
Securing Remote Data Stores
Design and Implementation of an Encrypted Data Store

Diplomarbeit zur Erlangung des akademischen Grades eines
Magisters der Sozial- und Wirtschaftswissenschaften

Eingereicht an der Johannes Kepler Universitt Linz

Institut für Wirtschaftsinformatik

Data & Knowledge Engineering

Eingereicht bei: o.Univ.-Prof. Dr. Michael Schrefl

Betreuende Assistenten: Mag. Katharina Grün, Mag. Michael Karlinger

Walter Dorninger

December 7, 2005

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, daß ich die Diplomarbeit mit dem Titel - Se-
curing Remote Data Stores - selbständig und ohne fremde Hilfe verfaßt, andere als
die angegebenen Quellen und Hilfsmittel nicht benutzt und alle benutzten Quellen
wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.

Linz, im December 7, 2005

Meiner Familie gewidmet.

Acknowledgment

I would like to thank...

o.Univ.-Prof. Dr. Michael Schrefl for making it possible to per-

form this study in a modern and interesting scientific area and the

interresting discussions.

Mag. Katharina Grün and Mag. Michael Karlinger for their valu-

able help and advices and their incredible feedback for this work.

My parents for their mental support.

My grandparents for her unconditional love.

My brothers Albert and Thomas for the fun I have with them and

their help in solving problems.

My friends, especially those I have neglected during this work.

My colleges for taking over work I was not able to complete because

of time constraints during the development of this thesis.

Kurzfassung

Der anhaltende Trend, Daten auszulagern steigert die Menge an Datenbeständen,

welche bei externen IT-Dienstleistern gespeichert werden. Bei der Auslagerung

von Daten werden oft hohe Risiken hinsichtlich des Datenschutzes eingegangen.

Dies ist vor allem ein Problem für Finanzdienstleister, Institutionen im Gesund-

heitsbereich, sowie für die öffentliche Verwaltung. Während durch Nutzung ex-

terner IT-Dienstleister die Kosten für IT-Services drastisch verringert werden

können, ist mangelndes Vertrauen in externe IT-Dienstleister oft der Grund, IT-

Services nicht auszulagern.

Bei der Auslagerung von Daten müssen sich Unternehmen oft auf vertragliche

Vereinbarungen verlassen, welche jedoch lediglich den Umgang mit den ausge-

lagerten Daten, sowie mögliche Konsequenzen bei Verletzung der Vereinbarun-

gen definieren. Diese Vereinbarungen, auch Service Level Agreements (SLAs)

genannt, können die Sicherheit der Daten nicht garantieren, da Angestellte der

IT-Dienstleister meist ungehinderten Zugang zu diesen Daten haben. Die gespe-

icherten Daten können zwar verschlüsselt werden, um Abfragen durchzuführen

werden diese Daten jedoch wieder am Server des ASPs entschlüsselt und sind

damit im Speicher des Servers unverschlüsselt verfügbar.

SemCrypt ist ein Forschungsprojekt welches sich mit Techniken zur Abfrage und

Änderung von XML Dokumenten auf externen unsicheren Servern beschäftigt.

Die grundlegende Idee ist, Daten ausschließlich auf einem sicheren Client zu ver-

und entschlüsseln. Da Abfragen auf verschlüsselte Daten ohne Zusatzinforma-

tionen nur eingeschränkt möglich sind, müssen die Abfragen am Client mit Hilfe

von Indexstrukturen und Metadaten durchgeführt werden.

Diese Diplomarbeit befaßt sich mit dem Datenspeicher von SemCrypt, welcher

SemCrypt Store genannt wird. SemCrypt Store soll Änderungen sowie Abfragen

von verschlüsselten Daten ermöglichen. Der Datenspeicher soll sowohl die interne

Struktur als auch die Daten selbst verschlüsseln. Hierfür werden XML Doku-

mente in Fragmenten gespeichert. Die einzelnen Fragmente werden mit einem

sicheren Verschlüsselungsalgorithmus verschlüsselt. SemCrypt Store besteht aus

zwei Komponenten. Die erste Komponente mit dem Namen Storage Engine läuft

6

auf dem Client und kümmert sich um Ver- sowie Entschlüsselung der Daten. Die

zweite Komponente namens Storage Provider stellt einen einheitlichen Datenzu-

griff für die Storage Engine zur Verfügung.

SemCrypt Store ermöglicht das Speichern, Abfragen, Verschlüsseln sowie Entschlüsseln

von Daten ohne diese am Server preiszugeben.

Abstract

The trend towards outsourcing increases the number of documents stored at

external Application Service Providers (ASPs). However, this storage approach

raises privacy and security concerns because ASPs cannot be trusted with respect

to privacy. This is especially a problem for organizations maintaining sensitive

data like financial-, health care- or government data. While the use of ASPs has

proven beneficial at a business level because costs for IT services can be reduced

significantly, the lack of trust is often the reason for organizations to not outsource

their data stores and thus having to maintain expensive data stores in-house.

When outsourcing data, organizations have to rely on service level agreements

that can only define how the data is maintained by the storage provider. These

service level agreements cannot guarantee the privacy and security of data be-

cause employees of the service provider still have access to the outsourced data.

Encryption is a possible approach for data protection but requires specific tech-

niques for querying this data.

SemCrypt is a research project that aims at querying and updating encrypted

XML documents stored at external untrusted servers. The principal idea is to

encrypt and decrypt data only at the client in a trusted environment and use the

database of an ASP to store the encrypted data. Because querying encrypted

data has very limited capabilities, the client has to perform query processing by

exploiting the structural semantics of XML documents as well as index structures

and meta data, making it possible to efficiently process queries. SemCrypt thus

enables to query and update encrypted XML documents on untrusted servers

while ensuring privacy.

This thesis concentrates on the storage layer of SemCrypt, called SemCrypt Store.

The main target is to provide a secure remote data store that can operate in an un-

trusted environment but still enables query processing. The security requirements

for the SemCrypt Store are to encrypt the data and hide the associations inside

XML documents. These requirements are fulfilled by storing XML documents

in an identifier-value based approach using well proven encryption techniques to

hide the content and structure of XML documents. SemCrypt Store consists of

8

two components. The first one is the Storage Engine which runs on the client

and performs encryption and decryption of values that have to be stored by the

SemCrypt Store. The Storage Provider is the second component that operates

on the server and provides a unified transactional database access to arbitrary

data sources for the SemCrypt Store.

SemCrypt Store enables to encrypt, store, retrieve and decrypt data without

revealing any information about data stored at the storage provider, thus making

it possible to employ untrusted data stores for storing sensible data.

Contents

1 Introduction 13

1.1 Motivation . 13

1.2 Sample scenario . 14

1.3 Problem definition . 16

1.4 State of the art and current approaches 18

1.5 The Semcrypt approach towards secure data stores 19

1.6 Objective of the thesis . 21

1.7 Outline . 21

2 Requirements and Strategies 23

2.1 Protect document structure and content 23

2.2 Avoid statistical analysis . 29

2.3 Extensibility . 31

2.4 Consistency . 32

2.5 Performance . 33

3 Architecture 35

3.1 Overview . 36

3.2 Storage Engine . 37

3.2.1 Storage Gateway . 37

3.2.1.1 Operations . 38

3.2.1.2 Components . 43

9

10 CONTENTS

3.2.2 Transaction Controller . 50

3.3 Storage Provider . 51

3.3.1 Store Access Component 52

3.3.1.1 Create container 52

3.3.1.2 Find container 52

3.3.1.3 Remove Container 53

3.3.2 Container Access Component 53

3.3.2.1 Insert cipher row 53

3.3.2.2 Remove cipher row 54

3.3.2.3 Check for cipher row existence 54

3.3.3 Transaction Management Component 54

3.3.4 Data Source Adapter Component 54

3.4 Summary . 55

4 Technologies 57

4.1 Java Enterprise Edition Platform (J2EE) 57

4.2 JBoss (Version 4.1) . 58

4.3 Java Naming and Directory Interface (JNDI) 58

4.4 Enterprise Java Beans (EJB) . 59

4.5 Java Connector Architecture (JCA) 60

4.6 Bouncy Castle Cryptographic API (Version 1.2.6) 60

4.7 EHCache (Version 1.1) . 61

4.8 Berkeley Database Java Edition (Version 2.0) 61

4.9 Log4J Logging API (Version 1.2) 62

5 Implementation 63

5.1 Storage Engine . 63

5.1.1 Storage Gateway . 64

5.1.1.1 Cipher Component 64

CONTENTS 11

5.1.1.2 Hash Generation Component 64

5.1.1.3 Nonce Generation Component 64

5.1.1.4 Cache Component 65

5.1.1.5 Conversion Component 65

5.1.2 Transaction Controller . 69

5.2 Storage Provider . 71

5.2.1 Storage- & Container Access Components 72

5.2.2 Transaction Management Component 72

5.2.3 Data Source Adapter . 73

5.2.3.1 Connection Management 73

5.2.3.2 Data storage . 74

5.2.3.3 Connection Management Architecture 75

6 Related Work 77

6.1 Hacigümüs - Executing SQL over Encrypted Data 77

6.2 Oracle Database Encryption Techniques 79

6.3 XML Encryption . 80

6.4 Encrypting files & filesystems . 81

6.5 Summary . 82

7 Conclusion and Outlook 85

7.1 Conclusion . 85

7.2 Future Work . 86

7.2.1 Improving the implementation 86

7.2.2 Extending the implementation 87

7.2.3 Extending the architecture 87

A Development Environment 97

A.1 Eclipse (Version 3.1) . 97

A.2 XDoclet (Version 1.2) . 98

A.3 JUnit (Version 3.8) . 98

A.4 Ant (Version 1.6) . 98

12 CONTENTS

B Installation and Configuration 99

B.1 Installation . 99

B.2 Configuration . 100

B.2.1 Configuring the Storage Engine 100

B.2.1.1 Cache configuration 101

B.2.1.2 Logging configuration 103

B.2.2 Configuring the Storage Provider 103

B.2.2.1 Logging configuration 104

C Programmatic use of the Storage Engine 105

C.1 Storing and retrieving a value . 105

C.2 Transaction handling . 106

Chapter 1

Introduction

Contents
1.1 Motivation . 13

1.2 Sample scenario . 14

1.3 Problem definition . 16

1.4 State of the art and current approaches 18

1.5 The Semcrypt approach towards secure data stores . 19

1.6 Objective of the thesis 21

1.7 Outline . 21

This chapter describes the current situation in the Application Service Provider
(ASP) business and presents an example scenario for a secure data store. The
chapter also discusses today’s security problems in the ASP business. Further-
more the current approaches in the field of secure data stores are described. The
section The SemCrypt approach towards secure data access outlines the basic
idea and architecture of SemCrypt. In the section Objective of this thesis the
purpose of this master thesis is explained. The reader of this chapter should get
an understanding of the motivation of this master thesis and the related project
SemCrypt.

1.1 Motivation

Storing large amounts of data not only requires a significant investment in hard-
ware, it also places a burden on the in-house information technology (IT) systems.
To effectively keep up with the growing volume of data, today’s enterprises take
advantage of the wide range of specialized IT services provided by ASPs.

13

14 CHAPTER 1. INTRODUCTION

When outsourcing data services, companies can reduce their focus on information
technology and instead can concentrate on enhancing their core business. This
strategy reduces the total cost of ownership for IT services because an ASP
typically provides the same or similar services to other companies, thus making
it possible to offer the same services for a lower price.

Many organizations operate on sensitive data, e.g. in the financial industry,
health industry, insurances and government organizations. Despite security and
privacy risks such organizations do not want to renounce outsourcing opportuni-
ties since they store their sensitive data at ASPs. As an example Weinstein [34]
mentions a case where a Pakistani subcontract worker threatened to post U.S.
patients medical data on the Web if claimed back pay was not forthcoming.

The above example makes clear that outsourcing data raises the need for secure
remote data stores providing the full functionality of conventional databases but
without the risk of exposing sensitive data.

1.2 Sample scenario

As an example for the need of a secure remote data store, think of a software
company called Enigma that is primary selling software licenses. Assume that
Enigma wants to outsource the data store of license contracts with its customers.
Instead of storing the license contracts in-house, Enigma wants to employ an ASP
to manage the license contracts data store i.e. archiving old license contracts and
performing frequent backups. Outsourcing these activities enables Enigma to
concentrate on its customer relationships instead of concentrating on the data
store of its contracts. Still Enigma needs to access this data for querying and
maintaining the license contracts. Beside operational maintenance tasks such
as backing up data, the ASP also offers the company’s sales force access to the
license contracts from all over the world 24 hours a day.

Figure 1.1 displays this scenario. Enigma sends requests for contract data and
the ASP returns the requested information.

The contracts of Enigma contain the following information:

• Contract identifier - The contract identifier is used to uniquely identify a
contract.

• Licensee name - This is the name of the licensing company.

• Price - The license fee the licensee has to pay frequently, granting him rights
to use the respective software.

1.2. SAMPLE SCENARIO 15

Figure 1.1: Sample outsourcing scenario

• Payment information - The payment information containing credit card id,
card name and valid-thru date is stored along with the contract and can be
used to charge the licensee on a frequent basis without having to request
this information every time a payment is due1.

• Terms and conditions - The terms and conditions that are part of the con-
tract.

Figure 1.2 shows the data structure of the contract with id ”478”. The licensee
in this contract is ”basf” and ”basf” has to pay a license fee of ”3000” Euros.
The payment information in the contract stores the credit card type which is
”visa” the credit card id ”1234” and the expiration date of the the credit card
”12/12/05”.

Figure 1.2: Exemplary license contract

1Note that putting the payment information into the contract data is not a very good style
from a datamodelling perspective but is modeled this way to keep the example simple.

16 CHAPTER 1. INTRODUCTION

1.3 Problem definition

While the use of ASPs has proven beneficial at a business level because of sig-
nificant cost reductions, integrating ASPs into the network and processing envi-
ronment of client organizations raises obvious security concerns, especially when
outsourcing sensitive data.

“According to a survey performed by Osterman Research security continues to be
a primary obstacle to companies choosing to outsource business processes. 86.6
per cent of respondents felt that data security is a significant concern when con-
sidering outsourced service providers, and more than half of the respondents are
not outsourcing their storage and archiving requirements due to concerns around
third-party access to their data” [10].

Outsourced data is exposed to the following risks:

• Eavesdropping can be performed over communication channels like the In-
ternet and in wide area network environments where ASPs route portions
of their network traffic through insecure data channels. Eavesdropping can
also be performed in local area network environments. Insiders with access
to the physical wiring have the possibility to illegally view data and also
may install network sniffers to eavesdrop on network traffic.

• Data theft is primarily perpetrated by employees who directly work with,
or have access to valuable data. Some organizations are concerned about
administrators of data stores because they typically have all privileges and
are able to access and manipulate all data in the data store. These orga-
nizations feel that the employees should merely administer the data store,
but should not be able to see the data in the data store. Some organizations
are also concerned about the concentration of privileges in one person, and
would prefer to partition the administrators function, or enforce two-person
rules. While most organizations have implemented firewalls and intrusion
detection systems, very few focus on one of the biggest threats to their
organization, which in fact is the average employee who steals proprietary
data for personal gain or use by another company. The damage caused by
data theft can be considerable with today’s ability to transmit very large
files via email, web pages, USB devices, DVD storage and other devices.
New threats are introduced by removable media devices that are getting
smaller and have increased capacity.

• Data tampering - It is intrinsic for distributed environments that a malicious
third party can compromise integrity by tampering stored data.

1.3. PROBLEM DEFINITION 17

• Data Loss is another security problem which arises when storage devices
containing sensitive data are lost. This typically happens during the trans-
port of data e.g. the transport of data to its backup location. customers.

• Privacy means that organizations need to be sure that their data is properly
protected from the ASP’s other customers which may be sharing the same
data store and processing environment.

Despite efforts to protect data stores, customers still often do not fully trust
ASPs. This is especially true for the financial industry and government areas
dealing with sensitive data. In many cases these organizations store sensitive
data at ASPs. When an organization contracts with an ASP, it needs to be
able to fully utilize the ASP’s services while not putting its own private data
at risk. Therefore the ASP has to protect data against the following forms of
unauthorized access:

• Unauthorized access from outside - Protecting data from outside access can
be achieved by firewalls and physical access control mechanisms.

Example 1 (Data separation) For the scenario mentioned in section
1.1 this means that the ASP has to protect Enigma’s license contracts from
access by other companies which also use the ASP to store data.

• Unauthorized internal access - This includes protecting data from unautho-
rized employees working for the ASP and ensuring that only authorized
employees of the ASP can get in touch with customer data.

Example 2 (Internal data access) The ASP has to ensure security such
that, no one except authorized sales representatives have access to Enigma’s
license contracts. This also includes that the ASP has to ensure that even
system operators and administrators handling data at the ASP or other em-
ployees don’t have access to this data. The administrators could abuse the
credit card number used in the license contracts or even could steal license
contracts for a competitor of Enigma.

Further, in situations where sensitive data is stored at an ASP, the contracting
organization needs to know that the ASP is safeguarding the data to the same or
even higher standards than the organization itself. Today arrangements defined in
Service Level Agreements (SLAs) are very common to avoid unauthorized access
of data. But SLAs can only make sure that certain procedures are enforced when
sensitive data is handled by an ASP. Typically SLAs between an ASP and a
contracting organization are used to define the level of security that has to be
applied to the data stores.

18 CHAPTER 1. INTRODUCTION

Since unauthorized data access by employees cannot be avoided with SLAs many
ASPs have recognized the need to find ways to improve the security of their data
stores. Data encryption is a crucial step in securing data stores. Encryption is the
primary mechanism to ensure the security of sensitive data. It not only protects
data if it was lost or stolen, it also reduces the possibility of security breaches. A
technical solution is required that prevents risks like those mentioned above but
still provides full functionality of common data stores e.g. databases.

All data has to be encrypted and must never be decrypted at the ASP such that
neither intruders nor employees of the ASP have access to plain data. Cipher
algorithms that are provided by standard databases like e.g. Oracle or DB2 are
not sufficient for this approach because these data stores have to decrypt data
for query processing which violates the demand of performing no decryption at
the ASP. This raises the need of an encrypted remote queryable data store that
is operated by the ASP and is accessed by the client.

Example 3 (Encrypting data) If all license contracts of Enigma are stored
encrypted at the ASP, Enigma does not have to fear that the data can be misused
by the ASPs employees.

1.4 State of the art and current approaches

This section describes the current approaches towards encrypting and accessing
data:

• File encryption1 - Many operating systems provide the ability to encrypt
files and to store them in a conventional filesystem [24] [7]. However, every
time a query is performed or data is manipulated this approach requires to
(1) retrieve whole files from the ASP, (2) decrypt them to process the query
or manipulate the data and (3) finally transfer the data back to the ASP.
Transferring whole files from the ASP to the client and then back to the
server leads to performance losses. Furthermore many filesystems require
to perform encryption and decryption at server side thus gaining security
vulnerabilities.

• Pattern matching in encrypted text1 - There are approaches that suggest
to store data encrypted and provide mechanisms to search directly in the
encrypted data without having to decrypt the data [14]. The problem of
these approaches is that the query abilities are very limited and therefore
these solutions do not provide full functionality of common databases. Fur-
thermore if the cipher algorithm becomes insecure the whole approach does
not work anymore because the pattern matching relies on the specific cipher
algorithm.

1.5. THE SEMCRYPT APPROACH TOWARDS SECURE DATA STORES19

• Database encryption - There are many approaches that aim to encrypt the
data in data stores. Hacigümüs et. al. [19] propose a way to store data
encrypted and to query the encrypted data. The strategy of this approach is
to perform as much as possible of the query processing at the ASP without
having to decrypt data. All remaining operations that require data in plain
text are performed at the client side. The technique deploys a ”coarse
index”, which allows partial server side execution of an SQL query. The
result of this query is sent to the client. The correct result of the query is
found by decrypting the data and executing a compensation query at the
client side.

Unfortunately this approach has not proven to be secure if the schema is
known and it is also proven semantically insecure due to possible frequency
analysis of repeated storage patterns [17].

1.5 The Semcrypt approach towards secure data

stores

SemCrypt is a research project funded by FIT-IT which is an initiative of the Bun-
desministerium für Verkehr, Innovation und Technologie (BMVIT). The project
is driven by the Department of Business Informatics - Data and Knowledge En-
gineering Johannes Kepler University Linz, the E-Commerce Competence Center
and the ec3Networks GmbH. This section outlines the principal ideas of the over-
all SemCrypt project as described in [29].

SemCrypt aims at realizing a queryable encrypted data store for XML docu-
ments. SemCrypt enables to query and update encrypted XML documents. The
principal approach is similar to the current approaches but the disadvantages of
the current approaches mentioned in section 1.4 are avoided.

SemCrypt operates in a trusted- and an untrusted environment. Thus the basic
architecture of SemCrypt is split into the following two components shown in
figure 1.3:

• SemCrypt Database Manager

• Storage Provider

1Note that this approach only covers some of the features provided by SemCrypt thus it can
only be compared to these features and not to the full SemCrypt solution

20 CHAPTER 1. INTRODUCTION

Figure 1.3: SemCrypt architecture overview

The SemCrypt Database Manager operates in the trusted environment and serves
requests from the end user application. The SemCrypt Database Manager pro-
vides high level services like indexing, document upload/download and query
processing to user applications. All operations that need to be executed in a
trusted environment, in order to avoid security breaches, are performed by the
SemCrypt Database Manager. To access a data store, the SemCrypt Database
Manager communicates with the Storage Provider.

The Storage Provider operates in the untrusted environment and provides access
to the data store. The Storage Provider acts as an interface between a third party
data store (e.g. database) and the SemCrypt Database Manager thus enabling
access to arbitrary data stores. Because the Storage Provider operates in the
untrusted environment, the SemCrypt Database Manager has to encrypt data
before it is sent to the Storage Provider. Therefore the Storage Provider only
handles encrypted data. Furthermore everytime the Storage Provider returns
data to the SemCrypt Database Manager the result has to be decrypted before
it can be processed by the SemCrypt Database Manager.

To unitize the communication between the SemCrypt Database Manager and the
Storage Provider a further component named Storage Engine is required. The
Storage Engine encapsulates the whole communication between the high level
services like query processing and indexing of the SemCrypt Database Manager
and the Storage Provider. Figure 1.4 shows the Storage Engine that operates
between these two components. Both components, the Storage Engine and the
Storage Provider, together are subsequently referred to as the Semcrypt Store.

1.6. OBJECTIVE OF THE THESIS 21

Figure 1.4: Storage Engine overview

1.6 Objective of the thesis

The focus of this thesis is the design and implementation of the Storage Engine
and the Storage Provider enabling SemCrypt to store and query encrypted data.

The requirements for SemCrypt Store have to be described and the strategies to
meet these requirements have to be implemented.

It is possible to employ the SemCrypt Store in other projects as well. Within
the scope of this master thesis the development of the SemCrypt Store focuses
primary on the requirements of SemCrypt.

SemCrypt needs a storage layer for the query-, index- and metadata processing
components compromised within the SemCrypt Database Manager. The objec-
tive is to derive the architecture from the design document [21] and perform an
in depth design for the SemCrypt Store.

1.7 Outline

Chapter 2 This chapter lists requirements that have to be met by the SemCrypt
Store. Additionally strategies to identify the requirements are outlined.

Chapter 3 Based on the requirements and the proposed strategies in the previ-
ous chapter, the architecture and modularization of the SemCrypt Store is
explained.

22 CHAPTER 1. INTRODUCTION

Chapter 4 This chapter describes the technologies that are chosen to implement
the SemCrypt Store.

Chapter 5 This chapter describes the details of the implementation of the com-
ponents defined by the architectural components. Further this chapter de-
scribes how the chosen technologies interfered the implementation.

Chapter 6 This chapter presents related work. It briefly describes other ap-
proaches of secure data stores.

Chapter 7 The work that is out of scope of this master thesis is described in
this chapter. These are features that were not implemented and therefore
are not mentioned in Chapter 5, but can be integrated in future releases.

Chapter 8 This chapter concludes the thesis.

Chapter 2

Requirements and Strategies

Contents
2.1 Protect document structure and content 23

2.2 Avoid statistical analysis 29

2.3 Extensibility . 31

2.4 Consistency . 32

2.5 Performance . 33

This chapter describes the requirements that need to be met by the SemCrypt
Store. The requirements are derived from Schrefl et al. [29] and related require-
ments are grouped into categories to provide a high level overview. Each section
in this chapter covers one category. For each requirement the strategies that are
used to meet the requirement are described. The possible problems related to
the strategies are mentioned and solutions are presented.

2.1 Protect document structure and content

Requirement 1 (Hide content) The content of XML documents holding sen-
sitive information has to be hidden. Only authorized persons should be able to
access the content of such documents.

Strategy 1 (Cipher algorithms) To avoid security threats like those described
in section 1.3, e.g. data theft, and to meet the requirement to hide the content
of the document, cipher algorithms are used to encrypt all data stored by the
Storage Provider. The encrypted data contains document data, index data and
metadata that describes the document.

23

24 CHAPTER 2. REQUIREMENTS AND STRATEGIES

The general principle of encryption is to use an encryption function (E) and a
key (k) to encrypt a plain text (p) into a cipher text (c). For decrypting c a
decryption function (D) is used together with k. Figure 2.1 depicts this basic
encryption and decryption concept1.

Figure 2.1: Encryption and decryption of data

Requirement 2 (Hide associations) It is not sufficient to only encrypt the
data of a document. The internal associations of documents have to be hidden,
making it harder to figure out valuable information stored in the document.

Strategy 2 (Identifier-value pairs grouped into containers) All data like
document content, indexes and metadata is stored as identifier-value pairs. When
applying this approach to complex data structures like XML documents these
documents have to be fragmented into small data chunks. Using labeling schemes
like the one described by Grün et al. [18] means that identifiers are applied to
the data chunks resulting in multiple identifier-value pairs for one complex data
structure. According to the labeling scheme described by Grün et al. [18], the
nodes in a document are assigned with identifiers. This task is performed outside
of the Storage Engine and is not covered by this thesis.

Example 4 When the concept of identifier-value pairs is applied to the nodes in
figure 1.2 each node is assigned with a different label. The contracts node will be
assigned with label 1, the contract node with label 2-1, the id node with label 3-1
and so on. Figure 2.2 depicts all the assigned labels in the document tree.

The identifier-value pairs are passed to the Storage Engine for storing values in
the Storage Provider. Inside the Storage Engine the identifiers are used as unique
keys for the values. Because every identifier-value pair is stored separate and has
no direct association to its parent or children the structure of the document

1Note that this is not the final encryption approach used by SemCrypt - this approach will
be enhanced later in this chapter.

2.1. PROTECT DOCUMENT STRUCTURE AND CONTENT 25

Figure 2.2: Identifiers for the contract nodes

is hidden when storing the data of the document in an identifier-value based
manner.

Additionally to referencing one value, an identifier can also reference a value list.
This avoids having to store identifier-value pairs with the same identifier and thus
avoids equal storage patterns that are a potential security leaks.

An identifier is used to uniquely identify one value or value list enabling the
lookup of a specific value by its identifier. The encrypted identifiers are stored
together with the encrypted values in a table like structure.The encrypted value
is called cipher text. One row of this table consisting of an encrypted identifier
and an encrypted value is called cipher row. The table holding the cipher rows
is subsequently called container.

Example 5 (Cipher rows) Figure 2.3 depicts this relationship.

Figure 2.3: A container holding cipher rows

Requirement 3 (Hide document structure) It is not sufficient to only en-
crypt the data of a document. The structure of the document also has to be
hidden.

26 CHAPTER 2. REQUIREMENTS AND STRATEGIES

Strategy 3 (Hash functions) Because an encrypted text has approximately
the same size as the plain text2, encrypting the identifiers separately as described
in the previous strategy can lead to a security problem. Depending on the struc-
ture of the identifier ([18]), an attacker can get information about the structure
of the document by looking at the length of the identifiers.

Because of this problem it is suggested to store hash values instead of the en-
crypted identifiers for querying values. The hash values are generated using a
hash function on the identifier and are then stored and used to identify the value
instead of the identifier itself. The advantage of a hash function is that it takes
a message of any length as input and produces a fixed length hash value as out-
put, sometimes this output is termed as message digest or digital fingerprint. A
hash value identifying a cipher text is subsequently called cipher id. Figure 2.4
displays a container with two cipher rows identified by a cipher id.

Figure 2.4: Cipher id’s that identify the cipher text

The most common hash functions are:

• Message-Digest algorithm 5 (MD5) - This hash function has been used in
a wide variety of security applications but after flaws have been found in
1996 and 2004 cryptographers recommend to use SHA-1 instead of MD5
[35].

• Secure Hash Algorithm (SHA-1) - This hash function is considered as being
the successor to MD5 and was implemented by the National Institute of
Standards and Technology. This function is not used as widely as MD5,
but popular copyright protection systems use this hash function.

2When using a block ciper algorithm the size of the cipher text depends on the block length
and the length of the cipher text.

2.1. PROTECT DOCUMENT STRUCTURE AND CONTENT 27

Example 6 (Hash values) This example demonstrates a character input and
the resulting cipher id (MD5 hash 128 bit). Figure 2.5 shows the indentifiers and
the respective cipher ids. Note that both cipher ids have the same size regardless
of the length of the original identifier3 length:

MD5(identifier) = cipher id

MD5(/contracts/contract[1]/payment/@cardid) = 9e107d9d372bb6826bd81d3542a419d6

MD5(/contracts) = d41d8cd98f00b204e9800998ecf8427e

Figure 2.5: MD5 hash value example

The fixed output length of the hash functions has the advantage that regardless
of the length of the identifiers used, the cipher ids stored in the Storage Provider
will always be of the same size which improves security.

But the use of hash functions for identifying values has a drawback. A funda-
mental property of all hash functions is that if two hashes (according to the same
function) are different, then the two inputs were different. This property is a
consequence of hash functions being deterministic, mathematical functions, but
they are generally only surjective functions. Consequently, the equality of two
hash values does not guarantee that the two inputs were the same. The situations
of two different inputs resulting in the same hash value is called hash collision.
This is a problem for using a hash value as a cipher id to look up a value, because
a single value cannot be uniquely identified anymore.

To solve this problem the identifier is stored together with the value in the cipher
text and the query to lookup an identifier is split into two steps. In the first
step the cipher id is used to find the correct cipher row at the Storage Provider
that holds the identifier. The second step is to find the correct identifier-value
pair inside the cipher row, which is done after the cipher row was decrypted by
the Storage Engine. Figure 2.6 shows a container holding the cipher ids and the
identifiers that are stored together with the respective values.

3In this example different identifiers are used to illustrate the behavior of hashfunctions

28 CHAPTER 2. REQUIREMENTS AND STRATEGIES

Figure 2.6: A container holding cipher ids and values (decrypted)

Figure 2.7 shows the same container as decribed in 2.6 as it is seen by the Storage
Provider. The identifiers and values are encrypted together in one cipher text.

Figure 2.7: A container with cipher text

Hash functions also have an impact on the physical storage layout of the data.
Hash functions which are surjective functions can be qualified as good or bad
hash functions. A good hash function is one that yields only few hash collisions
whereas a bad hash function results in many hash collisions. If bad hash functions
are chosen for hashing the identifiers, as a consequence, the Storage Provider will
store many identifier-value pairs together in few cipher rows. These cipher rows
have to be loaded every time when any of the identifier-value pairs are accessed.
This means that it is a general rule that cipher rows holding less values are
accessed less often than cipher rows containing many identifier-value pairs.4

4When using MD5 or SHA-1 it is very rare that one gets into contention troubles because
both are good hash functions

2.2. AVOID STATISTICAL ANALYSIS 29

2.2 Avoid statistical analysis

Requirement 4 (Avoid statistical analysis because of cipher characteristics)
If the same plain text is encrypted with the same cipher algorithm and the same
cryptographic key, the resulting cipher text will be equal. In real life, documents
often start with similar or identical data, and an attacker should not be able to
detect this using statistical analysis. Therefore each time the same plain text
occurs it has to be encrypted differently.

Strategy 4 (Nonce based encryption) To be able to generate a different ci-
pher text result each time the same plain text is encrypted, the cipher algorithm
has to be parameterized with a different value each time the encryption is per-
formed.

There are different approaches of parameterizing the cipher algorithm with a
variable input.

• Message numbers - The first approach is to just use a counter that starts
with zero and is incremented each time a text has to be encrypted. The
counter is used to parameterize the cipher algorithm in order to produce
a different encryption result for same plain texts. This is a problem for
many plain texts because it is very likely that documents start with similar
characters. If the beginning blocks of the plain text have small differences,
then the simple counter potentially cancels the differences in xor operations,
and identical cipher text blocks are again generated.

Example 7 As an example consider the values zero and one as the first
and the second initialization values for the cipher algorithm. If the first and
the second message also only differ in the first bit of the leading plain text
block two equally encrypted cipher texts are generated [28].

• Random numbers - Another approach is to use random numbers to parame-
terize the cipher algorithm each time a value is encrypted. According to [28]
there are two disadvantages when using random numbers. First it is hard
to find or implement a reliable random number generator. The second dis-
advantage is that if each random number is stored in the first cipher block
of a message it consumes all the space in the first cipher block (usually 128
bit) which is a huge overhead when the cipher text is very short.

• Nonce - This approach is the best solution to initialize cipher algorithms.
The idea is to use a number that is unique for initializing the cipher every
time a message is decrypted. For every encryption a new nonce is generated.

30 CHAPTER 2. REQUIREMENTS AND STRATEGIES

This approach requires an algorithm that produces a unique number. The
size of this number is usually much smaller than one cipher block and
therefore produces less overhead compared to the random number solution.

Although the random number approach and the nonce based approach are very
similar the nonce based solution is chosen to be used by the SemCrypt Store since
the nonce based approach produces less storage overhead.

Consequently the cipher aproach described in strategy ”Cipher algorithms” (strat-
egy 1) has to be enhanced by a nonce (n) and this nonce has to be stored in
conjunction with the cipher row. Figure 2.8 shows the enhanced nonce based
cipher formulas that will be used in SemCrypt Store.

c := E(p,k,n)
p := D(c,k,n)

Figure 2.8: Nonce based Encryption and decryption

Figure 2.9 illustrates how the container looks like from the view of the Storage
Provider. The figure shows the nonce and the cipher text stored together.

Figure 2.9: An encrypted container

Requirement 5 (Avoid statistical analysis because of hotspots) Hotspots
are pieces of data that are accessed very frequently. The requirement of avoiding
repetitive access to the same data has the following reasons:

• Performance - Accessing the same data on an external data store like a hard
disk causes performance losses. Especially when operating in a multiuser
environment contention is likely to occur.

2.3. EXTENSIBILITY 31

• Security - Hotspots constitute a potential security leak because an attacker
can figure out that certain data is accessed very frequently by monitoring
the disk access and can therefore derive information.

Strategy 5 (Caching) The solution to avoid hotspots is to implement a cache
inside the Storage Engine. The cache reduces the number of requests sent from
the Storage Engine to the Storage Provider and thus decreases the frequency
of accesses to the same data. Fewer requests to the Storage Provider imply
that decrypting data with statistical analysis gets harder. Also the performance
increases when using caching:

• If a request can be handled by the cache, the roundtrip to the Storage
Provider is avoided.

• The overall performance of the Storage Provider increases because the over-
all amount of requests that need to be handled by the Storage Provider
decreases.

Additionally preserving the cache during the startup and shutdown fulfills the
requirement of avoiding hotspots even better because the cache needs not to be
built after the startup of the client but is initially populated with the values that
were saved before shutdown of the client.

Note that since containers separate the storage of identifiers-value pairs, they can
also be used to reduce the size of identifier-value pairs that are associated with
one hash value and thus decrease the number of access operations on one cipher
row. This is only relevant when the hash function used to generate cipher ids is
bad.

2.3 Extensibility

Requirement 6 (Use arbitrary cipher algorithms) It is required that Sem-
Crypt Store is independent of any existing cipher algorithm making it possible to
switch to arbitrary cipher algorithms when it turns out that the cipher is insecure.
The cipher can get insecure because of too small keys or security leaks that are
discovered in cipher algorithms. This is already true for the DES cipher algorithm
[27].

It can also be necessary to use a certain cipher algorithm because of performance
considerations. Users of SemCrypt with a primary goal of processing high volumes
of data may decide to use faster but more insecure cipher algorithms.

32 CHAPTER 2. REQUIREMENTS AND STRATEGIES

Example 8 Table 2.1 holds some performance examples of block cipher algo-
rithms. It illustrates that there are large performance differences between the
various algorithms. Note that the hardware that was used to execute this bench-
marks was a PC with a 486 CPU with 33MHz but in this case only the relations
are demonstrated.

Algorithm Encryption speed in kb/s

DES 35
TRIPPLE DES 12
IDEA 70
Blowfish (12 rounds) 182
Blowfish (16 rounds) 135
Blowfish (20 rounds) 110

Table 2.1: Encryption performance of block cipher algorithms

Strategy 6 (Flexible design) As per the requirement to be able to exchange
the cipher algorithms the cipher component of SemCrypt is separated making it
possible to plug in any new developed or already available cipher algorithm.

Requirement 7 (Use arbitrary data stores) ASPs offer many different ser-
vices for storing data including file systems and databases. It is required for
SemCrypt to be able to operate on arbitrary data stores. This makes SemCrypt
very flexible allowing to adopt existing data store environments for the use with
SemCrypt Store.

Strategy 7 (Storage Provider) Fulfilling the requirement to use any data store
requires the Storage Provider to be split into two parts. One part that commu-
nicates with the Storage Engine and another part that operates like an adapter
between the first part of the Storage Engine and the employed low level data
store like a database or a file system. New adapters can be implemented for new
databases as needed without having to change the core processing of SemCrypt
Store.

2.4 Consistency

Requirement 8 (Ensure ACID principles) Data consistency is of most im-
portance for SemCrypt. The SemCrypt Store has to guarantee the following char-
acteristics for handling data, abbreviated by the acronym ACID [22] [26]:

2.5. PERFORMANCE 33

• Atomicity - relates to the operations of a transaction. Because a transaction
often consists of more than a single operation, atomicity requires that all
the operations of a transaction perform successfully for the transaction to be
considered complete. If even a single operation cannot be performed, none
of the transaction’s operations are performed.

• Data Consistency - A transaction must transition data from one consis-
tent state to another. In addition, the transaction must preserve the data’s
semantic and physical integrity

• Isolation - It has to be possible for many Storage Engine operations to
run concurrently but the single operation should not see immediately the
changes of the other operations. Isolation prevents an operation from ob-
taining an inconsistent view of the data. Data inconsistency can occur if
one operation sees just a subset of another operations updates due to the
inter-dependencies among these updates. Isolation is related to transaction
concurrency.

• Durability of Data - means that changes made by successful data manipula-
tion operations persist in the data store regardless of failure conditions. It
guarantees that completed changes remain in the data store even if failures
occurred after the completed operation.

Strategy 8 (Transactional support) The Storage Engine provides transac-
tion handling for high level services of the SemCrypt Database Manager. The
transaction handling is required to be able to modify the stored data and commit
all changes at once and to guarantee that all or no changes are applied - avoiding
inconsistent data.

Requirement 9 (Ensure common data access) The stored data must be main-
tained in a platform and programming language independent way making it pos-
sible for SemCrypt Store to operate on a large variety of operating systems and
platforms.

Strategy 9 (No language specific features) No language and platform spe-
cific features are used during the implementation of the storage structures at the
Storage Provider.

2.5 Performance

Requirement 10 (Performance) Because SemCrypt potentially has to handle
a large amount of data, it needs to be scalable. The design of SemCrypt Store has

34 CHAPTER 2. REQUIREMENTS AND STRATEGIES

to ensure that the communication between Storage Engine and Storage Provider
is fast enough for an acceptable response time for queries of the higher level
services.

Strategy 10 (Communication) Basically the strategies used to gain perfor-
mance are the same that are implemented to avoid hotspots. Additionally the
following strategy is used to increase the performance for the operation of the
SemCrypt Store.

The Storage Engine and the Storage Provider have to implement an efficient
communication mechanism to reduce response time. The amount of transmitted
data between these two components is reduced to a minimum to ensure a fast
communication mechanism.

Chapter 3

Architecture

Contents
3.1 Overview . 36

3.2 Storage Engine . 37

3.2.1 Storage Gateway . 37

3.2.1.1 Operations 38

3.2.1.2 Components 43

3.2.2 Transaction Controller 50

3.3 Storage Provider . 51

3.3.1 Store Access Component 52

3.3.1.1 Create container 52

3.3.1.2 Find container 52

3.3.1.3 Remove Container 53

3.3.2 Container Access Component 53

3.3.2.1 Insert cipher row 53

3.3.2.2 Remove cipher row 54

3.3.2.3 Check for cipher row existence 54

3.3.3 Transaction Management Component 54

3.3.4 Data Source Adapter Component 54

3.4 Summary . 55

Based on the requirements and strategies defined in chapter 2 and the basic archi-
tecture outlined in the SemCrypt design specification [21], this chapter describes

35

36 CHAPTER 3. ARCHITECTURE

the detailed architecture of the SemCrypt Store. After introducing the overall ar-
chitecture in the overview the two main components Storage Engine and Storage
Provider are described.

For developing the architecture of the SemCrypt Store, the software design prin-
ciples adaptivity, extensibility and reusability are applied. Adaptivity is impor-
tant because according to the requirements ”Use arbitrary cipher algorithms”
(requirement 6) and ”Use arbitrary data stores” (requirement 7) the SemCrypt
Store has to be designed in a flexible way. It has to be possible to integrate the
SemCrypt Store using various cipher algorithms in existing ASP environments.
Focusing on extensibility is necessary because this enables developers to add ad-
ditional features in the future. Applying the concept of reusability enables parts
of SemCrypt Store to be used in other projects.

The architecture is designed in a component based approach. This means that the
components of the SemCrypt Store are identified and equipped with operations.

3.1 Overview

SemCrypt Store operates in a trusted- and an untrusted environment. Thus the
basic SemCrypt Store architecture is split into the following two components:

• Storage Engine

• Storage Provider

Figure 3.1: SemCrypt Store overview

Figure 3.1 depicts the components Storage Engine and Storage Provider. The
Storage Engine provides an interface to store and retrieve values for high level

3.2. STORAGE ENGINE 37

services. Furthermore it performs encryption and decryption of values that are
provided by these services. To store and retrieve encrypted values the Storage
Engine communicates with the Storage Provider that provides unified access to
arbitrary data stores. The Storage Provider operates with encrypted data only
and enables the Storage Engine to access the transactional support of data stores.

3.2 Storage Engine

The Storage Engine operates inside the SemCrypt Database Manager in a trusted
environment. This is necessary since the Storage Engine handles plain text data
and thus does not qualify to operate in an untrusted environment. The Storage
Engine itself is separated into the building blocks shown in figure 3.2:

• Storage Gateway - This building block exposes the value storage and re-
trieval capabilities of the Storage Engine to the SemCrypt Database Man-
ager.

• Transaction Controller - This building block exposes the transaction han-
dling capabilities of the SemCrypt Store to the SemCrypt Database Man-
ager.

Figure 3.2: Storage Engine building blocks

3.2.1 Storage Gateway

The Storage Gateway receives requests to store or retrieve values for high level
services of the SemCrypt Database Manager. When storing a value the Storage

38 CHAPTER 3. ARCHITECTURE

Gateway encrypts the value and builds a cipher row which is then submitted
to the Storage Provider. When a value is requested by a high level service, the
Storage Engine requests the value from the Storage Provider using the respective
identifier, decrypts the cipher text and identifies the associated value. The value
is then passed back to the high level service.

The Storage Gateway offers the following operations to store and retrieve values
for high level services:

• Store value

• Retrieve value

• Remove value

Since these operations share common functionality the Storage Gateway is in-
ternally organized into several components. The components are described in
the subsequent sections. Their operations are only used inside the Storage Gate-
way and are not visible to external components. Figure 3.3 shows the internal
components and the operations of the Storage Gateway.

Figure 3.3: Storage Gateway components and operations

3.2.1.1 Operations

The following sections explain the operations provided by the Storage Gateway
component. Each section starts with an overview table that shows the input and
output parameters of the respective operation. After each overview table the
operation is described.

3.2. STORAGE ENGINE 39

3.2.1.1.1 Store value

Parameter Type Description

identifier INPUT Identifier for the value.
value INPUT The value to be stored.
container INPUT A reference to the container used to store the

value.
status OUTPUT A status information whether the operation

was successful or not.

Table 3.1: Parameters of operation ”Store value”

This operation creates a new cipher row according to the given identifier and
value. If a cipher row with the same cipher id already exists the identifier and
value are stored in the existing cipher row. The cipher row is then encrypted and
passed to the Storage Provider. To encrypt the cipher text a cipher key that is
specified in the configuration of the Storage Engine and the nonce of the cipher
row are used. The steps that have to be performed by the store operation are
subsequently described and figure 3.4 depicts the steps in a flow diagram.

1. Create a cipher id from the given identifier. This cipher id is used to identify
the cipher row in the container of the Storage Provider.

2. Check if a cipher row was found.

If a cipher row was found, the cipher key and the nonce are used to
decrypt the cipher text. The identifier is then used to find the correct value
in the decrypted cipher text. The old identifier-value pair in the cipher text
is then replaced by the new identifier-value pair.

If no cipher row is found, a new cipher row is created. The cipher id
created in step 1 is stored in the cipher id of the cipher row. The identifier-
value pair is set in the cipher row.

3. A nonce is generated and applied to the cipher row.

4. The cipher row is encrypted using the specified cipher key and the generated
nonce.

5. The cipher row is submitted to the Storage Provider which stores the cipher
row in the specified container.

40 CHAPTER 3. ARCHITECTURE

Figure 3.4: Flow of storing a value

Note that a new nonce value is generated every time the cipher row is changed by
the store operation. It is also possible to only generate a nonce when the cipher
row is created and use the same nonce for subsequent store operations involving
this cipher row. This approach is slightly faster because the nonce does not have
to be generated when cipher rows are updated, but because of the improved
security a new nonce is generated every time the cipher row changes.

3.2. STORAGE ENGINE 41

3.2.1.1.2 Retrieve value

Parameter Type Description

identifier INPUT Identifier for the value.
container INPUT A reference to the container that holds the

value.
value OUTPUT The value that is stored together with the spec-

ified identifier. In case no value is found NULL
is returned.

Table 3.2: Parameters of operation ”Retrieve value”

This operation receives a reference to a container plus an identifier as input and
returns the value stored in conjunction with the identifier.

Figure 3.5 shows how a value is retrieved by the Storage Engine. Subsequently
the steps of retrieving a value are explained:

1. Create a cipher id from the specified identifier. The cipher id is used to
find the cipher row in the container of the Storage Provider.

2. Check if a cipher row was found.

If no cipher row is found, return NULL.

Otherwise continue.

3. Use the cipher key that is specified in the Storage Engine configuration and
the nonce stored in the cipher row to decrypt the cipher text.

4. Find the value in the decrypted cipher text using the identifier.

5. Check if the value was found.

If no value was found in the cipher text matching the specified identifier,
NULL is returned.

Otherwise return the value associated with the specified identifier.

42 CHAPTER 3. ARCHITECTURE

Figure 3.5: Flow of retrieving a value

3.2.1.1.3 Remove value

Parameter Type Description

identifier INPUT Identifier for the value that has to be removed.
container INPUT A reference to the container that holds the

identifier-value pair.
status OUTPUT A status information whether the operation

was successful or not.

Table 3.3: Parameters of operation ”Remove value”

This operation removes a value with the given identifier from the specified con-
tainer. Figure 3.6 shows the steps that are required to remove a value:

1. Create a cipher id from the specified identifier. This cipher id is used to
find the cipher row in the Storage Provider.

2. Check if a cipher row was found.

If no cipher row was found an error status is returned.

Otherwise continue.

3. Decrypt the cipher text using the cipher key that is stored in the configu-
ration of the Storage Engine and the nonce stored in the cipher row.

3.2. STORAGE ENGINE 43

4. Search in the decrypted cipher text for the correct identifier

If the identifier is not found in the cipher row return an error.

Otherwise continue.

5. Remove the value from the cipher row.

6. Check if cipher row is empty

If cipher row is empty remove the cipher from from the container

Otherwise continue.

7. Generate a new nonce for the cipher row.

8. Encrypt the cipher row using the new nonce and the cipher key that is
stored in the configuration of the Storage Engine.

9. Store the changed cipher row using the Storage Provider.

Figure 3.6: Flow of removing a value

3.2.1.2 Components

The subsequent paragraphs describe the components and their operations that
provide common functionality for the Storage Gateway.

44 CHAPTER 3. ARCHITECTURE

3.2.1.2.1 Cipher Component

All cipher algorithms are encapsulated in this component. The component re-
ceives plain text data and returns the associated cipher data and vice versa. The
cipher component does not implement cipher algorithms by itself. It is an adapter
that acts as a bridge between the Storage Gateway and an existing cipher algo-
rithm. The reason for this adapter is that different providers for cipher algorithms
have different interfaces for their algorithms. According to the requirement ”Use
arbitrary cipher algorithms” (requirement 6) the design of an adapter enables to
directly plug in any specific cipher algorithm in the Storage Gateway.

Every time the Storage Gateway needs to encrypt or decrypt values it uses this
component. This single point of access to the cipher algorithm has the advantage
that the whole component can be replaced easily without having to modify any
other components.

Encrypt

Parameter Type Description

plain text INPUT The plain text that has to be encrypted.
encrypted text OUTPUT The encrypted text.

Table 3.4: Parameters of operation ”Encrypt”

The encrypt operation receives a plain text, encrypts the plain text using the
cipher algorithm that is configured for the Storage Engine and returns the result.

Decrypt

Parameter Type Description

encrypted text INPUT The encrypted text.
plain text OUTPUT The plain text.

Table 3.5: Parameters of operation ”Decrypt”

This is the inverse functionality of the encrypt operation. This operation receives
an encrypted text, decrypts the encrypted text using the decryption algorithm
that is configured for the Storage Engine and returns the result.

3.2. STORAGE ENGINE 45

3.2.1.2.2 Hash Generation Component

The hash generation component is a pluggable implementation of a hash algo-
rithm (H) that is used by the Storage Gateway to generate cipher ids.

Generate hash

Parameter Type Description

text INPUT A text that has to be hashed.
hash value OUTPUT The hash value of the given text.

Table 3.6: Parameters of operation ”Generate hash”

This operation gets arbitrary text as input and returns a hash value as a result.
This functionality is shown in figure 3.7.

ciperhid := H(identifier)

Figure 3.7: Hash generation

This operation is used by the Storage Gateway to transform identifiers into cipher
ids.

3.2.1.2.3 Nonce Generation Component

The nonce generation component is a pluggable implementation of a nonce gener-
ation algorithm (N). This component is used by the Storage Gateway to generate
nonce values. The nonce values are then used for encryption or decryption in
conjunction with the cipher key that is stored in the configuration of the Storage
Engine.

Generate nonce

Parameter Type Description

nonce OUTPUT The generated nonce.

Table 3.7: Parameters of operation ”Generate nonce”

46 CHAPTER 3. ARCHITECTURE

This operation does not receive any input but returns a unique number each time
it is invoked. This behavior is displayed in figure 3.8

nonce := N()

Figure 3.8: Nonce generation

3.2.1.2.4 Cache Component

To conform to strategy 5 which suggests caching to avoid hotspots in the data
store and to improve performance, a caching mechanism is designed as part of
the Storage Gateway architecture. The cache handling is separated in one single
component to make it pluggable.

There are two approaches of how caching can be designed for the Storage Engine.

• Cache Solution 1 - Caching decrypted identifier-value pairs. Every single
value that is passed to the Storage Engine is placed into a cache along with
its identifier. In this case the cache holds plain text. The advantage of this
solution is that there is minimal processing between the request of the value
(requested by a service in the SemCrypt Database Manager) and the return
of the value because the identifier-value pair does not have to be decrypted
each time it is requested.

• Cache Solution 2 - Cache cipher rows which means that the identifier-value
pairs are cached encrypted. This implies that even if a value is retrieved
from the cache, the encryption of the cipher row and the resolving of hash
collisions has to be done. The advantage of this solution is that, if the cache
swaps cipher rows to disk, the values and identifiers are still encrypted.

3.2. STORAGE ENGINE 47

Figure 3.9: Cache component

Since the improved security of Cache Solution 2 in comparison to Cache Solution
1, Cache Solution 2 is used within the Storage Engine architecture. Figure 3.9
shows the cache in the Storage Gateway that holds the encrypted cipher rows.

The cipher id that identifies a cipher row in a container also identifies the cor-
responding cipher row in the cache. When using just one cache this leads to a
problem because the cipher id is unique per container. If there are the same ci-
pher ids in multiple containers, the cached cipher rows are mixed up in the cache
thus one cache per container will be used.

Reading and writing cipher rows:

• When reading a cipher row, the Storage Engine first queries the cache
using the same cipher id that is used to store the cipher rows in the Storage
Provider. In case a cipher row is found, the cached cipher row is used.
Otherwise the Storage Engine retrieves the cipher row from the Storage
Provider.

• During modification operations, cipher rows are created or updated. In
these situations the cipher rows are written to the cache before the cipher
rows are stored in the SemCrypt Store.

48 CHAPTER 3. ARCHITECTURE

Put element

Parameter Type Description

id INPUT The id for the element to be cached.
element INPUT The element that has to be stored in the cache.

Table 3.8: Parameters of operation ”Put element”

This operation is used by the Storage Gateway to put cipher rows into the cache.
A cipher id and the cipher row are passed as parameters to this operation and
are then stored in the cache.

Get element

Parameter Type Description

id INPUT The id of the cached element.
element OUTPUT The element that was found in the cache or

NULL if no matching cipher row as found

Table 3.9: Parameters of operation ”Get element”

This operation is used by the Storage Gateway to get cipher rows from the cache.
A cipher id is passed as a parameter to this operation and the corresponding
cipher row is returned if it is found. If no cipher row is found NULL is returned.

3.2.1.2.5 Conversion Component

This component performs the conversion of a value associated with an identifier
to a cipher row and vice versa. It is used by the Storage Gateway every time
a cipher row is retrieved from the Storage Engine or submitted to the Storage
Engine.

To ensure a convenient use of the Storage Engine operations in the SemCrypt
Database Manager, datatypes are supported. Using datatypes has the following
advantages:

• High level services can operate on typed data - This avoids having high level
services to convert data to the SemCrypt Store internal data representation
(cipher row) and back to values with datatypes.

3.2. STORAGE ENGINE 49

• Typechecks can be performed when loading data from the SemCrypt Store.
Typechecks ensure that the value which is stored in a byte array format
can be converted back to the appropriate data type.

Also value lists are supported making it possible to not only store a single value
together with an identifier but also a whole list of values of the same type. Value
lists not only make the handling of multiple values possible but also increase
the performance when retrieving the values because the elements of a list are
guaranteed to be stored together in one cipher row.

Build cipher row

Parameter Type Description

identifier INPUT The identifier of the value
value INPUT The value to be converted.
cipher row OUTPUT The cipher row that was created.

Table 3.10: Parameters of operation ”Build cipher row”

This operation creates a cipher row using an identifier and a value. Information
about the value’s datatype as well as the number of values in case of a value list
is stored in the cipher row. If the datatype can contain data of variable length
the length information is stored in the cipher row as well.

Get identifier-value from cipher row

Parameter Type Description

cipher row INPUT The cipher row containing encrypted data.
identifier OUTPUT The identifier of the value
value OUTPUT The value that was extracted from the cipher

row.

Table 3.11: Parameters of operation ”Get identifier-value from cipher row”

This operation is the inverse operation of the ”Build cipher row” operation and
extracts the identifier and it’s value from a cipher row.

50 CHAPTER 3. ARCHITECTURE

3.2.2 Transaction Controller

To enable the high level services of the SemCrypt Database Manager to access
the transaction capabilities of the Storage Provider the Transaction Controller
provides the following operations.

Begin transaction

Parameter Type Description

status OUTPUT A status information whether the operation
was successful or not.

Table 3.12: Parameters of operation ”Begin transaction”

This operation has no input parameters and begins a transaction. Beginning a
transaction is only possible if there is no other transaction currently running on
this client.

Commit transaction

Parameter Type Description

status OUTPUT A status information whether the operation
was successful or not.

Table 3.13: Parameters of operation ”Commit transaction”

This operation has no input parameters and commits a transaction. If this opera-
tion is called and there is no active transaction this operation fails and returns an
error status. The operation is called by high level services of the Storage Engine

Rollback transaction

Parameter Type Description

status OUTPUT A status information whether the operation
was successful or not.

Table 3.14: Parameters of operation ”Rollback transaction”

3.3. STORAGE PROVIDER 51

This operation has no input parameters and tells the Storage Provider to revert
all changes of the current transaction. If there was no transaction started using
the ”begin transaction” operation, the rollback operation fails and returns an
error status. The operation is called by high level services of the Storage Engine

3.3 Storage Provider

The Storage Provider itself is not a data store by its own but it provides unified
access to an external data stores. Figure 3.10 shows that the SemCrypt Database
Manager does not directly communicate with the data store. A direct commu-
nication between the SemCrypt Database Manager and an existing data store is
also possible but to conform to the requirement ”Use arbitrary data sources” (re-
quirement 7) it is necessary to have a layer like the Storage Provider in between
the Storage Engine and the data store.

Figure 3.10: Storage Provider architecture

A data store that is accessible using the Storage Provider is called store. One
store holds multiple containers. The Storage Provider provides access to multiple
stores.

As shown in figure 3.10, the Storage Provider consists of the following compo-
nents:

• Store Access Component - This component handles the communication
between the Storage Engine and an underlying data store that is accessed
using the Storage Provider.

• Container Access Component - This component handles the communication
between the Storage Engine and a container of the Storage Provider.

52 CHAPTER 3. ARCHITECTURE

• Transaction Management Component - Manages the transaction handling
like starting, stopping and rollback operations.

• Data Source Adapter - This adapter acts as a data abstraction layer to the
underlying data store.

The Store Access-, the Container Access- and the Transaction Management Com-
ponent can be used by external components like those of the Storage Engine.
They provide access to stores, containers and the transaction management of the
Storage Provider. The Data Source Adapter is an internal component and is only
used by the components of the Storage Provider

3.3.1 Store Access Component

This component provides functionality for maintaining containers in a store.

3.3.1.1 Create container

Parameter Type Description

store INPUT The store that hosts the container.
containername INPUT The name of the new container.
container OUTPUT A reference to the newly created container. If

the operation fails null is returned.

Table 3.15: Parameters of operation ”Create container”

This operation creates an empty container with a given name in the specified
store. If the operation was successful a reference to the new container is returned.

3.3.1.2 Find container

Parameter Type Description

store INPUT The store that hosts the container.
containername INPUT The name of the container.
container OUTPUT The container that was found or NULL if no

container was found with the given name.

Table 3.16: Parameters of operation ”Find container”

3.3. STORAGE PROVIDER 53

This operation searches a container in a store using the container’s name. If
a container is found the operation returns a reference to the container. The
container reference can be used in subsequent ”store value”, ”retrieve value” and
”remove value” operations. In case the ”find container” operation fails NULL is
returned.

3.3.1.3 Remove Container

Parameter Type Description

store INPUT The store that hosts the container.
containername INPUT The name of the container.
status OUTPUT A result value that indicates whether the oper-

ation was successful or not.

Table 3.17: Parameters of operation ”Remove container”

This operation deletes a container named by the parameter containername with
all its cipher rows from the specified store.

3.3.2 Container Access Component

This component provides operations that can be performed with cipher rows
inside the containers. The interface only operates on cipher row level because the
identifier-value pairs are already stored and encrypted by the Storage Engine in
the cipher row and the Storage Provider has no access to decrypted data.

3.3.2.1 Insert cipher row

Parameter Type Description

container INPUT The container for the new cipher row.
cipher row INPUT The cipher row that has to be stored in the

container
status OUTPUT A status information indicating whether the

operation was successful or not.

Table 3.18: Parameters of operation ”Insert cipher row”

This operation inserts a new cipher row in a container. If a cipher row with the
same cipher id already exists in the specified container it is overwritten.

54 CHAPTER 3. ARCHITECTURE

3.3.2.2 Remove cipher row

Parameter Type Description

container INPUT The container that contains the cipher row.
cipher id INPUT The cipher id that identifies the cipher row.
status OUTPUT A result value that indicates whether the oper-

ation was successful or not.

Table 3.19: Parameters of operation ”Remove cipher row”

This operation removes a cipher row identified by its cipher id from the specified
container. In case no cipher row with the specified cipher id is found in the
container an error status is returned.

3.3.2.3 Check for cipher row existence

Parameter Type Description

container INPUT The container that contains the cipher row.
cipher id INPUT The cipher id that identifies the cipher row.
result OUTPUT Indicates if the cipher row was found or not.

Table 3.20: Parameters of operation ”Check for cipher row existence parameters”

Checks if a cipher row with a given cipher id is available in the specified container
and returns true if a matching cipher row was found. Otherwise false is returned.

3.3.3 Transaction Management Component

This component provides remote access to transactional functionality of the un-
derlying data source. It delegates the transactional requests from the Storage
Engine to the internal transaction management of the Storage Provider.

Since the Transaction Controller of the Storage Engine only acts as a proxy to
the Transaction Management Component the interface is equal to the one of the
Transaction Controller described in section 3.2.2

3.3.4 Data Source Adapter Component

The Data Source Adapter is an internal component of the Storage Provider that
encapsulates the store access. Every access to an underlying store is routed

3.4. SUMMARY 55

through this component. Because the data source adapter is the only component
that communicates with the underlying data source, it is also the only component
that has to be exchanged when a new store type (e.g. database, filesystem, etc.)
has to be supported.

The Data Source Adapter takes care of the following tasks:

• Connection Handling - This task takes care of pooling connections to the
underlying data source. Because opening and closing connections for each
call to a data store is a time consuming processing overhead, the connections
to the data store are pooled. This also enables the sharing of connections
between multiple instances of the Container Access component running in
parallel.

• Transaction delegation - The transactional behavior of SemCrypt is coor-
dinated with the store.

3.4 Summary

This section summarizes the previously identified components of the SemCrypt
Store architecture.

Figure 3.11 shows all components participating in the SemCrypt Store and their
relations. High level services operating within the SemCrypt Database Man-
ager communicate with the Transaction Controller to begin, commit and roll-
back transactions. The Transaction Controller forwards the transaction requests
to the Transaction Management Component of the Storage Provider which del-
egates them to the Data Source Adapter. Furthermore the high level services
perform value storage and retrieval operations using the Storage Gateway. The
Storage Gateway communicates with the Store Access Component to create, find
and remove containers. The cipher rows of containers can be accessed via the
Container Access Component.

56 CHAPTER 3. ARCHITECTURE

Figure 3.11: SemCrypt Store architecture summary

Chapter 4

Technologies

This chapter describes the overall technological decisions that impact the imple-
mentation of the SemCrypt Store. Each section in this chapter first legitimates
the need for a technology and then briefly describes the specific technology. At
the end of each section the chosen technology is outlined.

Because SemCrypt needs to run on arbitrary operating systems the Java language
is chosen for the implementation of SemCrypt.

4.1 Java Enterprise Edition Platform (J2EE)

To implement the SemCrypt Store architecture, a robust server platform that is
flexible and extensible is needed. Because the implementation of a distributed
system like the SemCrypt Store including transaction handling and integration
of third party databases is a very complex task a component based approach is
chosen.

The Java Enterprise Edition (J2EE) platform is the only available enterprise
platform in the Java area thus it is used as the base for the implementation of
the SemCryptarchitecture. This platform already implements many features that
can be used by the SemCrypt Store. Furthermore a J2EE complient architecture
has to conform standard interfaces that are defined in [33] [16] [30] [15]. Using
such an architecture conforms the software principles mentioned in chapter 3.

The technologies that were used in the J2EE area are listed and described in the
following sections.

57

58 CHAPTER 4. TECHNOLOGIES

4.2 JBoss (Version 4.1)

Because the J2EE platform defines only the interfaces that are used to com-
municate between the distributed components an implementation of the J2EE
Platform is needed. Such an implementation is called Application Server. There
are several J2EE compliant Application Servers available1:

• Websphere (IBM)

• WebLogic (BEA)

• Oracle Application Server (Oracle)

• JBoss (JBoss Group)

The JBoss application server is chosen for the development of SemCryptbecause
it conforms to the EJB specification (see [16]). EJBs developed in compliance
with this specification can run on any J2EE compliant application server. An-
other reason for choosing JBoss for the development of SemCryptis that it is
possible to automate the deployment of components on this application server,
which shortens deployment round trips during development. The other mentioned
application servers also support automated deployment but the deployment pro-
cedures are more complicated compared to the deployment on JBoss.

JBoss provides a full infrastructure for developing server side components. Beside
the core JBoss Server there is also a basic EJB container and a Java Manage-
ment Extension (JMX) infrastructure available allowing easy configuration of
components. It also provides support for transactions and container managed
persistence. The transactions are supported by an implementation of the stan-
dard Java Transaction API (JTA). [32]

In the current implementation JBoss is used to host the components of the Storage
Provider.

4.3 Java Naming and Directory Interface (JNDI)

The Storage Enginehas to find the remote components that are provided by the
Storage Provider. Therefore a directory service is needed enabling the Storage
Providerto register its components and make them available for the Storage En-
gine. The Storage Engineis then able to lookup these components and use the
provided functions. There are many directory service implementations available
including:

1These are only the most common application servers

4.4. ENTERPRISE JAVA BEANS (EJB) 59

• LDAP

• Active Directory

• Java Naming and Directory Interface (JNDI)

All directory interface implementations allow clients to discover and lookup data
and objects via a name that can be any string. A name is associated with an
object in the directory.

Because JNDI is included in all the application server implementations mentioned
above, JNDI is the directory server implementation that is used to register the
components of the Storage Provider. The JNDI is used by the Storage Providerto
register the components that provide external functionality (Storage Access, Con-
tainer Access, Transaction Access). The Storage Enginecan use JNDI lookup
queries to retrieve these objects and then are able to invoke methods of these
components.

4.4 Enterprise Java Beans (EJB)

SemCryptrequires the Storage Engineto be able to control transactions. This
means that all activities that are performed on the data of the Storage Provider-
have to be associated with the respective transaction. Furthermore the Storage
Enginehas to be able to communicate with the Storage Providerusing a remote
communication mechanism.

Because enterprise java beans (EJBs) provide the ability to associate transactions
with components as well as the ability to handle remote communication, EJBs
are used to implement the components of the Storage Provider. This enables
the Store Access, Container Access and the Transaction Management to use the
following features provided by EJBs:

• Remote communication - Remote Method Invocation (RMI) makes the re-
mote communication between Java Objects very easy.

• Transactions - EJBs enable to define very fine grained transaction bound-
aries. Transaction boundaries can be configured at runtime.

• Persistence - A mechanism of EJBs that swaps them to disk when they
are not used anymore and restores their state when they are needed again.
This approach saves memory and thus increases performance.

60 CHAPTER 4. TECHNOLOGIES

4.5 Java Connector Architecture (JCA)

The Storage Provider needs to be able to handle arbitrary datasources. This
requires a standard mechanism for the communication between the external data
source and the Storage Provider.

The components operating inside an application server are only allowed to access
external datasources through defined interfaces. The two interfaces are JDBC
and JCA.

JDBC defines a database specific interface for storing and retrieving data in re-
lational databases. The J2EE Connector Architecture (JCA) defines a standard
architecture for connecting the J2EE platform to heterogeneous Enterprise In-
formation Systems (EIS). The architecture is based on the technologies that are
defined and standardized as part of the J2EE platform. It addresses the key
issues and requirements of EIS integration by defining a set of scalable, secure,
and transactional mechanisms that enable the integration of information systems
with application servers and enterprise applications [31]. JCA is a solution for
connecting application servers and enterprise information systems. While JDBC
is specifically used to connect applications to databases, JCA is a more generic
architecture to connect to legacy systems or databases.

Because JDBC is intended for use with databases only and JCA is a more generic
approach the JCA interface was chosen to act as the adapter between the Storage
Provider and the underlying datasources.

4.6 Bouncy Castle Cryptographic API (Version

1.2.6)

To encrypt and decrypt data the Storage Engine needs a set of robust encryption
algorithms. The most common encryption libraries available for Java are the
Bouncy Castle Cryptographic API and the Flexiprovider library. Both imple-
mentations support the standard Java Cryptography Architecture.

The Bouncy Castle Cryptographic API was chosen because it supports slightly
more encryption algorithms and it also includes a lightweight API suitable for
use in any environment including the Java Micro Edition2. [3]

The various encryption algorithms implemented by Bouncy Castle Cryptographic
API are used by the Cipher Component of the Storage Engine.

2The Storage Engine was former intended to run on a mobile device

4.7. EHCACHE (VERSION 1.1) 61

4.7 EHCache (Version 1.1)

According to the caching strategy (strategy 5) a caching mechanism is needed for
the Storage Engine. The cache should be able to swap cached items to disk when
not enough memory is available. Furthermore it should be possible to suspend
the cache to disk when the Storage Engine is stopped. After starting the Storage
Engine again, the cache should initialize itself with the data that was stored when
the Storage Engine was stopped. Table 4.7 illustrates some of the most popular
cache mechanisms used in Java. [6]

Cache Type Cluster Safe

EHCache memory, disk no
OSCache memory, disk no
SwarmCache clustered (ip multicast) yes (invalidation)
JBoss TreeCache clustered (ip multicast) yes (replication)

Table 4.1: Cache Providers

Because of its flexibility, programmer friendly interfaces and the ability to suspend
itself to disk the EHCache is chosen to cache values inside the Caching Component
of the Storage Engine and avoid hotspots in the datastore of the Storage Provider.
EHCache also supports various caching strategies (Last Recently Used, Least
Frequently Used, First in First Out).

4.8 Berkeley Database Java Edition (Version 2.0)

The SemCrypt Store does not implement a database solution by itself but uses
existing databases to act as datastores. To reduce the communication overhead
between the database and the Storage Provider a very lightweight database im-
plementation is needed that can act as the underlying datastore for the Storage
Provider. Two very popular lightweight databases are MySQL and the Berkeley
Database Java Edition. [2]

As table 4.8 shows the Berkeley Database storage structure is very similar to the
one that is used by SemCrypt this database was chosen to be the first one that
is supported by SemCrypt. The Berkeley Database Java Edition is a general-
purpose, transactional, embedded database written in Java. The advantage of
using a embedded database is that the communication overhead between the
Storage Provider and the database is very minimal.

Table 4.8 shows a comparison of the SemCrypt Store data structures to the
structures of a Berkeley Database. A Berkeley key identifies a Berkeley value.

62 CHAPTER 4. TECHNOLOGIES

The keys and values are stored in a tabular datastructure that is called Berkeley
database. Multiple Berkeley databases can be stored in a Berkeley environment.

SemCryptdata structure Berkeley Database data

Data source Environment
Container Database
Cipher id Key
Cipher row Value

Table 4.2: Mapping of SemCrypt data structures to Berkeley Database data
structures

4.9 Log4J Logging API (Version 1.2)

To be able to diagnose errors and display useful information for the operator of
SemCrypt Store, log messages are displayed. To enable a flexible configuration
of the logging of messages which includes changing the log level and storing the
log messages to different files, a logging framework is needed. [9]

Because the log4j logging framework is also used by the JBoss application server it
was chosen to be used in SemCrypt Store too which enables a smooth integration
with the logging facilities of JBoss. With log4j it is possible to enable logging
at runtime without modifying the application code or restarting SemCrypt. The
log4j package is designed so that the log statements can remain in the code
without incurring a heavy performance cost. Logging behavior can be controlled
by editing a configuration file, without touching the application binary. Log4J is
used in all components of SemCrypt Store.

Chapter 5

Implementation

Contents
5.1 Storage Engine . 63

5.1.1 Storage Gateway . 64

5.1.2 Transaction Controller 69

5.2 Storage Provider . 71

5.2.1 Storage- & Container Access Components 72

5.2.2 Transaction Management Component 72

5.2.3 Data Source Adapter 73

This chapter describes the implementation of the SemCrypt Store. The tech-
nologies that are described in chapter 4 and the architecture that is described in
chapter 3 are the base for the implementation of the SemCrypt Store.

This chapter is split into two sections: The first describes the implementation
of the Storage Engine, the second details on the implementation of the Storage
Provider.

5.1 Storage Engine

As described in section 3.2, the Storage Engine is split into the two components
Storage Gateway and Transaction Controller. Look at the subsequent sections
for the implementation of both components.

63

64 CHAPTER 5. IMPLEMENTATION

5.1.1 Storage Gateway

The Storage Gateway as part of the Storage Engine performs the handling of
values that are passed from high level services to the Storage Engine.

According to the architecture described in section 3.2.1, the Storage Gateway
contains the components described in the subsequent sections.

5.1.1.1 Cipher Component

The implementation of the Cipher Component is a Java wrapper of specific cipher
algorithm implementations provided by the Bouncy Castle Crypto API, which
has been described in section 4.6. Currently the following cipher algorithms are
provided:

• IDEA

• Twofish

• Rijndael

5.1.1.2 Hash Generation Component

For generating cipher ids both algorithms mentioned in chapter 2 (MD5 and SHA-
1) are currently available through a Java wrapper. The MD5 hash generation
uses the implementation of the Bouncy Castle Crypto API, whereas the SHA-1
algorithm is available through the standard SHA-1 implementation of the Java
API.

5.1.1.3 Nonce Generation Component

The nonce generation component returns a unique number every time it is in-
voked. To generate a unique number, the system time of the computer on which
the Storage Engine is operating cannot be used because of the risk of getting
duplicate ids. Therefore the current system time (in milliseconds) is only used
to initialize the nonce counter when the Storage Engine is started. Subsequently
the nonce counter is incremented each time a nonce is requested.

Figure 5.1 shows the nonce generation algorithm in pseudo code1.

1This basic approach has to be enhanced when multiple instances of the Storage Engine are
running in parallel. In this case the uniqueness of the generated nonce values is not guaranteed
anymore.

5.1. STORAGE ENGINE 65

long generate-nonce() begin

static long nonce;

if (nonce is not initialized) begin

nonce := systemtime;

else

nonce := nonce + 1;

end;

return nonce;

end;

Figure 5.1: Algorithm for nonce generation

5.1.1.4 Cache Component

According to section 4.7 EHCache is used as the cache implementation of the
Storage Engine. Since the cache is not transactional aware, the cache may get
inconsistent. This can happen because the cipher rows are written to the cache
before they are stored at the Storage Provider. When a cipher row has already
been written to the cache and the store operation of the Storage Provider fails,
the data in the cache is inconsistent. To avoid this problem, the cache is flushed
every time a rollback is performed.

5.1.1.5 Conversion Component

The conversion component creates a byte representation of the identifier-value
pairs before storing them. The byte representation is converted back to an
identifier-value pair when the value is retrieved from the Storage Provider. This
approach enables the SemCrypt Store to handle arbitrary data. The Storage
Engine accepts values of various datatypes. Internally those values are treated
as byte arrays. When a value is converted to a byte array, the information about
the datatype has to be integrated in the byte array to be able to restore the
value. Restoring a value is necessary when a value is retrieved from the Storage
Provider.

The subsequent sections explain how values and their identifiers are transformed
into bytes.

5.1.1.5.1 Datatypes

All values stored by the Storage Engine need to have a datatype. The datatypes
are assigned implicitly by using the respective method to store the value.

To convert a datatype to a byte representation and vice versa, Java serialization
can be used but because of the strategy ”No language specific features” (strategy

66 CHAPTER 5. IMPLEMENTATION

9) it is not possible to use the standard serialization mechanisms of the Java
programming language. The reason is that it is not possible to deserialize the
Java classes without having access to the typesystem of Java, which is not the case
for other programming languages such as C++. The second reason for not using
Java built-in serialization is that implementing a custom serialization improves
performance because Java reflection is time-consuming for complex datatypes.
Therefore a custom serialization of datatypes is implemented.

All datatypes have to implement a custom serialization of their value to a byte
array. Figure 5.2 shows the abstract base class Value that has to be implemented
by every datatype and defines the operations for the byte conversion.

Figure 5.2: Implementation of a custom datatype

The datatype information is stored along with the identifier-value pair in the
cipher row of the container. The Storage Engine distinguishes between two forms
of datatypes:

• Fixed length datatypes

• Variable length datatypes

Fixed length datatypes are types whose length cannot change, even if the value
is updated. This applies to datatypes like integer, double etc. Only the type
information of these datatypes needs to be stored to be able to reconstruct the
datatype. The length of the value can be inferred from the the type information.

Example 9 (Contract ID storage) The identifier of Enigma’s contracts is of
type integer and thus has a fixed length. Figure 5.3 shows how the fixed length con-
tract identifier of Enigma is stored in the cipher row. The data type information
is stored together with the fixed length value

5.1. STORAGE ENGINE 67

Figure 5.3: Fixed length datatype

Variable length datatypes are types are assigned to values whose length is variable
(e.g. string or byte array). For variable length datatypes the length information
of the value also needs to be stored. This implies that that variable length
datatypes consume more space in the SemCrypt Store.

Figure 5.4: Variable datatype

Example 10 (Payment type storage) The value of the payment type of Enigma’s
contracts can have any length, e.g. visa, master card, american express etc. Fig-
ure 5.4 shows the value ”visa” whose length ”4” is stored next to its type ”string”.

Primitive datatypes

SemCrypt Store currently implements the followign primitive datatypes:

• String

• Integer

68 CHAPTER 5. IMPLEMENTATION

• Double

• Byte Array

Custom datatypes

The flexible storage implementation of the Storage Engine allows the implementa-
tion of custom datatypes. Custom datatypes enable the developers of SemCrypt
Store to implement datatypes that exactly fit their needs and enable them to
create own storage structures. Custom datatypes have to implement the same
interfaces as primitive datatypes. Implementing custom datatypes has the advan-
tage that the single items of complex data structures do not have to be mapped
to available primitive datatypes by the high level services that use the Storage
Engine. Instead the data structure can be simply passed to the Storage Engine
which is responsible for serialization and deserialization.

Value lists

It is possible to implement a custom datatype that holds an array of a specific
datatype. However value lists represent a generic way for storing arrays and avoid
the need of an additional array-datatype for each single existing datatype.

Additionally to storing simple values, SemCrypt Store provides the concept of
value lists. Value lists can be stored along with one identifier that identifies
the whole value list. To support lists, the storage structure of values has to be
enhanced with one more field that holds the number of values stored together
with one identifier.

Example 11 (Value lists) Figure 5.5 depicts a decrypted cipher text with an
additional content field for storing lists. In this cipher text, two license terms are
stored together with one identifier (”11-1”). Thus the number of the elements
stored in the cipher text is ”2”.

Example 12 (Conversion of identifier-value pair) Figure 5.6 depicts how
an identifier and its associated string value are converted to a byte representation
which involves the following steps:

1. Generate a cipher id (”9327592”) using the identifier ”8-1”.

2. Convert the identifier (”8-1”) to a byte representation containing the length
of the identifier plus the identifier itself.

3. Convert the value ”visa” to a byte representation that holds the datatype
(”String”) the number of stored values (”1”), the length of the value (”4”)
and the value ”visa”.

5.1. STORAGE ENGINE 69

Figure 5.5: Value lists

5.1.2 Transaction Controller

The Transaction Management runs inside the Storage Provider but the Storage
Engine exposes an interface for the SemCrypt Database Manager to control the
transactional behavior. This section concentrates on how transactions are used
within the SemCrypt Database Manager. An in depth description of how trans-
actions are handled and tracked can be found in section 5.2.2. The interface
exposed to the SemCrypt Database Manager by the Storage Engine conforms to
the User Transaction interface defined in the Java Transaction API specification
[15].

The User Transaction interface provides the ability to control transaction bound-
aries programmatically. The begin method starts a global transaction and asso-
ciates the transaction with the calling thread. The transaction-to-thread associ-
ation is managed transparently by the Transaction Manager, which is running on
the Storage Provider.

To gain access to a transaction, the Transaction Controller has to lookup a trans-
action factory located on the Storage Provider. The transaction factory is then
used to create a User Transaction. The Storage Engine provides access to an
implementation of the User Transaction interface using a transaction factory and
makes the implementation available to the SemCrypt Database Manager. The
transaction factory lookup and the creation of a transaction object are shown in
figure 5.7.

1. Lookup the transaction factory using the JNDI service of the Storage Provider.

70 CHAPTER 5. IMPLEMENTATION

Figure 5.6: Conversion to a cipher row

2. Create a User Transaction using the Transaction Factory.

3. The User Transaction is registered at the Storage Provider.

4. A reference to the User Transaction is passed to the SemCrypt Database
Manager.

The transaction object can be used to control the transactional behavior at the
client side. This is done by invoking methods on the object representing the User
Transaction. Here is a description of the most important methods defined by the
User Transaction interface:

• begin() - The begin method of the transaction marks the start of the trans-
action. All the adjacent server side operations like storing and retrieving
values are considered as part of one transaction.

• commit() - The commit method is used to mark the end of a previously
started transaction. The operations performed between the commit- and
the begin call are applied.

• rollback() - The rollback method is also used to mark the end of a previously
started transaction. The operations performed within the transaction are
reverted and are not applied to the underlying data source.

• setRollbackOnly() - Marks a transaction so that the only possible outcome
of the transaction is a rollback operation.

• getStatus() - The getStatus method returns the status of the transaction.
If no transaction is running, a status is returned indicating that there is no
active transaction.

5.2. STORAGE PROVIDER 71

Figure 5.7: Transaction Control

• setTransactionTimeout() - The setTransactionTimeout method receives a
numerical value representing milliseconds as a parameter and defines the
maximum time a transaction is able to be active. If the transaction exceeds
the given time, which means that the commit or rollback is not called within
this time, an exception is thrown and the transaction is rolled back.

On the server side, the Java thread id is used to identify a specific session of
the client. This implies that there can be only one active transaction per client
thread. Or in other words, transactions are not allowed to overlap.

5.2 Storage Provider

The Storage Provider architecture is split into three main components, the Storage-
& Container Access, the Transaction Management and the Data Source Adapter.
These three parts are described in the subsequent sections. The Storage Provider
is implemented in a modular way enabling future versions of the Storage Provider
to plug in more components providing enhanced functions.

72 CHAPTER 5. IMPLEMENTATION

5.2.1 Storage- & Container Access Components

The storage access component and the container access component are imple-
mented using EJBs. This enables a straight forward remote communication be-
tween the Storage Engine and these two components because remote method
invocation is used.

Example 13 Figure 5.8 depicts the lookup of a remote object by the Storage En-
gine. The Storage Engine gets a reference to the Store Access Component. With
this reference, the Storage Engine is able to invoke operations on this component.

Figure 5.8: Accessing the Storage Provider

5.2.2 Transaction Management Component

For implementing the transaction management mechanisms between the data
source and the Storage Provider, interfaces defined by JCA are used.

To control transactions the two types of transaction demarcations available in a
J2EE environment are used:

• Programmatic transaction demarcation

• Automatic transaction demarcation

5.2. STORAGE PROVIDER 73

With programmatic transaction demarcation and the User Transaction interface
defined by the JTA specification, it is possible to explicitly demarcate the trans-
action boundaries. This approach is used in most of the SemCrypt Database
Manager calls when storing values. It forces the user of the Storage Engine to
explicitly open a transaction with the method call begin() and close the trans-
action either with commit() or rollback(). If a data manipulation operation like
insert or update is performed without opening the transaction first, an error is
thrown.

When automatic transaction demarcation is used, the Storage Provider manages
the transaction automatically. By default, all the read only operations (all get
operations) use an automatic transaction demarcation if there is no programmatic
transaction available. This means that it is not necessary to explicitly open a
transaction before invoking read-only operations. Read-only operations start and
stop a transaction implicitly for the duration of the method call.

5.2.3 Data Source Adapter

This section explains how the SemCrypt Store handles the connections to the
underlying data source. The Data Source Adapter operates inside the SemCrypt
Store and handles the connection management to the underlying data source.
The data store currently used is a Berkeley Database. The Berkeley Database
was chosen because it is a very lightweight database implementation that has a
similar access mechanism as the one that is used by SemCrypt Store.

As displayed in figure 5.9, the components inside the SemCrypt Store do not
directly access the data store but use the Data Source Adapter for accessing the
external data store. In particular this section focuses on the need of connection
pooling and describes the different scenarios under which connection pooling is
accomplished.

5.2.3.1 Connection Management

The SemCrypt Database Manager uses a connection factory to obtain a con-
nection. It then uses the connection to connect to the provided data source.
Because connections are expensive to create and destroy, they are pooled and
managed by the Data Source Adapter. This leads to better scalability and per-
formance. It is very common that the number of connections to the Storage
Provider is much higher than the connections between the Data Source Adapter
and the data source. The Data Source Adapter enables the physical connections
to the Berkeley Database to be shared among the logical connections provided to
the applications accessing the adapter. The Java Connector Architecture (JCA)

74 CHAPTER 5. IMPLEMENTATION

Figure 5.9: Data Source Adapter

Figure 5.10: Different Datasources

provided by the Java Enterprise Edition Platform (J2EE) support connection
pooling. The connection pooling support is transparent to the methods inside
the Storage Provider.

5.2.3.2 Data storage

One data source represents one database instance that is used by SemCrypt Store.
There can be various different data source instances configured for the use with
the Storage Provider. Each of these data source instances has to provide a data
source configuration including specific parameter settings and a JNDI name that
is used to access the data source. The different data sources are accessible by the
Storage Engine using simple names that uniquely identify the data source.

Figure 5.10 shows one local database that operates on the same host as the Sem-
Crypt Store and a different database that provides remote access and therefore
is able to run on a different server than the SemCrypt Store.

5.2. STORAGE PROVIDER 75

Figure 5.11: Connection Management

The advantage of this concept is that the Storage Engine that accesses the Storage
Provider does not need to know the details of the databases used. The Storage
Engine does not even have to know the type and the amount of databases used
by the Storage Provider.

5.2.3.3 Connection Management Architecture

The Data Source Adapter provides interfaces for the Storage Provider to create a
connection to the underlying data source using a connection factory. The Storage
Provider accesses the data source using the Data Source Adapter. The steps of
accessing the data source are defined in the Java Connector Architecture specifi-
cation. However, before using the Data Source Adapter is has to be configured.
Configuring means that the Data Source Adapter has to be informed which data
source it has to use and what parameters are used when accessing the data source.
Thereby, a connection factory has to be configured in the JNDI (Java Naming
and Directory Interface) namespace of the Storage Provider.

Figure 5.11 briefly describes the scenario of how to establish a connection to the
data source via the Data Source Adapter:

1. A JNDI lookup is performed to retrieve the configured connection factory
(the connection factory is configured using an XML file).

76 CHAPTER 5. IMPLEMENTATION

2. After retrieving the connection factory, a method is invoked on the connec-
tion factory object to obtain a connection to the data source.

3. The connection to the data source is not established immediately, but first
the connection request is forwarded to the connection pool manager.

4. An attempt is made to find a suitable existing connection in the connection
pool.

5. If no suitable connection is found in the pool, the Data Source Adapter
is used to create a new physical connection (also known as a managed
connection).

6. The Data Source Adapter creates a new managed connection by establishing
a physical connection to the data source.

7. Then the newly created connection is added to the connection pool.

8. The Container component uses the connection to access the data source.

9. When the connection is not used anymore by the Container component, it
is closed and marked free in the connection pool.

The connection management used by the SemCrypt Store offers the following
benefits:

• The components operating within the Storage Provider do not have to
care of connection pooling because the Data Source Adapter takes care of
transparent connection pooling.

• Using connections to the data source is very simple.

• It is possible to install multiple Data Source Adapters all accessing different
data sources.

• The access to the external data source is controlled by one component.

Chapter 6

Related Work

This chapter describes work related to the SemCrypt Store. Various secure data
store approaches are described and their advantages as well as their disadvan-
tages are presented. At the end of this chapter, the approaches are compared to
SemCrypt Store.

6.1 Hacigümüs - Executing SQL over Encrypted

Data

Hakan Hacigümüs et al. [19] address the problem of storing and querying en-
crypted relational data. They suggested to store encrypted tuples of relations.
The tuples are never decrypted on the server. To store a relation in an encrypted
way, it is suggested to split the domain values of the attributes of the relation into
partitions. The tuples are then assigned to those partitions. When requesting a
tuple from the server the whole partition has to be fetched.

Example 14 (Hacigümüs - Partitions) As an example, consider a relation
”contracts” that stores information about license contracts with the attributes id,
licensee and price. The relation is shown in table 6.1.

id licensee price

23 basf 2300
860 ibm 86000
320 dell 32000
875 hp 87500

Table 6.1: Relation contracts

77

78 CHAPTER 6. RELATED WORK

Regarding the attribute id, assume that the domain values of id lie in the range
[0,1000]. This range is divided into the following 5 partitions [0,200], (200,400],
(400,600], (600,800], (800,1000].

Identification functions (i) are used to assign a unique identifier to each partition
allowing to determine in which partition a value is stored.

Example 15 (Hacigümüs - Identification function) Each partition of the
previous example is assigned an identifier: i([0,200])=2, i((200,400])=7, i((400,600])=5,
i((600,800])=1, i((800,1000])=4

Given the above partitions and identifier functions, mapping functions (m) are
defined that map values to the identifiers of the partitions to which the values
belong.

Example 16 (Hacigümüs - Mapping function) Table 6.2 shows some con-
tract ids and the corresponding map values.

id value 23 860 320 875

m(id value) 2 4 7 4

Table 6.2: Mapping functions

Mapping functions are applied to the attributes of all tuples that will either be
selected or participate in query statements. The map values act as a coarse index
and are stored together with the respective encrypted tuple. All attributes of the
tuple are encrypted and stored in one cipher text.

Example 17 (Hacigümüs - Encrypted relation) Table 6.3 shows the encrypted
relation ”contracts” as it is stored on the insecure server.

encrypted tuple id licensee price

123423423423422 2 12 50
274379742472322 4 17 21
345453453534545 7 5 65
377907987998732 4 23 80

Table 6.3: Encrypted relation

To retrieve values, this technique allows partial execution of a query on the server
side where the map values are used to retrieve the correct partitions of values.

6.2. ORACLE DATABASE ENCRYPTION TECHNIQUES 79

The correct result of the query is found by decrypting the result of the server side
query and executing a compensation query on the client side. This approach has
also been adopted by Jammalamadaka [20].

However this approach has several potential security holes. According to Fong
[17], the scheme is semantically insecure and not robust against frequency analysis
attacks because the encryption is always performed with the same encryption
key (no nonce is stored together with the tuples). Additionally, an adversary can
figure out the identification functions if there are only few different input values,
enabling the adversary to perform statistical analysis on the indices. Fong also
claims that the approach of encrypting all fields of a tuple together raises a
potential security leak. If the client only needs one particular attribute value of
a tuple, the corresponding encrypted tuple has to be entirely decrypted and thus
all attribute values are revealed to the client.

6.2 Oracle Database Encryption Techniques

Oracle uses authentication mechanisms to secure data in the database, but not
in the operating system files where the data is stored. To protect the data files
of the database, Oracle provides transparent data encryption. Thereby, Oracle
encrypts sensitive data in database columns stored in operating system files. To
prevent unauthorized decryption, it stores encryption keys in a security module
external to the database. It is possible to define which columns of a table need
to be encrypted [25].

To prevent equal encrypted storage patterns when the input of the cipher al-
gorithm is equal, Oracle adds a value to the data that makes encrypted values
different even if the input data is the same. The value that is added is called
”salt”.

Example 18 (Oracle encryption) Figure 6.1 illustrates how to create a table
with encrypted columns. The statement creates a table that holds the contract
information of Enigma including the id and the licensee that are stored in plain
text. The price and the payment information are encrypted. The payment card
id is encrypted with the ”no salt” option which suppresses the use of the ”salt”
value for this column. This is because the column payment cardid is indexed and
the ”salt” option based encryption cannot be used for indexed columns.

80 CHAPTER 6. RELATED WORK

CREATE TABLE contracts (

id NUMBER(5) NOT NULL,

licensee VARCHAR2(128),

price NUMBER(6) ENCRYPT USING ’3DES168’,

payment_type VARCHAR2(32) ENCRYPT USING ’3DES168’,

payment_cardid VARCHAR2(32) ENCRYPT NO SALT,

payment_valid DATE ENCRYPT USING ’3DES168’

);

CREATE INDEX idx01 ON contracts(payment_cardid);

Figure 6.1: Contracts table

This approach has some major drawbacks. The structure of the storage is not
hidden making it possible to figure out the values of columns, specifically if they
contain very few different values. It is also possible to determine the number
of rows stored making it possible for an adversary to figure out the number of
contracts that the software company stores. Oracle uses ”salt” values that are
added to the regular data to avoid the same encrypted text patterns for the equal
plain texts in the database. However this feature can only be applied to columns
that are not indexed.

6.3 XML Encryption

XML Encryption [12] is a recommendation of the W3C Consortium to encrypt
the content of XML documents. W3C develops XML encryption as an enabler
for trusted and secure semantic web services. The recommended approach aims
at not encrypting the XML document as a whole but only data that needs to be
kept secure.

Example 19 (XML Encryption) Figure 6.2 shows Engima’s contracts encrypted
and stored in XML.

6.4. ENCRYPTING FILES & FILESYSTEMS 81

<?xml version=’1.0’?> <contracts

xmlns=’http://www.engima.com/contracts’>

<EncryptedData Type=’http://www.w3.org/2001/04/xmlenc#Element’

xmlns=’http://www.w3.org/2001/04/xmlenc#’>

<CipherData>

<CipherValue>A23B45C56</CipherValue>

</CipherData>

</EncryptedData>

</contracts>

Figure 6.2: An XML containing all encrypted contracts

This solution only covers the encryption of XML documents. However it does
not provide a solution for querying the encrypted data, thus it is inappropriate
for providing a secure data store since this approach does not support searching
within encrypted text.

6.4 Encrypting files & filesystems

Encrypting files can be performed with two different approaches:

• Encryption of the whole disk - Cryptographic filesystems, e.g. the crypto-
graphic filesystem (cfs) [4], implement encryption at system level through
a standard filesystem interface to encrypted files. Files in directories (as
well as their pathname) are transparently encrypted and decrypted with
the specified key without further user intervention.

• Encryption of single files - File based encryption systems, e.g. EncFS [7],
encrypt single files instead of whole filesystems. The advantage in compar-
ison to a filesystem encryption approach is that files can easily be backed
up and the encryption mechanism is separated from the filesystem.

Encrypted filesystems and encryption of single files provide security against off-
line attacks, like a stolen notebook or stolen backups.

Example 20 (Encrypted files) An encrypted storage approach for contracts
using encrypted files is depicted in figure 6.3. Every time data of a contract is
needed at the client the whole contract has to be requested and transferred to the
client.

82 CHAPTER 6. RELATED WORK

Figure 6.3: Contracts stored as files

Both filesystem approaches have the disadvantage that they do not support trans-
actional behavior. Furthermore they always use the same key for encrypting files
or data resulting in repetitive storage patterns which can be exploited using fre-
quency analysis. The main disadvantage however is that only whole files and not
parts of them can be retrieved from the server.

6.5 Summary

Table 6.5 compares secure data store appraoches described in this chapter with
SemCrypt Store. The comparison is based on the requirements listed in chapter
2. Only those requirements that need to be fulfilled by a secure data store are
taken into account. Additionally features relevant for the secure operation of each
approach are compared. These additional features are compared in the second
part of table 6.5.

Requirements Hacigümüs Oracle Files XML SemCrypt
Protect structural information no no no no yes
Encrypt/Decrypt data on client only yes yes no no yes
Avoid statistical analysis no yes no no yes
Support arbitrary cipher alg. yes yes yes yes yes
Ensure ACID principles yes yes no no yes
Granularity of encryption row field file field field
Support of index structures on en-
crypted data

yes no no no yes

Lightweight components yes no yes yes yes
Secure operation in untrusted envi-
ronments

yes no no yes yes

Secure cipher key management yes no yes yes yes

Table 6.4: Comparison of secure data stores

6.5. SUMMARY 83

Protect structural information This requirement is only supported by Sem-
Crypt Store. Hacigümüs’s approach does not support this requirement
because the attributes that are required to query data have to be stored
in addition to the encrypted tuples. In Oracle the structure of the table
is always visible. When encrypting data in files, the file names are not
encrypted and can be used to infer the content or structure of the file.
The XML Encryption approach does not hide the structure of a document
because usually only sensible data is encrypted.

Encrypt/Decrypt data on client only Hacigümüs’s approach only encrypts
data on the client. Oracle also transfers the encrypted data to the client
without decrypting it on the server. Encrypted files are decrypted on the
server and then transmitted to the client in plain text. XML Encryption
approach does not support this requirement either because it only concen-
trates on the encryption of XML and does not provide a storage solution
involving a client and a server.

Avoid statistical analysis Only Oracle and SemCrypt Store provide a strat-
egy to avoid statistical analysis. Oracle meets this requirement by using
it’s ”salt” option, whereas SemCrypt Store uses a nonce based approach
encrypting every value with a different cipher key.

Support arbitrary cipher alg. All above solutions support at least a variety
of encryption algorithms. Not all are as flexible as SemCrypt and allow
the use of custom encryption algorithms but all support at least a set of
predefined algorithms.

Ensure ACID principles Hacigümüs’s approach has ACID support because
this approach can be implemented using any relational database. Oracle
also supports ACID transaction support. The file storage and the XML
Encryption, however, do not consider ACID support.

Granularity of encryption The compared approaches encrypt values using
different levels of granularity. Hacigümüs encrypts all attributes of a tuple
together in one cipher text. The file based approach encrypts whole files.
All other approaches perform the encryption on field level.

Support of index structures on encrypted data Hacigümüs supports index
structures using map values. Oracle does only support indexes on data that
is not encrypted using the ”salt” option, thus Oracle does not support max-
imum security when using indexes. Encrypted Files do not support index
structures since the data is stored in one single cipher text. XML En-
cryption also does not support index structures inside encrypted XML tags

84 CHAPTER 6. RELATED WORK

(only plain XML can be indexed). SemCrypt Store supports arbitrary in-
dex structures. To store index structures, the same strategies as for storing
data using SemCrypt Store are applied.

Lightweight components Hacigümüs’s approach can be implemented using
lightweight components that operate on mobile devices like e.g. handhelds
or cellphones. The Oracle database does not support such environments.
Furthermore encrypted files and encrypted XML documents can be used
with devices that require lightweight implementations. Since the SemCrypt
Store is built very flexible it is possible to implement it to use lightweight
components and thus being able to be embedded in applications operating
on mobile devices.

Secure operation in untrusted environments This feature requires that no
data is encrypted in a untrusted environment. Hacigümüs supports this
feature because data is never decrypted on the server. Oracle stores en-
crypted data in files but has to decrypt the data on the server to be able
to process queries. This represents a potential security leak because the
decrypted data is available in the server-memory. Encrypted files are usu-
ally decrypted on the server before they are submitted to the client, thus
do not support this feature. Encrypted XML documents can be transferred
to the client before they are encrypted and thus are not decrypted on the
server. SemCrypt Store supports this feature as well because data is only
encrypted by the Storage Engine operating in a client environment.

Secure cipher key management File- and XML Encryption as well as the
approach of Hacigümüs can implement a secure cipher key management.
According to Kornbrust [23], Oracle maintains it’s cipher key in plain text
in the memory of the database server, thus does not support a secure cipher
key management. The SemCrypt Store never exposes the cipher key to the
server. The cipher key is always kept in a trusted environment which implies
that SemCrypt Store meets the feature ”secure cipher key management”.

The comparison shows that SemCrypt Store is the only approach that supports
the requirements listed in table 6.5. Thus SemCrypt Store is the most adequate
solution to build a secure remote data store.

Chapter 7

Conclusion and Outlook

Contents
7.1 Conclusion . 85

7.2 Future Work . 86

This chapter concludes this thesis and gives an outlook on future enhancements
and additional features that are not yet implemented. The ideas for additional
features outlined in section 7.2 are the base for further research and development
activities.

7.1 Conclusion

This thesis has outlined the security problems in the ASP business that prevent
organizations to outsource their data storage. The most common security prob-
lems that were identified are: eavesdropping, data theft, data tampering, data
loss and privacy protection.

According to these problems, the requirements for a secure datastore like data
encryption, securing the structure of XML documents and hiding the associations
of stored data were stated. The strategies to meet these requirements were de-
scribed. These strategies include encryption of data, storing data in an identifier
value based approach and using hash functions to hide the structure of XML
documents.

Based on the developed strategies an architecture for a secure data store named
SemCrypt Store was introduced. SemCrypt Store is designed to perform the en-
cryption and decryption of data in a trusted environment, whereas the encrypted
data is stored in an untrusted environment. SemCrypt Store consists of two main

85

86 CHAPTER 7. CONCLUSION AND OUTLOOK

components - the Storage Engine, which operates in an untrusted environment
and performs encryption and decryption of values, and the Storage Provider,
which operates in an untrusted environment and enables unified access to arbi-
trary databases. The storage structures used by SemCrypt Store were designed
in a way that it is possible to query the encrypted data.

The technologies used to implement SemCrypt Store were described and it was
shown how these technologies were used to implement remote communication
and transaction control, encryption/decryption, caching and data storage.

The important implementation details, including the usage of the J2EE platform
and the use of an application server were described, thereby aiming at reflecting
the architecture design.

Furthermore existing secure storage solutions of Hacigümüs et al, the Oracle
encryption approach, encrypted filesystems and the approach of storing encrypted
XML were briefly described. The different approaches were compared to the
SemCrypt Store approach. The comparison revealed that only SemCrypt Store
meets the requirements of a secure remote data store.

7.2 Future Work

This section presents suggestions for improving and extending the current imple-
mentation as well as extending the current architecture of SemCrypt Store.

7.2.1 Improving the implementation

The current implementation can be improved in the following ways:

• More primitive data types - The implementation of more primitive datatypes
will be necessary to make the overall implementation of the current Sem-
Crypt Store more powerful and usable.

• Decentralized Cache - In the current implementation, the Storage Engine
only works with caching enabled when it is the only Storage Engine access-
ing the Storage Provider because the current cache implementation is not
cluster aware. This means that the cache does not synchronize its content
with the caches of other Storage Engine instances. The implementation of
a more sophisticated caching will allow to connect multiple Storage Engine
instances to the Storage Provider without running into inconsistency prob-
lems because of different caches operating inside different Storage Engine
instances.

7.2. FUTURE WORK 87

7.2.2 Extending the implementation

The implementation of the SemCrypt Store can be extended by bulk messages.
Grouping or bulking multiple storage requests into one single request will speed
up the overall communication of the Storage Engine with the Storage Provider.
This is because network overhead that normally is applied to each single mes-
sage that is sent between those two components can be reduced when sending
one larger message instead of several small messages to the Storage Provider.
Furthermore bulk messages help to reduce calls inside the Storage Provider, thus
saving processing time.

7.2.3 Extending the architecture

The architecture of the SemCrypt Store can be extended by the following features:

• Tamper evident storage - A tamper-evident storage enables to detect whether
data has been altered outside the SemCrypt Store. Cryptographic hash
functions or cryptographic signatures can be used to add a tamper evi-
dent layer of protection to the Storage Provider. The usage of such hash
functions is often referred to as an electronic signature. Tamper control in
SemCrypt can be achieved by generating a signature (hash value) for each
cipher row and store it together with the cipher row. Any change to the
cipher row will cause it to have a different hash which will make the signa-
ture invalid. Changes can be detected by comparing stored signatures to
the computed hash values of the stored data. If the hashes do not match,
data has been changed.

• Tamper resistant storage - In comparison to tamper-evident stores where
changes to the store can be performed but are able to be detected, a tamper-
proof or tamper-resistant storage cannot be changed when not permitted
[13]. Tamper resistance is currently researched in the area of smart cards
and electronic devices.

• Security - In a future version of SemCrypt Store, the Storage Engine can
be split into an trusted and a untrusted part. Only encryption related
operations like the cipher component of the current Storage Engine will
then execute in a trusted environment which may be a smartcard. This
requires the cipher component to be a very lightweight and very small
implementation of the cipher module. The remaining parts of the SemCrypt
Store can then operate in an untrusted environment [21].

• Hashvalues - In the current approach, hash functions are used to generate
cipher ids. Because it is possible to figure out the value that was used by

88 CHAPTER 7. CONCLUSION AND OUTLOOK

the hash function to generate the cipher id by using a brute-force search 1,
the generation of cipher ids has to be improved. A possible solution is to
additionally encrypt the cipher id before it is stored.

• Authorization - Authorization as part of SemCrypt protects the operations
that can be performed with data by only allowing users to perform these
operations that have been granted authority to use them. For example,
certain users may be granted permissions to alter the data maintained by
SemCrypt while others are only allowed to view the data. It is therefore
necessary to restrict the access to certain data according to user groups.

It has to be defined how fine grained the access control has to be imple-
mented considering the operations that can be performed with SemCrypt
and the users operating SemCrypt using different roles.

Example 21 Regarding the example of the software company Enigma, au-
thorization is required to allow sales representatives to view or modify only
their contracts but not the contracts of other sales people

1Brute force search is performed by systematically enumerating every possible identifier and
comparing the hash value of the identifier to the stored hash value until a value possible value
is found.

List of Figures

1.1 Sample outsourcing scenario . 15

1.2 Exemplary license contract . 15

1.3 SemCrypt architecture overview 20

1.4 Storage Engine overview . 21

2.1 Encryption and decryption of data 24

2.2 Identifiers for the contract nodes 25

2.3 A container holding cipher rows 25

2.4 Cipher id’s that identify the cipher text 26

2.5 MD5 hash value example . 27

2.6 A container holding cipher ids and values (decrypted) 28

2.7 A container with cipher text . 28

2.8 Nonce based Encryption and decryption 30

2.9 An encrypted container . 30

3.1 SemCrypt Store overview . 36

3.2 Storage Engine building blocks 37

3.3 Storage Gateway components and operations 38

3.4 Flow of storing a value . 40

3.5 Flow of retrieving a value . 42

3.6 Flow of removing a value . 43

3.7 Hash generation . 45

89

90 LIST OF FIGURES

3.8 Nonce generation . 46

3.9 Cache component . 47

3.10 Storage Provider architecture . 51

3.11 SemCrypt Store architecture summary 56

5.1 Algorithm for nonce generation 65

5.2 Implementation of a custom datatype 66

5.3 Fixed length datatype . 67

5.4 Variable datatype . 67

5.5 Value lists . 69

5.6 Conversion to a cipher row . 70

5.7 Transaction Control . 71

5.8 Accessing the Storage Provider 72

5.9 Data Source Adapter . 74

5.10 Different Datasources . 74

5.11 Connection Management . 75

6.1 Contracts table . 80

6.2 An XML containing all encrypted contracts 81

6.3 Contracts stored as files . 82

List of Tables

2.1 Encryption performance of block cipher algorithms 32

3.1 Parameters of operation ”Store value” 39

3.2 Parameters of operation ”Retrieve value” 41

3.3 Parameters of operation ”Remove value” 42

3.4 Parameters of operation ”Encrypt” 44

3.5 Parameters of operation ”Decrypt” 44

3.6 Parameters of operation ”Generate hash” 45

3.7 Parameters of operation ”Generate nonce” 45

3.8 Parameters of operation ”Put element” 48

3.9 Parameters of operation ”Get element” 48

3.10 Parameters of operation ”Build cipher row” 49

3.11 Parameters of operation ”Get identifier-value from cipher row” . . 49

3.12 Parameters of operation ”Begin transaction” 50

3.13 Parameters of operation ”Commit transaction” 50

3.14 Parameters of operation ”Rollback transaction” 50

3.15 Parameters of operation ”Create container” 52

3.16 Parameters of operation ”Find container” 52

3.17 Parameters of operation ”Remove container” 53

3.18 Parameters of operation ”Insert cipher row” 53

3.19 Parameters of operation ”Remove cipher row” 54

3.20 Parameters of operation ”Check for cipher row existence parameters” 54

91

92 LIST OF TABLES

4.1 Cache Providers . 61

4.2 Mapping of SemCrypt data structures to Berkeley Database data
structures . 62

6.1 Relation contracts . 77

6.2 Mapping functions . 78

6.3 Encrypted relation . 78

6.4 Comparison of secure data stores 82

Bibliography

[1] Ant. http://ant.apache.org, October 2005.

[2] Berkeley Database. http://www.sleepycat.com, October 2005.

[3] Bouncy Castle Cryptographic API. http://www.bouncycastle.org, 2005.

[4] CFS - The cryptographic filesystem. http://net-tex.dnsalias.org/ ste-
fan/nt/unix/cfs.html, November 2005.

[5] Eclipse. http://www.eclipse.org, October 2005.

[6] EHCache. http://ehcache.sourceforge.net/, November 2005.

[7] EncFS Encrypted Filesystem. http://encfs.sourceforge.net/, October 2005.

[8] JUnit. http://www.junit.org, October 2005.

[9] Log4J. http://logging.apache.org, September 2005.

[10] Osterman Research Reveals Security as Prime Obstacle in Outsourcing, and
more. Wall Street and Technology, 28 July 2005. http://www.wstonline.com
(ArticleID 166403368).

[11] XDoclets. http://xdoclet.sourceforge.net, October 2005.

[12] XML Encryption. http://www.w3.org/Encryption/2001/, October 2005.

[13] Anderson R. and Kuhn M. Tamper Resistance - a Cautionary Note. USENIX
Association, 2, 21 November 1996. (ISBN 1-880446-83-9).

[14] Brinkman R., Doumen J., and Jonker W. Using secret sharing for searching
in encrypted data. Secure Data Management, 2004.

[15] Cheung S. and Matena V. Java Transaction API. Technical report, Sun
Microsystems, 1 November 2002.

[16] DeMichiel L. Enterprise Java Beans Specification, Version 2.1. Technical
report, Sun Microsystems, Inc., 12 November 2003.

93

94 BIBLIOGRAPHY

[17] Fong K. Potential Security Holes in Hciguemues Scheme of Executing SQL
over Encrypted Data. http://www.cs.siu.edu/ kfong/research/database.pdf,
April 2005.

[18] Gruen K., Karlinger M., and Schrefl M. Schema-aware Labelling of XML
Documents for Efficient Query and Update Processing in SemCrypt. Tech-
nical Reports, University of Linz Department of Data and Knowledge Engi-
neering, 2005.

[19] Haciguemues H. Executing SQL over Encrypted Dat ain the Database-
Service-Provider Model. ACM SIGMOD Int. Conf. on Management of Data,
pages 216–227, 2002.

[20] Jammalamadaka R. Querying Encrypted XML Documents. Master’s thesis,
University of California, Irvine, 2004.

[21] Karlinger M. and Gruen K. Design Specification - WP 2 - Encrypted XML
Processing and Design of Basic Prototype.

[22] Kemper A. and Eickler A. Datenbanksysteme eine Einfuehrung, volume 3.
Oldenbourg, 1999.

[23] Kornbrust A. Circumvent Oracle’s Database - Encryption and Reverse En-
gineering of Oracle Key Management Algorithms. July 2005.

[24] Microsoft. Encrypting File System overview.
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-
us/encrypt overview.mspx, 2005.

[25] Oracle. Oracle 10g Documentation. October 2005.

[26] Pernul and Unland. Datenbanken im Unternehmen. Oldengourg, 2003.

[27] Schneier B. Angewandte Kryptographie. Addison-Wesley, 1996.

[28] Schneier B. and Ferguson N. Practical Cryptography. John Wiley & Sons,
2003.

[29] Schrefl M., Dorn J., and Gruen K. SemCrypt Ensuring privacy of electronic
documents through semantic-based encrypted query processing. PDM 2005
International Workshop on Privacy Data Management, 8 April 2005.

[30] Shannon B. Java2 Platform Enterprise Edition Specification, v1.4. Technical
report, Sun Microsystems, Inc., 24 November 2003.

[31] Sharma R., Stearns B., and Ng T. J2EE Connector Architecture and Enter-
prise Application Integration. Addison Wesley, 2001.

BIBLIOGRAPHY 95

[32] Stark S. JBoss Administration and Development Third Edition. JBoss
Group, December 2003.

[33] Sun Microsystems Inc. J2EE Connector Architecture Specification. Techni-
cal report, Sun Microsystems, Inc., November 2003.

[34] Weinstein L. Outsourced and Out of Control. Communications of the ACM,
47(2), February 2004.

[35] Xiaoyun W., Dengguo F., Xuejia L., and Hongbo Y. Collisions for Hash
Functions MD4, MD5, HAVAL-128 and RIPEMD. 17 August 2005.

96 BIBLIOGRAPHY

Appendix A

Development Environment

Contents
A.1 Eclipse (Version 3.1) 97

A.2 XDoclet (Version 1.2) 98

A.3 JUnit (Version 3.8) . 98

A.4 Ant (Version 1.6) . 98

This chapter describes the development environment used to implement the Sem-
Crypt Store prototype. The development environment consists of tools for Java
code generation, unit testing and for building the prototype. The tools and APIs
are shown and briefly described. Each section outlines the purpose of the tool,
then gives a brief explanation of the tool and finally states in which part of the
prototype it has been used.

A.1 Eclipse (Version 3.1)

Eclipse [5] supports the development of Java applications including testing and
debugging.

Eclipse is an open source community project with the focus on providing an
extensible development platform as well as application frameworks for building
software. Its tools and frameworks span the software development life cycle,
including support for modeling, language development environments for Java,
C/C++ and other programming languages, testing and performance, business
intelligence, rich client applications and embedded development.

Eclipse was used as development environment to implement the SemCrypt Store
prototype in Java.

97

98 APPENDIX A. DEVELOPMENT ENVIRONMENT

A.2 XDoclet (Version 1.2)

XDoclet [11] is a set of tools to automatically generate additional Java code and
XML files required for EJBs.

XDoclet is an open source code generation engine. It enables attribute-oriented
programming for Java. In short, this means that one can add more significance
to code by adding meta data (attributes) with the help of special JavaDoc tags.
The tags are then used to instruct XDoclet which Java code to generate.

XDoclet tags were used to generate the deployment descriptors and remote in-
terfaces for the EJBs that are implemented in the Storage Provider.

A.3 JUnit (Version 3.8)

JUnit [8] is a unit testing framework enabling developers to quickly and easily
implement test cases for unit and regression testing.

The prototype uses JUnit to test the existing functionality and to perform re-
gression tests.

A.4 Ant (Version 1.6)

Ant enables to build Java projects automatically. This includes generating source
code, building and packaging the project.

Ant [1] is a pure Java build tool. Like the make tool, it allows to define a
buildsystem and dependencies among the targets within this buildsystem. This
makes it easy to compile Java code because Ant is fully integrated into the Java
environment.

Ant is used within the SemCrypt Store project as a buildsystem which auto-
matically generates source code (interfaces) and JavaDoc and compiles source
files.

Appendix B

Installation and Configuration

Contents
B.1 Installation . 99

B.2 Configuration . 100

This chapter describes the installation of the SemCrypt Store. Furthermore the
configuration of the two components of the SemCrypt Store, theStorage Engine
and the Storage Provider is described.

B.1 Installation

The Storage Provider is stored as a preconfigured package on the installation CD.
The only requirement is that the environment variable JAVA HOME points to a
Java home directory containing a JDK 1.5 installation.

To start the Storage Provider listening on the address 127.0.0.1, change to the
bin directory of the Storage Provider and run run.bat -b 127.0.0.1 on a command
shell.

The Storage Engine is also stored as a preconfigured package on the installation
CD in the directory ”storageengine”. Because the Storage Engine is an API and
thus is not designed to be an executable program, testcases are provided that use
the Storage Engine API. To start the testcases, execute the ”run-test.bat” script
in the ”storageengine” directory.

For a more detailed installation description, refer to the README.TXT file
included in the main directory of the SemCrypt Store CD.

99

100 APPENDIX B. INSTALLATION AND CONFIGURATION

B.2 Configuration

This section describes the configuration capabilities of the Storage Engine and
the Storage Provider. The properties of each configuration are described and a
sample configuration is given.

B.2.1 Configuring the Storage Engine

To configure the Storage Engine, a properties file is provided that holds the
following settings:

• The Context settings hold the information about how to connect to the
SemCrypt Store. The context setting includes the following configuration
values:

java.naming.factory.initial - This is the class that is used for the JNDI
lookups.

java.naming.provider.url - This is the address of the host where the
JNDI server can be found.

jnp.disableDiscovery - If set to true, this property enables the automatic
discovery of a Storage Provider in the network.

• Hash settings

semcrypt.hashimpl - Specifies the hash implementation class that is used
by the Hash Generation Component of the Storage Engine.

• Encryption settings

semcrypt.cipherimpl - Specifies the encryption algorithm implementa-
tion class that is used by the Storage Engine.

semcrypt.cipherkey - The cipher key that is used for encryption and
decryption.

• Nonce settings

semcrypt.nonceimpl - Specifies the nonce implementation class that is
used by the Storage Engine.

• Cache settings

semcrypt.enablecache - If set to true, this property activates the cache
for the Storage Engine. The cache properties are configured in a separate
configuration described in B.2.1.1.

B.2. CONFIGURATION 101

The following is a typical configuration of the Storage Engine that can be found in
the file ”semcrypt.properties” in the ”storageengine” directory of the installation.

###

Context settings

###

java.naming.factory.initial =

org.jnp.interfaces.NamingContextFactory java.naming.provider.url =

jnp://127.0.0.1:1099

jnp.disableDiscovery = false

###

Hash settings

###

semcrypt.hashimpl = com.semcrypt.dbmanager.hash.MD5Hash

###

Encryption settings

###

semcrypt.cipherimpl = com.semcrypt.dbmanager.cipher.DESede

semcrypt.cipherimpl = com.semcrypt.dbmanager.cipher.IDEA

semcrypt.cipherimpl = com.semcrypt.dbmanager.cipher.Rijndael

semcrypt.cipherimpl = com.semcrypt.dbmanager.cipher.Twofish

semcrypt.cipherimpl = com.semcrypt.dbmanager.cipher.DES

semcrypt.cipherkey = 1234567890123456789

###

Nonce settings

###

semcrypt.nonceimpl = com.semcrypt.dbmanager.nonce.SimpleNonce

###

Cache settings

###

semcrypt.enablecache = false

B.2.1.1 Cache configuration

The cache can be configured to meet the requirements of the system in which
SemCrypt Store is operating.

The mandatory configuration values are listed and described below:

• diskStore path - The path that is used for storing the cache elements when
they are swapped to disk.

• maxElementsInMemory - The maximum number of elements to store in
memory (Note: not on disk!). This configuration value may hold integer
values between 0 and the maximum possible value of an integer. Due to
performance reasons, it is strongly recommended that this value is at least
set to 1. If not, a warning will be issued when the cache is created.

• eternal - Defines whether or not the cache is eternal. An eternal cache does
not expire its elements. Possible values are true or false.

102 APPENDIX B. INSTALLATION AND CONFIGURATION

• overflowToDisk - Indicates whether or not to use the disk when the number
of elements exceeds the maxElementsInMemory of the memory. When an
overflow occurs, the elements that are removed from memory are deter-
mined using a specified eviction policy (last recently used, last frequently
used, first in first out), whereby used means stored in the cache or retrieved
from the cache. This attribute can be true or false.

The optional configuration values for the cache are:

• timeToIdleSeconds - This is the number of seconds the element should live
after being accessed. The value can be any valid integer starting at 0. The
default value is 0 (which means forever).

• timeToLiveSeconds - This is the number of seconds that the element should
live since it has been inserted into the cache (this does not include read
operations on this element). The default value is 0 (which means forever).

• diskPersistent - If set to true, the elements of the cache are preserved be-
tween shutdowns of the Java VM.

• diskExpiryThreadIntervalSeconds - This the interval of a thread that runs
and checks the values on the disk if they have expired. The value can be
any valid integer starting at 0. Setting this value to 0 is not recommended
because this will lead to a very high CPU usage. The default value is 120.

• memoryStoreEvictionPolicy - This is the policy that is enforced upon reach-
ing the maxElementsInMemory limit.

The following cache configuration is the default configuration for the cache of
SemCrypt Store and is stored in the file ”semcrypt-nodecache.xml” in the ”stor-
ageengine” directory.

<ehcache>

<!-- disk store location -->

<diskStore path="java.io.tmpdir"/>

<!-- default cache configuration -->

<defaultCache

maxElementsInMemory="10000"

eternal="false"

overflowToDisk="true"

timeToIdleSeconds="120"

timeToLiveSeconds="120"

diskPersistent="false"

diskExpiryThreadIntervalSeconds="120"

memoryStoreEvictionPolicy="LRU"

/>

</ehcache>

B.2. CONFIGURATION 103

B.2.1.2 Logging configuration

The log output of the Storage Engine is produced using Log4J 4.9. It is possible
to configure the amount of logs to be written and where to store or display the
logs. The configuration is stored in a file named log4j.xml in the ”storageengine”
directory.

B.2.2 Configuring the Storage Provider

The following transactional parameters can be configured for the Storage Provider:

• Locking timeout - The locking timeout is used to define a timeout for locks
that are held by SemCrypt Store.

• Read only - Defines if the data in the store is writable or not.

• Transactional - A boolean parameter that defines whether the specific store
in the Storage Provider is transactional or not.

• Transaction timeout - This parameter is used to configure the timeout for
transactions to complete.

• Nowait - This parameter is used to configure the transaction to not wait if
a lock request cannot be immediately granted. If set to true, the Storage
Provider will not wait for a lock.

• Read uncommitted - This parameter can be true or false and configures
the isolation level which defines if dirty reads are allowed. If set to true, a
transaction may see uncommitted changes made by some other transaction.

The following is the default configuration of the Data Source Adapter. Note that
if certain properties are not configured, the default properties of the underlying
database are applied.

<connection-factories>

<tx-connection-factory>

<jndi-name>semcrypt/adapter</jndi-name>

<!--use-java-context>false</use-java-context-->

<xa-transaction/>

<rar-name>semcrypt.adapter.rar</rar-name>

<connection-definition>com.semcrypt.adapter.AdapterConnectionFactory</connection-definition>

<adapter-display-name>SemCrypt JCA Adapter</adapter-display-name>

<config-property name="EnvironmentHome" type="java.lang.String">

${jboss.server.data.dir}${/}semcrypt</config-property>

<config-property name="ReadOnly" type="java.lang.Boolean">false</config-property>

<config-property name="AllowCreate" type="java.lang.Boolean">true</config-property>

<config-property name="Transactional" type="java.lang.Boolean">true</config-property>

</tx-connection-factory>

</connection-factories>

104 APPENDIX B. INSTALLATION AND CONFIGURATION

B.2.2.1 Logging configuration

The logging configuration of the Storage Provider follows the same concepts as
the logging of the Storage Engine that is described in B.2.1.2.

Appendix C

Programmatic use of the Storage
Engine

Contents
C.1 Storing and retrieving a value 105

C.2 Transaction handling 106

This chapter shows the programmatic use of the Storage Engine.

C.1 Storing and retrieving a value

The example below illustrates the usage of the Storage Engine and shows which
information needs to be provided to store and retrieve a value. The example
stores a value ”visa” with the identifier ”8-1” in the container ”Contracts”. After
the value ”visa” is stored, it is retrieved from the container by searching it using
the identifier ”8-1”.

1. The Storage Provider URL is retrieved from a configuration file.

2. The name of the store is provided (It identifies one store that is made
accessible by via the SemCrypt Store.)

3. The container is found by searching it using its name ”Contracts”.

4. The identifier ”8-1” and the value ”visa” are passed to the setString func-
tion.

5. Retrieve value with identifier ”8-1”.

105

106 APPENDIX C. PROGRAMMATIC USE OF THE STORAGE ENGINE

// Step 1 - the retrieval of the storageprovider URL is not shown in this

// example because the URL is read automatically from a config file.

TransactionFactory txFactory = new TransactionFactory(); Transaction

tx = txFactory.getTransaction();

tx.begin(); Store store = new ClientStore("ejb/ContractStore"); //

Step 2 Container container = store.createContainer("Contracts"); //

Step 3 tx.commit();

// normal transaction, set the credit card type

tx.begin(); container.setString("8-1".getBytes(), "visa"); // Step 4

tx.commit();

String value = container.getString("8-1".getBytes()); // Step 5

// value = "visa"

C.2 Transaction handling

This section presents examples of how to use the transaction functionality of
SemCrypt Store.

The following code shows an example of how to use a manipulation operation
with a transaction.

...

// get a transaction object from the server

Transaction tx = txFactory.getTransaction();

// lookup the store

Store store = new ClientStore("ejb/Store");

// create a container

tx.begin();

Container container = store.createContainer("USContracts");

tx.commit();

// begin a transaction, store a value in the container

// and commit the transaction

tx.begin();

container.setString("8-1".getBytes(), "visa");

tx.commit();

...

The next example results in an error when applying the value to the container
(setString) because no transaction has been previously initiated.

...

// get a transaction object from the server

Transaction tx = txFactory.getTransaction();

// lookup the store

Store store = new ClientStore("ejb/Store");

// create a container

tx.begin();

Container container = store.createContainer("EMAContracts");

tx.commit();

C.2. TRANSACTION HANDLING 107

// ERROR!

container.setString("8-1".getBytes(), "visa");

...

Note that in the following example, no explicit transaction is initiated. However
the getString() operation successfully reads the string from the container because
the Storage Provider automatically creates the transaction before the method is
invoked and closes the transaction when the method has finished.

...

// get a transaction object from the server

Transaction tx = txFactory.getTransaction();

// lookup the store

Store store = new ClientStore("ejb/Store");

// create a container

tx.begin();

Container container = store.createContainer("EMAContracts");

tx.commit();

String value = container.getString("8-1".getBytes());

...

Overlapping transactions are not allowed:

...

// begin a transaction, and try to begin a second

// transaction

tx.begin(); container.setString("8-1".getBytes(), "visa");

tx.begin(); // ERROR!!! container.setString("8-1".getBytes(),

"mastercard"); tx.commit(); tx.commit(); ...

