
01

5
0.

02
5

0.
03

5

Proxy − 1. Polynomial (BIC)

Abstractions

T
im

e
in

 m
s

●

●

●

● ● ●
● ●

●
●

● ●
● ●

●
● ● ●

● ● ●

●
●

●

● ● ●
● ● ●

● ●Median Mean Model

0 100 200 300 400 500 600

7.
0

7.
5

8.
0

BEP Query − 2. Polynomial (AIC)

Abstractions

T
im

e
in

 m
s

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

● ●Median Mean Model

0 100 200 300 400 500 600

5
6

7
8

9
10

BEP Update − 2. Polynomial (AIC)

Abstractions

T
im

e
in

 m
s

● ●

●

● ● ●

● ● ●

●
●

● ●

●

●

●

●

●

●

●

●
● ● ●

●

●
●

●

●
●

● ●Median Mean Model

Figure A.9: Abstractions Sync Component Models

A. Test Results � Polynomial Model Charts 103

0 100 200 300 400 500 600

1.
45

1.
55

1.
65

Message Broker I − 2. Polynomial (AIC)

Abstractions

T
im

e
in

 m
s

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●Median Mean Model

0 100 200 300 400 500 600
0

50
10

0
15

0
20

0
25

0

CEP − 2. Polynomial (AIC)

Abstractions

T
im

e
in

 m
s

●
●

● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●Median Mean Model

0 100 200 300 400 500 600

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Proxy − 1. Polynomial (AIC)

Abstractions

T
im

e
in

 m
s

●

● ● ● ● ●
● ● ●

● ● ● ● ●
● ● ● ●

● ● ●

●

● ● ● ● ● ● ● ●

● ●Median Mean Model

0 100 200 300 400 500 600

0.
08

0.
10

0.
12

0.
14

CEPC Update − 4. Polynomial (AIC)

Abstractions

T
im

e
in

 m
s

●

●

●
● ● ●

● ●

●

●
● ●

●

● ●

●

●

●

●
●

●

● ●
● ●

●
●

●

●
●

● ●Median Mean Model

0 100 200 300 400 500 600

0.
40

0.
50

0.
60

Message Broker II − 2. Polynomial (AIC)

Abstractions

T
im

e
in

 m
s

●

●

●

● ●

●

● ●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●Median Mean Model

0 100 200 300 400 500 600

6
7

8
9

10

BEP Update − 1. Polynomial (AIC)

Abstractions

T
im

e
in

 m
s

●

●

●
●

●

●

●
●

● ● ●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
● ●

●

●

●

● ●Median Mean Model

Figure A.10: Abstractions Async Component Models

Appendix B

Use Case Rules

1 rule "newUser"

2 when

3 $evt : EventObject(type=='newUser', $playerid:playerid) from entry-point

eventstream

4 then

5 adminApi.createPlayer($playerid, "SAP", true);

6 updateAPI.addMissionToPlayer($playerid, 'Get Ready to Network!');

7 updateAPI.addMissionToPlayer($playerid, 'On My Calendar');

8 updateAPI.addMissionToPlayer($playerid, "I've Got Buds!");

9 retract($evt);

10 update(queryAPI.getPlayer($playerid)); //only in synchronous mode

11 end

Listing B.1: New User Rule

1 rule "metPerson"

2 when

3 $attendedMeeting1 : EventObject(type=='attendedMeeting', $meetingid:data['

meetingid'], $costCenter1:data['costCenter'], $playerid:playerid) from entry

-point eventstream

4 $attendedMeeting2 : EventObject(type=='attendedMeeting', data['meetingid']==

$meetingid, $costCenter1!=data['costCenter'], $costCenter2:data['costCenter

'], playerid!=$playerid, $playerid2:playerid) from entry-point eventstream

5 not(EventObject(type=='metPerson', playerid==$playerid, data['person']==

$playerid2) from entry-point internalstream)

6 then

7 EventObject evt = new EventObject();

8 evt.setType('metPerson');

9 evt.setPlayerid($attendedMeeting1.getPlayerid());

10 evt.put('costCenter', $costCenter1);

11 evt.put('person', $attendedMeeting2.getPlayerid());

12 evt.put('personCostCenter', $costCenter2);

13 entryPoints['internalstream'].insert(evt);

14 end

Listing B.2: Met Person Rule

104

B. Use Case Rules 105

1 rule "addedBuddy"

2 when

3 $addBuddy : EventObject(type=='addBuddy', $playerid:playerid) from entry-

point eventstream

4 then

5 updateAPI.givePoints($playerid, 'Buddies', 1, 'Added a new Buddy');

6 retract($addBuddy);

7 update(queryAPI.getPlayer($playerid));

8 end

Listing B.3: Added Buddy Rule

1 rule "addedTag"

2 when

3 $addTag : EventObject(type=='addTag', $playerid:playerid, $prominent:data['

prominentTag']) from entry-point eventstream

4 then

5 updateAPI.givePoints($playerid, 'Tags', 1, 'Added a new Tag');

6 if ($prominent.equals('true')) {

7 updateAPI.givePoints($playerid, 'Prominent Tags', 1, 'Added a new

prominent Tag');

8 }

9 retract($addTag);

10 update(queryAPI.getPlayer($playerid));

11 end

Listing B.4: Added Tag Rule

1 rule "addedNote"

2 when

3 $addNote : EventObject(type=='addNote', $playerid:playerid) from entry-point

eventstream";

4 then

5 updateAPI.givePoints($playerid, 'Notes', 1, 'Added Note');

6 retract($addNote);

7 update(queryAPI.getPlayer($playerid));

8 end

Listing B.5: Added Note Rule

1 rule "addedAvailability"

2 when

3 $addAvailability : EventObject(type=='addAvailability', $playerid:playerid)

from entry-point eventstream

4 then

5 updateAPI.givePoints($playerid, 'Added Availabilities', 1, 'Added

Availability');

6 retract($addAvailability);

7 update(queryAPI.getPlayer($playerid));

8 end

Listing B.6: Added Availability Rule

1 rule "acceptedMeeting"

B. Use Case Rules 106

2 when

3 $acceptedMeeting : EventObject(type=='acceptedMeeting', $playerid:playerid)

from entry-point eventstream

4 then

5 updateAPI.givePoints($playerid, 'Accepted Meetings', 1, 'accepted a meeting

');

6 updateAPI.givePoints($playerid, 'Accepted Meetings in a Row', 1, 'accepted a

meeting in a row');

7 retract($acceptedMeeting);

8 update(queryAPI.getPlayer($playerid));

9 end

Listing B.7: Accepted Meeting Rule

1 rule "declinedMeeting"

2 when

3 $declinedMeeting : EventObject(type=='declinedMeeting', $playerid:playerid)

from entry-point eventstream

4 then

5 updateAPI.givePoints($playerid, 'Declined Meetings', 1, 'declined meeting');

6 updateAPI.deleteAllPoints($playerid, 'Accepted Meetings in a Row');

7 retract($declinedMeeting);

8 update(queryAPI.getPlayer($playerid));

9 end

Listing B.8: Declined Meeting Rule

1 rule "oneToOneLunchAttended"

2 when

3 $attendedOneToOneTopicLunch : EventObject(type=='attendedMeeting', $playerid

:playerid, data['meetingType']=='1to1Lunch') from entry-point eventstream

4 then

5 updateAPI.givePoints($playerid, 'Attended 1:1 Lunches', 1, 'attended one2one

lunch');

6 update(queryAPI.getPlayer($playerid));

7 end

Listing B.9: 1:1 Lunch Attended Rule

1 rule "fourPersonLunchAttended"

2 when

3 $attended4PersonLunch : EventObject(type=='attendedMeeting', $playerid:

playerid, data['meetingType']=='4PersonLunch') from entry-point eventstream

4 then

5 updateAPI.givePoints($playerid, 'Attended 4 Person Lunches', 1, 'attended 4

person lunch');

6 update(queryAPI.getPlayer($playerid));

7 end

Listing B.10: 4 Person Lunch Attended Rule

1 rule "coffeeAttended"

2 when

3 $attendedCoffee : EventObject(type=='attendedMeeting', $playerid:playerid,

data['meetingType']=='Coffee') from entry-point eventstream

B. Use Case Rules 107

4 then

5 updateAPI.givePoints($playerid, 'Attended Coffees', 1, 'attended coffee');

6 update(queryAPI.getPlayer($playerid));

7 end

Listing B.11: Co�ee Attended Rule

1 rule "groupTopicLunch"

2 when

3 $attendedGroupTopicLunch : EventObject(type=='attendedMeeting', $playerid:

playerid, data['meetingType']=='GroupTopicLunch', $host:data['host']) from

entry-point eventstream

4 then

5 updateAPI.givePoints($playerid, 'Attended Group Topic Lunches', 1, 'attended

group topic lunch');

6 if ($host.equals('true')) {

7 updateAPI.givePoints($playerid, 'Hosted Group Topic Lunches', 1, 'hosted

group topic lunch');

8 }

9 update(queryAPI.getPlayer($playerid));

10 end

Listing B.12: Group Topic Lunch Rule

1 rule "metNewPerson"

2 when

3 $metPerson : EventObject(type=='metPerson', $playerid:playerid) from entry-

point internalstream

4 then

5 updateAPI.givePoints($playerid, 'Met Persons From Different Cost Center', 1,

'met new person');

6 update(queryAPI.getPlayer($playerid));

7 end

Listing B.13: Met New Person Rule

1 rule "readyToNetwork"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($p.getId(), 'Get Ready to Network!') == true)

5 eval(queryAPI.getPointsForPlayer($p.getId(), 'Added Availabilities').

getAmount() >= 1)

6 eval(queryAPI.getPointsForPlayer($p.getId(), 'Tags').getAmount() >= 1)

7 then

8 updateAPI.completeMission($p.getId(), 'Get Ready to Network!');

9 updateAPI.addMissionToPlayer($p.getId(), 'Playing Tag');

10 updateAPI.addMissionToPlayer($p.getId(), 'Common Ground');

11 updateAPI.addMissionToPlayer($p.getId(), 'Ice Breaker');

12 updateAPI.addMissionToPlayer($p.getId(), 'Connect 4');

13 updateAPI.addMissionToPlayer($p.getId(), 'Java Joe');

14 updateAPI.addMissionToPlayer($p.getId(), 'In the Crowd');

15 updateAPI.addMissionToPlayer($p.getId(), 'Emcee');

16 updateAPI.addMissionToPlayer($p.getId(), 'Company Explorer');

17 updateAPI.addBadgeToPlayer($p.getId(), 'Ready to Network!', 'You filled out

one availability and tagged yourself with one tag!');

B. Use Case Rules 108

18 update($p);

19 end

Listing B.14: Ready To Network Rule

1 rule "tenTags"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($p.getId(), 'Playing Tag') == true)

5 eval(queryAPI.getPointsForPlayer($p.getId(), 'Tags').getAmount() >= 10)

6 then

7 updateAPI.completeMission($p.getId(), 'Playing Tag');

8 updateAPI.addBadgeToPlayer($p.getId(), 'Playing Tag', 'You tagged yourself

with 10 tags!');

9 updateAPI.addMissionToPlayer($p.getId(), 'The Many Sides of Me');

10 update($p);

11 end

Listing B.15: 10 Tags Rule

1 rule "fiveProminentTags"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($p.getId(), 'Common Ground') == true)

5 eval(queryAPI.getPointsForPlayer($p.getId(), 'Prominent Tags').getAmount()

>= 5)

6 then

7 updateAPI.completeMission($p.getId(), 'Common Ground');

8 updateAPI.addBadgeToPlayer($p.getId(), 'Common Ground', 'You tagged yourself

with 5 tags from the 50 most prominent tags!');

9 update($p);

10 end

Listing B.16: 5 Prominent Tags Rule

1 rule "twentyTags"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($p.getId(), 'The Many Sides of Me') == true)

5 eval(queryAPI.getPointsForPlayer($p.getId(), 'Tags').getAmount() >= 20)

6 then

7 updateAPI.completeMission($p.getId(), 'The Many Sides of Me');

8 updateAPI.addBadgeToPlayer($p.getId(), 'The Many Sides of Me', 'You tagged

yourself with 20 tags!');

9 update($p);

10 end

Listing B.17: 20 Tags Rule

1 rule "acceptedFirstMeeting"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($p.getId(), 'On My Calendar') == true)

5 eval(queryAPI.getPointsForPlayer($p.getId(), 'Accepted Meetings').getAmount

() >= 1)

B. Use Case Rules 109

6 then

7 updateAPI.completeMission($p.getId(), 'On My Calendar');

8 updateAPI.addBadgeToPlayer($p.getId(), 'On My Calendar', 'You accepted a

meeting!');

9 updateAPI.addMissionToPlayer($p.getId(), 'People Person');

10 updateAPI.addMissionToPlayer($p.getId(), 'Shakespeare');

11 update($p);

12 end

Listing B.18: Accepted First Meeting Rule

1 rule "accepted5MeetingsInARow"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($p.getId(), 'People Person') == true)

5 eval(queryAPI.getPointsForPlayer($p.getId(), 'Accepted Meetings in a Row').

getAmount() >= 5)

6 then

7 updateAPI.completeMission($p.getId(), 'People Person');

8 updateAPI.addBadgeToPlayer($p.getId(), 'People Person', 'You accepted five

meetings in a row!');

9 updateAPI.addMissionToPlayer($p.getId(), 'Disco! 15 in a Row!');

10 update($p);

11 end

Listing B.19: Accepted 5 Meetings in a Row Rule

1 rule "firstNote"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($playerid, 'Shakespeare') == true)

5 eval(queryAPI.getPointsForPlayer($playerid, 'Notes').getAmount() >= 1)

6 then

7 updateAPI.completeMission($playerid, 'Shakespeare');

8 updateAPI.addBadgeToPlayer($playerid, 'Shakespeare', 'You wrote a note about

someone you met!');

9 update($p);

10 end

Listing B.20: First Note Rule

1 rule "accepted15MeetingsInARow"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($p.getId(), 'Disco! 15 in a Row!') == true)

5 eval(queryAPI.getPointsForPlayer($p.getId(), 'Accepted Meetings in a Row').

getAmount() >= 15)

6 then

7 updateAPI.completeMission($playerid, 'Disco! 15 in a Row!');

8 updateAPI.addBadgeToPlayer($playerid, 'Disco! 15 in a Row!', 'You accepted

15 meetings in a row!');

9 update($p);

10 end

Listing B.21: Accepted 15 Meetings in a Row Rule

B. Use Case Rules 110

1 rule "tenBuddies"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($playerid, "I've Got Buds!") == true)

5 eval(queryAPI.getPointsForPlayer($playerid, 'Buddies').getAmount() >= 10)

6 then

7 updateAPI.completeMission($playerid, "I've Got Buds!");

8 updateAPI.addBadgeToPlayer($playerid, "I've Got Buds!", 'You added 10

buddies!');

9 updateAPI.addMissionToPlayer($playerid, 'Circle of Friends');

10 update($p);

11 end

Listing B.22: 10 Buddies Rule

1 rule "twentyfiveBuddies"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($playerid, 'Circle of Friends') == true)

5 eval(queryAPI.getPointsForPlayer($playerid, 'Buddies').getAmount() >= 25)

6 then

7 updateAPI.completeMission($playerid, 'Circle of Friends');

8 updateAPI.addBadgeToPlayer($playerid, 'Circle of Friends', 'You added 25

buddies!');

9 update($p);

10 end

Listing B.23: 25 Buddies Rule

1 rule "first1to1LunchAttended"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($playerid, 'Ice Breaker') == true)

5 eval(queryAPI.getPointsForPlayer($playerid, 'Attended 1:1 Lunches').

getAmount() >= 1)

6 then

7 updateAPI.completeMission($playerid, 'Ice Breaker');

8 updateAPI.addBadgeToPlayer($playerid, 'Ice Breaker', 'You attended a 1:1

lunch!');

9 updateAPI.addMissionToPlayer($playerid, 'Power Luncher');

10 update($p);

11 end

Listing B.24: First 1:1 Lunch Attended Rule

1 rule "ten1to1LunchesAttended"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($playerid, 'Power Luncher') == true)

5 eval(queryAPI.getPointsForPlayer($playerid, 'Attended 1:1 Lunches').

getAmount() >= 10)

6 then

7 updateAPI.completeMission($playerid, 'Power Luncher');

8 updateAPI.addBadgeToPlayer($playerid, 'Power Luncher', 'You attended 10 1:1

lunches!');

B. Use Case Rules 111

9 updateAPI.addMissionToPlayer($playerid, 'To Lunchinity and Beyond!');

10 update($p);

11 end

Listing B.25: 10 1:1 Lunches Attended Rule

1 rule "twentyfive1to1LunchesAttended"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($playerid, 'To Lunchinity and Beyond!') ==

true)

5 eval(queryAPI.getPointsForPlayer($playerid, 'Attended 1:1 Lunches').

getAmount() >= 25)

6 then

7 updateAPI.completeMission($playerid, 'To Lunchinity and Beyond!');

8 updateAPI.addBadgeToPlayer($playerid, 'To Lunchinity and Beyond!', 'You

attended 25 1:1 lunches!');

9 update($p);

10 end

Listing B.26: 25 1:1 Lunches Attended Rule

1 rule "first4PersonLunchAttended"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($playerid, 'Connect 4') == true)

5 eval(queryAPI.getPointsForPlayer($playerid, 'Attended 4 Person Lunches').

getAmount() >= 1)

6 then

7 updateAPI.completeMission($playerid, 'Connect 4');

8 updateAPI.addBadgeToPlayer($playerid, 'Connect 4', 'You attended a 4 person

lunch!');

9 updateAPI.addMissionToPlayer($playerid, '40 People and Climbing');

10 update($p);

11 end

Listing B.27: First 4 Person Lunch Attended Rule

1 rule "ten4PersonLunchesAttended"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($playerid, '40 People and Climbing') == true)

5 eval(queryAPI.getPointsForPlayer($playerid, 'Attended 4 Person Lunches').

getAmount() >= 10)

6 then

7 updateAPI.completeMission($playerid, '40 People and Climbing');

8 updateAPI.addBadgeToPlayer($playerid, '40 People and Climbing', 'You

attended 10 4 person lunches!');

9 updateAPI.addMissionToPlayer($playerid, 'Epic Luncher');

10 update($p);

11 end

Listing B.28: 10 4 Person Lunches Attended Rule

B. Use Case Rules 112

1 rule "twentyfive4PersonLunchesAttended"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($playerid, 'Epic Luncher') == true)

5 eval(queryAPI.getPointsForPlayer($playerid, 'Attended 4 Person Lunches').

getAmount() >= 25)

6 then

7 updateAPI.completeMission($playerid, 'Epic Luncher');

8 updateAPI.addBadgeToPlayer($playerid, 'Epic Luncher', 'You attended 25 4

person lunches!');

9 update($p);

10 end

Listing B.29: 25 4 Person Lunches Attended Rule

1 rule "firstCoffeeAttended"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($playerid, 'Java Joe') == true)

5 eval(queryAPI.getPointsForPlayer($playerid, 'Attended Coffees').getAmount()

>= 1)

6 then

7 updateAPI.completeMission($playerid, 'Java Joe');

8 updateAPI.addBadgeToPlayer($playerid, 'Java Joe', 'You attended a coffee

meeting!');

9 updateAPI.addMissionToPlayer($playerid, 'Coffee Chatter');

10 update($p);

11 end

Listing B.30: First Co�ee Attended Rule

1 rule "tenCoffeesAttended"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($playerid, 'Coffee Chatter') == true)

5 eval(queryAPI.getPointsForPlayer($playerid, 'Attended Coffees').getAmount()

>= 10)

6 then

7 updateAPI.completeMission($playerid, 'Coffee Chatter');

8 updateAPI.addBadgeToPlayer($playerid, 'Coffee Chatter', 'You attended 10

coffee meetings!');

9 updateAPI.addMissionToPlayer($playerid, 'Caffene Devotee');

10 update($p);

11 end

Listing B.31: 10 Co�ees Attended Rule

1 rule "twentyfiveCoffeesAttended"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($playerid, 'Caffene Devotee') == true)

5 eval(queryAPI.getPointsForPlayer($playerid, 'Attended Coffees').getAmount()

>= 25)

6 then

7 updateAPI.completeMission($playerid, 'Caffene Devotee');

B. Use Case Rules 113

8 updateAPI.addBadgeToPlayer($playerid, 'Caffene Devotee', 'You attended 25

coffee meetings!');

9 update($p);

10 end

Listing B.32: 25 Co�ees Attended Rule

1 rule "firstGroupTopicLunchAttended"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($playerid, 'In the Crowd') == true)

5 eval(queryAPI.getPointsForPlayer($playerid, 'Attended Group Topic Lunches').

getAmount() >= 1)

6 then

7 updateAPI.completeMission($playerid, 'In the Crowd');

8 updateAPI.addBadgeToPlayer($playerid, 'In the Crowd', 'You attended a group

topic lunch!');

9 updateAPI.addMissionToPlayer($playerid, 'Topic Talker');

10 update($p);

11 end

Listing B.33: First Group Topic Lunch Attended Rule

1 rule "fiveGroupTopicLunchesAttended"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($playerid, 'Topic Talker') == true)

5 eval(queryAPI.getPointsForPlayer($playerid, 'Attended Group Topic Lunches').

getAmount() >= 5)

6 then

7 updateAPI.completeMission($playerid, 'Topic Talker');

8 updateAPI.addBadgeToPlayer($playerid, 'Topic Talker', 'You attended 5 group

topic lunches!');

9 updateAPI.addMissionToPlayer($playerid, 'Interested in Everything');

10 update($p);

11 end

Listing B.34: 5 Group Topic Lunches Attended Rule

1 rule "tenGroupTopicLunchesAttended"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($playerid, 'Interested in Everything') ==

true)

5 eval(queryAPI.getPointsForPlayer($playerid, 'Attended Group Topic Lunches').

getAmount() >= 10)

6 then

7 updateAPI.completeMission($playerid, 'Interested in Everything');

8 updateAPI.addBadgeToPlayer($playerid, 'Interested in Everything', 'You

attended 10 group topic lunches!');

9 update($p);

10 end

Listing B.35: 10 Group Topic Lunches Attended Rule

B. Use Case Rules 114

1 rule "firstGroupTopicLunchHosted"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($playerid, 'Emcee') == true)

5 eval(queryAPI.getPointsForPlayer($playerid, 'Hosted Group Topic Lunches').

getAmount() >= 1)

6 then

7 updateAPI.completeMission($playerid, 'Emcee');

8 updateAPI.addBadgeToPlayer($playerid, 'Emcee', 'You hosted a group topic

lunch!');

9 updateAPI.addMissionToPlayer($playerid, 'Talkshow Host');

10 update($p);

11 end

Listing B.36: First Group Topic Lunch Hosted Rule

1 rule "fiveGroupTopicLunchesHosted"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($playerid, 'Talkshow Host') == true)

5 eval(queryAPI.getPointsForPlayer($playerid, 'Hosted Group Topic Lunches').

getAmount() >= 5)

6 then

7 updateAPI.completeMission($playerid, 'Talkshow Host');

8 updateAPI.addBadgeToPlayer($playerid, 'Talkshow Host', 'You hosted 5 group

topic lunches!');

9 updateAPI.addMissionToPlayer($playerid, 'Master of Ceremonies');

10 update($p);

11 end

Listing B.37: 5 Group Topic Lunches Hosted Rule

1 rule "tenGroupTopicLunchesHosted"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($playerid, 'Master of Ceremonies') == true)

5 eval(queryAPI.getPointsForPlayer($playerid, 'Hosted Group Topic Lunches').

getAmount() >= 10)

6 then

7 updateAPI.completeMission($playerid, 'Master of Ceremonies');

8 updateAPI.addBadgeToPlayer($playerid, 'Master of Ceremonies', 'You hosted 10

group topic lunches!');

9 update($p);

10 end

Listing B.38: 10 Group Topic Lunches Hosted Rule

1 rule "met1PersonFromDifferentCostCenter"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($playerid, 'Company Explorer') == true)

5 eval(queryAPI.getPointsForPlayer($playerid, 'Met Persons From Different Cost

Center').getAmount() >= 1)

6 then

7 updateAPI.completeMission($playerid, 'Company Explorer');

B. Use Case Rules 115

8 updateAPI.addBadgeToPlayer($playerid, 'Company Explorer', 'You met someone

from a different department/cost center!');

9 updateAPI.addMissionToPlayer($playerid, 'Silo Breaker');

10 update($p);

11 end

Listing B.39: Met 1 Person From Di�erent Cost Center Rule

1 rule "met10PersonsFromDifferentCostCenters"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($playerid, 'Silo Breaker') == true)

5 eval(queryAPI.getPointsForPlayer($playerid, 'Met Persons From Different Cost

Center').getAmount() >= 10)

6 then

7 updateAPI.completeMission($playerid, 'Silo Breaker');

8 updateAPI.addBadgeToPlayer($playerid, 'Silo Breaker', 'You met 10 people

from different departments/cost centers!');

9 updateAPI.addMissionToPlayer($playerid, 'Emissary');

10 update($p);

11 end

Listing B.40: Met 10 Persons From Di�erent Cost Centers Rule

1 rule "met25PersonsFromDifferentCostCenters"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($playerid, 'Emissary') == true)

5 eval(queryAPI.getPointsForPlayer($playerid, 'Met Persons From Different Cost

Center').getAmount() >= 25)

6 then

7 updateAPI.completeMission($playerid, 'Emissary');

8 updateAPI.addBadgeToPlayer($playerid, 'Emissary', 'You met 25 people from

different departments/cost centers!');

9 updateAPI.addMissionToPlayer($playerid, 'Ambassador');

10 update($p);

11 end

Listing B.41: Met 25 Persons From Di�erent Cost Centers Rule

1 rule "met50PersonsFromDifferentCostCenters"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerMission($playerid, 'Ambassador') == true)

5 eval(queryAPI.getPointsForPlayer($playerid, 'Met Persons From Different Cost

Center').getAmount() >= 50)

6 then

7 updateAPI.completeMission($playerid, 'Ambassador');

8 updateAPI.addBadgeToPlayer($playerid, 'Ambassador', 'You met 50 people from

different departments/cost centers!');

9 update($p);

10 end

Listing B.42: Met 50 Persons From Di�erent Cost Centers Rule

B. Use Case Rules 116

1 rule "attended4DifferentMeetingTypes"

2 when

3 $p : Player($playerid : uid)

4 eval(queryAPI.hasPlayerBadge($playerid, 'Ice Breaker') == true)

5 eval(queryAPI.hasPlayerBadge($playerid, 'Connect 4') == true)

6 eval(queryAPI.hasPlayerBadge($playerid, 'Java Joe') == true)

7 eval(queryAPI.hasPlayerBadge($playerid, 'In the Crowd') == true)

8 eval(queryAPI.hasPlayerBadge($playerid, 'Attended 4 Different Meeting Types

') == false)

9 then

10 updateAPI.addBadgeToPlayer($playerid, 'Attended 4 Different Meeting Types',

'You attended 4 different meeting types!');

11 update($p);

12 end

Listing B.43: Attended 4 Di�erent Meeting Types Rule

B. Use Case Rules 117

F
ig
u
re

B
.1
:
R
E
T
E
T
re
e
fo
r
A
p
p
li
ca
ti
o
n
R
u
le
s

Appendix C

R Skript

1 library(gplots)

2 library(cvTools)

3 require(graphics)

4 library(vcd)

5

6 root_path<-'C:/Users/D059598/Desktop/Thesis/Users/async/'

7 mode<-"ASYNC"

8 users<-seq(from = 50, to = 1000, by = 50)

9

10 simpleTests<-FALSE

11 factorName<-"Users"

12

13 getTotalRuntime<-function(data) {

14 result<-data$S2E+data$Sync+data$RuleEngine+data$E2A;

15 result;

16 }

17

18 bestModelWithAIC<-function(name,a,b,mean,med) {

19 polynom = 0

20 model = NULL

21 bestModel = NULL

22 while (is.null(bestModel) || (AIC(bestModel) > AIC(model) && !is.infinite(AIC(

model)))) {

23 # go on �nding better value
24 if (!is.null(model)) {

25 bestModel <- model

26 }

27 polynom = polynom+1

28 model <- lm(b~poly(a, polynom, raw=TRUE))

29 }

30 plot(users, med, main=paste(name, " - ", polynom-1,". Polynomial (AIC)" , sep=

""), xlab=factorName, ylab="Time in ms", type="b", pch=2, ylim=c(min(mean,

med),max(mean,med)))

31 lines(users, mean, type="b", pch=1)

32 points(a, predict(bestModel), type="l", col="blue", lwd=2)

33 legend("topleft", ncol = 3, c("Median", "Mean", "Model"), pch=c(2,1,20), col=c

("black","black","blue"), text.col=c("black","black","blue"))

34

118

C. R Skript 119

35 #print also in pdf picture �les...
36 pdf(paste(root_path,name,"_AIC_",min(users),"-",max(users),".pdf",sep=""),

width=6, height=4.5)

37 plot(users, med, main=paste(name, " - ", polynom-1,". Polynomial (AIC)" , sep=

""), xlab=factorName, ylab="Time in ms", type="b", pch=2, ylim=c(min(mean,

med),max(mean,med)))

38 lines(users, mean, type="b", pch=1)

39 points(a, predict(bestModel), type="l", col="blue", lwd=2)

40 legend("topleft", ncol = 3, c("Median", "Mean", "Model"), pch=c(2,1,20), col=c

("black","black","blue"), text.col=c("black","black","blue"))

41 dev.off()

42

43 bestModel;

44 }

45

46 bestModelWithBIC<-function(name,a,b,mean,med) {

47 polynom = 0

48 model = NULL

49 bestModel = NULL

50 while (is.null(bestModel) || (BIC(bestModel) > BIC(model) && !is.infinite(BIC(

model)))) {

51 # go on �nding better value
52 if (!is.null(model)) {

53 bestModel <- model

54 }

55 polynom = polynom+1

56 model <- lm(b~poly(a, polynom, raw=TRUE))

57 }

58 plot(users, med, main=paste(name, " - ", polynom-1,". Polynomial (BIC)" , sep=

""), xlab=factorName, ylab="Time in ms", type="b", pch=2, ylim=c(min(mean,

med),max(mean,med)))

59 lines(users, mean, type="b", pch=1)

60 points(a, predict(bestModel), type="l", col="blue", lwd=2)

61 legend("topleft", ncol = 3, c("Median", "Mean", "Model"), pch=c(2,1,20), col=c

("black","black","blue"), text.col=c("black","black","blue"))

62

63 #print also in pdf picture �les...
64 pdf(paste(root_path,name,"_BIC_",min(users),"-",max(users),".pdf",sep=""),

width=6, height=4.5)

65 plot(users, med, main=paste(name, " - ", polynom-1,". Polynomial (BIC)" , sep=

""), xlab=factorName, ylab="Time in ms", type="b", pch=2, ylim=c(min(mean,

med),max(mean,med)))

66 lines(users, mean, type="b", pch=1)

67 points(a, predict(bestModel), type="l", col="blue", lwd=2)

68 legend("topleft", ncol = 3, c("Median", "Mean", "Model"), pch=c(2,1,20), col=c

("black","black","blue"), text.col=c("black","black","blue"))

69 dev.off()

70

71 bestModel;

72 }

73

74 bestModelWithCrossValidation<-function(name,a,b,mean,med) {

75 polynom = 0

76 model = NULL

77 bestModel<-NULL

78 finished<-FALSE

C. R Skript 120

79 cvBestModel<-0

80 cvModel<-0

81

82 while (is.null(bestModel) || cvBestModel > cvModel) {

83 # go on �nding better value
84 if (!is.null(model)) {

85 bestModel <- model

86 cvBestModel <-cvModel

87 }

88 polynom = polynom+1

89 model <- lm(b~poly(a, polynom, raw=TRUE), x=TRUE, y=TRUE)

90 c<-poly(a, polynom, raw=TRUE)

91 cvModel<-cvFit(lm, formula = b~c, data = data.frame(a,b), y = b, K = 5)$cv

92 }

93 plot(users, med, main=paste(name, " - ", polynom-1,". Polynomial (CV)" , sep="

"), xlab=factorName, ylab="Time in ms", type="b", pch=2, ylim=c(min(mean,med

),max(mean,med)))

94 lines(users, mean, type="b", pch=1)

95 points(a, predict(bestModel), type="l", col="blue", lwd=2)

96 legend("topleft", ncol = 3, c("Median", "Mean", "Model"), pch=c(2,1,20), col=c

("black","black","blue"), text.col=c("black","black","blue"))

97

98 #print also in pdf picture �les...
99 pdf(paste(root_path,name,"_CV_",min(users),"-",max(users),".pdf",sep=""),

width=6, height=4.5)

100 plot(users, med, main=paste(name, " - ", polynom-1,". Polynomial (CV)" , sep="

"), xlab=factorName, ylab="Time in ms", type="b", pch=2, ylim=c(min(mean,med

),max(mean,med)))

101 lines(users, mean, type="b", pch=1)

102 points(a, predict(bestModel), type="l", col="blue", lwd=2)

103 legend("topleft", ncol = 3, c("Median", "Mean", "Model"), pch=c(2,1,20), col=c

("black","black","blue"), text.col=c("black","black","blue"))

104 dev.off()

105

106 bestModel;

107 }

108

109 modelComponent<-function(component, name) {

110 mean<-vector()

111 med<-vector()

112 userValues<-vector()

113 allValues<-vector()

114 for(x in 1:length(users)) {

115 assign(paste(component,x,sep=""),subset(eval(as.symbol(paste("data", x, sep=

""))), Component==component))

116 plotData<-eval(as.symbol(paste(component, x, sep="")))$ms

117 if (nrow(eval(as.symbol(paste(component, x, sep="")))) > 0) {

118 hist(plotData, main=paste("Histogram",name,"Time,",users[x],factorName),

xlab="time in ms", ylab="Quantity")

119 mean <- append(mean, mean(plotData))

120 med <- append(med, median(plotData))

121 }

122 userValues <- append(userValues, rep(users[x],length(plotData)))

123 allValues <- append(allValues, plotData)

124 }

125 if (length(mean) > 0) {

C. R Skript 121

126 plot(users, mean, main=paste("Mean in",name), xlab=factorName)

127 plot(users, med, main=paste("Median in",name), xlab=factorName)

128

129 model2<-bestModelWithAIC(name,users,mean,mean,med)

130 out<-capture.output(summary(model2))

131 cat(out,file=paste(root_path,component,"-AIC_",min(users),"-",max(users),".

txt",sep=""),sep="\n",append=FALSE)

132

133 model3<-bestModelWithBIC(name,users,mean,mean,med)

134 out<-capture.output(summary(model3))

135 cat(out,file=paste(root_path,component,"-BIC_",min(users),"-",max(users),".

txt",sep=""),sep="\n",append=FALSE)

136

137 model5<-bestModelWithCrossValidation(name,users,mean,mean,med)

138 out<-capture.output(summary(model5))

139 cat(out,file=paste(root_path,component,"-CV_",min(users),"-",max(users),".

txt",sep=""),sep="\n",append=FALSE)

140 }

141 }

142

143 if (simpleTests == TRUE) {

144 tryCatch({

145 for(x in users) assign(paste("data",x,sep=""), read.csv(paste(root_path, "

result_new_", x, "User.csv", sep=""), header=TRUE, sep=";"))

146

147 for(x in 1:length(users)) {

148 assign(paste("errors",x,sep=""), read.csv(paste(root_path, "errorRate_", x,

".csv", sep=""), header=TRUE, sep=";"))

149 assign(paste("errors",x,"actual",sep=""), eval(as.symbol(paste("errors",x,

sep="")))$sum.actual.experience.points)

150 assign(paste("errors",x,"generated",sep=""), eval(as.symbol(paste("errors",x

,sep="")))$sum.generated.experience.points)

151 }

152 x<-users;

153

154 # total runtimes calculations
155 mins<-vector()

156 maxs<-vector()

157 meds<-vector()

158 avgs<-vector()

159 percentile25s<-vector()

160 percentile75s<-vector()

161 percentile99s<-vector()

162 responsesOver500ms<-vector()

163 responsesOver1000ms<-vector()

164 responsesOver500msRelative<-vector()

165 responsesOver1000msRelative<-vector()

166

167 for(i in c("1000","100000"))

168 {

169 runtimes<-subset(eval(as.symbol(paste0("data",i))), Component=="Total")$ms

170 mins<-append(mins,min(runtimes))

171 maxs<-append(maxs,max(runtimes))

172 meds<-append(meds,median(runtimes))

173 avgs<-append(avgs,mean(runtimes))

174 percentiles<-quantile(runtimes, c(.25, .75, .99))

C. R Skript 122

175 percentile25s<-append(percentile25s,percentiles[1])

176 percentile75s<-append(percentile75s,percentiles[2])

177 percentile99s<-append(percentile99s,percentiles[3])

178 responsesOver500ms<-append(responsesOver500ms,sum(runtimes>500))

179 responsesOver1000ms<-append(responsesOver1000ms,sum(runtimes>1000))

180 responsesOver500msRelative<-append(responsesOver500msRelative,sum(runtimes

>500)/length(runtimes))

181 responsesOver1000msRelative<-append(responsesOver1000msRelative,sum(runtimes

>1000)/length(runtimes))

182 assign(paste("runtime", i, sep=""),runtimes)

183 }

184 t.test(runtime1000,runtime100000)

185 wilcox.test(runtime1000,runtime100000)

186

187 # wm growth
188 pdf(paste(root_path,"ResponseTime.pdf",sep=""), width=4.5, height=4.5, title=

root_path)

189 par(mfrow=c(1,1))

190 t.test(runtime1[1:20],runtime1[1:2000])

191 dev.off()

192

193 pdf(paste(root_path,"DistributionOfResponseTimes.pdf",sep=""), width=9, height

=4.5, title=root_path)

194 par(mfrow=c(1,2))

195 hist(runtime1, main="(a) Alpha Nodes: 10", xlab="Response Time in ms")

196 hist(runtime31, main="(b) Alpha Nodes: 300", xlab="Response Time in ms")

197 dev.off()

198

199 pdf(paste(root_path,"Errors.pdf",sep=""), width=4.5, height=4.5, title=root_

path)

200 par(mfrow=c(1,1))

201 barplot(c(errors4actual,errors3actual,errors2actual,errors1actual), ylab="

Number of Points",xlab="Memory Size",names.arg=c("64MB","256MB","1024MB","8

GB"))

202 dev.off()

203

204 pdf(paste(root_path,"EventTypeDistribution.pdf",sep=""), width=9, height=4.5,

title=root_path)

205 par(mfrow=c(1,2))

206 barplot(c(10,490), names.arg = c("addBuddy","addTag"), ylab="Amount of Events"

, main = "(a) Unbalanced")

207 barplot(c(250,250), names.arg = c("addBuddy","addTag"), ylab="Amount of Events

", main = "(b) Balanced")

208 dev.off()

209

210 #interarrival times
211 interarrival<-vector()

212 assign("sender", read.csv(paste(root_path, "sender200.csv", sep=""), header=

TRUE, sep=";"))

213 #�lter by type
214 sender<-subset(sender, Type=="addBuddy")

215 sender<-sender[order(sender$Timestamp),]

216 for(x in 2:nrow(sender)) interarrival<-append(interarrival,(sender$Timestamp[x

]-sender$Timestamp[x-1])/1000000)

217 li <- 1/mean(interarrival)

218 #median(interarrival)

C. R Skript 123

219 hist(interarrival, breaks=100, freq=FALSE, main="Interarrival Time

Distribution", xlab="Interarrival Time")

220

221 pdf(paste(root_path,"InterarrivalTimeDistribution.pdf",sep=""), width=4.5,

height=4.5, title=root_path)

222 par(mfrow=c(1,1))

223 hist(interarrival, breaks=500, xlim=c(0,5000), freq=FALSE, main="Interarrival

Time Distribution", xlab="Interarrival Time in ms")

224 curve(li*exp(1)^(-li*x), from=0, to=25000, add=T, lwd=2, col="blue")

225 legend("topright", ncol = 1, c(paste0("exp. distr. lambda=",round(x=li, digits

=10))), pch=c(20), col=c("blue"), text.col=c("blue"))

226 dev.off()

227

228

229 component<-"Total"

230 a<-subset(data200, Component==component)$ms

231 mean(a)

232 median(a)

233 sd(a)

234 hist(a, freq=FALSE, breaks=20, main=paste("Histogram of Service Time in",

component))

235 li <- 1/mean(a)

236 curve(li*exp(1)^(-li*x), from=0, to=max(a), add=T, lwd=2, col="blue")

237

238 component<-"BEP_Query"

239 factorName<-"BEP Query"

240

241 # histograms for components
242 pdf(paste(root_path,"HistogramBEPUpdate.pdf",sep=""), width=6, height=4.5,

title=root_path)

243 par(mfrow=c(1,1))

244

245 x<-1

246 assign(paste(component,x,sep=""),subset(eval(as.symbol(paste("data", x, sep=""

))), Component==component))

247 plotData<-eval(as.symbol(paste(component, x, sep="")))$ms

248 hist(plotData, main=paste("(g)",factorName,"-",users[x],"Users"), xlab="time

in ms", breaks=20, freq=FALSE)

249 li <- 1/mean(plotData)

250 #exp. distr.
251 curve(li*exp(1)^(-li*x), from=0, to=max(plotData), add=T, lwd=2, col="blue")

252 # poisson
253 curve(dnorm, col = 2, add = TRUE)

254 curve(dpois(x,mean(plotData), log = FALSE), from=0, to=max(plotData), add=T,

lwd=2, col="blue")

255 legend("topright", ncol = 1, c(paste0("exp. distr. lambda=",round(x=li, digits

=10))), pch=c(20), col=c("blue"), text.col=c("blue"))

256 dev.off()

257

258 x<-6

259 assign(paste(component,x,sep=""),subset(eval(as.symbol(paste("data", x, sep=""

))), Component==component))

260 plotData<-eval(as.symbol(paste(component, x, sep="")))$ms

261 hist(plotData, main=paste("(a)",users[x],factorName), xlab="time in ms", ylab=

"Quantity")

262 x<-12

C. R Skript 124

263 assign(paste(component,x,sep=""),subset(eval(as.symbol(paste("data", x, sep=""

))), Component==component))

264 plotData<-eval(as.symbol(paste(component, x, sep="")))$ms

265 hist(plotData, main=paste("(a)",users[x],factorName), xlab="time in ms", ylab=

"Quantity")

266 dev.off()

267

268 }, warning = function(war) {

269 print(war)

270 }, error = function(err) {

271 print(err)

272 }, finally = {

273 print("run sucessfully")

274 })

275 }

276

277 tryCatch({

278 for(x in 1:length(users)) assign(paste("data",x,sep=""), read.csv(paste(root_

path, "result_new_", users[x], "User.csv", sep=""), header=TRUE, sep=";"))

279 pdf(paste(root_path,"/Charts_",min(users),"-",max(users),".pdf",sep=""),paper=

"a4", width=12, height=20, title=root_path)

280 par(mfrow=c(4,2))

281 if (mode == "ASYNC") {

282 modelComponent("MB1","Message Broker I")

283 modelComponent("CEP","CEP")

284 modelComponent("PRO","Proxy")

285 modelComponent("MB2","Message Broker II")

286 modelComponent("CEPC_Query","CEPC Query")

287 modelComponent("CEPC_Update","CEPC Update")

288 modelComponent("BEP_Query","BEP Query")

289 modelComponent("BEP_Update","BEP Update")

290 modelComponent("Total","Total")

291 } else {

292 modelComponent("CEP","CEP")

293 modelComponent("CEP_QR","CEP Query")

294 modelComponent("PRO","Proxy")

295 modelComponent("BEP_Query","BEP Query")

296 modelComponent("BEP_Update","BEP Update")

297 modelComponent("Total","Total")

298 }

299 dev.off()

300 }, warning = function(war) {

301 print(war)

302 }, error = function(err) {

303 print(err)

304 }, finally = {

305 print("run sucessfully")

306 })

Listing C.1: R Skript

	Declaration
	Acknowledgment
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Listings
	Introduction
	Motivation
	Gamification Platform
	Purpose
	Architecture

	Research Questions
	Approach
	Scope
	Concrete Example
	Outline

	Theoretical Foundations
	Modeling
	Data/Knowledge
	Modeling Techniques
	Cost Model
	Model Application Method
	Estimation
	Modeling Terminology

	Queueing Networks
	Kendall's Notation
	Illustration
	Network Types
	Queueing Network Simulation

	RETE
	RETE Terminology
	RETE Tree
	Response Times and Cost Model for RETE

	Statistics
	Mann-Whitney U Test
	Polynomial Regression
	Information Criteria

	System Analysis
	Components
	Queueing Networks
	Synchronous Mode
	Asynchronous Mode
	Measuring Points

	Cost Factors
	User-Related Cost Factors
	Number of Users
	Number of Events/s per User
	Event Type Distribution

	Rule-Related Cost Factors
	Number of Rules
	Number of Alpha Nodes
	Number of Beta Nodes
	Node Types
	Number of Abstractions
	Working Memory Growth
	Independent Rule Streams
	UpdateAPI calls in RHS
	QueryAPI calls in LHS
	Size of Tables
	Structure of Tables

	Infrastructure-Related Cost Factors
	Database
	Queue Scheduling Algorithm
	Connection Pools
	Transmission Packet Sizes
	RAM of Server

	Statistically Significant Cost Factors

	Experiments
	Experiment Modeling Technique
	Experiment Design
	Experiment Data
	Workload
	Experiment Results
	Distributions
	Cost Factor Number of Users
	Cost Factor Number of Events Per Second Per User
	Cost Factor Event Type Distribution
	Cost Factor Number of Alpha Nodes
	Cost Factor Number of Beta Nodes
	Cost Factor Number of Abstractions
	Cost Factor Number of updateAPI calls
	Cost Factor Number of queryAPI calls
	Summary

	Cost Model
	Modeling Method
	Cost Model
	Model Application Method

	Validation of the Cost Model
	Quantitative Validation
	Qualitative Validation: Model Criteria
	Validation Based On a Use Case
	Conclusion

	Summary
	Outlook
	Bibliography
	Test Results – Polynomial Model Charts
	Use Case Rules
	R Skript

