
A Framework for implementing
Web Scheme Transformers

By-Example

Diplomarbeit
zur Erlangung des akademischen Grades eines Magisters der Sozial- und

Wirtschaftswissenschaften

Eingereicht an der Johannes Kepler Universität Linz
Institut für Wirtschaftsinformatik
Data & Knowledge Engineering

Eingereicht bei: o.Univ.-Prof. Dr. Michael Schrefl
Betreuender Assistent: Dr. Stephan Lechner

Verfasst von: Michael Karlinger

Linz, im September 2004

 iii

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die Diplomarbeit mit dem Titel "A Framework
for implementing Web Scheme Transformers By-Example" selbständig und ohne fremde
Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt und alle
benutzten Quellen wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich
gemacht habe.

Linz, im September 2004

iv

 vii

Kurzfassung

Transformers By-Example (TBE) ist eine Sprache für das Definieren und Anwenden von
Schema Transformern. Solche Transformer können beim konzeptuellen Entwurf für das
automatische Durchführen von Entwurfsschritten verwendet werden. Ein beispielhafter
Entwurfsschritt im Bereich der konzeptuellen Modellierung von Webapplikationen ist,
dass nach dem Definieren eines Entitätstyps im Datenschema eine entsprechende
Seitenklasse im Hypertextschema eingefügt wird, die festlegt, wie die Instanzen dieses
Entitätstyps auf einer Webseite darzustellen sind. Ein Merkmal von TBE ist, dass ein
Transformer grafisch definiert wird, indem zwei generische Beispielschemata definiert
werden, die jeweils das Schema vor und nach der Transformation widerspiegeln. Dadurch
wird ein Transformer im Wesentlichen in der gleichen Notation definiert, in der auch
Schemata definiert werden. Die für die Transformation eines Schemas notwendigen
Modifikations-Operationen leitet TBE von diesen Beispielschemata ab. Diese
Vorgehensweise unterscheidet TBE von anderen Ansätzen für Schema-Transformationen
bei denen der Modellierer diese Modifikations-Operationen auf Basis einer internen
Repräsentation der Schemata, wie zum Beispiel einer XML Repräsentation, direkt
spezifizieren muss.

Ein TBE-System, das TBE für eine bestimmte Modellierungssprache implementiert,
besteht aus zwei Bausteinen: Der erste Baustein (Grafischer Editor) ermöglicht das
Definieren von Schemata und Transformern, das heißt das Definieren generischer
Beispielschemata. Der zweite Baustein (TBE-engine) ermöglicht das Ableiten der
Modifikations-Operationen von der grafischen Definition des Transformers. Weiters führt
dieser Baustein die eigentliche Transformation von Schemata durch.

Der Gegenstand dieser Diplomarbeit ist die prototypische Implementierung der TBE-
engine. Da der Ansatz von TBE auf verschiedene Modellierungssprachen angewendet
werden kann, wird ein Framework (TBE-framework) zur Verfügung gestellt, das die
Implementierung von TBE-engines für konkrete Modellierungssprachen erleichtert. In
dieser Diplomarbeit wird die Implementierung einer TBE-engine für die Modellierungs-
sprache WebML gezeigt.

viii

Der spezifische Entwurf des TBE-frameworks ermöglicht den Einsatz von beliebigen
grafischen Editoren. Diese Diplomarbeit zeigt, wie WebRatio, das CASE tool der
Modellierungssprache WebML, als grafischer Editor verwendet werden kann. WebRatio
bietet keine direkte Unterstützung für das Definieren von TBE-spezifischen Konstrukten
an. Deshalb wird in dieser Diplomarbeit weiters gezeigt, wie solche Konstrukte in
textueller Form in WebRatio definiert werden können.

 ix

Abstract

Transformers By-Example (TBE) is a concept that facilitates the definition and application
of scheme transformers. When defining a conceptual scheme modelers can use scheme
transformers, which transform an input scheme into an extended or refined output scheme,
for automatically performing modelling tasks. An exemplary modelling task in the sphere
of web application modelling is "after having defined an entity type, add a page class for
displaying the entity type's content". In TBE, a transformer is defined graphically by giving
a generic example of an input scheme and an output scheme, i.e. a scheme before and after
the transformation, respectively. Therefore, modelers define transformers in a notation that
is similar to one which they are familiar with. The scheme modification operations
necessary for performing transformations of schemes are derived from the graphical
specification. This is in contrast to other approaches for scheme transformers where
modelers have to specify such operations based on some internal representation of
schemes, e.g. a representation in XML.

A TBE-system, i.e. the implementation of TBE for a particular modelling langugae
comprises two building blocks: The first building block is a graphical editor for defining
schemes and transformer definitions, i.e. generic examples of an input scheme and an
output scheme. The second building block is an engine (TBE-engine) used for deriving
scheme modification operations based on the graphical transformer definition and for
performing transformer applications.

The main contribution of this thesis is a prototype implementation of the TBE-engine.
Since the concept of TBE can be applied in arbitrary modelling languages, a framework
(TBE-framework) is provided that enables the convenient implementation of TBE-engines
for concrete modelling languages. We demonstrate the implementation of a TBE-engine
for modelling language WebML.

The TBE-framework is designed to cooperate with different graphical editors. We
demonstrate the cooperation of the TBE-engine for modelling language WebML with
WebRatio, which is a commercial CASE-tool supporting modelling language WebML.
WebRatio does not support TBE-specific constructs directly. Therefore, a further
contribution of this thesis is to show how these specific TBE constructs can be specified

x

indirectly within WebRatio, i.e. by annotating such TBE-specific constructs in textual
form.

 xi

Contents

1 INTRODUCTION 13

1.1 Context: Transformers By-Example 13

1.2 Purpose: Putting Transformers By-Example to work 21

1.3 Outline of the thesis 29

2 WEBML 31

2.1 Development method 31

2.2 Modelling language 34

2.3 XML representation of WebML schemes 37

2.4 CASE tool support – WebRatio 39

3 TRANSFORMERS BY EXAMPLE 43

3.1 The logical representation of schemes 43

3.2 Formal semantics of transformers 45

3.3 Transformers and their application 58

4 DEFINING AND APPLYING TRANSFORMERS WITHIN WEBRATIO 61

4.1 Textual representation of TBE-directives 62

4.2 Customized-directives 66

4.3 Defining transformer IndexPCForET 69

4.4 Applying transformer IndexPCForET 75

xii

5 ARCHITECTURE 79

5.1 Base architecture 80

5.2 Processes 81

5.3 Datastructures 86

6 IMPLEMENTATION 99

6.1 Choice of technologies 100

6.2 Two-layered implementation of the TBE-engine 107

6.3 Implementation of Datastructures 115

6.4 Implementation of Processes 125

7 RELATED WORK 147

7.1 Approaches to scheme transformations 147

7.2 The graphical editor TransEd 152

8 CONCLUSION 157

1 Introduction

Contents
1.1 Context: Transformers By-Example 13

1.1.1 Motivation for transformers 14
1.1.2 By-example approach to transformers 17
1.1.3 Building blocks of a TBE-system 20

1.2 Purpose: Putting Transformers By-Example to work 21

1.2.1 Implementing the graphical editor 21
1.2.2 Implementing the TBE-engine 24

1.3 Outline of the thesis 29

This chapter discusses the context and the purpose of this diploma thesis. SECTION 1.1

introduces Transformers By-Example (TBE), which is the context of the thesis. TBE is a
language for defining and applying scheme transformers. Such transformers facilitate the
process of modelling web applications in that they assist modellers in performing recurrent
modelling tasks. SECTION 1.2 presents the purpose of this diploma thesis, which is to
develop a framework for putting TBE to work. Finally, SECTION 1.3 outlines the diploma
thesis.

1.1 Context: Transformers By-Example

This section introduces the TBE approach, which is the context of this diploma thesis.
SECTION 1.1.1 motivates the usage of transformers during web application development.
SECTION 1.1.2 describes the by-example approach to the definition of transformers.
SECTION 1.1.3 describes the building blocks of a TBE-system, i.e. the implementation of
this by-example approach.

14 INTRODUCTION

1.1.1 Motivation for transformers

Web-applications are n-tiered information systems accessible via the internet. Their user-
interface consists of numerous hypertext pages allowing users to explore and navigate the
web application's content. By following links, users may navigate the web-application's
content and trigger the execution of operations that change the web-application's business
state [Con99].

Web-applications are developed by applying adequate development methods and
development tools in order to achieve high-quality products at minimum costs [LRS99].
Developing web-applications is especially complex for the following reasons:

• User interface personalization: The web application's content is typically presented
to different user groups, where each group requires a personalized view of the
content and the operations that can be triggered [MMCF03]. Personalization leads
to more complex user-interfaces, thus causing additional development efforts.

• Multi device delivery: Web-applications are often accessible via different devices,
like for example Personal Digital Assistants or Personal Computers [MMCF03].
The distinctive features of the delivery devices, above all their different screen
resolutions, demand the development of individual user interfaces for each delivery
device which in turn complicates development.

A recent approach to the development of web-applications is called model-driven
development [MMCF03, CCP01, MAM03]. Thereby, web-applications are first modelled
at the conceptual level and then implemented automatically or semi-automatically through
code generation [Fra99]. Examples of model-driven web-application development methods
are WebML [MMCF03], OO-H [CCP01] and ARANEUS [MAM03]. Such development
methods typically integrate several models, each addressing a different design aspect of a
web application. For a detailed comparison of model-driven web-application development
methods and their CASE tool support confer to [Fra99].

Applying model-driven development methods achieves:

• Less efforts for mastering the complexity of web-application development, as
detailed architectural and implementation issues are neglected at conceptualization
[MMCF03].

CONTEXT: TRANSFORMERS BY-EXAMPLE 15

• Shortened development time, as manually writing code is replaced by automated
code generation [Dro97]. This benefit is especially valuable when developing web
applications in the domain of e-commerce, as this market imposes short
development cycles [RSL99].

• Reduced maintenance and evolution efforts, as requests for changes can be turned
into changes at the conceptual level, which are then propagated to the
implementation through code generation [MMCF03].

When developing a web-application by applying a model-driven development method,
defining the web-application's conceptual scheme, which results from conceptual
modelling, is an essential task. A web-application's conceptual scheme (short scheme)
typically integrates several sub-schemes, each addressing a distinctive design aspect.
Commonly the design of the web-application's content structure and hypertext structure is
addressed by distinctive sub-schemes called content scheme and hypertext scheme,
respectively.

title
abstract

Paper

name
email

Author

title

Conf

-submission*

-contact

1

PaperPage

PaperIndex

Paper

AuthorPage

AuthorIndex

Author

ConfPage

ConfDetails

Conf

Figure 1.1: WebML scheme of the CMA: content scheme (left) and hypertext scheme (right).

Example 1.1: FIGURE 1.1 shows the scheme of a web-application intended for managing
conferences defined with the conceptual modelling language WebML [MMCF03].
This web-application is called Conference Management Application (short: CMA).

 The left part of FIGURE 1.1 shows the content scheme, which defines the hypertext
site’s content in terms of an entity-relationship diagram. Entity type Conf, which is
intended to contain exactly one entity, describes data to be presented at the
conference’s main page. Entity types Author and Paper describe information about
authors and submitted papers, respectively.

 The right part of FIGURE 1.1 shows the hypertext scheme, which defines how the
content is to be organized in hypertext pages. This is expressed by page classes

16 INTRODUCTION

containing content units. Each content unit refers to the entity type that is the content
source for the content unit. Page class AuthorPage contains index unit
AuthorIndex, which presents a list of all authors at the AuthorPage. Page class
PaperPage is structured analogously. However, for page class ConfPage, an index
unit is not appropriate. In order to present the sole entity of type Conf, page class
ConfPage contains data unit ConfDetails.

When defining the overall scheme of a web-application, the scheme is extended or refined
step by step through adding scheme elements like, for example, entity types, attributes of
entity types or page classes, in order to meet the requirements specified for the web-
application. A set of scheme extensions and refinements needed to meet a particular
requirement, will subsequently be referred to as modelling task.

Although the particular modelling tasks differ among the conceptualization of different
web-applications, several modelling tasks, have to be fulfilled by modellers again and
again in the same manner. Examples for such recurrent modelling tasks are listed below.
The name of the respective modelling task is denoted in parentheses. [Lec04].

• For some entity types, it shall be possible to add or delete members of that entity
type via the web interface. This requires entry forms and links that trigger content
management operations like insert or delete. (ProvideForInsert,
ProvideForDelete).

• It is often the case that for an entity type, which defines some part of the web site's
content, a page class with a content unit is required for presenting the members of
that entity type. (PageClassForEntityType).

As extending and refining schemes again and again manually and in a similar manner is
cumbersome, it would be convenient for modellers to have scheme transformers that can
perform such recurrent modelling tasks. Scheme transformers speed up the definition of a
web application's scheme and in turn the entire development process, since modellers can
have many modelling tasks performed by applying scheme transformers [Lec04].

Example 1.2: Modelling task PageClassForEntityType could be automatically
performed by a scheme transformer called IndexPCForET. This scheme transformer
would generate a page class with an index unit, according to some naming policy,
for each entity type. Thus, page classes PaperPage and AuthorPage, shown in

CONTEXT: TRANSFORMERS BY-EXAMPLE 17

FIGURE 1.1, could be automatically generated instead of being manually defined by
the modeller.

1.1.2 By-example approach to transformers

Transformers-by-example [LS04] is a visual by-example approach for defining scheme
transformers. Consequently, the graphical notation used for defining schemes is used for
defining transformers. In the following it is shown how transformers are visually defined
and how transformers are used for performing scheme transformations.

Defining transformers: The definition of a transformer comprises two constituent parts.
One part specifies by means of constraints, which configurations of scheme elements are
extended or refined by the transformer. This part is called query part, since TBE derives a
query, based on this specification, which retrieves all scheme element configurations from
a scheme that fulfill the constraints. The other part defines how to generate new scheme
elements and how to extend existing ones. This part is called generative part.

A transformer's query part and generative part are both expressed by giving an "example"
of what is desired. These "examples" are expressed in the same graphical notation as used
for defining schemes. However, the "examples" are generic specifications, from which the
TBE-system derives an executable transformer. Therefore, these examples are referred to
as templates. Consequently, a transformer's query part is referred to as query template and
a transformer's generative part is referred to as generative template. [LS04]

Q G

IndexPCForET

ATT

ENT PC

IU

ENT

PC = concat(ENT, "Page")
IU = concat(ENT, "Index")ENT != "Conf"

Figure 1.2: By-example definition of transformer IndexPCForET in notation of WebML.

18 INTRODUCTION

Example 1.3: FIGURE 1.2 depicts a by-example definition of transformer IndexPCForET in
terms of modelling language WebML. Thus the transformer defines a transformation
of WebML schemes. Apart from the string concatenation expressions, the definition
of transformer IndexPCForET is graphically notated like a WebML scheme. Please
ignore the grey-shaded expression for the moment. The query template, shown in the
left part of FIGURE 1.2, defines that entity types are to be selected. The generative
template shown in the right part of FIGURE 1.2 defines that a page class comprising
an index unit is to be generated.

Each template is defined by using the same scheme elements and the same notation as used
for specifying schemes. However, there are the following two differences: (1) Instead of
concrete values, the entries in scheme elements are variables. (2) Additionally, a template
contains symbols, comparison constraints and construction expression, which are called
TBE-directives in summary. A fixed set of symbols is used for tagging variables in order to
distinguish different types of variables. Variables of a generative template that are tagged
with symbol " " are new-element variables, i.e. variables representing scheme elements to
be generated. Variables of a query template that are tagged with symbol " " are result-
variables, i.e. variables that are comprised within the query template's result. Comparison
constraints are used to constrain variable bindings. Construction expressions define how to
derive new property values, e.g. by means of string concatenation.

Example 1.4: Reconsider the by-example definition of transformer IndexPCForET in
notation of WebML depicted in FIGURE 1.2. The query template comprises variables
ENT and ATT representing entity types and attributes, because they are placed in the
name section and in the attribute section of a graphical shape representing an entity
type, respectively. When applied to a scheme, the query looks for valid bindings of
variables ENT and ATT out of the domain of entity types and attributes, respectively.
Since variable ATT is placed inside the graphical shape representing variable ENT,
only those bindings are valid where the attribute represented by ATT is defined at the
entity type represented by ENT. Variable ENT is a result-variable as it is preceded by
symbol " ", whereas variable ATT is a non-result variable. Thus, the query's result
comprises only the entity types but not the attributes.

 The generative template comprises variables PC, IU and ENT, which represent a
page class, an index unit and an entity type as expressed by the graphical placement
of these variables. Thereby, variable ENT is a parameter variable as expressed by
symbol " ". Variable ENT represents an entity type that is to be provided as
parameter each time the generative template is instantiated. Variables PC and IU are

CONTEXT: TRANSFORMERS BY-EXAMPLE 19

new-element variable as expressed by symbol " ". They represent a page class and
a new index unit to be generated.

Applying transformers: A transformer, once defined, can be applied to various schemes,
each time extending or refining the scheme as defined by the transformer's templates. Each
transformer application is processed in two steps. First, the query template is evaluated in
the context of the scheme to which the transformer has been applied. It achieves a relation
whose tuples represent configurations of scheme elements that fulfill the constraints
specified by the query template. Second, the generative template is iteratively instantiated
for each such tuple t, each time having the generative template's parameter variables
bound to the corresponding scheme elements in t.

Example 1.5: Suppose that transformer IndexPCForET depicted in FIGURE 1.2 is applied
to the CMA content scheme off-the-shelf, which is depicted in FIGURE 1.1 Then, entity
types Paper, Author and Conf are selected because they all match the pattern
"Entity type comprising an attribute". For each of these entity types, the generative
template is instantiated separately. For example, for entity type Paper, a page class
PaperPage comprising an index unit PaperIndex referring to entity type Paper is
generated. Similarly, page classes with index units are generated also for entity types
Author and Conf. Note, that it is not desired, in the context of the CMA scheme, that
page class ConfPage contains index unit ConfIndex. Therefore, in order to prevent
the generation of page class ConfPage with index unit ConfIndex an individualized
application of transformer IndexPCForET is required in order to achieve the desired
outcome.

Besides applying transformers off-the-shelf, TBE offers the following alternatives for
adapting a transformer's behavior individually for each application: (1) Modellers may
individually constrain query template variables in order to control which parts of the
scheme shall be considered. Such individual constraints are called application-specific
constraints. (2) Modellers may specify construction expressions that override those defined
in the generative template in order to adapt the transformer's outcome. Such individual
construction expressions are called application-specific construction expressions.

Example 1.6: Suppose that the application of transformer IndexPCForET to the CMA
content scheme shall be individualized such that entity type Conf is not considered.
For this purpose the application-specific constraint ENT != "Conf" depicted in
FIGURE 1.2 is required. The outcome of this transformer application is page class

20 INTRODUCTION

PaperPage with index unit PaperIndex and page class AuthorPage with index unit
AuthorIndex.

1.1.3 Building blocks of a TBE-system

A TBE-system implements TBE for a particular modelling language L, i.e. it supports the
graphical definition and application of transformers. Such a TBE-system comprises two
building blocks, i.e. a graphical editor for L and a TBE-engine for L, as described in the
following.

When a modeller defines a transformer for modelling language L, she graphically defines a
query template and a generative template both in notation of L using a graphical editor.
Defining a template in notation of L means to define a scheme in notation of L and to
extend the scheme with TBE-directives like " " or " ". These templates are then passed to
the TBE-engine in an internal representation of L, for example by means of XML, as the
upper part of FIGURE 1.3 depicts. The TBE-engine derives an executable transformer on
basis of the query template and the generative template, which is required for performing
the application of a transformer. An executable transformer is a sequence of scheme
modification operations that is executable on the internal representation of schemes. For
example, if schemes are internally represented as XML documents an executable
transformer could be an XQuery statement.

Input
scheme

Knoten1Graphical Editor
Output
scheme

Query
template

Knoten1Graphical Editor
Generative
template

Executable
Transformer

T
ra

n
sf

o
rm

e
r

D
e
fi
n
it

io
n

T
ra

n
sf

o
rm

e
r

A
p
p
lic

a
ti

o
n

TBE-Engine

(transformer compilation)

TBE-Engine

(transformer execution)

Figure 1.3: Building blocks of a TBE-system - Graphical editor and TBE-engine.

PURPOSE: PUTTING TRANSFORMERS BY-EXAMPLE TO WORK 21

When a modeller applies a transformer, she defines an input scheme, i.e. the scheme to be
transformed, in notation of L within the graphical editor, as depicted in the lower part of
FIGURE 1.3. The input scheme is then transformed within the TBE-engine as specified by
the selected transformer, via executing the previously derived executable transformer on
the internal representation of the input scheme. Finally the resulting output scheme is
displayed within the graphical editor.

The TBE-system presented in this diploma thesis uses an XML representation of WebML
schemes as interface between the graphical editor and the TBE-engine. This XML
representation is specified by an XML DTD called WebML.dtd and therefore normative,
prescribed by the developers of WebML. Hence, the implementations of the graphical
editor and the TBE-engine are exchangeable, i.e. the implementation of the graphical
editor can be exchanged without adapting the implementation of the TBE-engine, and vice
versa.

1.2 Purpose: Putting Transformers By-Example to work

The purpose of this diploma thesis is to develop a framework for putting TBE to work.
This framework (TBE-framework) provides the components of a TBE-system that are
independent of a particular modelling language L (model-independent components).

In order to apply the TBE-framework to modelling language L, the components of a TBE-
system that are dependent on modelling language L (model-dependent components) are
plugged in the TBE-framework.

SECTION 1.2.1 and SECTION 1.2.2 presents the alternatives for implementing the graphical
editor and the TBE-engine, respectively. Further, the choice of the respective
implementation alternative is reasoned.

1.2.1 Implementing the graphical editor

The graphical editor of a TBE-system that implements TBE for modelling language L has
to fulfill the following requirements:

22 INTRODUCTION

• Defining schemes and templates: The graphical editor has to provide for defining
schemes in notation of L. In order to define templates the graphical editor
additionally has to provide for specifying TBE-directives.

• Compatibility to the TBE-engine: The graphical editor has to provide for
exporting schemes in notation of L in order to implement the interface to the
TBE-engine.

• Minimum implementation efforts: A graphical editor is always specifically tailored
for editing schemes and templates in notation of L and thus model-dependent at
all. Yet, this diploma thesis focuses on the implementation of model-independent
components of a TBE-system. Thus, a solution for implementing the graphical
editor with minimum efforts is desired.

1.2.1.1 Implementation alternatives

For implementing the graphical editor of a TBE-system the following alternatives are
available [LS04]:

• Developing a graphical editor from scratch: To develop a graphical editor from
scratch is one alternative for implementing the graphical editor. Such a graphical
editor can be specifically tailored to provide for defining schemes and specifying
TBE-directives graphically.

• Adapting a CASE tool's source code: Every CASE tool provides for defining
schemes. If a CASE tool is used as graphical editor for a TBE-system, it
additionally has to provide for specifying TBE-directives. Obviously, if the
developer has full control over the CASE tool's source code, she can adapt the
CASE tool in order to provide for specifying TBE-directives graphically and for
exporting schemes in the required manner.

• Using a CASE tool off-the-shelf: The main difference to the former alternative is
that a CASE tool is not adapted in order to provide for specifying TBE-directives.
Instead, the CASE tool is used off-the-shelf and TBE-directives are annotated in a
textual form. For example, the tick preceding a variable's name, determining that
the respective variable is a result variable, can be textually represented by a
dollars sign, which is entered as prefix to the name of the respective variable. For

PURPOSE: PUTTING TRANSFORMERS BY-EXAMPLE TO WORK 23

specifying more complex TBE-directives, like constraints or construction
expressions, in textual form, the CASE tool has to provide for annotating text to
schemes. Typically, CASE tools enable the annotation of text by means of
tag/value-pairs.

1.2.1.2 Choice of an implementation alternative

In the previous sections requirements to graphical editors and implementation alternatives
have been described. In this section the implementation alternatives are evaluated and one
of these alternatives is chosen.

Concerning the graphical editor's compatibility to the TBE-engine each of the
implementation alternatives is applicable, since each alternative provides for exporting
schemes in an internal representation.

Concerning the definition of schemes and templates again each of the implementation
alternatives is applicable. Each alternative supports the definition of schemes at the same
level. However, the level of support to the definition of templates is rudimentary when
using a CASE tool off-the-shelf, since TBE-directives have to be specified in textual form.
In contrast, when a CASE tool's source code is adapted or a graphical editor is developed
from scratch the convenience of graphically specifying TBE-directives is provided to
modellers.

Concerning the implementation effort the alternative of using a CASE tool off-the-shelf is
preferred to the other alternatives, since actually no implementation effort arises.

The application of a CASE tool as graphical editor is demonstrated by WebRatio, which is
the CASE tool for WebML. WebRatio provides for annotating TBE-directives in textual
form by means of Properties, i.e. tag/value-pairs. Further, a syntax for TBE-directives in
textual form is specified in this diploma thesis.

A convenient graphical editor for the TBE-system, called TransEd, is developed from
scratch in a related diploma thesis [Wab04]. TransEd is a graphical editor for WebML
schemes that additionally provides for graphically specifying TBE-directives.

24 INTRODUCTION

1.2.2 Implementing the TBE-engine

The TBE-engine of a TBE-system that implements TBE for modelling language L has to
fulfill the following requirements:

• Provide for compiling transformer definitions: The TBE-engine has to provide for
compiling a query template and a generative template both in notation of L into an
executable transformer.

• Provide for performing transformer applications: The TBE-engine has to provide
for transforming a scheme in notation of L as specified by a particular transformer.

• Applicability to various modelling languages: The TBE-engine has to be
applicable to various modelling languages, i.e. the TBE-engine has to comprise
components that can be reused for implementing TBE-engines for other modelling
languages than L. Such reusable components are called model-independent
components. Consequently, components that have to be newly implemented for
each modelling language L are called model-dependent components. The model-
independent components of the TBE-engine make up the TBE-framework that can
be refined in order to develop a concrete TBE-engine for modelling language L.

• Compatibility to the graphical editor: In order to cooperate with the graphical
editor the TBE-engine has to process schemes in notation of L.

1.2.2.1 Implementation alternatives

For implementing a TBE-engine basically two alternatives are available. The first
alternative is to implement a model-specific TBE-engine, i.e. a TBE-engine that is
specifically tailored to the transformation of schemes of a particular modelling language.
The second alternative is to implement a generic TBE-engine, i.e. a TBE-engine that aims
at enabling scheme transformations for various modelling languages. These alternatives are
illustrated in SECTION 1.2.2.1.1 and SECTION 1.2.2.1.2, respectively.

PURPOSE: PUTTING TRANSFORMERS BY-EXAMPLE TO WORK 25

1.2.2.1.1 Model-specific TBE-engine

The upper part of FIGURE 1.4 depicts the compilation of a transformer definition. The
Generator takes the query template and the generative template in notation of a particular
modelling language L as input and generates the corresponding executable transformer.
Such an executable transformer is specifically tailored to the transformation of schemes in
notation of L.

Generator

Query Template
[in notation of L]

Generative Template
[in notation of L]

Executable Transformer
[on schemes in notation of L]

Input Scheme
[in notation of L]

Output Scheme
[in notation of L]

Applicator

Figure 1.4: Components of a model-specific TBE-engine.

The lower part of FIGURE 1.4 depicts how a model-specific TBE-engine performs a
transformer application. For this purpose the Applicator takes the input scheme in
notation of L and executes the previously derived transformer directly on the input scheme.
The resulting output scheme, again in notation of L, is finally returned.

1.2.2.1.2 Generic TBE-engine

The basic difference between a model-specific TBE-engine and a generic TBE-engine is,
that a generic TBE-engine basically works on a standardized representation of schemes
instead of working on the schemes directly. Such a standardized representation of schemes,
called logical representation of schemes, is provided by TBE. The logical representation of
a scheme is a representation of the scheme grounding on the consideration of a scheme as
being a set of scheme elements and a set of connections between those scheme elements.

26 INTRODUCTION

FIGURE 1.5 depicts the compilation of a transformer definition. The generic TBE-engine
takes a query template and a generative template, both in notation of L, as input. These
templates are then mapped into their logical representation by the Mapper. On basis of the
logical representations of the templates the Generator derives a sequence of modification
operations on the logical representation of a scheme. Such a sequence of modification
operations is called transformer definition in terms of TBE. Thus, a transformer definition
in terms of TBE specifies how the logical representation of a scheme is to be transformed.
To generate a transformer definition in terms of TBE instead of generating an executable
transformer directly is a major difference to model-specific TBE-engines.

Query Template
[in notation of L]

Generator

Query Template
[logical]

Generative Template
[in notation of L]

Generative Template
[logical]

Transformer Definition
[in terms of TBE]

Input Scheme
[in notation of L]

Input Scheme
[logical]

Output Scheme
[logical]

Output Scheme
[in notation of L]

Applicator

Mapper Mapper

Mapper Mapper

Figure 1.5: Components of a generic TBE-engine.

The lower part of FIGURE 1.5 depicts how a generic TBE-engine performs a transformer
application. The input scheme in notation of L is first mapped into its logical representation
by the Mapper. This mapping is necessary, since the generated transformer definition in

PURPOSE: PUTTING TRANSFORMERS BY-EXAMPLE TO WORK 27

terms of TBE specifies the transformation of the logical representation of a scheme and not
the transformation of the scheme itself. Then the Applicator transforms the logical
representation of the input scheme into the logical representation of the output scheme as
specified by the transformer definition in terms of TBE.

For realizing the Applicator of a generic TBE-engine the following two alternatives are
available. One alternative is that the Applicator interprets the transformer definition in
terms of TBE ad-hoc. Another alternative is that the Applicator translates the transformer
definition in terms of TBE first into an executable transformer, i.e. a script in terms of
another (programming) language for which a processor exists. Then the executable
transformer is executed by the Applicator on the input scheme in logical representation.

Finally the output scheme in logical representation is mapped back into its native
representation, i.e. a scheme in notation of L.

The compilation of a transformer definition and its actual application is independent of
modelling language L, since the logical representation of schemes is used. The mapping
from schemes in notation of L into their logical representation and vice versa is dependent
on the modelling language L, since each modelling language uses its own internal
representation of schemes.

1.2.2.2 Choice of an implementation alternative

In the previous sections requirements to the TBE-engine and implementation alternatives
have been described. In this section the implementation alternatives are evaluated and one
of these alternatives is chosen.

Concerning the compilation of transformer definitions both alternatives, i.e. a model-
specific TBE-engine and a generic TBE-engine, are applicable, since both alternatives
provide for compiling a query template and a generative template in notation of WebML.
Analogous, both alternatives are applicable for performing transformer applications to
WebML schemes.

Concerning the compatibility to the graphical editor again both alternatives are applicable,
since both use WebML schemes as interface to the graphical editor.

28 INTRODUCTION

Concerning the applicability to various modelling languages a generic TBE-engine is
preferred, since the components of a model-specific TBE-engine entirely comprises of
model-dependent components. Therefore, all components of a model-specific TBE-engine
have to be newly implemented in order to be applicable to another modelling language. For
example, the Applicator of a model-specific TBE-engine for modelling language
WebML is specifically tailored to the transformation of WebML schemes. Therefore, such
an Applicator cannot be reused for implementing a TBE-engine for other modelling
languages than WebML.

Whereas, a generic TBE-engine comprises mainly model-independent components that can
be used for each implementation of a TBE-engine, i.e. the Applicator and the Generator.
The only model-dependent component of a generic TBE-engine is the Mapper.

TBE-Framework

Scheme
[logical]

Applicator Generator

WebML TBE-Engine

Mapper

Scheme
[WebML]

Figure 1.6: Framework for TBE-engines and the WebML TBE-engine.

Therefore we decided to implement a generic TBE-engine. The upper part of FIGURE 1.6
depicts the model-independent components of a generic TBE-engine that basically make
up the TBE-framework, i.e. the Generator and the Applicator. We demonstrate the
implementation of an Applicator that uses an XQuery statement for transforming the
input scheme in logical representation into the output scheme, again in logical

OUTLINE OF THE THESIS 29

representation. However, other implementations of an Applicator could be easily plugged
into the TBE-framework as well.

We demonstrate the application of the TBE-framework to WebML, i.e. how the model-
dependent components are implemented for WebML. The lower part of FIGURE 1.6 depicts
the resulting WebML TBE-engine. However, TBE-engines for other modelling languages
than WebML could be easily implemented as well, just by implementing the (few) model-
dependent components.

1.3 Outline of the thesis

Chapter 2 describes the process of model-driven web application development with
modelling language WebML. Further, the XML representation of WebML schemes and
WebRatio, the CASE tool for WebML, are illustrated.

Chapter 3 presents the concept of TBE. The chapter starts with a description of the logical
representation of schemes, which is the basis for defining transformer's semantics. The
remained of this chapter presents the formal semantics of transformers.

Chapter 4 demonstrates how transformers are defined and applied within WebRatio. The
chapter particularly addresses how TBE-directives are annotated to WebML schemes in
textual form. Further, the definition and application of a concrete transformer within
WebRatio is shown.

Chapter 5 presents the architecture of the developed TBE-engine. The main purpose of this
architecture is to separate model-dependent components from model-independent ones.

Chapter 6 presents the implementation of the TBE-engine. In particular the chapter
explains the implementation of the TBE-framework and the WebML TBE-engine.

Chaper 7 presents related work. The chapter briefly describes other approaches to scheme
transformers and illustrates TransEd, which is a graphical editor developed in a related
diploma thesis for editing WebML schemes and graphically defining by-example
transformers.

Chapter 8 concludes the thesis.

2 WebML

Contents
2.1 Development method 31

2.2 Modelling language 34

2.2.1 Data model 34
2.2.2 Hypertext model 36

2.3 XML representation of WebML schemes 37

2.4 CASE tool support – WebRatio 39

2.4.1 The level of support to the WebML development phases 39
2.4.2 A bird eye's view on WebRatio 40

This chapter introduces the conceptual web modelling language WebML. SECTION 2.1
gives an overview of the different phases of developing web applications with WebML.
SECTION 2.2 describes the modelling language WebML itself. SECTION 2.3 illustrates the
XML representation of WebML schemes. Finally, SECTION 2.4 briefly describes
WebRatio, the CASE tool for WebML.

2.1 Development method

The development process offered by WebML consists of different phases, is inspired by
Boehm's spiral model [Boe85] and covers all phases of a web application's life cycle from
requirements analyses to maintenance and evolution. As depicted in FIGURE 2.1, this
process is iterative and incremental where the various phases are repeated and refined until
their results meet the particular requirements. Thus, a web application is developed in
cycles, where the current version of the web application is first tested and evaluated and
afterwards modified to cope with previously specified or newly emerged requirements in

32 WEBML

each iteration step. Subsequently the particular phases are illustrated by the development of
the Conference Manangement Application (CMA) [MMCF03].

Conceptual Modelling

Requirements
Analyses

Hypertext Design

Testing &
Evaluation

Implementation

Maintenance
& Evolution

Data Design

Deployment

Business
Requirements

Figure 2.1: Phases in the WebML development process.

The WebML development process starts with the Requirements Analyses phase, where
business requirements that motivate the application's development serve as input. This
phase primary targets on identifying groups of users addressed by the web application and
the functions that will be provided to each user group. Further, this phase aims at
identifying core information objects representing the web application's content and
decomposing the web application into site views, i.e. different user interfaces needed for
different user groups or delivery devices.

Example 2.1: There are two groups of users for the CMA, namely authors and members of
the Program Committee (short: PC members). Authors shall be enabled to submit
papers, and PC members shall be enabled to select those submitted papers that are
accepted at the conference. The mentioned activities are examples for functions that
are provided to the particular user group. It is straightforward to define core
information objects for representing authors, papers and PC members. Further, it is
reasonable to define one site view per user group, each presenting just the pieces of
information needed by the users of the respective group. Moreover only those
functions shall be provided by the user interface to each user group that can be
executed by members of the respective group.

DEVELOPMENT METHOD 33

Having obtained the specific requirements, the next phase in the WebML development
process is Conceptual Modelling. The conceptual modelling language WebML, which is
described in SECTION 2.2, is used for defining the conceptual scheme. The phase of
conceptual modelling is of special interest within this diploma thesis as the prototypical
implementation of TBE, can be used by developers for performing scheme transformations
within this phase.

Conceptual modelling starts with data design, where core information objects that have
been identified during requirements analyses are organized. Afterwards, the core
information objects and functions, again identified during requirements analyses, are
composed within hypertext pages. This activity is called hypertext design.

Data design and hypertext design strongly depend on each other, as only those information
objects that are considered within data design can be used for hypertext design. Thus, if
information objects are needed for designing the hypertext that were not designed so far,
data has to be designed once more. The changes in data design may in turn require changes
in hypertext design which may result in a loop between data design and hypertext design.
Since it is likely that such loops occur they are explicitly represented within the
development process, as FIGURE 2.1 depicts.

When the conceptual scheme has been defined the Implementation phase is entered. It is a
distinctive target of WebML that the modelled web application can be automatically
implemented through code generation. For this purpose WebML provides an XML
[xml04] representation of WebML schemes. that can be processed from code generators.
SECTION 2.3 illustrates this XML representation.

The quality of the web application's implementation is then improved in the Testing &
Evaluation phase. If the quality of the web application is insufficient, without any changes
in the analysed requirements, a cycle is initialized by re-entering the phase of conceptual
modelling. If the quality of the web application is insufficient, because of changes in
requirements a bigger cycle is initialized by newly analyzing requirements. These cycles
are repeated until the implementation meets the distinctive requirements.

In the Deployment phase, the web application get's productive, i.e. the necessary web
servers and database servers are configured. The phase of Maintenance & Evolution
concludes the development process.

34 WEBML

2.2 Modelling language

Conceptual modelling within the WebML development process comprises data design and
hypertext design. WebML considers each of these activities in a separate model, named
data model and hypertext model, respectively. These models are divided into several sub-
models, where each defines a individual set of scheme elements for defining corresponding
schemes. These sub-models are subsequently described, as far as needed in the context of
this diploma thesis. For a detailed description of these models and their scheme elements
confer to [webml04]. Note that the illustration of the individual models by the CMA
example is limited to aspects concerning authors and that functions, provided to authors or
PC members are neglected at all for reasons of simplicity.

2.2.1 Data model

The data model is divided into the structure model and the derivation model. The
structure model describes the high-level organization of data. It is based on the Entity-
Relationship model [Che76], and is compatible with class diagrams of the Unified
Modelling Language [uml04]. Entity types, attributes and relationships are the scheme
elements used for structure modelling. Entities are considered to be individually
addressable by means of a unique identifier, which is represented by attribute OID that is
implicitly defined at each entity type. The left part of FIGURE 2.2 depicts the content
scheme of the CMA, which has already been introduced in the previous chapter. Yet, entity
types are now extended with OID attributes. Relationships always connect exactly two
entity types. The role of an entity type within a relationship is modelled by relationship
roles. Further, the mapping of entity types, attributes and relationships to physical data
structures stored in databases is done within structure modelling. However, this mapping
can only be specified within the XML representation of a data model, as a graphical
representation is inadequate.

WebML focuses on the development of personalized web applications and considers
therefore users, groups and site views and their semantic relationships as constituent
scheme elements of each data model, as depicted in the right part of FIGURE 2.2. Each user
described by attributes username, password and email belongs to at least one group.
Further, each user is associated with one group that acts as the default group for that user.
Finally, each group has a target site view, which is served to the users of that group.

MODELLING LANGUAGE 35

Example 2.2: Users, groups and site views are represented within WebML by the
consituent entity types user, group and site view, respectively. Thus, in order to
represent the particular users, groups and site views of the CMA, the respective entity
types have to be populated according to the users, groups and site views identified
during requirements analyses.

oid
title
abstract

Paper

oid
name
email

Author

oid
title

Conf

-submission*

-contact

1

oid
password
username
email

User

oid
groupname

Group

oid
name

SiteView

-user

-group

*

-user

*

*

1

1

-group

-defaultGroup

-siteView

1

Figure 2.2: Extended content scheme of the CMA.

The derivation model provides for adding redundant information to the structure model,
in order to augment the expressiveness of content schemes [MMCF03]. Derivation is
formally expressed by queries, which apply to the scheme elements of the structure model,
i.e. entity types, relationships and attributes. For this purpose WebML provides a set
oriented, navigational query language, called WebML-OQL [webml04], which is inspired
by OCL [WK98] and OQL [oql04].

Example 2.3: Entity type Author depicted in FIGURE 2.2 is derived from entity type User
as denoted by the arrow pointing from entity type Author to entity type User. The
WebML-OQL expression "User(as SuperEntity) where SuperEntity.

defaultGroup.groupname = 'Author'" specifies the semantics of this derivation.
This WebML-OQL expression determines that each user that states to be member of
group author is selected and therefore considered as being an author. Thereby, it is
decided whether a certain user states to be a member of group author by traversing
relationship role defaultGroup of entity type User and comparing the value of
attribute groupname with the constant string Author.

36 WEBML

2.2.2 Hypertext model

The hypertext model is divided into the composition model and the navigation model. The
composition model describes the allocation of content to classes of hypertext pages (short:
page classes). Composition modelling specifies which page classes make up the user
interface, and which content elements make up a page class. The scheme elements used for
composition modelling are page classes and several content units. Content units represent
content scheme elements used for publishing the information described in the structure
model. A content unit that lists all entities of a certain entity type is called index unit, e.g.
index unit AuthorIndex. Typically, a content unit is associated with one underlying entity
type, called source entity type, from which the content of the unit is computed. Data units,
for example, are used for publishing a single entity. The respective entity to be published is
specified by a selector condition. The site views offered to the different user groups are
furthermore represented within the composition model, by means of an equally named
scheme element.

The navigation model describes how page classes are linked to provide a navigable
hypertext, and how content units inside a page are connected to permit the flow of context
information. Several types of links are distinguished where the most important types are
contextual links and non-contextual links. Links connecting content units are called
contextual links, as they have to transport contextual information, e.g. the entity presented
by a data unit at the time a link is traversed. Links connecting pages are called non-
contextual links and do not transport information.

PaperPage

PaperIndex

Paper

AuthorPage

ConfPage

ConfDetails

Conf

AuthorIndex

Author

AuthorDetails

Author
[oid=currAuthor]

allAuthorsallPapers

currAuthor:oid

Figure 2.3: Extended hypertext scheme of the CMA.

XML REPRESENTATION OF WEBML SCHEMES 37

Example 2.4: Basically, the page classes and content units depicted in FIGURE 2.3 have
been introduced in CHAPTER 1. The additional content unit AuthorDetails, which is
a detail unit, denotes that all information of a distinctive author is presented, as
entity type Author is the source entity type of this detail unit. The selector condition
"[oid = currAuthor]" specifies that the author with the oid specified by
parameter currAuthor is to be presented. Thereby, parameter currAuthor is
passed to detail unit AuthorDetails by the contextual link currAuthor. Thus, when
a user traverses the link currAuthor, details about the certain author that is
currently selected in the index of all authors are presented by detail unit
AuthorDetails. Further by traversing the non-contextual links allPapers and
allAuthors users navigate from the ConfPage to the PaperPage and AuthorPage,
respectively.

Note, that the hypertext scheme depicted in FIGURE 2.3 is actually the site view of the
CMA's content presented to authors, which is therefore called AuthorsSiteView. As
WebML specifies no graphical representation for site views no such scheme element
is presented in FIGURE 2.3.

There is no separate model for specifying content management operations offered by
WebML. Instead, as they are invoked as a side effect of navigation, operations are
modelled within the hypertext model. WebML provides scheme elements, called operation
units representing some primitive operations like data insertion, deletion or modification.
The corresponding operation units are called create unit, delete unit and modify unit,
respectively. Operation units always have an source entity type analogously to content
units. The source entity type defines the set of entities, which is affected when the
operation is executed. Furthermore, WebML provides for representing arbitrary operations
by means of black boxes. Such black boxes do not rigidly prescribe the represented
operation. Operation units are not illustrated for reasons of conciseness.

2.3 XML representation of WebML schemes

The main purpose of the XML representation of WebML schemes is to enable CASE tools
to process WebML schemes. Within this diploma thesis the XML representation of
WebML schemes is of special interest, since it is the interface between the WebML TBE-
engine and WebRatio, i.e. the graphical editor for WebML schemes. The XML

38 WEBML

representation of WebML schemes is defined by the WebML DTD in its current version
3.0, which is divided into several sub DTDs as depicted in FIGURE 2.4.

Figure 2.4: Sub DTDs comprised within the WebML DTD.

The Structure DTD and the Navigation DTD define the XML representations of sorts of
scheme elements needed for data modelling and hypertext modelling, respectively. The
Presentation DTD, which is a sub-DTD of the Navigation DTD, defines the XML
representations of sorts of scheme elements needed for specifying the layout of page
classes and content units. The RDBMSMapping DTD defines the XML representaitons of
sorts of scheme elements needed for mapping entity types, attributes and relationships to
physical, persistent data storages, e.g. databases. The Auxiliary DTD defines sorts of
scheme elements needed for representing the graphical arrangement of scheme elements
like, for example, entity types and page classes, within the respective WebML scheme.

<!ELEMENT ENTITY (ATTRIBUTE*, RELATIONSHIP*, PROPERTY*, ...)>

<!ATTLIST ENTITY

 id ID #REQUIRED

 name CDATA #IMPLIED

 ...

>

Figure 2.5: Structure DTD fragment declaring scheme elements of sort entity type.

Example 2.5: FIGURE 2.5 depicts a fragment of the Structure DTD that defines the XML
representation of entity types. Entity types may contain attributes and relationships
as well as scheme elements of sort PROPERTY. Such scheme elements can be
defined at every scheme element and are used for annotating text. Note, that the
WebML DTD specifies that the XML representation of each sort of scheme elements

WebML

RDBMSMapping

Auxiliary

Presentation

Navigation

Structure

CASE TOOL SUPPORT – WEBRATIO 39

must comprise XML attribute id in order to uniquely address the respective scheme
elements.

<ENTITY id="ent1" name="Author" ...>

 <ATTRIBUTE id="att1" name="OID"/>

...

</ENTITY>

Figure 2.6: XML representation of entity type Author.

Example 2.6: The XML fragment depicted in FIGURE 2.6 represents entity type Author. It
is shown that the name of this entity type is Author and that ent1 is the identifier for
this entity type. XML element ATTRIBUTE represents the oid attribute of entity type
Author, which is identified by att1.

2.4 CASE tool support – WebRatio

The Web Ratio Site Development Studio is a commercial CASE tool supporting WebML.
SECTION 2.4.1 discusses WebRatio's level of support to the different phases of the WebML
development cycle. SECTION 2.4.2 gives a bird eye's view on the usage of WebRatio.

2.4.1 The level of support to the WebML development phases

For defining schemes within the phase of Conceptual Modelling, WebRatio provides an
graphical editor as a kind of fundamental support. Further, WebRatio provides for
checking the structural validity of WebML schemes, i.e. WebRatio checks whether all
information, necessary for generating the source code of the respective web application,
has been defined by the modeller.

The Implementation phase is supported by a code generator allowing developers to
implement the modelled web application without writing a single line of code. Thereby,
web applications may be published under the Tomcat web server and JSP engine but also
over the Microsoft .NET architecture.

WebRatio supports the phase of Testing & Evaluation, i.e. it provides for testing and
evaluating realistic prototypes. For this purpose WebRatio enables the population of data

40 WEBML

sources with randomly generated data, taken either from a default population or from
attribute-specific populations.

WebRatio supports the Deployment phase by means of automatically configuring the
runtime environment, i.e. the web servers and database servers. Yet, for the phase of
Maintenance & Evolution and for the phase of Requirements Analyses no particular
support is provided by WebRatio.

2.4.2 A bird eye's view on WebRatio

FIGURE 2.7 depicts a screen shot of the user interface of WebRatio, taken while developing
the CMA example application. The workspace of Web Ratio is divided into four areas,
which are subsequently described.

The Project Tree area is depicted in the upper left part of FIGURE 2.7. The project tree
comprises three tabs. The first tab, which is selected in FIGURE 2.7, displays all scheme
elements in hierarchical order. The second tab is used for specifying the mapping of
scheme elements to physical data structures and the third tab is used for specifying the
presentation details of page classes and content units. Thereby, style sheets can be
specified that render page classes. Further, the arrangement of content units within the
respective page classes can be specified.

The Work Area is depicted in the upper right part of FIGURE 2.7 and is used for
graphically defining scheme elements. The Work Area comprises one tab for editing the
data scheme and one tab per site view for editing the hypertext scheme.

The Properties Frame, depicted in the bottom left part of FIGURE 2.7, enables developers
to specify properties of scheme elements that can not expressed graphically in a reasonable
manner. One such property is, for example, a WebML OQL expression that precisely
specifies the derivation of an entity type. The properties frame, which is depicted in Figure
2.7, shows the properties of entity type Author.

The Message Area, depicted in the bottom right part of Figure 2.7, displays errors and
warnings identified during the structural validation of a particular scheme.

CASE TOOL SUPPORT – WEBRATIO 41

Figure 2.7: Screnn shot of the user interface of WebRatio.

3 Transformers by example

Content
3.1 The logical representation of schemes 43

3.2 Formal semantics of transformers 45

3.2.1 Query templates 46
3.2.2 Generative templates 52

3.3 Transformers and their application 58

This chapter describes the basic concepts of TBE by means of presenting the formal
specification of TBE [Lec04]. The TBE-system presented in this diploma thesis
implements these basic concepts of TBE.

The remainder of this chapter is organized as follows. SECTION 3.1 describes the logical
representation of schemes, which is the basis for defining the semantics of transformers in
terms of TBE, which is described in SECTION 3.2. Finally, SECTION 3.3 explains the
application of transformers.

3.1 The logical representation of schemes

The logical representation of a scheme is a representation of the scheme grounding on the
consideration of schemes as being a set of scheme elements and a set of connections
between those scheme elements. Note, that each scheme, neutral of the modelling language
used for defining the scheme, can be represented in such a manner. The logical
representation of schemes considers the distinctive sorts of scheme elements as universes
and the distinctive sorts of connections as relations.

44 TRANSFORMERS BY EXAMPLE

DEFINITION 3.1: UNIVERSES AND RELATIONS. The logical representation of a scheme is
given by a set of universes Ǔ and a set of relations Ř. Each universe U ∈ Ǔ represents
a sort U of scheme elements. Each relation R(U1, ..., Un), with R ∈ Ř and, for i =

1...n, Ui ∈ Ǔ, represents connections between scheme elements of sort Ui.

The term "scheme element" used in DEFINITION 3.1 may cause some confusion as it has
different meanings in the context of WebML and in the context of the logical
representation of schemes. In the context of WebML, the term "scheme element" belongs
to modelling constructs like, for example, entity types or page classes that may be more
precisely described by properties like, for example, names of entity types or names of page
classes. In the context of the logical representation, the term "scheme element" subsumes
both instances of modelling constructs, e.g. entity types, and properties of such scheme
elements, e.g. names of entity types. Throughout this diploma thesis the term "scheme
element" denotes scheme elements in the sense of the logical representation of schemes.
Whereas, the term "WebML scheme element" denotes instances of modelling constructs.

Example 3.1: The formal specification of TBE determines universes E, A, P, I and N for
representing entity types, attributes of entity types, page classes, index units and
names, respectively. Relation name(N × (E ∪ A ∪ P ∪ I)) expresses that entity
types, attributes, page classes and index units have names. Further, relation
defAt((A × E) ∪ (I × P)) expresses that each attribute is defined at an entity
type and that each index unit is defined at a page class. Each index unit has a
content source, which is expressed by relation source(I × E). The sets of universes
and relations defined in the formal specification of TBE for representing a subset of
all scheme elements of WebML are thus given by Ǔ = {E, A, P, I, N} and Ř =
{name, defAt, source}, respectively.

Members of universes and members of relations represent the particular scheme elements
and connections between scheme elements of a concrete scheme, respectively.

DEFINITION 3.2: UNIVERSE MEMBERS AND RELATION MEMBERS. Each scheme element e
is member of exactly one universe U ∈ Ǔ and is dented as e:U. A tuple of a relation,
called relation member, R(U1, ..., Un) is denoted as R〈e1, ..., en〉, with R ∈ Ř
and, for i = 1...n, ei ∈ Ui.

FORMAL SEMANTICS OF TRANSFORMERS 45

XML representation Logical representation

 Universe members Relation members

<ENTITY id="ent1" ent1: E

 name="Author"> Author: N name〈ent1, Author〉

 <ATTRIBUTE id="att1" att1: A defAt〈att1, ent1〉

 name="OID"/> OID: N name〈att1, OID〉

</ENTITY>

Table 3.1: XML representation (left) and logical representation (right) of
entity type author and its embedded attribute OID.

Example 3.2: The left hand side of TABLE 3.1 depicts the XML representation of entity type
ent1 and its embedded attribute att1. The middle part of TABLE 3.1 depicts the
corresponding universe members. Entity type ent1 and attribute att1 are
represented by universe members ent1 and att1, declaring to be members of
universe E and A, respectively. Universe members Author and OID, denoting to be
members of universe N, represent the names of entity type ent1 and attribute att1,
respectively. The relation members representing the connections between these
scheme elements are depicted in the right hand side of TABLE 3.1. Relation member
name<ent1,Author> represents the connection of entity type ent1 to its name.
Relation member name<att1,OID> is interpreted analogously. Relation member
defAt<att1,ent1> expresses that attribute att1 is defined at entity type ent1.

3.2 Formal semantics of transformers

Transformers are defined by "example" schemes and applied to schemes of a particular
modelling language L. The key idea for achieving the independency of modelling language
L is to use the logical representation of schemes for defining and applying transformers,
instead of using the internal representation of schemes in notation of L directly.

Consequently, a transformer's query template specifies which tuples of universe members
are selected from the logical representation of a scheme. Analogous, a transformer's
generative template specifies which universe members and relation members are to be
generated.

46 TRANSFORMERS BY EXAMPLE

In the following an excerpt of the formal specification of TBE defining the semantics of
transformers is presented. For each template it is started with explaining its formal
semantics. Then it is shown how the template's formal representation is derived from its
graphical one.

3.2.1 Query templates

A query template specifies a query that, when applied to the logical representation of a
scheme, selects tuples of universe members therefrom. The semantics of such queries is
specified by modellers via defining an generic "example" in notation of a certain modelling
language. Such "examples" are subsequently referred to as the native representation of
query templates, since this is the representation of query templates, they are initially
defined in. However, the formal semantics of query templates is specified by means of
variables and constraints. The representation of a query template in terms of variables and
constraints, will subsequently be referred to as its formal representation.

3.2.1.1 Formal semantics

A query template comprises variables and several sorts of constraints. Variables are
placeholders for members of particular universes. The particular universe a variable is
capable of holding members therefrom is the domain of this variable. Further, variables are
separated into result variables and non-result variables, which are both needed for
evaluating the query template. In difference to non-result variables, result variables
represent the query template's result.

DEFINITION 3.3: QUERY TEMPLATE. A query template is denoted as Q(Vr,Vnr,dom,C),
where Vr and Vnr are disjoint sets of result and non-result variables, respectively. The
total function dom:(Vr ∪ Vnr)→ Ǔ associates to each variable v ∈ V = (Vr ∪ Vnr) a
universe U ∈ Ǔ serving as domain for v. C is a set of constraints over variables in V.
The domain U ∈ Ǔ of a variable v ∈ V is denoted by v:U. [LS04]

TBE separates comparison constraints and membership constraints. A comparison
constraint restricts the resulting set of universe members by comparing their identifiers to
identifiers of other universe members or literal values. A membership constraint specifies
relation members that have to exist in a scheme in order to fulfill this constraint.
Comparison constraints and membership constraints are simple constraints. Complex
constraints can be built from other constraints using common logical connectives.

FORMAL SEMANTICS OF TRANSFORMERS 47

DEFINITION 3.4: CONSTRAINTS. Each constraint c ∈ C is either simple or complex. A
simple constraint has one of the following two forms:

1) a comparison constraint has the form v1 op (v2 | lit), where "|" is a BNF-
symbol denoting alternatives, v1, v2 ∈ V , op ∈ {=, !=}, and lit being a
literal value.

2) a membership constraint has the form 〈v1,...,vn〉 ∈ R, with R ∈ Ř and, for
i=1...n, vi ∈ V.

Complex constraints can be built from other constraints (simple or complex) using
the logical connectives (∧, ∨, ¬) in the usual manner.

The meaning of queries is defined in terms of domain relational calculus (DRC), which is,
for example, explained in [RG00]. The principle of evaluating a DRC expression is to
calculate the cartesian product of all result variables, which results in one tuple of result
variables for each possible combination. Those tuples of result variables that fulfill all
specified constraints are the result of the DRC expression. Thereby, non-result variables
are needed for deciding whether a tuple of result variables fulfills a particular constraint or
not.

DEFINITION 3.5: MEANING OF QUERIES. A query Q (Vr, Vnr, dom, C) is interpreted as a
DRC expression of the form { 〈vr1, ..., vrx〉 ∈ dom (vr1) x ... x dom (vrx)

| ∃ vnr1 ∈ dom (vnr1), ..., ∃ vnry ∈ dom (vnry) c1 ∧ ... ∧ cz }. Thereby,
vr1, ..., vrx and vnr1, ..., vnry represent the sets of result and non-result
variables Vr and Vnr, respectively, and c1 ... cz represent the set C of constraints.

3.2.1.2 Deriving the formal representation from the graphical one

SECTION 1.1.2 has illustrated the graphical notation of query templates by the query
template of transformer IndexPCForET. This illustration abstracted from variables
representing identifiers of scheme elements for reasons of conciseness. Such variables are
subsequently called ID-variables. TBE determines a certain graphical notation for ID-
variables, which is illustrated in EXAMPLE 3.3.

Example 3.3: FIGURE 3.1 depicts the precise graphical notation of the query template of
transformer IndexPCForET, which has already been introduced in SECTION 1.1.2.
Variables ENT and ATT represent names of entity types and names of attributes,

48 TRANSFORMERS BY EXAMPLE

respectively. The grey shaded variable ENT_ID and ATT_ID is an ID-variable
representing identifiers of entity types and identifiers of attributes, respectively. ID-
variable ENT_ID is a result variable because it is preceded by a tick. ID-variable
ATT_ID is a non-result variable. Therefore, the precise semantics of this query
template is to select pairs of entity types, i.e. identifiers of entity types, and names of
entity types. Thereby, only those pairs are selected, where the name is that of the
respective entity type. Further, only those entity types are selected which comprise at
least one attribute. This is expressed by non-result variables ATT and ATT_ID.

ATT
ENTENT_ID

ATT_ID

Figure 3.1: Precise graphical notation of transformer IndexPCForET´s query template.

A query template TQ in notation of a modelling language L, is a scheme S in notation of L
extended by TBE-directives. The formal representation of a query template TQ is derived
from its graphical representation by analyzing the logical representation of scheme S and
the respective TBE-directives. Subsequently, the logical representation of a scheme S is
regarded as the logical representation of a query template TQ.

logical representation formal representation

universe members variables

relation members membership constraints

im
plicit

- comparison constraints

- complex constraints

explicit

Table 3.2 Approach to the derivation of a query template's formal representation from its logical one.

TABLE 3.2 summarizes the approach to the derivation of a query template's formal
representation from its logical one, which is explained in the following. Universe members
are implicitly interpreted as variables and relation members are implicitly interpreted as
membership constraints. Yet, comparison constraints and complex constraints are
explicitly added to the formal representation of a query template as specified by
corresponding TBE-directives. EXAMPLE 3.4 illustrates the logical representation of
transformer IndexPCForET's query template. EXAMPLE 3.5 illustrates how the logical

FORMAL SEMANTICS OF TRANSFORMERS 49

representation of this query template is interpreted in order to derive the query template's
formal representation.

XML representation Logical representation

 Universe members Relation members

<ENTITY id="ENT_ID" ENT_ID: E

 name="ENT"> ENT: N name〈ENT_ID, ENT〉

 <ATTRIBUTE id="ATT_ID" ATT_ID: A defAt〈ATT_ID, ATT〉

 name="ATT"/> ATT: N name〈ATT_ID, ENT_ID〉

</ENTITY>

Table 3.3: Logical representation of transformer IndexPCForET´s query template.

Example 3.4: Reconsider that the graphical notation of transformer IndexPCForET's
query template is actually a WebML scheme and comprises therefore WebML
scheme elements. These WebML scheme elements are depicted in the left hand side
of TABLE 3.3, in terms of XML. The right hand side of TABLE 3.3 depicts the universe
members and relation members that logically represent these WebML scheme
elements. Thus, the right hand side of TABLE 3.3 shows the logical representation of
transformer IndexPCForET's query template.

Variables Membership constraints

result non-result
ENT_ID: E ATT_ID: A 〈ENT_ID, ENT〉 ∈ name
ENT: N ATT: N 〈ATT_ID, ENT_ID〉 ∈ defAt
 〈ATT_ID, ATT〉 ∈ name

Table 3.4: Formal representation of transformer IndexPCForET´s query template.

Example 3.5: TABLE 3.4 depicts the formal representation of transformer IndexPCForET's
query template, derived from its logical representation. Considering that variables
are derived from universe members the derivation of variable ENT_ID, ENT, ATT_ID
and ATT is self-explanatory. The separation of these variables into result variables
and non-result variables is achieved by analyzing the ticks, defined in the query

50 TRANSFORMERS BY EXAMPLE

template's graphical notation. For example, variable ENT_ID, as depicted in FIGURE

3.1, is preceded by a tick and therefore a result variable. Variable ATT_ID is not
preceded by a tick and therefore a non-result variable.

3.2.1.3 Evaluation of query templates

This section illustrates how a query in terms of DRC, derived from the formal
representation of a query template, is evaluated. EXAMPLE 3.6 illustrates the DRC
expression derived from transformer IndexPCForET's query template. EXAMPLE 3.7
illustrates the evaluation of this DRC expression within the CMA content scheme.

{

 〈ENT_ID, ENT〉 ∈ E x N |

 〈ENT_ID, ENT〉 ∈ name ∧

 〈ENT_ID, ATT_ID〉 ∈ defAt
}

Figure 3.2: Transformer IndexPCForET´s query template in terms of DRC.

Example 3.6: FIGURE 3.2 depicts transformer IndexPCForET´s query template by means
of domain relational calculus. This DRC expression is interpreted as follows. The
first line expresses that all tuples of result variables 〈ENT, ENT〉 of domains E and N
are selected, i.e. all possible combinations of entity types and names. The
membership constraint depicted in the second line states that only those pairs of
entity types and names are selected where the name is that of the respective entity
type. The membership constraint depicted in the third line restricts the pairs of entity
types and names to those, where the respective entity type defines at least one
attribute.

FORMAL SEMANTICS OF TRANSFORMERS 51

Cartesian product Constraints Result

 c1 c2

〈ent1, Conf〉 - -
〈ent1, Author〉
〈ent1, Page〉 - -

〈ent2, Conf〉 - -
〈ent2, Author〉 - -
〈ent2, Page〉
〈ent3, Conf〉
〈ent3, Author〉 - -
〈ent3, Page〉 - -

Table 3.5: Evaluation of transformer IndexPCForET´s query template
within the CMA's content scheme.

Example 3.7: TABLE 3.5 illustrates the evaluation of transformer IndexPCForET´s query
template to the CMA scheme, i.e. to the logical representation of the CMA scheme.
Note, that entity types User, Site View and Group are neglected within this
example, as they are not required for the purpose of illustration. The column labelled
"Cartesian product" lists all combinations of entity types and names defined in the
CMA scheme. Reconsider that the CMA scheme defines entity types Author, Paper and
Conf, which are identified by ent1, ent2 and ent3, respectively. Therefore the
logical representation of the CMA scheme, which is illustrated in TABLE 3.1, comprises
universe members ent1, ent2 and ent3 of domain E representing entity types and
universe members Author, Paper and Conf of domain N representing the names of
entity types. The column labelled "Constraints" shows whether or not a particular
tuple of an entity type and a name fulfills constraints 〈ENT_ID, ENT〉 ∈ name (c1)
and/or 〈ENT_ID, ATT〉 ∈ defAt (c2). Thereby, the tick denotes that the particular
tuple holds the constraint whereas the hyphon denotes the opposite. Tuple 〈ent1,

Author〉, for example, fulfills constraint c1 because Author is the name of entity type
ent1. This constraint is, for example, not fulfilled by tuple 〈ent1, Conf〉. The
evaluation of the remaining tuples is interpreted analogously. Membership
constraint c2 is fulfilled from every tuple, as every entity type defines at least one
attribute. The result of the evaluation of transformer IndexPCForET´s query

52 TRANSFORMERS BY EXAMPLE

template is depicted in the column labelled "Result". Thereby, the result of the
evaluation comprises tuples 〈ent1, Author〉, 〈ent2, Page〉 and 〈ent3, Conf〉.

3.2.2 Generative templates

A generative template specifies the generation of new scheme elements and new
connections between scheme elements. SECTION 3.2.2.1 describes the formal semantics of
generative templates. SECTION 3.2.2.2 explains, how the formal representation of a
generative template is derived from its graphical one.

3.2.2.1 Formal semantics

A generative template comprises parameter variables, new-element variables and relation
constructors. Parameter variables represent existing scheme elements whereas new-
element variables denote scheme elements to be generated. Relation constructors specify
relations between scheme elements to be generated.

DEFINITION 3.6: GENERATIVE TEMPLATE. A generative template G(P,Vg,Rg) is given by
a set P of parameter variables, a set Vg of new element variables, and a set Rg of
constructors for relations between elements of P and Vg. [LS04]

Parameter variables represent scheme elements that are already defined within the scheme
when the generative template is instantiated. Each parameter variable is capable of
representing scheme elements of exactly one sort.

DEFINITION 3.7: PARAMETER VARIABLE. Each parameter variable p∈P represents a given
scheme element of a universe U∈Ǔ. This is denoted as p:U.

Relation constructors specify that a connection of a particular sort, e.g. defAt(A × E), is
generated between scheme elements. Thereby the connected scheme elements have to be
represented by either parameter variables or new element variables.

DEFINITION 3.8: RELATION CONSTRUCTOR. Each relation constructor rg ∈ Rg specifies
the creation of a new relation between scheme elements. It has the form R〈x1, ...

,xn〉 with R∈Ř and, for i = 1 ... n, xi ∈ (P ∪ Vg).

FORMAL SEMANTICS OF TRANSFORMERS 53

When a generative template is instantiated, for each new element variable the represented
scheme element is generated by means of generating a corresponding universe member.
Generating a universe member actually means to compute a new identifier out of the
respective domain. For this purpose the formal specification of TBE determines three types
of construction expressions specifying the computation of new identifiers. One type of
construction expressions, called new construction expression, specifies the generation of a
new identifier out of a particular universe. Constant construction expressions specify the
identifier to be generated by means of assigning a constant literal value. Function
construction expressions assign the result of a function call. One such function is for
example concat(N x N), which assigns the result of string concatenation of the names
passed as arguments.

DEFINITION 3.9: NEW-ELEMENT VARIABLE & CONSTRUCTION EXPRESSION. Each new
element variable vg∈Vg represents a scheme element of a universe U∈Ǔ to be
generated and has, for that purpose, a construction expression exp attached. This is
denoted as vg:U = exp. A construction expression has one of the following forms:

1) "new U" assigns a new ID out of universe U,

2) "lit" assigns a literal value, and

3) "func(x1, ... ,xn)" assigns the result of a function call with, for i = 1...
n, xi ∈ (P ∪ Vg ∪ lit).

DEFINITION 3.10: INSTANTIATION OF GENERATIVE TEMPLATES. A generative template G
is instantiated within a scheme S by binding each parameter variable of G to an
equally sorted scheme element of S. Such an instantiation is denoted as G[S,B],
whereby B is a set of parameter bindings. A binding of a parameter variable p to a
scheme element e is denoted as "p=e". When an instantiation G[S,B] is processed,
new scheme elements and new relations are generated within S as follows:

1) for each new element variable vg : U, its attached construction expression is
evaluated and the result becomes a member of universe U

2) for each relation constructor R〈x1, ... ,xn〉, a relation of sort R is established
between the scheme elements represented by variables x1, ..., xn.

54 TRANSFORMERS BY EXAMPLE

3.2.2.2 Deriving the formal representation from the graphical one

In SECTION 1.1.2 the graphical notation of generative templates has been illustrated by the
generative template of transformer IndexPCForET. Again, this illustration abstracted from
ID-variables. Therefore, FIGURE 3.3 illustrates the precise graphical notation of transformer
IndexPCForET's generative template.

Example 3.8: FIGURE 3.3 depicts the precise graphical notation of transformer
IndexPCForET's generative template. New-element variable PC represents the name
of a page class, whereas the page class itself is represented by ID-variable PC_ID.
Since ID-variable PC_ID is a new-element variable construction expression PC_ID =
new(P) is attached. ID-variable IU_ID is structured analogously. Variable ENT
representing the name of the content source of index unit IU is a parameter variable.
Consequently, the corresponding ID-variable is a parameter variable, too.

PC = concat(ENT, "Page")
IU = concat(ENT, "List")

 PC

IU

ENT

PC_ID = new(P)

IU_ID = new(IU)

ENT_ID

Figure 3.3: Precise graphical notation of transformer IndexPCForET's generative template.

A generative template TG in notation of a modelling language L, is a scheme S in notation
of L extended by TBE-directives. The formal representation of a generative template TG is
derived from its graphical representation by analyzing the logical representation of scheme
S and the respective TBE-directives. Subsequently, the logical representation of a scheme S
is regarded as the logical representation of a generative template TG.

FORMAL SEMANTICS OF TRANSFORMERS 55

logical representation formal representation

universe member variables

relation member relation constructor

- new construction expression

im
plicit

- function construction expression

- constant construction expression

explicit

Table 3.6 Approach to the derivation of a generative template's logical representation from its formal one.

TABLE 3.2 summarizes the approach to the derivation of a generative template's formal
representation from its logical one, which is explained in the following. Universe members
are implicitly interpreted as variables and relation members are implicitly interpreted as
relation constructors. Yet, construction expressions are explicitly added to the formal
representation of a generative template as specified by corresponding TBE-directives.
Thereby, if no construction expression is specified for a particular new-element variable, a
new construction expression is attached to the respective new-element variable by default.
EXAMPLE 3.9 illustrates the logical representation of transformer IndexPCForET's
generative template. EXAMPLE 3.10 illustrates how the logical representation of this
generative template is interpreted in order to achieve the generative template's formal
representation.

XML representation Logical representation

 Universe members Relation members

<ENTITY id="ENT_ID" ENT_ID: E
 name="ENT"/> ENT: N

<PAGE id="PC_ID" PC_ID: P

 name="PC"> PC: N name〈PC_ID, PC〉

 <INDEXUNIT id="IU_ID" IU_ID: I defAt〈IU_ID, PC_ID〉

 name="IU" IU: N name〈IU_ID, IU〉

 entity="ENT_ID"/> source〈IU_ID, ENT_ID〉

</PAGE>

Table 3.7: Logical representation of transformer IndexPCForET´s generative template.

56 TRANSFORMERS BY EXAMPLE

EXAMPLE 3.9: The graphical notation of transformer IndexPCForET's generative
template, which is depicted in FIGURE 3.3, is basically a WebML scheme and
comprises therefore WebML scheme elements. The left part of TABLE 3.7 depicts
these WebML scheme elements in terms of XML. The right right part of TABLE 3.7
depicts the universe members and relation members that logically represent these
WebML scheme elements. Thus, the right hand side of TABLE 3.7 depicts the logical
representation of transformer IndexPCForET's generative template.

Variables Relation constructors

parameter variables new-element variables
ENT_ID: E PC_ID = new (P) name〈PC_ID, PC〉

ENT: N PC = concat(ENT, 'Page') name〈IU_ID, IU〉

 IU_ID = new (IU) defAt〈IU_ID, PC_ID〉

 IU = concat(ENT, 'List') source〈ENT_ID, IU_ID〉

Table 3.8: Formal representation of transformer "IndexPCForET´s" generative template.

EXAMPLE 3.10: TABLE 3.8 depicts the formal representation of transformer
IndexPCForET´s generative template derived from its logical representation
depicted in TABLE 3.7. Thereby parameter variable ENT_ID is derived from universe
member ENT_ID. Analogous, parameter variable ENT is derived from universe
member ENT. New-element variables PC and IU are derived from universe members
PC and IU, respectively. New-element variables PC_ID and IU_ID are analogously
derived from the corresponding universe members. The construction expressions are
attached to the new-element variables as specified by corresponding TBE-directives
that are depicted in FIGURE 3.3. The derivation of relation constructors depicted in
the right part of TABLE 3.8 from the relation members depicted in TABLE 3.7 is
straightforward and not further explained.

3.2.2.3 Instantiation of generative templates

This section illustrates the instantiation of generative templates by the example of
transformer IndexPCForET´s generative template.

FORMAL SEMANTICS OF TRANSFORMERS 57

title
abstract

Paper

 universe members relation members
ent1: P
att1: A
att2: A
Paper: N
title: N
abstract: N

name〈ent1, Paper〉

name〈att1, title〉

name〈att2, abstract〉

defAt〈att1, ent1〉

defAt〈att2, ent1〉

Figure 3.4: Sample input for transformer IndexPCForET´s generative template.

Example 3.11: This example illustrates the instantiation of transformer IndexPCForET´s
generative template to a scheme defining one entity type called Paper. The left part
of FIGURE 3.4 depicts the graphical representation of this scheme. The right part of
FIGURE 3.4 depicts its logical representation. The representations of this scheme are
not further described, as they are subsets of the representations of the CMA scheme
already explained. Transformer IndexPCForET's generative template (short: G)
takes two parameters, i.e. an entity type and a name represented by parameter
variables ENT_ID and ENT, respectively. Therefore an instantiation of this generative
template within the scheme (short: S) depicted in FIGURE 3.4 would look like G[S,
{ENT_ID = ent1, ENT = Paper}]. This instantiation specifies, that the generative
template G is instantiated within S by binding parameter variable ENT_ID to entity
type ent1 and parameter variable ENT to the name Paper.

PaperPage

PaperIndex

Paper

 universe members relation members
page1: P
inu1: I
PaperPage: N
PaperIndex: N

name〈page1, PaperPage〉

name〈inu1, PaperIndex〉

defAt〈inu1, page1〉

source〈inu1, ent1〉

Figure 3.5: Sample output of transformer IndexPCForET´s generative template.

EXAMPLE 3.12: FIGURE 3.5 depicts the output of the generative template instantiation
illustrated in EXAMPLE 3.11. This output is depicted in graphical representation (left)
and logical representation (right) in FIGURE 3.5. Universe member page1 is
generated according to new element variable PC_ID. and therefore representing a

58 TRANSFORMERS BY EXAMPLE

page class. Index unit inu1 is generated analogously. Universe member PaperPage,
representing the name of page class page1, is generated according to new-element
variable PC, which has the construction expression concat(ENT,'Page') attached.
Thereby, the identifier of universe member PaperPage is computed by concatenating
literal "Page" to the name of the universe member bounded to parameter variable
ENT, which is Paper. The name PaperIndex is generated analogously. Relation
constructor name〈PC,PCN〉 determines the generation of relation member
name〈page1,PaperPage〉, since new element variable PC_ID has the value page1
and new element variable PC has value PaperPage. The generation of the remaining
relation members works analogously.

3.3 Transformers and their application

In the formal specification of TBE a transformer is a combination of a query template and
a generative template. The parameters needed as input for the generative template are
provided by the result variables of the query template.

DEFINITION 3.11: TRANSFORMER DEFINITION. A transformer is a proper combination of a
query template Q and a generative template G and is denoted as T(Q, G). A
combination of Q and G is proper, if
1) for each result variable of Q there exists an equally named and equally sorted

parameter variable of G, and
2) all parameter variables of G are provided by Q.

Q G

IndexPCForET

ATT

ENT PC

IU

ENT

PC = concat(ENT, "Page")
IU = concat(ENT, "Index")

Figure 3.6: Transformer IndexPCForET.

TRANSFORMERS AND THEIR APPLICATION 59

Example 3.13: Transformer IndexPCForET is depicted in FIGURE 3.6. It properly
combines the query template and the generative template, as result variables ENT_ID
and ENT of the query template properly match parameter variables ENT_ID and ENT
of the generative template, respectively. The semantics of transformer IndexPCForET
should be self-explanatory since the corresponding templates have been described in
the previous sections.

When a transformer is applied, its generative template is iteratively instantiated for each
tuple of result variables selected by the query template. The application of a transformer
within a scheme can be parameterized by application-specific constraints and application-
specific construction expressions. The meaning of application-specific constraints and
application-specific construction expressions is equal to that of constraints and
constructions expressions, respectively, that are specified at definition time of the
transformer. The major difference between application-specific constraints and
"conventional" constraints is, that application-specific constraints take only effect in one
particular transformer application, whereas "conventional" constraints take effect in every
application of the transformer. This is the same for application-specific construction
expressions. Application-specific constraints further restrain variables of the query
template while application-specific construction expressions override construction
expressions of the generative template.

DEFINITION 3.12: TRANSFORMER APPLICATION. An application of a transformer T(Q, G)
to a scheme S is denoted as T[S, ASC, ASE]. Thereby ASC is a set of application
specific constraints and ASE is a set of application specific construction expressions.
Both sets may be empty.

Transformer Scheme ASC ASE

IndexPCForET S { ENT != "Conf",
 ENT != "User",
 ENT != "SiteView",
 ENT != "Group" }

{}

Table 3.9: Exemplary application of transformer IndexPCForET.

Example 3.14: Reconsider the CMA content scheme depicted in FIGURE 2.2 where entity
types Author, Paper, Conf, User, SiteView and Group are defined. With one

60 TRANSFORMERS BY EXAMPLE

individualized application of transformer IndexPCForET to the CMA content scheme,
page classes AuthorPage and PaperPage, depicted in FIGURE 2.3, are generated, as
desired. The corresponding transformer application is depicted in TABLE 3.9.
Transformer IndexPCForET is applied to scheme S, which is the CMA content scheme.
The application-specific constraints depicted in the third column of TABLE 3.9
achieves that page classes are not generated for entity types Con, User, SiteView
and Group, which is clearly desired. The set of application-specific construction
expressions is empty in this example.

4 Defining and applying transformers within
WebRatio

Contents
4.1 Textual representation of TBE-directives 62

4.1.1 General approach for annotating TBE-directives 62
4.1.2 TBE-directives tag result variable and tag parameter variable 64
4.1.3 TBE-directive constraint 65
4.1.4 TBE-directive construction expression 66

4.2 Customized-directives 66

4.2.1 Customized-directive alias 67
4.2.2 Customized-directive anchor 68

4.3 Defining transformer IndexPCForET 69

4.3.1 Defining the query template 69
4.3.2 Defining the generative template 72
4.3.3 Compiling the transformer definition 74

4.4 Applying transformer IndexPCForET 75

4.4.1 Defining the input scheme 75
4.4.2 Transforming the input scheme 76
4.4.3 Viewing the output scheme 76

This chapter demonstrates how to define and apply transformers within WebRatio. Since
WebRatio is used off-the-shelf TBE-directives have to be annotated in textual form to
schemes and templates. SECTION 4.1 specifies the textual representation of TBE-directives
and discusses a general approach for annotating such directives.

62 DEFINING AND APPLYING TRANSFORMERS WITHIN WEBRATIO

SECTION 4.2 introduces directives that are necessary for defining transformers within
WebRatio in addition to TBE-directives. These directives are called customized-directives
since they are custom for defining transformers within WebRatio. When the TBE-engine
compiles a transformer definition, customized-directives are translated into TBE
constructs. Therefore, customized-directives do not extend the semantics of TBE.

SECTION 4.3 presents a use case for defining a transformer within WebRatio by the
example of transformer IndexPCForET. SECTION 4.4 shows how this transformer is
applied to the CMA scheme, again within WebRatio.

4.1 Textual representation of TBE-directives

SECTION 4.1.1 presents a general approach for annotating TBE-directives in textual
representation to WebML schemes within WebRatio. In TBE symbols " " and " " are
used for separating result variables from non-result variables and for separating parameter
variables from new-element variables, respectively. These TBE-directives are subsequently
called tag result variable and tag parameter variable, respectively. The syntax
of their textual representation is specified in SECTION 4.1.2. The syntax of TBE-directives
constraint and construction expression in textual representation is specified in
SECTION 4.1.3 and SECTION 4.1.4, respectively.

4.1.1 General approach for annotating TBE-directives

The general syntax of a TBE-directive in textual representation is specified by the EBNF
[Wir77] expression depicted in FIGURE 4.1. The textual representation of a directive starts
with the determination of its name, like, for example, expression for denoting
construction expressions. The name of a TBE-directive is merely needed for separating the
different TBE-directives when they are processed within the TBE-engine. After an
obligatory colon the actual directive in textual form is expected, like, for example, PC =
concat(ENT, 'Page'), which is a construction expression. An obligatory semicolon
finishes each directive.

For annotating directives to schemes or templates, WebML scheme elements of sort
property (property scheme elements) are used. Property scheme elements may be defined
at every scheme element and are used for annotating arbitrary text to WebML schemes. In
order to separate properties of scheme elements, like, for example, names of entity types
from scheme elements of sort property, the latter ares subsequently referred to as property

TEXTUAL REPRESENTATION OF TBE-DIRECTIVES 63

scheme elements. Thus, if a certain directive is to be specified, a new property scheme
element has to be added to the scheme or template.

directive := name ":" text_rep ";".
name := string.
text_rep := string.
string := ('a' ... 'z' | 'A' ... 'Z' | ' ' | '-' | '$' | '_')
 {'a' ... 'z' | 'A' ... 'Z' | ' ' | '-' | '$' | '_'}.

Figure 4.1: General syntax of directives in textual representation.

For entering the name and the actual text-representation of a TBE-directive the following
policy must be adhered to. The name of a directive has to be entered as the value of the
property scheme element together with the obligatory colon. The textual representation of
a directive together with the obligatory semicolon has to be entered as the name of the
property scheme element. This policy for entering the name and the textual representation
of a directive achieves a clear visualization of the respective textual representation within
the project tree of WebRatio, as illustrated in FIGURE 4.2.

Figure 4.2: Annotating directives to WebML schemes.

Example 4.1: The left hand side of FIGURE 4.2 depicts the annotation of construction
expression PC = CONCAT(ENT, 'PAGE'); to the generative template of transformer
INDEXPCFORET, by means of a property scheme element. The text-representation of
this construction expression is entered as the name of the property scheme element.
Therefore it is achieved that the text-representation of the construction expression is
visualized in the project tree of WebRatio, as depicted in the right hand side of
FIGURE 4.2.

64 DEFINING AND APPLYING TRANSFORMERS WITHIN WEBRATIO

4.1.2 TBE-directives tag result variable and tag parameter variable

The syntax of the textual representations of TBE-directives tag result variable and
tag parameter variable is specified by the EBNF expression depicted in FIGURE 4.3.
The textual representation of TBE-directive tag result variable starts with the
determination of the name of the TBE-directive, i.e. resultVariable. After the
obligatory colon the name of the variable to be tagged as result variable is expected. The
textual representation of TBE-directive tag result variable finishes with the
obligatory semicolon. The syntax of TBE-directive tag parameter variable is
structured analogously.

result_variable := "resultVariable:" variable ";".
parameter_variable := "parameterVariable:" variable ";".

variable := string.

Figure 4.3: Syntax of TBE-directives result variable and parameter variable in textual representation.

When defining a template modellers frequently tag variables. In order to reduce efforts for
annotating TBE-directives tag result variable and tag parameter variable in
textual form a shortcut notation is introduced for specifying these TBE-directives. This
shortcut notation is a dollars sign that preceds the name of the variable to be tagged. Thus,
if the name of a variable defined within a query template is preceded by a dollars sign, the
respective variable is tagged as result variable. Analogous, if the name of a variable
defined within a generative template is preceded by a dollars sign, the respective variable
is tagged as parameter variable. All variables that are not tagged are consequently non-
result variables or new-element variables, depending on whether they are defined in a
query template or a generative template, respectively.

ENT

Figure 4.4: Graphical representation (left) and textual representation (right) of
TBE-directive tag result variable.

Example 4.2: The left hand side of FIGURE 4.4 depicts parts of transformer
IndexPCForET´s query template with graphically defined TBE-directives. Variable

TEXTUAL REPRESENTATION OF TBE-DIRECTIVES 65

ENT is tagged as result variable since its name is preceded by symbol " ". The right
hand side of FIGURE 4.4 depicts again variable ENT. Yet, symbol " " is now
represented in textual form by means of the dollars sign preceding the variable's
name.

4.1.3 TBE-directive constraint

Modellers specify constraints at definition time of transformers and also at their application
time for individualizing the application. TBE distinguishes three types of constraints, i.e.
comparison constraints, complex constraints and membership constraints. Since
membership constraints are implicitly given by the relation members of a query template in
logical representation, only comparison constraints and complex constraints are explicitly
specified by modellers. Therefore, the syntax of TBE-directive constraint in textual
representation, which is depicted in FIGURE 4.5, specifies the syntax of a textual
representation of comparison constraints and complex constraints.

constraint := "constraint:" (comparison | complex) ";".
comparison := variable comp_type (literal | variable).
complex := log_conn "{" (comparison | complex)+ "}".
variable := string.
comp_type := ["!"] "=".
log_conn := "or" | "and".
literal := "'" string "'".

Figure 4.5: Syntax of TBE-directive constraint in textual representation.

The textual representation of a comparison constraint starts with the name of the variable
to be constrained followed by the type of comparison. The terminal symbol "=" denotes a
comparison of type equals. Preceding this terminal symbol by terminal symbol "!"
denotes a comparison of type not equals. Afterwards, the name of the variable or the
literal value used for comparison is expected. For distinguishing literal values from
variable names, the former have to be entered within quotes.

The textual representation of a complex constraint starts with the logical connective to be
used. After the determination of the logical connective, other complex constraints or
comparison constraints follows in curly brackets.

66 DEFINING AND APPLYING TRANSFORMERS WITHIN WEBRATIO

4.1.4 TBE-directive construction expression

TBE distinguishes three types of construction expressions, i.e. constant construction
expressions, new construction expressions and function construction expressions. Each
construction expression can be specified at definition time and at application time of a
transformer. The syntax of TBE-directive construction expression in textual
representation is depicted in FIGURE 4.6.

expression := "expression:" variable "=" (constant|function|new)";".
constant := literal.
new := "new" universe.
function := "(" argument {"," argument} ")".
argument := (variable | literal).
literal := "'" string "'".
variable := string.
universe := string.

Figure 4.6: Syntax of TBE-directive construction expression in textual representation.

The textual representation of a construction expression starts with the determination of its
name. Next, the name of the new-element variable to which the construction expression is
to be attached has to be specified. After an equal symbol the actual construction expression
is expected.

For specifying a constant construction expression a literal value is expected. For specifying
a new construction expression character sequence "new" followed by the name of the
universe for which a new member is to be generated has to be specified. For specifying a
function construction expression after the name of the function that is to be called, a
sequence of arguments separated by commas is to be specified within paranthesis.
Thereby, an argument is either the name of a variable or a literal value.

4.2 Customized-directives

This section introduces customized-directives, i.e. directives that are specifically required
for defining transformers within WebRatio. SECTION 4.2.1 discusses customized-directive
alias, which is used for giving variables individual names. SECTION 4.2.2 discusses
customized-directive anchor, which enables the automatic arrangement of newly
generated scheme elements.

CUSTOMIZED-DIRECTIVES 67

Customized-directives are annotated to WebML schemes in the same manner as TBE-
directives in textual representation. Thus, the general syntax of customized-directives is the
same as the general syntax of TBE-directives, which has been specified in SECTION 4.1.1.

4.2.1 Customized-directive alias

For giving variables individual names, it is required to edit the name of the respective
scheme element. Since WebRatio prevents editing some kinds of properties of scheme
elements, like, for example, cardinalities of relationship-roles, a generic way of specifying
aliases for non-editable properties is required. Thereby, the alias can then be used for
referencing to the variable, like, for example, from within constraints or construction
expressions. For the purpose of specifying aliases customized-directive alias is
introduced. The syntax of the textual representation of customized-directive alias is
depicted in FIGURE 4.7.

alias := "alias:" prop_name "-" alias_name ";".
alias_name := string.
propy_name := string.

Figure 4.7: Syntax of customized-directive alias.

The syntax of customized-directive alias is simple. After the name of the property for
which an alias is to be defined an obligatory hyphen, followed by the actual alias is
expected.

Figure 4.8: Specifying customized-directive alias.

Example 4.3: FIGURE 4.8 illustrates customized-directive alias by the specification of
alias ENT_ID for the Identifier property of entity type ENT. The left part of
FIGURE 4.8 depicts this directive by means of a property scheme element. The right
part of FIGURE 4.8 shows that the respective alias is specified for the Identifier

68 DEFINING AND APPLYING TRANSFORMERS WITHIN WEBRATIO

property of entity type ENT, since the corresponding property scheme element is
appended to this entity type.

4.2.2 Customized-directive anchor

WebRatio administrates the arrangement of scheme elements by storing the x-coordinate
and y-coordinate for each scheme element. When modellers define schemes in WebRatio
the positions of scheme elements are implicitly specified by their graphical arrangement.

When a generative template is instantiated within a scheme, new scheme elements are
generated. Newly generated scheme elements clearly require certain x-coordinates and y-
coordinates in order to be arranged. For generating coordinates of new scheme elements
the following alternatives are possible:

• Using default-values for coordinates: The first alternative is to use default-values
for the coordinates of new scheme elements, like, for example coordinates 0/0.
This alternative has the major drawback that new scheme elements are huddled
together, which is clearly not desired.

• Specifying the generation of coordinates explicitly: The second alternative is that
modellers explicitly specify the generation of coordinates of new scheme elements
by means of new-element variables representing the coordinates together with
appropriate construction expressions. This means that for each coordinate of a
new scheme element, a respective new element variable has to be specified by the
modeller and additionally a construction expression, which specifies the
computation of the value of the respective coordinate. This alternative causes
additional efforts for modellers and is therefore not desired.

• Generating coordinates implicitly: The third alternative is that new scheme
elements are automatically arranged relative to a certain reference point, i.e.
relative to an existing scheme element. This reference point is subsequently called
anchor. This means that each time a scheme element is generated, its coordinates
are generated implicitly, i.e. it is arranged in relation to the anchor. The relative
arrangement from new scheme elements to the anchor is derived from the
arrangement of scheme elements in the generative template. Therefore, one
scheme element of the generative template is marked as anchor. The relative
arrangement of new-element variables to the anchor determines also the relative

DEFINING TRANSFORMER INDEXPCFORET 69

arrangement of new scheme elements at the time the transformer is applied. The
scheme element that is marked as anchor, has to represent a parameter variable.
Otherwise the anchor scheme element is not available in the scheme, the
respective generative template is instantiated within.

Since the most convenient alternative for generating coordinates for modellers is to specify
an anchor, customized directive anchor is introduced.

anchor := "anchor:" variable ";".
variable := string.

Figure 4.9: Syntax of customized-directive anchor.

The syntax of this customized-directive, which is depicted in FIGURE 4.9, is fairly simple
and therefore not further explained.

4.3 Defining transformer IndexPCForET

This section demonstrates how to define transformer IndexPCForET within WebRatio. For
defining the templates of this transformer the modeller has to create one WebRatio project,
i.e. WebML scheme, per template. For defining variables within a template the modeller
has to define scheme elements, according to the respective variable. For example, in order
to define a new-element variable PC _ID specifying the generation of a new page class, the
modeller has to define a page class within WebRatio.

The definition of transformer IndexPCForET´s query template and generative template is
demonstrated in SECTION 4.3.1 and SECTION 4.3.2, respectively. In SECTION 4.3.3 it is
described how to compile transformer IndexPCForET with the TBE-engine.

4.3.1 Defining the query template

For defining the query template of transformer IndexPCForET variables ENT, ENT_ID
and ATT_ID and corresponding directives need to be defined. The semantics of these
variables has been described in detail in the CHAPTER 3. Subsequently, the tasks necessary
for defining these variables are demonstrated step by step.

70 DEFINING AND APPLYING TRANSFORMERS WITHIN WEBRATIO

Step 1: Open a new WebRatio project: Defining a template starts with opening a new
WebRatio project. FIGURE 4.10 shows the work area of a new WebRatio project,
containing the constituent entity types User, Group and SiteView. Note, that constituent
scheme elements do not affect the semantics of a template since they are neglected by the
TBE-engine when the transformer definition is compiled.

Figure 4.10: WorkArea of WebRatio when a new project is opened.

Step 2: Define result variables ENT and ENT_ID: In order to define result-variables
ENT_ID and ENT add a new entity type. The properties of this entity type, i.e. entity type
ent1, are depicted in the left part of FIGURE 4.11. The entity type ent1, as depicted in the
right part of FIGURE 4.11, defines the constituent attribute OID. Again, the TBE-engine
neglects this constituent scheme element when it compiles a transformer definition such
that attribute OID does not effect the semantics of transformer IndexPCForET´s query
template.

Figure 4.11: A newly added entity type (right) and its properties (left).

DEFINING TRANSFORMER INDEXPCFORET 71

In order to tag variable ENT, result-variable enter $ENT at the Name property of entity type
ent1. FIGURE 4.12 depicts variable ENT in the right hand side and the properties of this
variable in the left hand side.

Figure 4.12: Result variable ENT (right) and its properties (left).

The customized-directive alias: Identifier - $ENT_ID; has to be specified in order to
define result variable ENT_ID. This customized-directive achieves that the Identifier
property of entity type ent1 is set to "ENT_ID" when the TBE-engine compiles the query
template, which finally results in generating variable ENT_ID. Further, since the name of
variable ENT_ID is preceded by a dollars sign, it is tagged as result variable. The left part
of FIGURE 4.13. depicts this alias-directive by means of a property scheme element. The
right part of FIGURE 4.13. depicts the same customized-directive visualized within the
project tree of WebRatio.

Figure 4.13: Definition of directive alias: Identifier - $ENT_ID;.

Step 3: Define non-result variable ATT_ID: In order to define non-result variable ATT_ID
add a new attribute to entity type ent1 and set the Name property to an empty string.
Afterwards define the alias ATT_ID by specifying directive alias: Identifier -

ATT_ID; at entity type ent1. The outcome of these activities is shown in FIGURE 4.14.

72 DEFINING AND APPLYING TRANSFORMERS WITHIN WEBRATIO

Figure 4.14: Definition of directive alias: Identifier - ATT_ID;.

Step 4: Store the query template: In order to pass the query template to the TBE-engine for
compiling transformer IndexPCForET, store the query template, i.e. the WebRatio project.
Use IndexPCForET-QT as the name for the project.

4.3.2 Defining the generative template

For defining the generative template of transformer IndexPCForET variables PC, PC_ID,
IU and IU_ID and corresponding directives need to be defined. Again, the semantics of
these variables has been described in detail in the CHAPTER 3. Subsequently, the tasks
necessary for defining these variables are demonstrated step by step.

Figure 4.15 New-element variable SV_ID and corresponding directives.

Step 5: Define parameter variables ENT_ID and ENT: In order to define the generative
template of transformer IndexPCForET repeat step 1 and step 2. By repeating these
steps one has opened a new WebRatio project and additionally specified the parameter
variables ENT_ID, ENT. The project tree after these initial steps looks like the one depicted
in the right part of FIGURE 4.14.

DEFINING TRANSFORMER INDEXPCFORET 73

Figure 4.16: New-element variables PC and PC_ID and corresponding directives.

Step 6: Define parameter variables PC and PC_ID: For defining these variables it is
required to add a new page class since variable PC_ID represents page classes. As
discussed in CHAPTER 2, WebML determines that each page class has to be defined within
a site view. Therefore, add a new site view and the directives alias: Identifier –
SV_ID; and SV_ID = 'sv1'; to this site view, as depicted in FIGURE 4.15. When the
generative template of transformer IndexPCForET is instantiated a new site view with
identifier sv1 will be generated and new page classes will be added to this site view.

Figure 4.17 New-element variables IU and IU_ID and corresponding directives.

In order to define new-element variables PC and PC_ID, add a new page class to the
generative template. This page class, which has identifier page1, is shown in the right part
of FIGURE 4.16. Additionally, a directive specifying the alias for the Identifier property

74 DEFINING AND APPLYING TRANSFORMERS WITHIN WEBRATIO

of page class page1 and a directive, specifying the construction expression for new-
element variable PC, is required. Therefore, specify the directives alias: Identifier –
PC_ID; and expression: PC = concat(ENT, 'Page');. The left part of FIGURE 4.16
depicts these directives and variables.

Step 7: Define new-element variables IU and IU_ID: In order to define new-element
variables IU and IU_ID add a new index unit to page class page1 and set the content
source of this index unit to "$ENT". The outcome of this activity is the index unit defined at
page class page1 as depicted in the right part of FIGURE 4.17. Analogous, to the definition
of new-element variable PC and PC_ID, directives need to be additionally specified.
Thereby, add directive alias: Identifier – IU_ID; to new element variable IU.
Finally, add directive expression: IU = concat(ENT, 'List'); to new-element
variable IU.

Figure 4.18: Customized-directive anchor.

Step 8: Define customized-directive anchor: In SECTION 4.2.2 it has been argued that it is
required to specify the arrangement of newly generated scheme elements by means of
customized-directive anchor. Therefore, specify directive anchor: ENT_ID; at any
scheme element of the generative template. This directive achieves, that when transformer
IndexPCForET is applied all newly generated scheme elements will be arranged relative to
the scheme element, represented by parameter variable ENT_ID. FIGURE 4.18 depicts this
directive.

Step 9: Save the generative template: Analogous to the query template also the generative
template needs to be stored. Use IndexPCForET-GT as the name for the WebRatio project.

4.3.3 Compiling the transformer definition

The query template and the generative template of transformer IndexPCForET need to be
compiled into a transformer definition in terms of TBE in order to be applied. Since

APPLYING TRANSFORMER INDEXPCFORET 75

WebRatio is used off-the-shelf as graphical editor for the prototype TBE-system this
compilation cannot be triggered from within WebRatio. Instead, the TBE-engine has to be
invoked from the command line. The arguments for such an invocation, which is in detail
described in the source code documentation of the TBE-engine, are (1) the paths to the
templates, stored on the local file system, (2) the name of the transformer and (3) the name
of the modelling language, the templates are defined in.

4.4 Applying transformer IndexPCForET

This section shows, how to apply transformer IndexPCForET to the CMA content scheme.
SECTION 4.4.1 illustrates the initial state of the CMA content scheme. SECTION 4.4.2
describes the invocation of the TBE-engine for the purpose of performing the scheme
transformation. Last, SECTION 4.4.3 shows the result of the transformer application, i.e. the
CMA hypertext scheme.

4.4.1 Defining the input scheme

Figure 4.19: Content scheme of the CMA web application.

The CMA content scheme is used as the input scheme for the application of transformer
IndexPCForET. Since defining the input scheme requires no activities, which are specific

76 DEFINING AND APPLYING TRANSFORMERS WITHIN WEBRATIO

to TBE, only the result of defining the content scheme of the CMA web application is
illustrated. The respective input scheme is depicted in FIGURE 4.19.

4.4.2 Transforming the input scheme

Via applying transformer IndexPCForET to the content scheme of the CMA it is desired to
generate page classes PaperPage and AuthorPage according to entity types Paper and
Author, respectively. In order to prevent the generation of page classes for entity types
User, Group, SiteView and Conf, the transformer application needs to be
individualized.

Step 10: Individualize the transformer application: For the purpose of individualizing the
application of transformer IndexPCForET to the CMA content scheme, add the TBE-
directive constraint: or{ENT = 'Author', ENT = 'Paper'};. This complex
constraint achieves that the query template of transformer IndexPCForET exclusively
selects entity types Author and Paper. FIGURE 4.20 depicts this TBE-directive.

Figure 4.20: Individualizing the application of transformer IndexPCForET.

Step 11: Invoking the TBE-engine: In order to perform the individualized application of
transformer IndexPCForET to the CMA content scheme invoke the TBE-engine from the
command line. For details on such invocations confer to the source code documentation of
the TBE-engine. The necessary arguments are (1) the name of the transformer to be
applied (2) the language used for defining the input scheme and (3) the path to the input
scheme on the local file system.

4.4.3 Viewing the output scheme

When the TBE-engine has performed the transformer application, WebRatio recognizes
that the CMA scheme has changed. Click "yes" when asked by WebRatio whether to update
the scheme or not. The resulting page classes PaperPage and AuthorPage are depicted
in FIGURE 4.21.

APPLYING TRANSFORMER INDEXPCFORET 77

Figure 4.21: Result of the individualized application of transformer IndexPCForET
to the CMA scheme.

5 Architecture

Content
5.1 Base architecture 80

5.2 Processes 81

5.2.1 Processes for compiling transformer definitions 81
5.2.2 Processes for applying transformers 84

5.3 Datastructures 86

5.3.1 The logical representation of schemes and templates 87
5.3.2 Transformer definitions in terms of TBE 90

This chapter presents the architecture of the TBE-engine, which provides the following
functionalities:

1. The TBE-engine provides for compiling a transformer definition in terms of TBE
from a transformer definition in notation of a particular modelling language L.

2. The TBE-engine provides for performing the application of transformers defined in
notation of L to schemes defined in the same notation.

The goal of this chapter is to identify the model-independent components, i.e. processes
and datastructures, of the TBE-engine. Model-independent components are implemented
only once for all modelling languages. Consequently, model-dependent components have
to be implemented newly for each modelling language. The model-independent
components of the TBE-engine make up the TBE-framework, which is the focus of this
diploma thesis. SECTION 5.1 describes the base architecture of the TBE-engine. SECTION

5.2 and SECTION 5.3 describe the design of processes and datastructures, respectively, with
regard to separate model-independent processes and datastructures from model-dependent
ones.

80 ARCHITECTURE

5.1 Base architecture

This section presents the base architecture of the TBE-engine. The base architecture of the
TBE-engine is fundamentally appointed by the overall architecture of a TBE-system,
which has been introduced in CHAPTER 1. This overall architecture determines that
schemes in notation of a particular modelling language L are the interface between the
TBE-engine for L and the graphical editor for defining schemes and templates in notation
of L.

G
ra

p
h

ic
a

l
e

d
ito

r
G

ra
p

h
ic

a
l

e
d

ito
r

T
B

E
-e

n
g

in
e

compile transformer

Generative Template

Transformer Definition

Repository

Query Template

apply transformer

Input Scheme Output Scheme

Transformer Definition

T
ra

n
sf

o
rm

e
r

D
e
fi
n
it

io
n

T
ra

n
sf

o
rm

e
r

A
p
p
lic

a
ti

o
n

Figure 5.1: Base architecture of the TBE-engine.

When a modeller defines a transformer, she defines a query template and a generative
template within the graphical editor of the TBE-system, as depicted in the upper part of
FIGURE 5.1. The TBE-engine compiles these templates into a transformer definition in
terms of TBE. Finally, the TBE-engine stores the transformer definition into a persistent
data storage, called repository.

PROCESSES 81

When a modeller applies a transformer she defines an input scheme within the graphical
editor, as depicted in the lower part of FIGURE 5.1. The TBE-engine loads the previously
selected transformer definition from the repository and performs the actual transformer
application. The result of such a transformer application is the output scheme, which is
finally displayed within the graphical editor.

SECTION 5.2 describes the refinement of the base architecture with respect to separate
model-independent processes from model-dependent ones. Further, it is shown whether the
input or output of a particular process is model-independent or not.

SECTION 5.3 describes the design of datastructures that specify the model-independent
inputs and outputs, identified in SECTION 5.2.

5.2 Processes

This section describes the refinement of the processes involved in compiling transformer
definitions and the refinement of processes involved in applying transformers, with respect
to separate model-dependent processes from model-independent ones. Further, it is
described, whether the input or output of a particular process is model-independent or not.

5.2.1 Processes for compiling transformer definitions

From a conceptual point of view, compiling a transformer definition means to derive the
formal representation of a transformer definition, i.e. a transformer definition in terms of
TBE, from a transformer definition in notation of a particular modelling language L. In the
following a transformer definition in notation of L is referred to as native transformer
definition. For deriving a transformer definition in terms of TBE, the native query template
and the native generative template are mapped to their logical one. Then, the logical
representations of these templates together with the TBE directives, defined in the native
transformer definition are analyzed in order to generate the corresponding transformer
definition in terms of TBE.

FIGURE 5.2 depicts an overall view of all processes involved in compiling transformer
definitions together with their inputs and outputs. Model-dependent processes and model-
dependent inputs and outputs are grey shaded. SECTION 5.2.1.1 describes the processes
required for mapping native templates to their logical representation. SECTION 5.2.1.2

82 ARCHITECTURE

describes the processes required for generating a transformer definition in terms of TBE on
basis of the templates in logical representation and the corresponding TBE-directives.

Transformer Definition
[TBE]

generate transformer

translate
customized-directives

Generative Template
[adapted]

Query Template
[adapted]

TBE-Directives
[adapted]

Generative Template
[logical]

Query Template
[logical]

TBE-Directives

to
logical representation

Generative Template
[native]

Query Template
[native]

extract
TBE-directives

to
logical representation

extract
customized-directives

Customized-Directives

Figure 5.2: Processes for compiling transformer definitions and their inputs and outputs.

5.2.1.1 Mapping templates to their logical representation

Process to logical representation maps the native representation of a template to its
logical one. In particular process to logical representation maps scheme elements
and connections between scheme elements to universe members and relations members,
respectively.

PROCESSES 83

The input of process to logical representation, i.e. a template in native
representation, is clearly model-dependent as each modelling language uses its own
datastructures for representing scheme elements. Consequently, process to logical

representation is model-dependent too. However, the output of this process, i.e. the
logical representation of the respective template, is model-independent.

5.2.1.2 Generating transformer definitions in terms of TBE

CHAPTER 4 illustrated that customized-directives are required for defining WebML
transformers, i.e. customized-directives anchor and alias. It is quite fairly to assume that
defining transformers in other modelling languages than WebML also requires defining
customized-directives. Therefore customized-directives are explicitly addressed within the
design of processes for generating transformer definitions in terms of TBE.

The fundamental condition on a customized-directive is, that it can be translated into
standard TBE constructs, i.e. variables, constraints and relation constructors. Otherwise, a
customized-directive would extend the semantics of TBE, which is not desired. Hence,
each customized-directive can be translated into standard TBE constructs by means of
some pre-compiler, which is called translate customized directives as depicted in
FIGURE 5.2.

The remainder of this section introduces the processes for generating a transformer
definition in terms of TBE on basis of a query template and a generative template both in
logical representation, a set of customized-directives and a set of TBE-directives.

In a first step, processes extract customized directives and process extract TBE
directives filter out the customized-directives and TBE-directives, respectively, defined
within either one of the native templates. Both processes are model-dependent since each
modelling language uses its own datastructures for representing directives. For example,
templates in notation of WebML represent directives by means of tag/value-pairs
annotated as user-defined properties.

The output of process extract TBE directives, i.e. the set of TBE-directives, is model-
independent, since the structure of TBE-directives can be specified, without considering
peculiarities of a particular modelling language. The output of process extract

customized directives, i.e. the set of customized-directives is model-dependent, since

84 ARCHITECTURE

specifying templates in different modelling languages may require different customized-
directives.

In a second step, process translate customized directives prepares the generation of
standard TBE constructs that represent the previously extracted customized-directives. For
this purpose, process translate customized directives adapts the logical
representations of the templates and the previously extracted TBE-directives in such a
manner, that the following process generate transformer generates the desired TBE-
constructs.

In a third step process generate transformer takes the adapted templates in logical
representation and the adapted TBE-directives and generates the transformer definition in
terms of TBE accordingly. Since all inputs of this process are model-independent, the
process itself is model-independent too. Consequently, the output of process generate
transformer, i.e. a transformer definition in terms of TBE is also model-independent.

5.2.2 Processes for applying transformers

Applying a transformer means to take a scheme in notation of a particular modelling
language L as input and perform the transformation of this scheme as specified by the
desired transformer. The result of a transformer application is the output scheme, again in
notation of L. TBE-directives, specifying the individualization of a transformer application,
have to be extracted from the input scheme and the respective transformer definition in
terms of TBE has to be individualized accordingly.

FIGURE 5.3 depicts the processes involved in applying a transformer. Again, model-
dependent processes and model-dependent inputs and outputs are grey shaded.

The native input scheme comprises scheme elements and TBE-directives that specify the
transformer application. Process to logical representation maps the native input
scheme to its logical representation. This process has already been described in SECTION

5.2.1.1. The output of this process is the logical representation of the input scheme and
thus model-independent.

Individualizing a transformer application requires to extract the TBE-directives specifying
the respective individualization. Again, process extract TBE directives, filters out the
respective TBE-directives.

PROCESSES 85

These TBE-directives are then passed to process individualize transformer. This
process loads the specified transformer definition in terms of TBE from the repository and
performs the individualization. Since all inputs of process individualize transformer
are model-independent the process itself is model-independent too.

Output Scheme
[logical]

Input Scheme
[logical]

TBE Directives

extract
TBE directives

Input Scheme
[native]

to
native representation

individualize transformer
Transformer Definition

[TBE]

Transformer Definition
[individualized]

to
relational representation

apply transformer

Output Scheme
[native]

Functions Executor

Figure 5.3: Processes and their inputs and outputs required for applying transformers.

The individualized transformer definition and the input scheme in logical representation
are then passed to process apply transformer. Process apply transformer produces
the output scheme in logical representation as specified by the transformer definition.
Process apply transformer is model-independent because its inputs, i.e. a transformer
definition in terms of TBE and an input scheme in logical representation, are model-
independent too. However, applying a transformer requires the execution of functions as

86 ARCHITECTURE

specified within the transformer definition by means of function construction expressions.
Since transformers for different modelling languages may generally require the execution
of different functions, each implementation of this architecture has to provide a plugin to
process apply transformer capable of executing such functions. FIGURE 5.3 depicts this
plugin, which is called Functions Executor.

Finally, model-dependent process to native representation maps the output scheme
in logical representation to its representation in notation of the respective modelling
language.

5.3 Datastructures

The previous section described the processes of the TBE-engine. This section focuses on
the structure of model-independent inputs and outputs, since the structure of model-
dependent inputs and outputs cannot be generally specified. Model-independent inputs and
outputs that are equally structured are specified by a single datastructure, which is
summarized in TABLE 5.1.

The structure of a transformer definition in terms of TBE is equal to the structure of an
individualized transformer definition. Therefore datastructure Transformer Definition
specifies both the structure of a transformer definition in terms of TBE and that of an
individualized transformer definition.

TBE separates four types of TBE-directives, i.e. directives tag result variable, tag
parameter variable, constraint and construction expression. TBE-directives tag
result variable and tag parameter variable are trivial. Therefore no datastructures
for representing these directives need to be specified. Since constraints and construction
expressions are parts of a transformer definition in terms of TBE, datastructure
Transformer Definition specifies their structures. Therefore, it is not necessary to
develop separate datastructures for representing TBE-directives.

The logical representation of both an input scheme and an output scheme solely comprise
universe members and relation members and are therefore equally structured. Thus
datastructure Logical Representation specifies the structure of input schemes and
output schemes in logical representation.

DATASTRUCTURES 87

Datastructure Model independent in-/output

Transformer Definition Transformer Definition [TBE]

 Individualized Transformer Definition

 TBE Directives

Logical Representation Generative Template [logical]

 Query Template [logical]

 Input Scheme [logical]

 Output Scheme [logical]

Table 5.1: Datastructures specifying model independent inputs and outputs.

Since templates are schemes extended by directives, their logical representation is equally
structured to the logical representation of schemes provided that directives have been
extracted previously by process extract directives. Thus datastructure Logical
Representation specifies furthermore the structure of query templates and generative
templates in logical representation.

The subsequent sections illustrate the design of model-independent datastructures, where
the particular datastructures are specified by means of UML class diagramms and OCL
expressions.

5.3.1 The logical representation of schemes and templates

The formal specification of TBE defines that the logical representation of a scheme
comprises universe members and relation members. The formal specification of TBE
defines further that universe members and relation members are specified by universes and
relations, respectively. It is notable that the universe members and relation members
representing a particular scheme are individual for every scheme, which comprises
individual scheme elements. Whereas, the universes and relations specifying the sorts of
universe members and relation members intended for representing schemes defined in a
particular modelling language, are the same of for all schemes defined in the respective
modelling language.

88 ARCHITECTURE

* *

*

*

identifier : String

UniverseMember

LogicalRepresentation

RelationMember

relationName : String

Relation

modellingLanguage : String

LogicalRepresentationSpecification

universeName : String

Universe*

1…*

*

1

1

AttributeInstance

attributeName : String

Attribute

**

*

1…*

1

signature

sort

instance of a
ttrib

u
te

s

a
ttrib

u
te

 in
sta

n
ce

s

OCL1: context Universe inv:
 self.allInstances ->
 forAll (u1, u2 | u1 <> u2 and u1.LRS = u2.LRS)
 implies u1.universeName <> u2.universeName
OCL2: context Attribute inv:
 self.allInstances ->
 forAll (a1, a2 | a1 <> a2 and a1.Relation = a2.Relation)
 implies a1.attributeName <> a2.attributeName
OCL3: context UniverseMember inv:
 self.allInstances ->
 forAll (um1, um2 | um1 <> um2 and
 um1.LR = um2.LR)
 implies um1.identifier <> um2.identifier
OCL4: context AttributeInstance inv:
 self.Attribute a1 ->
 exists(a2: Attribute |
 a2.Relation = a1.RelationMember.Relation)

Figure 5.4: Datastructures LogicalRepresentation and LogicalRepresentationSpecification.

Therefore, it is reasonable to specify the sorts of universes and relations intended for
representing schemes of a particular modelling language L once instead of specifying them
newly for each logical representation of a scheme in notation of L. Therefore datastructure
Logical Representation Specification is introduced that specifies the structure of
universes and relations. The specification of the logical representation of schemes in

DATASTRUCTURES 89

notation of L is stored in the repository of the TBE-engine for being available for
processes, any time it is required.

As depicted in FIGURE 5.4, class Logical Representation Specification has property
modellingLanguage attached in order to be uniquely addressable.

Each universe has a name, as expressed by property universeName. The name of a
universe must be unique within all universes intended for representing schemes in notation
of L as expression OCL1 specifies.

Analogous to universes, relations are named as denoted by property relationName. The
name of a relation does not have to be unique, since relations may be overloaded. This
means that several relations may share the same name but have different attributes.
Association attributes, depicted in FIGURE 5.4, represents the attributes of a relation.

Generally, there are two alternatives for identifying attributes within relations. First their
position within the relation can be used for identification. This approach meets the formal
specification of TBE best. However, identifying attributes within relations by their position
lacks of readability. Therefore attributes of a relation are identified by unique names,
which is denoted by association class Attribute. Consequently, the name of an attribute
must be unique among all attribute names of one relation, which is specified by expression
OCL2.

Each universe member has an unique identifier as denoted by property identifier. The
identifier of a universe member must be unique among all universe members of its domain.
Expression OCL3 specifies this constraint on identifiers of universe members.

Each relation member declares the relation that serves as its signature, as expressed by
association signature. The universe members connected by a relation member are
subsequently referred to as attribute instances. For identifying attribute instances within a
relation member, each attribute instance declares the attribute it is an instance of, which is
denoted by association instance of. It has to be ensured that each attribute instance of a
particular relation member is an instance of an attribute of the relation, which is the
signature for the respective relation member. Expression OCL4 specifies this constraint.

90 ARCHITECTURE

5.3.2 Transformer definitions in terms of TBE

A transformer definition in terms of TBE comprises exactly one query template and one
generative template, as depicted in FIGURE 5.5. Each transformer definition is uniquely
identified by its name, for being addressable at application time, and has therefore property
transformerName attached. Expression OCL5 specifies that the name of a transformer
definition must be unique within all transformer definitions stored in the repository.

Query templates and generative templates comprise different types of variables. Therefore,
abstract class Variable is introduced, which captures the common structure of all types of
variables. The common structure of all types of variables is to be addressable by a name as
expressed by property variableName. Expression OCL6 specifies that the name of a
variable must be unique within all variables of the template the respective variable is
defined at. Thus it is generally possible that a variable defined in a query template has the
same name as a variable defined in the generative template. This circumstance is even
required, since parameter variables at a transformer's generative template must match result
variables at its query template. Further, each variable has a universe attached, which serves
as domain for this variable. This is captured by association sort.

A query template comprises two types of variables, i.e. result variables and non-result
variables, which is expressed by sub-classes ResultVariable and NonResultVariable,
respectively. Besides these types of variables a query template comprises several sorts of
constraints. Therefore abstract class Constraint, which is in detail described in SECTION

5.3.2.1, is introduced.

A generative template also comprises two types of variables, i.e. parameter variables and
new-element variables, which are represented by equally named sub-classes of class
Variable. SECTION 5.3.2.3 describes class New Element Variable in detail. Class
Parameter Variable is not further described, since it has only the features of super class
Variable. Besides variables, a generative template comprises relation constructors, as
class Relation Constructor expresses. SECTION 5.3.2.2. describes this class in detail.

A transformer definition is a combination of a query template and a generative template.
Such combinations are proper if for each parameter variable at the generative template an
equally named and equally sorted result variable is provided at the query template and vice
versa. Expression OCL7 specifies this condition.

DATASTRUCTURES 91

transformerName : String

TransformerDefinition

QueryTemplate

*

variablelName : String

Variable

*

1

*

*

*

1

*

GenerativeTemplate

Constraint

NonResultVariable

ResultVariable ParameterVariable

RelationConstructor

NewElementVariable

universeName : String

Universe

sort

1

*

OCL5: context TransformerDefinition inv:
 self.allInstances ->
 forAll (t1, t2 | t1 <> t2
 implies t1.transformerName <> t2.transformerName
OCL6: context Variable inv:
 self.allInstances ->
 forAll (v1, v2 | v1 <> v2 and
 ((v1.GT = v2.GT) or (v1.QT = v2.QT))
 implies v1.variableName <> v2.varableName
OCL7: context Parameter inv:
 self.variableName vn, self.UniverseName un ->
 exists (vr: ResultVariable |
 vr.QT.TD = self.GT.TD and
 vr.variableName = nv and
 vr.universeName = un)

Figure 5.5: Overview of datastructure TransformerDefinition (top)
and required OCL expressions (bottom).

5.3.2.1 Constraints

The formal specification of TBE distinguishes complex constraints, membership
constraints and comparison constraints. Therefore accordingly named classes specifying
the structure of these constraints are introduced, as depicted in FIGURE 5.6.

92 ARCHITECTURE

Constraint

ComplexConstraint

MembershipConstraint

ComparisonConstraint

ApplicationSpecificConstraint

Figure 5.6: Type hierarchy of constraints.

A subset of all types of constraints can be used at application time for individualizing the
transformer application. Thus, abstract class Application Specific Constraint is
introduced. Classes Complex Constraint and Comparison Constraint are sub-classes
of class Application Specific Constraint and can therefore be used for
individualizing transformer applications. In the following the distinctive types of
constraints are described.

5.3.2.1.1 Complex Constraints

2...*0...1 Constraint

logicalConnective : String

ComplexConstraint

connected constraints

OCL8: context ComplexConstraint inv:
 self.logicalConnective = 'and' | 'or'

Figure 5.7: Structure of complex constraints.

Complex constraints connect at least two constraints with a logical connective as depicted
in FIGURE 5.7. Class ComplexConstraint has property logicalConnective attached
determining the constraint's logical connective. Valid logical connectives are and and or as
specified by expression OCL8.

5.3.2.1.2 Membership Constraints

A membership constraint specifies relation members that have to exist within the logical
representation of an input scheme in order to fulfill the constraint. FIGURE 5.8 depicts the
structure of membership constraints.

DATASTRUCTURES 93

Each membership constraint declares the signature of relation members that have to be
examined on evaluation time, as denoted by association signature. Evaluating
membership constraints means to compare instances of attributes to values of variables, as
conceptually shown in SECTION 3.2.1.3. Therefore, assignments of variables to attributes
are required, which is expressed by class Assignment. Each assignment relates one
attribute to one variable. As specified in the formal specification of TBE, only result
variables or non-result variables can be assigned to attributes within a membership
constraint, which is specified by expression OCL9. Further, a membership constraint that
has a relation R as signature may assign variables only to attributes of R, which is specified
by expression OCL10.

*

*

*

MembershipConstraint

*

relationName : String

Relation

universeName : String

Universe
1…*

1

attributeName : String

Attribute a
ttrib

u
te

s

signature

1

1

Assignment

variableName : String

Variable

*

OCL9: context MembershipConstraint inv:
 forAll (a: Assignment | a.MembershipConstraint = self)
 implies (oclIsTypeOf(a.variable: ResultVariable) or
 oclIsTypeOf(a.variable: NonResultVariable))
OCL10: context Assignment inv:
 self.MembershipConstraint.Relation = self.Attribute.Relation

Figure 5.8: Structure of membership constraints.

5.3.2.1.3 Comparison Constraints

A comparison constraint specifies that a variable, called constrained variable, has to hold a
particular value at evaluation time in order of fulfilling the constraint, as depicted in
FIGURE 5.9. For evaluating comparison constraints the value of the constrained variable is
compared to the values of other variables or literal values according to the type of
comparison. Therefore, datastrucutre ComparisonConstraint has property
comparisonType attached specifying the type of comparison. Expression OCL11 specifies

94 ARCHITECTURE

that the comparison type has to be one of equal or notEqual as defined in the formal
specification of TBE.

*

* *

comparisonType : String

ComparisonConstraint

1

value : String

LiteralValue

variableName : String

Variable
0...1

constrained variable

constraining variable

constraining literal value

0...1

OCL11: context ComparisonConstraint inv:
 self.comparisonType = 'equal' | 'not equal'
OCL12: context ComparisonConstraint inv:
 oclIsTypeOf(self.constrainingVariable: ResultVariable) or
 oclIsTypeOf(self.constrainingVariable: NonResultVariable)
OCL13: context ComparisonConstraint inv:
 self.constrainingVariable -> notEmpty() implies
 self.constrainingLiteralValue -> isEmpty()
 self.constrainingLiteralValue -> notEmpty() implies
 self.constrainingVariable -> isEmpty()

Figure 5.9: Structure of comparison constraints.

The formal specification of TBE defines that a comparison constraint compares the value
of the constrained variable to either the value of one variable or one literal value, which is
denoted by associations constraining variable and constraining literal value,
respectively. Expression OCL12 specifies that a variable may only be constrained by either
another variable or an arbitrary literal value. Further, expression OCL13 specifies that only
result variables or non-result variables can be used as constraining variables.

5.3.2.2 Relation constructors

A relation constructor specifies the generation of a relation member. The signature of the
relation member to be generated is given by a particular relation and therefore declared by
the relation constructor. This is expressed by association signature, as depicted in FIGURE

5.10.

Generating a relation member requires to generate attribute instances. The values of
variables are used for generating attribute instances as conceptually shown in SECTION

DATASTRUCTURES 95

3.2.2.3. Therefore, assignments of attributes to variables are required for determining
which attribute instance is to be generated according to the value of which variable.

Since assignments of attributes to variables required in the scope of relation constructors
are similar to the assignments required in the scope of membership constraints, class
Assignment is reused.

*

*

*

RelationConstructor

*

relationName : String

Relation

universeName : String

Universe
1…*

1

attributeName : String

Attribute a
ttrib

u
te

s

signature

1

1

Assignment

variableName : String

Variable

*

OCL14: context Assignment inv:
 self.RelationConstructor.Relation = self.Attribute.Relation
OCL15: context RelationConstructor inv:
 forAll (a: Assignment | a.RelationConstructor = self)
 implies (oclIsTypeOf(a.variable: NewElementVariable) or
 oclIsTypeOf(a.variable: ParameterVariable))

Figure 5.10: Structure of relation constructors.

The requirement that relation constructors may exclusively assign variables to attributes of
the relation, which is the signature of the relation constructor, is specified by expression
OCL14. This requirement is analogous to assignments in the scope of membership
constraints. Yet, relation constructors additionally require that only new-element variables
or parameter variables can be assigned to attributes. This additional requirement is by
OCL15.

5.3.2.3 New-element variables

New-element variables specify the generation of universe members and have for that
purpose a construction expression attached. Therefore, class New Element Variable
declares to comprise exactly one Construction Expression. In the formal specification
of TBE three types of construction expressions are distinguished as described by classes

96 ARCHITECTURE

New Construction Expression, Constant Construction Expression and Function
Construction Expression. Each of these classes is a sub-class of class Construction
Expression. In contrast to application-specific constraints no class for application-specific
construction expressions is designed, as every construction expression can be used at
application time for individualizing the transformer application.

1

NewElementVariable

universe: String

NewConstructionExpression

ConstructionExpression

constantValue : String

ConstantConstructionExpression

FunctionConstructionExpression

Figure 5.11: Structure of new-element variables.

Class New Construction Expression has property universe attached. This property
determines the sort of the universe member that is to be generated.

ParameterVariable

functionName : String

FunctionConstructionExpression

LiteralValue

*

*

NewElementVariable

*

*

Figure 5.12 Structure of function construction expressions.

DATASTRUCTURES 97

Constant construction expressions determine the constant value representing the identifier
of the universe member to be generated. Therefore, class Constant Construction

Expression has property constantValue attached.

Function construction expressions determine (i) which function is to be executed and (ii)
which parameter variables, new-element variables or literal values, are to be passed to the
function as arguments. For reasons of clarity, class Function Construction Expression
is depicted separately in FIGURE 5.12.

6 Implementation

Contents
6.1 Choice of technologies 100

6.1.1 Technologies for compiling transformer definitions 101
6.1.2 Technologies for applying transformers 105

6.2 Two-layered implementation of the TBE-engine 107

6.2.1 Allocation of process implementations 108
6.2.2 Allocation of datastructure-implementations 113

6.3 Implementation of Datastructures 115

6.3.1 Datastructure Logical Representation Specification 115
6.3.2 Datastructure Logical Representation 122
6.3.3 Datastructure Transformer Definition 124
6.3.4 Datastructure TBE-Directives 124

6.4 Implementation of Processes 125

6.4.1 Compressed logical representations of schemes 126
6.4.2 Processes for compiling transformer definitions 127
6.4.3 Processes for applying transformers 137

This chapter presents the implementation of the TBE-engine. SECTION 6.1 discusses the
choice of technologies for implementing the components of the TBE-engine.

The implementation of the TBE-engine is realized on two layers. The model-independent
layer provides implementations of the components that make up the TBE-framework, i.e.
model-independent components. Consequently, the model-dependent layer provides
implementations of model-dependent components. SECTION 6.2 describes this two-layered
implementation of the TBE-engine.

100 IMPLEMENTATION

SECTION 6.3 and SECTION 6.4 describe the concrete implementations of datastructures and
processes, respectively.

6.1 Choice of technologies

This section focuses on the choice of technologies for implementing the components of the
TBE-engine. For this purpose the approaches to the implementation of the processes of the
TBE-engine are described at a high level of abstraction in order to justify the respective
technology choices. Basically, the TBE-engine is implemented in JAVA for the following
reasons:

• Library support: The selection of technologies for implementing model-dependent
components clearly depends on given factors of the respective modelling language.
Consider, for example, the implementation of process To Logical

Representation for modelling language WebML, which can be conveniently
developed using XSLT, since WebML schemes are provided as XML documents.
There are numerous XSLT processors available in JAVA, e.g. Xalan [xal04] and
Saxon [sax04]. Thus, in order to enable the flexible use of technologies, for the
implementation of model-dependent components, it is reasonable to implement the
TBE-engine in JAVA, since libraries for the support of numerous technologies are
available.

• Operating system independency: In order to support the application and definition of
transformers, the TBE-engine requires a graphical editor for defining schemes and
templates. Thus the TBE-engine should be executable within the operating system
the graphical editor is executed within as well. Since JAVA byte code is executable
within every established operating system, it is convenient to implement the TBE-
engine in JAVA.

SECTION 6.1.1 discusses the choice of technologies for realizing the components of the
TBE-engine used for compiling transformer definitions. SECTION 6.1.2 discusses the choice
of technologies for realizing components used for applying transformers. For choosing
technologies the following basic considerations are taken into account.

• Technologies for realizing model-dependent components are selected with regard to
modelling language WebML. Implementations of model-dependent components for
other modelling languages may use different technologies.

CHOICE OF TECHNOLOGIES 101

• Technologies for realizing model-independent components are selected with regard
to the adequacy of a technology for the respective process. Thus, peculiarities of
modelling languages, for example the format of the internal representation of
schemes, are not considered by the choice of technologies for realizing model-
independent components.

6.1.1 Technologies for compiling transformer definitions

This section discusses the choice of technologies for realizing those components of the
TBE-engine that are used for compiling transformer definitions. FIGURE 6.1 summarizes
the chosen technologies, where the particular technologies are depicted in the left hand
side. In the following the respective choices are discussed.

Process To Logical Representation: The input of model-dependent process To Logical
Representation is a template in the native notation of a particular modelling language. In
the case of WebML, the input of this process is a scheme in terms of XML. XSLT is used
for implementing process To Logical Representation, since it is convenient to develop
XSLT template rules for mapping scheme elements and connections between scheme
elements to universe members and relation members, respectively. Consequently, the
output of model-dependent process To Logical Representation is some XML data.

Datastructure Logical Representation: An XML-schema (XSD) is used for specifying the
structure of logical representations of templates (schemes) in terms of XML.

Process Extract TBE Directives: The input of model-dependent process Extract TBE
Directives is again an XML document representing a template. An XSLT stylesheet
extracts the textual representations of TBE-directives, i.e. directives constraint,
construction expression, tag result variable or tag parameter variable. TBE-
directives result variable and parameter variable are not directly defined within
templates in notation of WebML. Instead they are defined by means of defining shortcuts,
i.e. dollars signs preceding the name of a variable. Therefore, process extract TBE
directives filters out these shortcuts and translates them into the corresponding textual
representation.

102 IMPLEMENTATION

JAVA

JAVA + XML

XSLT

JAVA

XSLT +
EBNF parsing

XML

Transformer Definition
[TBE]

generate transformer

interprete
customized directives

Generative Template
[adapted]

Query Template
[adapted]

TBE Directives
[adapted]

Generative Template
[logical]

Query Template
[logical]

TBE Directives
[TBEDirectivesContainer]

to
logical representation

Generative Template
[native]

Query Template
[native]

extract
TBE directives

to
logical representation

extract
customized directives

Customized Directives

Figure 6.1: Technologies for implementing components for compiling transformer definitions.

Datastructure TBE-Directives: The output of process extract TBE directives
comprises JAVA representations of the extracted TBE-directives. Therefore, subsequent
processes work directly with JAVA representations of TBE-directives instead of parsing
their textual representation newly each time. A specific JAVA class called
TBEDirectivesContainer stores the JAVA representations of the extracted TBE-
directives. The JAVA representations of TBE-directives tag result variable and tag

CHOICE OF TECHNOLOGIES 103

parameter variable are collections of variable names, i.e. one collection that stores
names of result variables and one collection that stores names of parameter variables. The
JAVA representations of TBE-directives construction expressions and constraint
are specifically designed JAVA classes. These JAVA classes are derived from the UML-
class diagrams specifying the structure of construction expressions and constraints, which
are depicted in SECTION 5.4.2. Consequently, the TBEDirectivesContainer provides for
storing collections of JAVA classes representing construction expressions and constraints.
Thus, the output of process extract TBE directives is a TBEDirectivesContainer.

An EBNF grammar parser generates the JAVA representations of TBE-directives on basis
of their textual representation. This EBNF grammar parser is generated by AntLR
[antlr04], which is a parser generator. This EBNF grammar parser has to be implemented
only once, since the syntax of textual representations of TBE-directives is specified, as
shown in SECTION 5.4.3.

Process Extract Customized Directives: An XSLT stylesheet extracts customized-
directives, i.e. directives anchor and alias. Again, the extracted customized-directives are
represented by JAVA objects in order to be conveniently processed within subsequent
processes. In contrast to TBE-directives no specifically designed JAVA class is necessary
for representing customized-directives for the following reasons. Aliases for non-editable
properties of scheme elements are immediately resolved by process to logical

representation. Therefore customized-directive alias does not have to be represented
by a specifically designed JAVA object at all. Further, since the structure of customized-
directive anchor is fairly simple, a JAVA object of class String is proper for representing
this customized-directive.

Process Interpret Customized Directives: Process interpret customized directives is
implemented in JAVA, since expressing the semantics of customized-directives via (i)
adapting the logical representations of templates and (ii) adapting TBE-directives, suggests
the use of a procedural programming language like JAVA.

The inputs of process interpret customized directives are a set of customized-
directives, a set of TBE-directives and the templates in logical representation. Thereby,
customized-directives and TBE-directives are passed to this process in terms of JAVA
objects, as previously argued, and can therefore be conveniently processed. However, the
query template and the generative template in logical representation are passed in terms of

104 IMPLEMENTATION

XML by process to logical representation. For processing XML in JAVA the
following three alternatives are available:

• DOM parser: One alternative for processing XML within JAVA is to use a
document object parser (DOM parser). The XML document is represented as a tree,
which can be traversed, in order to process the XML document. Thereby, each node
of a DOM tree represents an element (element node) or an attribute (attribute node)
of the represented XML document. The main advantage of this alternative is that
each XML document can be processed, regardless of the DTD the XML document
adheres. Therefore, DOM parsing is a generic approach to processing XML
documents. The drawback of this approach is, that it is inconvenient to use such
generic representations of XML data for implementing processes.

• SAX parser: Another alternative for processing XML within JAVA is to use a serial
access parser (SAX parser). The XML document is traversed by the SAX parser in a
serial way and each time an XML element or XML attribute is recognized a
particular event is thrown by the SAX parser, which can be further processed from
within JAVA. The advantages and the drawbacks of SAX parsing are analogous to
those of DOM parsing.

• Specific JAVA objects: A convenient alternative for processing XML within JAVA
is to use JAVA objects, which enable the manipulation of the respective XML data
by means of getter-methods and setter-methods. Clearly, this approach requires that
specific JAVA classes are designed for representing the structure of the respective
XML document. Further, it is required to implement a parser that generates the
specific JAVA objects on basis of the respective XML document. However, the
manipulation of an XML document can be conveniently implemented using specific
JAVA objects because they provide specific getter-methods and setter-methods.

Process interpret customized directives uses specific JAVA objects for adapting the
logical representations of templates for the following reasons. First, it is the most
convenient alternative for processing XML within JAVA. Second, the additional efforts for
(i) implementing specifically designed JAVA classes for representing the logical
representation of templates and (ii) implementing a corresponding parser are little since the
structure of the logical representation of templates is fairly simple. Thus, datastructure
Logical Representation is additionally implemented by means of specifically designed
JAVA classes.

CHOICE OF TECHNOLOGIES 105

Process Generate Transformer: Process Generate Transformer is implemented in
JAVA since generating a transformer definition in terms of TBE on basis of two templates
in logical representation and a set of TBE-directives suggests the use of a procedural
programming language like JAVA. Further, storing the generated transformer definition
into the repository of the TBE-engine can be easily achieved by serializing the JAVA
objects representing the transformer definition.

Datastructure Transformer Definition: Consequently, specifically designed JAVA
classes for representing the output of process Generate Transformer, i.e. a transformer
definition in terms of TBE, have been developed. Again, the design of these classes is
derived from the UML classes specifying datastructure transformer definition, which have
been described in SECTION 5.3.2.

6.1.2 Technologies for applying transformers

This section discusses the choice of technologies for implementing these components of
the TBE-engine that are used for applying transformers. FIGURE 6.2 summarizes the chosen
technologies. Again, the particular technologies are depicted in the left hand side. The
respective choices are discussed in the following.

The input scheme is provided in terms of XML as determined by modelling language
WebML. The choices of technologies for model-dependent processes extract TBE
directives and to logical representation have already been discussed in the previous
section. For repetition, the TBE-directives specifying the individualization of the
transformer application, i.e. constraints and construction expressions, are extracted from
the input scheme using an XSLT stylesheet and returned as a JAVA object of class
TBEDirectivesContainer. An XSLT stylesheet maps the input scheme to its logical
representation.

Process Individualize Transformer: The inputs of process individualize transformer
are (i) a TBEDirectivesContainer comprising application-specific constraints and
application-specific construction expressions and (ii) a transformer definition in terms of
TBE. This transformer definition is loaded from the repository of the TBE-engine and
represented as a set of specifically designed JAVA objects. The task of individualizing a
transformer definition is comparable to the task of generating a transformer since both
tasks manipulate a transformer definition. Therefore process individualize

106 IMPLEMENTATION

transformer is implemented in JAVA. The output of this process, i.e. the individualized
transformer definition, is passed to process apply transformer by means of specifically
designed JAVA objects.

XQuery

XML

XSLT

XML

XMLJAVA

XSLT +
EBNF parsing

XML

Output Scheme
[logical]

Input Scheme
[logical]

TBE Directives
[TBEDirectivesContainer]

extract
TBE directives

Input Scheme
[native]

to
native representation

individualize transformerTransformer Definition

Transformer Definition
[Individualized]

to
logical representation

apply transformer

Output Scheme
[native]

Figure 6.2: Technologies for implementing components for applying transformers.

Process Apply Transformer: For performing the application of a transformer two
alternatives are available. First, one can develop an ad-hoc interpreter that performs the
scheme transformation. The second alternative is to generate a script in terms of another
language like, for example, XQuery that is then executed by an adequate processor. For
quickly getting a prototype, we decided to follow the second approach.

TWO-LAYERED IMPLEMENTATION OF THE TBE-ENGINE 107

For choosing a language the following requirements need to be met. First the language
must be adequate for expressing the semantics of a transformer. This means that the
language must enable the evaluation of query templates and the instantiation of generative
templates.

Concerning query template evaluation, following two options have been identified. First a
deductive language like, for example, F-logic, Prolog, or Datalog can be used. This option
is straightforward since query templates are based on domain relational calculus, which
itself is based on first-order logic. Second, a query template can be translated into an
XQuery statement.

Concerning generative template instantiation, any of these languages can be chosen as
soon as it supports data manipulation, i.e. creating and adding relation members and
universe members. Datalog and F-logic, which are basically data retrieval languages, are
not adequate since they do not support expressions for creating new universe members.
Therefore, only Prolog and XQuery are candidate technologies for implementing process
apply transformer. This diploma thesis demonstrates the implementation of process
apply transformer with XQuery. Thus, the output of process apply transformer is the
output scheme's logical representation in terms of XML, since the execution of an XQuery
statement produces XML data.

Process To Native Representation: Model-dependent process to native

representation is implemented in XSLT, since process apply transformer passes the
output scheme's logical representation in terms of XML and the output scheme in terms of
WebML, i.e. the output of process to native representation is also expected to be
represented in XML.

6.2 Two-layered implementation of the TBE-engine

The architecture of the TBE-engine, described in CHAPTER 5, consists of model-dependent
and model-independent components. For repetition, model-dependent components have to
be newly implemented for each modelling language, the TBE-engine supports scheme
transformations for, whereas model-independent components are implemented once for all
modelling languages. In order to consider this separation of components in the
implementation of the TBE-engine, it is implemented on two layers. The model-

108 IMPLEMENTATION

independent layer provides implementations of model-independent components and the
model-dependent layer provides implementations of model-dependent components.

This section focuses on the allocation of implementations of components between the two
implementation layers of the TBE-engine. SECTION 6.2.1 describes the allocation of
process implementations. SECTION 6.2.2 describes the allocation of implementations of
datastructures.

6.2.1 Allocation of process implementations

FIGURE 6.3 illustrates the allocation of process implementations to the implementation
layers of the TBE-engine.

Model-Dependent
Layer

Model-Independent
Layer

Repository

GeneratorGenerator
WebML

Generator

XQuery
ApplicatorApplicator WebML

Applicator

WebML
MapperMapper

Engine

I

A

C

C

C

A

C

C

I

I

CAI JAVA interface JAVA abstract class JAVA class

Figure 6.3: Allocation of process-implementations.

The model-independent layer provides interfaces that describe the processes of the TBE-
engine, i.e. interfaces Mapper, Applicator and Generator. Basically, each process is
represented by one method. Methods that represent model-independent processes are
implemented in classes provided at the model-independent layer, i.e. classes XQuery-
Applicator and Generator. Consequently, methods that represent model-dependent

TWO-LAYERED IMPLEMENTATION OF THE TBE-ENGINE 109

processes are implemented at the model-dependent layer, i.e. classes WebMLMapper,
WebMLApplicator and WebMLGenerator, and extend classes provided at the model-
independent layer if these classes implement the respective interface. SECTION 6.2.1.1,
SECTION 6.2.1.2 and SECTION 6.2.1.3 describe the design of interfaces Mapper,
Applicator and Generator and their implementing classes, respectively.

Class Engine uses the interfaces of the model-independent layer, for controlling the flow
of processes that are involved in either compiling a transformer definition or performing a
transformer application. Class Engine invokes methods of classes implemented at the
model-dependent layer. For example if it is to map a WebML scheme to its logical
representation, class Engine invokes the respective method of class WebMLMapper.

Class repository implements the repository of the TBE-engine and is implemented at the
model-independent layer.

The interfaces provided at the model-independent layer are designed with regard to the
following requirements:

1. Generic interfaces for model-dependent processes: Each modelling-language uses
its own format for representing schemes, like, for example, XML is used by
WebML for representing schemes. Clearly, different technologies are adequate for
processing different formats, like, for example, XSLT is adequate for processing
schemes represented in terms of XML. Therefore, it is desired to design generic
interfaces for model-dependent processes, i.e. interfaces that do not constrain the
choice of technologies used for implementation.

2. Exchangeable execution engine: In SECTION 6.1.2 it has been argued that different
engines may be used for applying transformers, like, for example XQuery engines
or Jess engines. Therefore, it is desired that interfaces are designed with regard to
enable the usage of different execution engines.

The subsequent sections discuss the design of interfaces with regard to the previously
identified requirements. Further, the classes implementing these interfaces at the two
implementation layers of the TBE-engine are described.

110 IMPLEMENTATION

6.2.1.1 Interface Mapper and implementing class

Interface Mapper provides methods that describe model-dependent processes to logical
representation, to native representation, extract TBE directives and extract
customized directives, as depicted in FIGURE 6.4.

In order to design generic interfaces representing model-dependent process, all parameters
of such processes are of class Object. For example, method toLogicalRepresentation
takes a scheme in any format as input and returns the logical representation of this scheme,
again in any format. Therefore, the input-parameter and the return-parameter of method
toLogicalRepresentation are both of the least specific type, i.e. of class Object.

public interface Mapper{

 public Object toLogicalRepresentation(Object scheme);

 public Object toNativeRepresentation(Object scheme);

 public Object extractTBEDirectives(Object scheme);

 public Object extractCustomizedDirectives(Object scheme);

}

Figure 6.4: Interface Mapper.

All methods of interface Mapper describe model-dependent processes. Therefore classes
implementing this interface are exclusively allocated at the model-dependent layer. For
example, class WebMLMapper implements interface Mapper for modelling language WebML.

6.2.1.2 Interface Applicator and implementing classes

Interface Applicator provides one method describing process apply transformer as
depicted in FIGURE 6.5. The input scheme in logical representation, which is provided by
model-dependent process to logical representation is of any format and therefore
represented as an Object. The transformer to be applied is represented in terms of JAVA.
Therefore, input-parameter transDef is of type TransformerDefinition. In order to
enable the use of different execution engines, the return-parameter of method
applyTransformer, i.e. the output-scheme, is an Object in order to be generic.

TWO-LAYERED IMPLEMENTATION OF THE TBE-ENGINE 111

public interface Applicator{

 public Object applyTransformer(Object inputScheme,
 TransformerDefinition transDef);

}

Figure 6.5: Interface Applicator.

Class XQueryApplicator allocated at the model-independent layer implements interface
Applicator, as depicted in FIGURE 6.6. This class uses an XQuery engine as execution
engine. Therefore, methods generateXQuery and executeXQuery are implemented at
class XQueryApplicator, for generating the XQuery and executing the XQuery,
respectively. Method executeXQuery demands the input scheme in terms of XML in order
to execute the XQuery. Since the input scheme provided by process to Logical

Representation is of type Object a converter is required that converts the format of the
input scheme to XML. Abstract method convertInputScheme() represents this converter.
This method has to be implemented by applicators at the model-dependent layer, like for
example, class WebMLApplicator. Note that an implementation of process to logical
representation may already return an Object representing an XML document, such that
method convertInputScheme has to perform just a type cast.

public abstract class XQueryApplicator implements Applicator {

 public Object applyTransformer(Object inputScheme,
 TransformerDefinition transDef);

 public String generateXQuery(TransformerDefinition transDef);

 public Document executeXQuery(Document inputScheme, String xQuery);

 public abstract Document convertInputScheme(Object inputScheme);

 public abstract String translateFunction(FunctionConstructionExp exp);

}

Figure 6.6: Abstract class XQueryApplicator.

Each applicator has to provide a model-dependent plugin called functions executor that
executes model-dependent functions, like, for example function concat(). Abstract
method translateFunction represents this plugin for the XQueryApplicator. This
method takes a function construction expression in terms of JAVA as input and returns a
String that represents the respective function in terms of XQuery. Method
generateXQuery() calls method translateFunction each time a function construction

112 IMPLEMENTATION

expression is to be translated into terms of XQuery. This method has to be implemented by
each applicator at the model-dependent layer that extends class XQueryApplicator.

6.2.1.3 Interface Generator and implementing classes

Interface Generator provides methods describing model-independent processes generate
transformer and individualize transformer. Further, method interpret-

CustomizedDirectives() represents the equally named model-dependent process. This
interface is depicted in FIGURE 6.7.

The parameters of method interpretCustomizedDirectives() are of class Object, in
order to be generic. Again, the format of templates and extracted TBE-directives has to be
converted to corresponding JAVA representations. For example, method convert-
Template() takes a template in logical representation in any format as input and returns
the corresponding JAVA representation, i.e. a JAVA object of class Logical-

Representation.

public interface Generator {

 public TransformerDefinition generate(

 LogicalRepresentation qt,

 LogicalRepresentation gt,

 TBEDirectivesContainer tbeDirs);

 public void interpretCustomizedDirectives(

 Object queryTemplate,

 Object generativeTemplate,

 Object tbeDirs,

 Object customizedDirectives);

 public TBEDirectivesContainer convertTBEDirectives(Object tbeDirs);

 public LogicalRepresentation convertTemplate(Object template);

 public TransformerDefinition individualize(

 TransformerDefinition transDef,

 TBEDirectivesContainer tbeDirs);

}

Figure 6.7: Interface Generator.

TWO-LAYERED IMPLEMENTATION OF THE TBE-ENGINE 113

Class Generator allocated at the model-independent layer implements those methods of
interface Generator that describe model-independent processes, i.e. method generate()
and method individualize(). FIGURE 6.8 depicts this class.

The model-dependent methods are implemented by classes allocated at the model-
dependent layer. For example, class WebMLGenerator, implements the model-dependent
processes and the converter methods of interface Generator for modelling-language
WebML.

public abstract class Generator implements Generator {

 public TransformerDefinition generateTransformerDefinition(

 LogicalRepresentation queryTemplate,

 LogicalRepresentation generativeTemplate,

 TBEDirectivesContainer tbeDirs);

 public TransformerDefinition individualizeTransformerDefinition(

 TransformerDefinition transDef,

 TBEDirectivesContainer tbeDirs);

 public TBEDirectivesContainer convertTBEDirectives(Object tbeDirs);

}

Figure 6.8: Abstract class Generator.

6.2.2 Allocation of datastructure-implementations

This section describes the allocation of datastructure implementations to the
implementation layers of the TBE-engine. Again, implementations of model-independent
datastructures are provided at the model-independent layer and implementations of model-
dependent datastructures are provided at the model-dependent layer. FIGURE 6.9 gives an
overview of the various implementations.

At the model-independent layer of the TBE-engine, implementations of model-independent
datastructures are allocated, i.e. datastructures Logical Representation, Logical
Representation Specification and Transformer Definition.

All of these datastructures are implemented in terms of specifically designed JAVA classes
as demanded by model-independent processes. Further, datastructure Logical

114 IMPLEMENTATION

Representation is additionally implemented in terms of an XML-schema. This is because
model-independent process apply transformer is implemented using XQuery such that
the input and output of this process is a scheme's logical representation in terms of XML,
which is specified by this XML-schema.

Developers that extend the implementation of the TBE-engine in order to support TBE for
other modelling languages than WebML have to specify the logical representation of
schemes of the respective modelling language once. For this purpose an XML-schema is
provided that specifies the XML-representation of datastructure Logical

Representation Specification. Thus, developers can conveniently define the
specification of logical representations of schemes of the respective modelling language by
means of an XML document that adheres to the provided XML-schema. This XML
document is stored within the repository of the TBE-engine.

Model-Dependent
Layer

Model-Independent
Layer

Transformer Definition

Logical Representation

Logical Representation
Specification

XSD

Logical Representation

Logical Representation
Specification

C

C

C XSD

C XSDJAVA class XML schema

TBEDirectivesContainer

C

Figure 6.9: Allocation of datastructure-implementations.

For developing the model-dependent layer of the WebML TBE-engine no model-
dependent datastructures needed to be newly implemented for the following reasons. The
implementation of native schemes (templates) is provided by WebML by means of the
WebML.dtd that specifies the structure of WebML schemes. Further, for representing
customized-directive anchor a JAVA object of class String is used. Therefore no
additional implementation is required.

IMPLEMENTATION OF DATASTRUCTURES 115

6.3 Implementation of Datastructures

The implementations of datastructures are derived from the specification of the respective
datastructure in terms of UML class diagrams and OCL expressions, which have been
described in CHAPTER 5.

It is frequently required to violate some of the constraints specified for a datastructure
while processing the respective datastructure. Therefore, these datastructures are
implemented without considering the specified constraints. However, if it is desired to
validate the input or output of a process, the constraints specified for the respective
datastructure have to be fulfilled.

6.3.1 Datastructure Logical Representation Specification

This section describes the implementation of datastructure Logical Representation
Specification. SECTION 6.3.1.1 argues that the structure of the specification of the
logical representation of schemes, as specified by the architecture of the TBE-engine,
needs to be refined. SECTION 6.3.1.2 and SECTION 6.3.1.3 illustrate the implementation of
this datastructure in terms of specifically designed JAVA classes and in terms of an XML-
schema, respectively. SECTION 6.3.1.4 describes the specification of the logical
representation of WebML schemes, used within the TBE-engine.

6.3.1.1 Refinement of datastructure Logical Representation Specification

In order to perform a transformer application new universe members are generated as
specified by construction expressions attached to new-element variables. If a new-element
variable has a new construction expression attached, it is required to compute an identifier
for each universe member that is generated according to the respective new-element
variable.

EXAMPLE 6.1: Transformer IndexPCForET defines new-element variable PC_ID having
construction expression PC_ID = new (P) attached. Therefore, each time a new
page class is generated according to new-element variable PC_ID an identifier, like,
for example, page57, has to be computed.

116 IMPLEMENTATION

For computing identifiers of newly generated scheme elements some order is required. For
example, if the highest existing identifier of a page class is page56 the next identifier is
expected to be page57. In turn, it is required to know the structure of identifiers for
computing new identifiers. The EBNF expression depicted in FIGURE 4.1 specifies the
chosen structure of identifiers. The prefix and suffix of an identifier is some text. For
example, the prefix of identifiers of page classes is page. Between the prefix and the suffix
of identifiers an obligatory number is expected, which can be incremented in order to
compute new identifiers.

identifier := prefix number suffix.
prefix := string.
suffix := string.
number := ('0' ... '9') {'0' ... '9'}.
string := ('a' ... 'z' | 'A' ... 'Z' | ' ' | '-' | '$' | '_')
 {'a' ... 'z' | 'A' ... 'Z' | ' ' | '-' | '$' | '_'}.

Figure 6.10: Syntax of identifiers.

Since the structure of identifiers of scheme elements is equal for all scheme elements of
one sort the prefix and suffix of such identifiers can be specified for each sort of scheme
element. In order to store these prefixes and suffixes datastructure Logical

Representation Specification is refined in a way such that prefixes and suffixes are
regarded as properties of universes. FIGURE 6.11 depicts the refined datastructure Logical
Representation Specification.

*

relationName : String

Relation

modellingLanguage : String

LogicalRepresentationSpecification

universeName : String
prefix : String
suffix : String

Universe

1…*

attributeName : String

Attribute

*

*
a
ttrib

u
te

s

Figure 6.11: Refined datastructure LogicalRepresentationSpecification.

IMPLEMENTATION OF DATASTRUCTURES 117

EXAMPLE 6.2: Consider, for example, that it is to compute an identifier for a newly
generated page class. The domain of the new-element variable, which specifies the
generation of the respective page class, is page. The prefix and suffix of identifiers of
page classes can be looked up at the specification of the logical representation. In
turn, a new identifier can be computed by the previously described approach.

6.3.1.2 Implementation in terms of specifically designed JAVA classes

The JAVA classes, which are specifically designed for representing datastructure Logical
Representation Specification, are derived from the UML class diagram specifying
the respective datastructure. This UML class diagram is depicted in FIGURE 5.4. Each class
of the respective UML class diagram results in a corresponding JAVA class. In order to
express the properties and associations of classes specified in the respective UML class
diagram corresponding member variables and getter-methods and setter-methods are
developed.

public class LogicalRepresentationSpecification {

 public void setRelations(Collection relations);

 public Collection getRelations();

 public void setUniverses(Collection universes);

 public Collection getUniverses();

 public void setModellingLanguage(String language);

 public String getModellingLanguage();

 ..

}

Figure 6.12: Illustration of class LogicalRepresentationSpecification.

Thus, datastructure Logical Representation Specification is represented by JAVA
classes LogicalRepresentationSpecification, Universe, Relation and Attribute.
FIGURE 6.12 illustrates the method signatures of class LogicalRepresen-

tationSpecification.

118 IMPLEMENTATION

6.3.1.3 Implementation in terms of an XML-schema

The XML-schema representing datastructure Logical Representation Specification
is again derived from the UML class-diagram specifying this datastructure. The resulting
XML-schema is depicted in FIGURE 6.13.

 1 <xs:schema>
 2 <xs:element name="LogicalRepresentationSpecification"
 3 type="LogicalRepresentationSpecificationType"/>
 4
 5 <xs:complexType name="LogicalRepresentationSpecificationType">
 6 <xs:sequence>
 7 <xs:element name="Universe" type="UniverseType"/>
 8 <xs:element name="Relation" type="RelationType">
 9 </xs:sequence>
10 <xs:attribute name="modellingLanguage" type="xs:string" use="required"/>
11 </xs:complexType>
12
13 <xs:complexType name="RelationType">
14 <xs:sequence>
15 <xs:element name="Attribute" type="AttributeType"/>
16 </xs:sequence>
17 <xs:attribute name="name" type="xs:string" use="required"/>
18 </xs:complexType>
19
20 <xs:complexType name="AttributeType">
21 <xs:attribute name="name" type="xs:string" use="required"/>
22 <xs:attribute name="universe" type="xs:string" use="required"/>
23 </xs:complexType>
24
25 <xs:complexType name="UniverseType" abstract="true">
26 <xs:attribute name="name" type="xs:string" use="required"/>
27 <xs:attribute name="prefix" type="xs:string" use="optional"/>
28 <xs:attribute name="suffix" type="xs:string" use="optional"/>
29 </xs:complexType>
30 </xs:schema>

Figure 6.13: XML-schema specifying datastructure LogicalRepresentationSpecification.

Each class of this UML class-diagram is represented by a corresponding XML-schema
type. For example, UML class LogicalRepresentationSpecification is represented by
the equally named XML-schema type depicted in LINE 2 of FIGURE 6.13. Further,
properties of UML classes are expressed as XML-schema attributes within the
corresponding XML-schema type. For example, XML-schema attribute
modellingLanguage depicted in LINE 10 of FIGURE 6.13 represents property
modellingLanguage of UML class LogicalRepresentationSpecification.

IMPLEMENTATION OF DATASTRUCTURES 119

6.3.1.4 The specification of the logical representation of WebML schemes

The design of relations is basically affected by the requirement to keep the size of a
scheme's logical representation in terms of XML small. The effect of the design of
relations to the size of a scheme's logical representation in terms of XML is that the
number of designed relations determines the number of relation members, required for
representing the connections between scheme elements of a certain scheme. In turn, the
number of relation members effects the size of the scheme's logical representation in terms
of XML, i.e. the more relation members the bigger the size of the scheme's logical
representation in terms of XML.

The requirement to keep the size of a scheme's logical representation in terms of XML as
small as possible arises since the execution time of a transformer application depends on
the size of the input scheme's logical representation in terms of XML. This is since an
XQuery engine performs the transformer applications and the larger the input scheme's
logical representation in terms of XML the longer the execution time of the XQuery
statement, representing the respective transformer.

SECTION 6.3.1.4.1 introduces merged relations, i.e. relations that keep the size of a
scheme's logical representation in terms of XML small. SECTION 6.3.1.4.2 introduce a
guideline to the design of the logical representation of WebML schemes and illustrates the
chosen design.

6.3.1.4.1 Merged relations

A straightforward approach to the design of relations is to design one separate relation for
each connection between scheme elements. The drawback of this approach is that it results
in a large number of relation members, i.e. a large input scheme, which is not intended as
discussed in the previous section. Therefore merged relations are introduced, i.e. relations
that represent more than one connection between scheme elements.

Example 6.3: This example illustrates how several connections are represented by one
merged relation. The connection between entity types and their names and the
connection between entity types and their super entity types are used for the purpose
of illustration.

120 IMPLEMENTATION

TABLE 6.1 depicts relations name(E × N) and superEntityType(E × N), which
result from designing separate relations for the respective connections, in the upper
left corner. The semantics of these relations is self-explanatory and therefore not
further described. The bottom left corner of TABLE 6.1 depicts merged relation
entity (E × N × E). This merged relation expresses that every entity type may
have a name and a super entity type. The right hand side of TABLE 6.1 depicts
relation members that are required for representing the connections of entity type
Author from the CMA example to its name and super entity type. In the upper right
corner of TABLE 6.1 the relation members are depicted, which are required for
representing the particular connections if one relation is designed per connection
that represents the respective connection. In the bottom right corner of TABLE 6.1 the
merged relation member is depicted that represents the same connections.

Instead of two relation members and four attribute instances only one relation
member and three attributes are required if a merged relation is designed.

 Relations Relation members

separate name(E × N)

superEntityType(E × E)

name〈ent2, Author〉

superEntity〈ent2, User〉

merged

entityType(E × N × E) entityType〈ent2, Author, User〉

Table 6.1: Separate relations versus merged relations.

6.3.1.4.2 Guideline to the design of the logical representation of WebML schemes

WebML defines numerous sorts of scheme elements. Since this diploma thesis aims at a
prototype implementation of TBE for WebML, only a subset of all WebML scheme
elements is represented by individual universes and relations. In particular, individual
universes and relations have been designed for the sorts of WebML scheme elements
required for structure modelling and hypertext modelling. All other sorts of WebML
scheme elements are represented by a dummy universe, i.e. universe Dummy.

IMPLEMENTATION OF DATASTRUCTURES 121

For designing the logical representation of WebML schemes the following guideline has
been developed:

• For each sort of WebML scheme elements like, for example, entity types, page
classes or attributes of entity types, one universe is designed.

• For each property of a particular sort of WebML scheme elements like, for example
names of entity types or names of attributes, one universe is designed.

• For each sort of WebML scheme elements a merged relation is designed that
represents the connections between the respective sort of WebML scheme elements
and its properties, like, for example names of entity types.

• Merged relations, designed for a particular sort of WebML scheme elements, are
extended in order to represent additional connections, like, for example the
connection between an attribute of an entity type to the entity type it is defined at.

Applying the guideline to the design of the logical representation of WebML schemes
achieves that only one relation is required for representing the connections of a particular
WebML scheme element. Thus, the chosen design positively effects the duration of
transformer applications, since few relation members are required for representing a
particular scheme and thus the size of the input scheme's logical representation in terms of
XML is kept small.

Merged Relation WebML DTD fragment specifying
attributes of entity types Relation Universe

<!ATTLIST ATTRIBUTE attribute (

 id ID #REQUIRED attribute Attribute

 name CDATA #IMPLIED name Name

 type (String|Number|...) #IMPLIED type Dummy

 ...

 definedAt EntityType

>)

Table 6.2: Design of merged relations.

EXAMPLE 6.4: The left hand side of TABLE 6.2 depicts the WebML DTD fragment that
specifies the properties of attributes of entity types. The right hand side of TABLE 6.2
depicts the merged relation attribute(Attribute, Name, Dummy EntityType)

122 IMPLEMENTATION

that represents the connections between properties of attributes of entity types and
the respective attribute itself. For example, the connection between the name of an
attribute of an entity type and the attribute itself is represented by attribute name.
Further, the merged relation represents the connection between attributes of entity
types and the respective entity type they are defined at. This connection is
represented by attribute definedAt.

APPENDIX A lists all merged relations designed for representing WebML schemes.
EXAMPLE 6.5 illustrates the design of universes and relations. The complete specification
of the logical representation of WebML schemes in terms of XML is listed in APPENDIX B.

<LogicalRepresentationSpecification modellingLanguage="WebML">
 <Universe name="Name" prefix="name"/>
 <Universe name="Attribute" prefix="att"/>
 <Universe name="EntityType" prefix="ent"/>
 ...
 <Relation name="attribute">

 <Attribute name="attribute" universe="Attribute"/>
 <Attribute name="name" universe="Name"/>

 <Attribute name="definedAt" universe="Entity"/>
 </Relation>
 ...
</LogicalRepresentationSpecification>

Figure 6.14: Fragment of the specification of the logical representation of WebML schemes in terms of XML.

EXAMPLE 6.5: FIGURE 6.14 depicts a fragment of the specification of the logical
representation of WebML schemes in terms of XML, which specifies (i) the merged
relation designed for connections of attributes of entity types and (ii) the universes
that represent attributes of entity types and their properties.

6.3.2 Datastructure Logical Representation

Datastructure Logical Representation is implemented (i) in terms of specifically
designed JAVA classes and (ii) in terms of an XML-schema. The XML-schema
representing datastructure Logical Representation is again derived from the UML
class-diagram specifying this datastructure. FIGURE 6.15 depicts the resulting XML-
schema. Each class of this UML class-diagram is represented by a corresponding XML-
schema type. For example, UML class LogicalRepresentation is represented by the
equally named XML-schema type depicted in LINE 2 of FIGURE 6.15. Further, properties of
UML classes are again expressed by XML-schema attributes within the corresponding
XML-schema type.

IMPLEMENTATION OF DATASTRUCTURES 123

 1 <xs:schema >
 2 <xs:element name="LR" type="LogicalRepresentationType"/>
 3
 4 <xs:complexType name="LogicalRepresentationType">
 5 <xs:sequence>
 6 <xs:element name="RM" type="RelationMemberType"/>
 7 <xs:element name="UM" type="UniverseMemberType"/>
 8 </xs:sequence>
 9 </xs:complexType>
10
11 <xs:complexType name="UniverseMemberType">
12 <xs:attribute name="id" type="xs:string" use="required"/>
13 <xs:attribute name="domain" type="xs:string" use="required"/>
14 </xs:complexType>
15
16 <xs:complexType name="RelationMemberType">
17 <xs:sequence>
18 <xs:element name="AI" type="AttributeInstanceType"/>
19 </xs:sequence>
20 <xs:attribute name="sig" type="xs:string" use="required"/>
21 </xs:complexType>
22
23 <xs:complexType name="AttributeInstanceType">
24 <xs:attribute name="att" type="xs:string" use="required"/>
25 <xs:attribute name="id" type="xs:string" use="required"/>
26 </xs:complexType>
27 </xs:schema>

Figure 6.15: XML-schema specifying datastructure Logical Representation.

The JAVA classes, which are specifically designed for representing datastructure Logical
Representation are again derived from the UML class diagram specifying the respective
datastructure. Each class of the respective UML class-diagram results in a corresponding
JAVA class. In order to express the properties and associations of classes specified in the
respective UML class-diagram again corresponding member variables, getter-methods and
setter-methods are defined.

public class LogicalRepresentation {

 public void setRelationMembers(Collection relations);

 public Collection getRelationMembers();

 public void setUniverseMembers(Collection universes);

 public Collection getUniverseMembers();

 ...

}

Figure 6.16: Illustration of class LogicalRepresentation.

124 IMPLEMENTATION

Thus, datastructure Logical Representation is represented by JAVA classes
LogicalRepresentation, UniverseMember, RelationMember and AttributeIntance.
FIGURE 6.16 illustrates the method signatures of class LogicalRepresentation.

6.3.3 Datastructure Transformer Definition

Datastructure Transformer Definition is implemented in terms of specifically designed
JAVA classes. The derivation of these JAVA classes from the respective UML class-
diagram is analogous to the derivation of JAVA classes representing datastructures
Logical Representation and Logical Representation Specification.

public class TransformerDefinition {

 public void setQueryTemplate(QueryTemplate qt);

 public QueryTemplate getQueryTemplate();

 public void setGenerativeTemplate(GenerativeTemplate qt);

 public GenerativeTemplate getGenerativeTemplate();

 ...

}

Figure 6.17: Illustration of class TransformerDefinition.

Datastructure Transformer definition is basically represented by classes
TransformerDefinition, QueryTemplate and GenerativeTemplate. However, for
representing a query template or a generative template additional classes were developed.
For example, comparison constraints are represented by class ComparisonConstraint.
FIGURE 6.17 illustrates the method signatures of class TransformerDefinition.

6.3.4 Datastructure TBE-Directives

Datastructure TBE-directives is implemented in terms of specifically designed JAVA
classes. Class TBEDirectivesContainer is used for storing the TBE-directives of a
scheme or transformer definition. FIGURE 6.18 depicts the method signatures of class
TBEDirectivesContainer.

TBE-directives tag parameter variable and tag result variable are represented by
ordinary Strings. Therefore class TBEDirectivesContainer provides collections for

IMPLEMENTATION OF PROCESSES 125

storing the names of variables that are tagged as parameter variables or result variables.
FIGURE 6.18 depicts the corresponding getter-methods and setter-methods.

public class TBEDirectivesContainer {

 public void addParameterVariableName(String variableName);

 public Collection getParameterVariableName();

 public void addResultVariableName(String variableName);

 public Collection getResultVariableName();

 public void addConstraint(Constraint constraint);

 public Collection getConstraints();

 public void addConstructionExpression(ConstructionExpression exp);

 public Collection getConstructionExpressions();

 ...

}

Figure 6.18: Illustration of class TBEDirectivesContainer.

Further, class TBEDirectivesContainer provides for storing collections of constraints
and construction expressions, i.e. for storing JAVA objects representing directives
constraint and construction expression. Again, FIGURE 6.18 depicts the
corresponding getter-methods and setter-methods.

The specifically designed JAVA classes representing directives constraint and
construction expressions are derived from the UML-class diagrams that specify the
structure of constraints and construction expressions, respectively. Since datastructure
Transformer Definition specifies the structure of constraints and construction
expressions, the corresponding JAVA classes are comprised within the implementation of
datastructure Transformer Definition. These JAVA classes are reused for representing
TBE-directives constraint and construction expression.

6.4 Implementation of Processes

This section describes the implementation of processes. The running example of
transformer IndexPCForET and its application to the CMA scheme is used for illustrating the
inputs and outputs of the processes.

126 IMPLEMENTATION

SECTION 6.4.2 describes the processes for compiling the definition of transformer
IndexPCForET in notation of WebML to a corresponding transformer definition in terms of
TBE. SECTION 6.4.3 describes processes for performing the application of transformer
IndexPCForET to the CMA scheme.

Before these processes are described, SECTION 6.4.1 introduces a compressed logical
representation of WebML schemes.

6.4.1 Compressed logical representations of schemes

In SECTION 6.3.1.4 it has been argued that the duration of a transformer application
depends on the size of the input scheme's logical representation in terms of XML.

For reducing the size of a scheme's logical representation in terms of XML, a compressed
logical representation of schemes is introduced that does not materialize universe
members.

<UM id="ent2" domain="Entity"/>
<UM id="Author" domain="Name"/>

<RM sig="entity">
 <AI att="entity" id="ent2">
 <AI att="name" id="Author">
</RM>

 <RM sig="entity">
 <AI att="entity" id="ent2">
 <AI att="name" id="Author">
 </RM>

Figure 6.19: Illustration of the compressed logical representations of schemes.

EXAMPLE 6.6: The left hand side of FIGURE 6.19 depicts the logical representation of entity
type Author. The universe members and relation members are self-explanatory. The
right hand side of FIGURE 6.19 depicts the compressed logical representation of
entity type Author, i.e. universe members are not materialized.

Clearly the size of a scheme's compressed logical representation is always smaller than the
size of the scheme's (conventional) logical representation, since universe members are not
materialized.

Although universe members are not materialized, they are virtually represented since they
are referenced from attribute instances. Thus, it is possible to reconstruct universe
members on basis of a scheme's compressed logical representation. For reconstructing

IMPLEMENTATION OF PROCESSES 127

universe members the specification of the logical representation of the respective scheme is
required. EXAMPLE 6.7 illustrates how universe members are reconstructed.

<RM sig="entity">
 <AI att="entity" id="ent2">
 <AI att="name" id="Author">
</RM>

 <Relation name="entity">
 <Attribute name="entity" universe="Entity">
 <Atribute name="name" universe="Name">
 </Relation>

Figure 6.20: Reconstructing universe members.

EXAMPLE 6.7: The left hand side of FIGURE 6.20 depicts the compressed logical
representation of entity type Author, i.e. the relation member that represents the
connection between entity type Author and its name. The right hand side of FIGURE

6.20 depicts the signature of this relation member. Since the signature of relation
member entity specifies that attribute entity references a member of universe
Entity, it can be reconstructed, that a universe member with identifier ent2 of
universe Entity exists. Analogous it can be reconstructed that a universe member
with identifier Author of universe Name exists.

The processes of the TBE-engine are implemented with regard to use compressed logical
representations of schemes.

6.4.2 Processes for compiling transformer definitions

This section describes the processes for compiling the definition of transformer
IndexPCForET in notation of WebML to a corresponding transformer definition in terms of
TBE.

6.4.2.1 Mapping schemes to their logical representation

This section illustrates process to logical representation. Besides mapping a scheme
(template) in notation of WebML to its compressed logical representation, this process also
resolves aliases for non-editable properties of WebML scheme elements.

Two XSLT stylesheets implement process to logical representation: The first stylesheet,
called pre-mapper, resolves aliases as illustrated in EXAMPLE 6.8. The second stylesheet,
called main-mapper performs the actual mapping as illustrated in EXAMPLE 6.9.

128 IMPLEMENTATION

Example 6.8: The upper part of FIGURE 6.21 shows variables ENT, ENT_ID and ATT_ID in
notation of WebML. For a complete listing of transformer IndexPCForET’s query
template and generative template in notation of WebML confer to APPENDIX C. and
APPENDIX D, respectively. Entity type ent1 represents variables ENT and ENT_ID as
well as attribute att2 represents variable ATT_ID. Further, property scheme
elements prop1 and prop2 represent customized-directives that specify aliases for
the identifier property of entity type ent1 and attribute att2, respectively. The lower
part of FIGURE 6.21 depicts again variables ENT, ENT_ID and ATT_ID but with
resolved aliases, i.e. the result of applying the pre-mapper is shown. The identifier
property of the entity type is now $ENT_ID. Thereby, the preceding dollars sign
denotes that variable ENT_ID is a result variable. Consequently the identifier
property of former attribute att2 is now ATT_ID.

Figure 6.21: Variables ENT, ENT_ID and ATT_ID in notation of WebML (top) and
resolved aliases (bottom).

EXAMPLE 6.9: The upper part of FIGURE 6.22 shows the fragment of transformer
IndexPCForET's query template in notation of WebML, which represents variables
ENT_ID, ENT and ATT_ID. The lower part of this figure shows the logical
representation of the same fragment of transformer IndexPCForET's query template
in terms of XML, which results from applying the main-mapper. Thereby, universe
members are not generated but referenced from the attribute instances of the
resulting relation members. The first relation member has signature entity and
represents therefore the connections of the entity type, depicted in the upper part of
FIGURE 6.22. Consequently, attribute instances entity and name represent
properties id and name of this entity type, respectively. The second relation member
is interpreted analogously. APPENDIX E and APPENDIX F list the complete logical

<ENTITY id="ent1" name="$ENT">

 <ATTRIBUTE id="att2">

 <PROPERTY id="prop2" name="Identifier – ATT_ID" value="alias:"/>

 </ATTRIBUTE>

 <PROPERTY id="prop1" name="Identifier – $ENT_ID" value="alias:"/>

</ENTITY>

<ENTITY id="$ENT_ID" name="$ENT">

 <ATTRIBUTE id="ATT_ID"/>

</ENTITY>

IMPLEMENTATION OF PROCESSES 129

representations of transformer IndexPCForET's generative template and query
template, respectively.

<ENTITY id="$ENT_ID" name="$ENT">

 <ATTRIBUTE id="ATT_ID"/>

</ENTITY>

<RM sig="entity">

 <AI att="entity" id="ENT_ID"/>

 <AI att="name" id="ENT"/>

</RM>

<RM sig="attribute">

 <AI att="definedAt" id="ENT_ID"/>

 <AI att="attribute" id="ATT_ID"/>

</RM>

Figure 6.22: Fragment of the query template of transformer IndexPCForET
in notation of WebML (top) and its logical representation (bottom).

6.4.2.2 Extracting TBE-directives

This section illustrates process extract TBE directives. Extracting TBE-directives
comprises two steps. First the TBE-directives in textual form are filtered out of the
respective scheme or template. Then the JAVA representations of these TBE-directives are
generated by means of EBNF grammar parsing. The result, i.e. a TBEDirectives-
Container is finally returned by process extract TBE directives.

<ENTITY id="$ENT_ID" name="$ENT"/>

<PROPERTY id="prop3" name="PC=concat(ENT,'Page');" value="expression:"/>

<PROPERTY id="prop4" name="IU=concat(ENT,'List');" value="expression:"/>

parameter_variable:ENT_ID;

parameter_variable:ENT;

construction_expression:PC=concat(ENT,'Page');

construction_expression:IU=concat(ENT,'List');

Figure 6.23: TBE-directives in notation of WebML (top) and their textual representation (bottom)

The XSLT stylesheet used for extracting TBE-directives is subsequently called
TBEDirectivesExtractor. The EBNF grammar parser used for generating the JAVA
representations of the extracted TBE-directives is subsequently called TBEDirectives-

130 IMPLEMENTATION

Parser. This EBNF grammar parser was generated by AntLR [antlr04], which is an EBNF
parser generator.

EXAMPLE 6.10: The upper part of FIGURE 6.23 depicts a fragment of transformer
IndexPCForET´s generative template in notation of WebML. The first line depicts
variables ENT_ID and ENT, which are parameter variables as denoted by the
preceding dollars sign. The first and the second line depicted in the lower part of
FIGURE 6.23 shows the respective TBE-directives that are extracted by applying the
TBEDirectivesExtractor. The textual representations of construction expressions,
depicted in the third and fourth line of the lower part of FIGURE 6.23 are generated
analogously. After the application of the TBEDirectivesExtractor, the
TBEDirectivesContainer is filled with the JAVA representations of these textual
TBE-directives via invoking the TBEDirectivesParser.

6.4.2.3 Extracting customized-directives

This section illustrates process extract customized directives. The XSLT stylesheet
used for extracting customized-directives is subsequently called Customized-

DirectivesExtractor.

The CustomizedDirectivesExtractor filters out customized-directive anchor, which is
annotated to the generative template. The JAVA representation of directive anchor is a
simple String that represents the identifier of the scheme element that is used as the
anchor within the respective generative template. This String is finally returned by process
extract customized directives.

<PROPERTY id="prop4" name="ENT_ID;" value="anchor:"/>

anchor:ENT_ID;

Figure 6.24: Customized-directive anchor in notation of WebML (top)
and its textual representation (bottom).

Customized-directives that specify aliases for non-editable properties of WebML scheme
elements are not filtered out by this process, since aliases are immediately resolved by
process to logical representation. This has already been discussed in SECTION 6.4.2.1.

IMPLEMENTATION OF PROCESSES 131

EXAMPLE 6.11: The upper part of FIGURE 6.24 depicts directive anchor as it is defined in
the generative template of transformer IndexPCForET in notation of WebML. The
CustomizedDirectivesExtractor filters out the textual representation of the
anchor directive, which is depicted in the lower part of FIGURE 6.24.

6.4.2.4 Interpreting customized-directives

This section illustrates the implementation of process interpret customized

directives, i.e. directives anchor and alias. Process to logical representation resolves
aliases for non-editable properties of scheme elements as illustrated in SECTION 6.4.2.1.
Therefore, the remainder of this section deals with interpreting customized-directive
anchor.

SECTION 4.2.2 has introduced the basic idea of arranging new scheme elements in relation
to the anchor by means of implicitly generating new coordinates for such scheme elements.
In order to implicitly generate new coordinates, the templates of a particular transformer
additionally define variables and construction expressions as follows:

• Variables representing the anchor's coordinates: In order to compute the
coordinates of new scheme elements in relation to the coordinates of the anchor,
the generative template requires the anchor's coordinates. Therefore, the query
template additionally defines two result variables that represent the x-coordinate
and the y-coordinate of the anchor scheme element, respectively. Analogous, the
generative template additionally defines parameter variables corresponding to
these result variables such that the anchor's coordinates retrieved by the query
template get passed to the generative template.

• Variables representing new coordinates: In order to generate new coordinates for
a new scheme element, the generative template additionally defines one new-
element variable per coordinate that is to be generated. Further, each such new-
element variable has a construction expression attached that specifies the
computation of the coordinate.

132 IMPLEMENTATION

30

20 PC

50

20$ENT

PC_X = ANCH_X + (50 - 30)

PC_Y = ANCH_Y + (20 - 20)

 PC

$ANCH_X

$ANCH_Y

PC_X

PC_Y$ENT

Figure 6.25: New-element variables and construction expressions for generating coordinates
of new scheme elements.

EXAMPLE 6.12: The upper part of FIGURE 6.25 depicts the generative template of
transformer IndexPCForET in graphical notation. For reasons of conciseness
details like, for example, attributes of entity types are neglected. Within transformer
IndexPCForET the scheme element identified by ENT_ID is marked as anchor.
Therefore the entity type represented by result variable ENT is the anchor within
transformer IndexPCForET. This entity type has position (20/30) in the generative
template. The page class represented by new-element variable PC has position
(20/50).

Generating the coordinates of new page classes requires to replace the concrete
coordinates of new-element variable PC with variables. The lower part of FIGURE

6.25 depicts again transformer IndexPCForET's generative template. Yet, variable
PC_X and variable PC_Y replace the concrete x-coordinate and y-coordinate of the
page class represented by new-element variable PC, respectively. Analogous,
variable ANCH_X and ANCH_Y replace the concrete x-coordinate and y-coordinate
of the entity type, which is the anchor within the generative template, respectively.
Further, the construction expressions for new-element variables PC_X and PC_Y
are depicted in the lower part of FIGURE 6.25. These construction expressions are
defined such that at application time a newly generated page class will be arranged
relatively to the entity type in the same way as page class PC in the generative
template is arranged relatively to entity type ENT.

Process interpret customized directives does not generate variables and
construction expressions directly. Instead, this process adapts the query template and

IMPLEMENTATION OF PROCESSES 133

generative template, both in logical representation, and the TBE-directives in such a
manner that the subsequent process generate transformer will generate these variables
and construction expressions. EXAMPLE 6.13 illustrates how process interpret

customized directives prepares the generation of variables representing the anchor's
coordinates. EXAMPLE 6.14 illustrates how process interpret customized directives
prepares the generation of variables representing the coordinates of new scheme elements.

<RM sig="EntityPos">
 <AI att="element" id="ENT_ID"/>
 <AI att ="X_Coord" id="30"/>
 <AI att ="y_Coord" id="20"/>
</RM>

<RM sig="EntityPos">
 <AI att="element" id="ENT_ID"/>
 <AI att="X_Coord" id="ANCH_X"/>
 <AI att="y_Coord" id="ANCH_Y"/>
</RM>

Figure 6.26: Preparing the generation of variables ANCH_X and ANCH_Y.

EXAMPLE 6.13: Process interpret customized directives prepares the generation
of parameter variables representing the anchor's coordinates in the following two
steps: (1) the concrete x-coordinate and y-coordinate of the anchor scheme element
are identified within the generative template's logical representation. (2) The
concrete values are replaced by variable names "ANCH_X" and "ANCH_Y",
respectively. The result of step 1 and step 2 is shown in the upper and in the lower
part of FIGURE 6.26, respectively. Note that the concrete coordinates are temporarily
stored as they are required for deriving the construction expressions defining the
coordinates of newly generated scheme elements as described in EXAMPLE 6.14.

<RM sig="PagePos">
 <AI att="element" id="PC_ID"/>
 <AI att="X_Coord" id="50"/>
 <AI att="y_Coord" id="20"/>
</RM>

<RM sig="EntityPos">
 <AI att="element" id="PC_ID"/>
 <AI att="X_Coord" id="PC_X"/>
 <AI att="y_Coord" id="PC_Y "/>
</RM>

Figure 6.27: Preparation the generation of new-element variables for coordinates.

134 IMPLEMENTATION

EXAMPLE 6.14: Process interpret customized directives prepares the generation
of new-element variables representing the coordinates of new scheme elements in the
following three steps: (1) the concrete x-coordinate and y-coordinate of scheme
elements representing new-element variables are identified within the generative
template's logical representation. The upper part of FIGURE 6.27 depicts the
coordinates of page class PC_ID in logical representation, which represents the
equally named new-element variable. (2) The concrete values are replaced by
corresponding variable names, e.g. "PC_X" and "PC_Y" as depicted in the lower
part of FIGURE 6.27 (3) Corresponding construction expressions are added to the
TBEDirectivesContainer by means of JAVA objects, e.g. construction expressions
PC_X = ANCH_X + (50 - 30) and PC_Y = ANCH_Y + (20 – 20).

6.4.2.5 Generating a transformer definition in terms of TBE

This section illustrates the implementation of model-independent process generate
transformer. Again, an XML representation of datastructure Transformer Definition
is used for the purpose of illustration. Note, however, that the TBE-engine works with
JAVA representations of datastructure Transformer Definitions.

SECTION 6.4.2.5.1 illustrates the generation of the query template of transformer
IndexPCForET. SECTON 6.4.2.5.2 illustrates the generation of the generative template of
transformer IndexPCForET.

6.4.2.5.1 Generating the query template

For generating a transformer's query template the relation members comprised within the
template's compressed logical representation are iterated.

Within each iteration step the following TBE-constructs are generated and added to the
query template: (1) variables are generated according to the universe members (virtually)
represented by the respective relation member. (2) a membership constraint is generated
according to the respective relation member.

Finally, JAVA representations of comparison constraints and those of complex constraints,
stored within the TBEDirectivesContainer, are added to the query template.

IMPLEMENTATION OF PROCESSES 135

<RM sig="entity">

 <AI att="entity" id="ENT_ID"/>

 <AI att="name" id="ENT"/>

</RM>

<ResultVariable name="ENT_ID" domain="Entity">

<ResultVariable name="ENT " domain="Name">

Figure 6.28: Generating variables.

EXAMPLE 6.15: The upper part of FIGURE 6.29 depicts the relation member representing
the connection of entity type ENT_ID to its name ENT. When this relation member is
processed, variables ENT_ID and ENT are generated. Thereby, both variables are
result variables since corresponding TBE-directives are specified, as shown in the
previous section. Further result variable ENT_ID has domain Entity. The domain of
a result variable is determined analogous to the determination of the universe when
a universe member is reconstructed. The reconstruction of universe members by
means of analyzing the specification of the logical representation of schemes has
been explained in the SECTION 6.4.1.

<RM sig="entity">

 <AI att="entity" id="ENT_ID"/>

 <AI att="name" id="ENT"/>

</RM>

<MembershipConstraint sig="Entity">

 <Assignment att="entity" var="ENT_ID"/>

 <Assignment att="name" var="ENT"/>

</MembershipConstraint>

Figure 6.29: Generating membership constraints.

EXAMPLE 6.16: The upper part of FIGURE 6.29 depicts a relation member. The lower part
of this figure depicts the membership constraint that is generated according to the
particular relation member.

6.4.2.5.2 Generating the generative template

The generation of the generative template is analogous to the generation of the query
template. The difference is, that instead of result variables and non-result variables,

136 IMPLEMENTATION

parameter variables and new-element variables are generated, respectively. Further, instead
of membership constraints, relation constructors are generated. FIGURE 6.30 depicts a
relation constructor in the lower part that is generated according to the relation member
depicted in the upper part.

<RM sig="page">

 <AI att="page" id="PC_ID"/>

 <AI att="name" id="PC"/>

</RM>

<RelationConstructor sig="page">

 <Assignment att="page" var="PC_ID"/>

 <Assignment att="name" var="PC"/>

</MembershipConstraint>

Figure 6.30: Generating relation constructors.

For generating new-element variables, the corresponding construction expressions have to
be generated too. EXAMPLE 6.17 illustrates the generation of new-element variables.

<RM sig="page">

 <AI att="page" id="PC_ID"/>

 <AI att="name" id="PC"/>

</RM>

<NewElementVariable name="PC_ID" domain="Page">

 </New>

</NewElementVariable>

<NewElementVariable name="PC " domain="Name">

 <Function name="concat">

 <Argument type="ParameterVariable" val="ENT"/>

 <Argument type="LiteralValue" val="Page"/>

 </Function>

</NewElementVariable>

Figure 6.31: Generating new-element variables.

EXAMPLE 6.17: The lower part of FIGURE 6.31 depicts new-element variables that are
generated on basis of the relation member depicted in the upper part of FIGURE 6.31.
Thereby, for new-element variable PC_ID a new construction expression is implicitly
generated, since no other construction expression is specified by means of TBE-
directives. In contrast, for new-element variable PC a function construction

IMPLEMENTATION OF PROCESSES 137

expression is specified by means of TBE-directives. Therefore, this function
construction expression is attached to new-element variable PC.

6.4.3 Processes for applying transformers

This section describes the implementation of processes for performing transformer
applications. Processes to logical representation and extract TBE directives
have already been described in the previous section. Therefore, this section only explains
processes individualize transformer, apply transformer and to native

representation.

6.4.3.1 Individualizing the transformer definition

This section describes process individualize transformer. The input for this process is
a Transformer Definition in terms of TBE and a TBEDirectives-Container that
stores the JAVA representations of application specific-constraints and application-specific
construction expressions. The application-specific constraints and application-specific
construction expressions are inserted into the transformer definition and afterwards passed
to process apply transformer.

<TransformerDefinition name="IndexPCForET">

 <QueryTemplate>

 ...

 <ComplexConstraint logCon="or">

 <ComparisonConstraint var="ENT" litVal="Paper" op="not equals"/>

 <ComparisonConstraint var="ENT" litVal="Author" op="not equals"/>

 </ComplexConstraint>

 </QueryTemplate>

 ...

</TransformerDefinition>

Figure 6.32: Individualized definition of transformer IndexPCForET.

EXAMPLE 6.18: The application of transformer IndexPCForET to the CMA scheme is
individualized by application-specific constraint or((ENT != 'Paper'), (ENT !=
'Author')). This application-specific constraint is extracted by process Extract
TBE Directives and passed to process Individualize Transformer in terms of

138 IMPLEMENTATION

JAVA objects stored within the TBEDirectivesContainer. FIGURE 6.32 illustrates
the definition of transformer IndexPCForET after this individualization.

6.4.3.2 Performing the transformer application

The TBE-engine performs the application of a transformer by generating an XQuery
statement on basis of an individualized transformer definition in terms of TBE. The choice
of XQuery, as the language for expressing transformer definitions, has been discussed in
SECTION 6.1.2. Then, the TBE-engine executes this XQuery statement on the input
scheme's logical representation. Thus, the input of process apply transformer is (i) an
individualized transformer definition in terms of TBE represented by specific JAVA
objects and (ii) the input scheme in logical representation in terms of XML. The output of
process apply transformer is the logical representation of the output scheme, again in terms
of XML.

The remainder of this section illustrates the XQuery statement that expresses the
individualized definition of transformer IndexPCForET, which is simply referred to as the
XQuery statement subsequently. Of course, the result of the execution of this XQuery
statement to the logical representation of the CMA scheme, i.e. the output of process
apply transformer, is illustrated as well.

The XQuery statement is basically separated into the Helper Variables Section, the
Query Template Section and the Generative Template Section, as illustrated in
FIGURE 6.33. Each of these sections is explained in the following.

The helper variables section is used for declaring XQuery-variables that are required
in either of the subsequent sections. Since the input scheme's logical representation is
compressed, i.e. universe members are not separately represented, the universe members,
which are required in the query template section or the generative template

section need to be reconstructed on basis of the relation members, comprised within the
input scheme's logical representation. Therefore, one helper XQuery-variable is declared
for each sort of universe members, which is required within either of the subsequent
sections, that represents all universe members of the respective sort.

IMPLEMENTATION OF PROCESSES 139

Helper Variables Section
 1 let $inputLR := input()/LR,

 2 $inputRM := $inputLR/RM,

 3 $rEntity := $inputRM[@sig eq 'Entity'],

 4 $uEntity := distinct-values(

 5 $inputRM[@sig eq 'Entity']/AI[@att eq 'entity']/@id union

 6 $inputRM[@sig eq 'Attribute']/AI[@att eq 'definedAt']/@id ...),

 7 $uPage := ...,

 8 $uName := ...,

Query Template Section
 9 $QTRes := (

10 for $ENT in $uName,

11 $ENT_ID in $uEntity

12 where (exists(

13 for $rEntity_ in $rEntity

14 where $rEntity_/AI[@att eq 'entity' and @id eq $ENT_ID] and

15 $rEntity_/AI[@att eq 'name' and @id eq $ENT]

16 return $rEntity_)

17) and

18 (($ENT eq 'Paper') or ($ENT eq 'Author'))

19 return <tuple>

20 <ENT>{$ENT}</ENT>

21 <ENT_ID>{$ENT_ID}</ENT_ID>

22 </tuple>

23)

Generative Template Section
24 return <LR> {

25 let $hPage := max(for $id in $uPage

26 return substring-after($id, 'page')),

27 $GTRes := (

28 for $counter in 1 to count($QTRes/tuple)

29 let $ENT := data(item-at($QTRes/tuple,$counter)/ENT),

30 $ENT_ID := data(item-at($QTRes/tuple,$counter)/ENT_ID),

31 $PC_ID := concat('page', string($hPage+1+(1*($counter-1)))),

32 $PCN := concat($ENT ,'Page'),

33 return <RM sig="Page">

34 <AI att="page" id="{$PC_ID}"/>

35 <AI att="name" id="{$PC}"/>

36 </RM>

37)

38 return $GTRes/RM union $inputRM

39 }</LR>

Figure 6.33: Partial XQuery statement representing transformer IndexPCForET.

140 IMPLEMENTATION

<REL sig="Entity">

 <ATT att="entity" universe="Entity"/>

 ...

</REL>

Figure 6.34: Partial signature of relation Entity.

EXAMPLE 6.19: XPath-expressions collect universe members that are referenced from
attribute instances. The XPath-expression depicted in LINE 5 and LINE 6 of FIGURE

6.33 retrieves all attribute instances, which reference universe members of sort entity
type. Universe members of sort entity type are represented by helper XQuery-
variable $uEntity, which is depicted in LINE 3 of FIGURE 6.33. The information,
which particular attribute instances have to be considered by the XPath-expression
is captured within the specification of the logical representation of WebML schemes.
FIGURE 6.34 depicts the signature of relation Entity partially. Since attribute
entity denotes to represent entity types, it is known that the XPath-expression
depicted in LINE 5 and LINE 6 of FIGURE 6.33 has to consider instances of attribute
entity of relation Entity.

The query template section is used for computing the tuples of result variables, which
fulfill all specified constraints. The tuples of result variables are represented in a particular
XQuery-variable called QTRes, which is depicted in LINE 8 of FIGURE 6.33. The query
template section expresses the evaluation of a query template, which has been
conceptually described in SECTION 3.2.1.3. For explanative purpose we abstract here from
query optimization. The optimized query is listed in APPENDIX G.

The query template section is structured as follows. Within a for-loop all
combinations of result variables are computed, as illustrated in LINE 10 of FIGURE 6.33.
Within each iteration of this for-loop, conditions that express the constraints of the query
template are checked by a where-clause. This where-clause is depicted in LINE 11 of
FIGURE 6.33. Finally, those tuples of result variables, which fulfill all specified constraints,
are returned, as illustrated in LINE 18 of FIGURE 6.33. EXAMPLE 6.20, EXAMPLE 6.21 and
EXAMPLE 6.22 illustrate how the query template of the individualized definition of
transformer IndexPCForET is expressed in terms of XQuery. Again an XML representation
of relevant parts of this transformer definition is used for illustration. Note, however, that
the TBE-engine uses JAVA representations of transformer definitions in order to generate
the corresponding XQuery.

IMPLEMENTATION OF PROCESSES 141

<ResultVariable name="ENT_ID" domain="Entity"/>

<ResultVariable name="ENT" domain="Name"/>

Figure 6.35: XML representation of result variable ENT_ID and ENT.

EXAMPLE 6.20: FIGURE 6.35 depicts result variables ENT_ID and ENT of transformer
IndexPCForET. These result variables are expressed in terms of XQuery within the
for-loop of the query template section, in order to compute all combinations of result
variables. This is depicted in LINE 9 and LINE 10 of FIGURE 6.33. Further, these result
variables are considered within the return-clause as depicted in LINE 19 and LINE 20
of FIGURE 6.33.

<MembershipConstraint sig="Entity">

 <Assignment att="entity" var="ENT_ID"/>

 <Assignment att="name" var="ENT"/>

</MembershipConstraint>

Figure 6.36: XML representation of a membership constraint of transformer IndexPCForET.

EXAMPLE 6.21: The membership constraint depicted in FIGURE 6.36 determines, that only
such combinations of result variables are returned by the query template

section, where the name represented by variable ENT belongs to the entity type
represented by variable ENT_ID. Membership constraints are expressed in terms of
XQuery by means of exists-conditions that check whether a particular relation
member exists. The exists-condition, which expresses the membership constraint
depicted in FIGURE 6.36, is depicted in LINE 11 to LINE 15 of FIGURE 6.33.

<ComplexConstraint logCon="or">

 <ComparisonConstraint var="ENT" litVal="Paper" op="not equals"/>

 <ComparisonConstraint var="ENT" litVal="Author" op="not equals"/>

</ComplexConstraint>

Figure 6.37: XML representation of a complex constraint of
individualized transformer IndexPCForET.

EXAMPLE 6.22: Complex constraints and comparison constraints are expressed in terms of
XQuery by means of predefined XQuery-functions. For example, XQuery-function eq
is used for comparing XQuery variabes on equality. The complex constraint depicted

142 IMPLEMENTATION

in FIGURE 6.37 is expressed in terms of XQuery as depicted in LINE 18 of FIGURE

6.33.

The generative template section is used for generating new relation members and
new universe members. Since a compressed logical representation of schemes is used
within process apply transformer, newly generated universe members are implicitly
represented by newly generated relation members. The generative template section
expresses the instantiation of a generative template for each tuple of result variables
returned by the respective query template section.

The generative template section works as follows. Each tuple of result variables is
iterated within a for-loop, as depicted in LINE 26 of FIGURE 6.33. Within each iteration of
this for-loop, XQuery-variables are defined, which represent parameter variables and new-
element variables, within a let-clause as depicted from LINE 28 to LINE 31 in FIGURE 6.33.
At the definition of XQuery variables, which represent new-element variables, the
corresponding construction expression is considered. Further, new relation members are
generated according to the respective relation constructors and returned within each
iteration of the for-loop. The outcome of the generative template section is stored
into XQuery variable GTRes, as depicted in LINE 26 of FIGURE 6.33. EXAMPLE 6.23,
EXAMPLE 6.24 and EXAMPLE 6.25 illustrate how the generative template of the
individualized definition of transformer IndexPCForET is expressed in terms of XQuery.
Again, XML representations are used for illustrating relevant parts of this transformer
definition. Although, the TBE-engine uses JAVA representations of transformer
definitions for expressing transformer definitions in terms of XQuery.

<ParameterVariable name="ENT_ID" domain="Entity"/>

<ParameterVariable name="ENT" domain="Name"/>

Figure 6.38: XML representation of parameter variables ENT_ID and ENT.

EXAMPLE 6.23: FIGURE 6.38 depicts parameter variables ENT_ID and ENT in terms of
XML. The corresponding XQuery-variables are depicted in LINE 28 and LINE 29 of
FIGURE 6.33, respectively. Thereby, the actual value of a parameter variable is given
by the value of the corresponding result-variable, which is passed by the query
template section. The XPath-expression depicted in LINE 28 and LINE 29 of
FIGURE 6.33 retrieves the values of the XQuery-variables representing parameter
variable ENT and ENT_ID, respectively.

IMPLEMENTATION OF PROCESSES 143

<NewElementVariable name="PC_ID" domain="Page">

 </New>

</NewElementVariable>

<NewElementVariable name="PC " domain="Name">

 <Function name="concat">

 <Argument type="ParameterVariable" val="ENT"/>

 <Argument type="LiteralValue" val="Page"/>

 </Function>

</NewElementVariable>

Figure 6.39: XML representation of new-element variables PC_ID and PC.

EXAMPLE 6.24: FIGURE 6.39 depicts new-element variables PC_ID and PC in terms of XML
and their attached construction expressions. The corresponding XQuery-variables
are depicted in LINE 30 and LINE 31 of FIGURE 6.33, respectively. The values of these
XQuery-variables are computed by XQuery-function calls, expressing the
construction expressions attached to the respective new-element variables. The call
of XQuery-function concat($ENT, 'Page'), for example, expresses the function
construction expression of new-element variable PC.

The XQuery-function call depicted in LINE 30 of FIGURE 6.33 expresses the new
construction expression attached to new-element variable PC_ID. Its semantics is to
increment the highest existing identifier of page classes, comprised within the input
scheme, and to concatenate the prefix of identifiers of page classes, i.e. "page", to
this incremented identifier. Therefore, identifiers matching the general syntax of
identifiers, which has been specified in SECTION 6.3.1.1 are generated, e.g. "page5".
Thereby, the highest existing identifier of page classes is represented by XQuery-
variable $hPage. Further, the prefix of identifiers of members of a particular
universe is determined by the specification of the logical representation of WebML
schemes.

<RelationConstructor sig="Page">

 <Assignment att="page" var="PC_ID"/>

 <Assignment att="name" var="PC"/>

</RelationConstructor>

Figure 6.40: XML representation of a relation constructor of transformer IndexPCForET's generative
template.

144 IMPLEMENTATION

EXAMPLE 6.25: Relation constructors are expressed in terms of XQuery by means of
returning XML elements, which represent the relation member to be generated
according to the respective relation constructor. FIGURE 6.41 depicts the XML
elements that are generated according to the relation constructor depicted in FIGURE

6.33, starting at LINE 32 up to LINE 35. Thereby, the identifiers of universe members
that are referenced from the generated attribute instances are the values of
corresponding new-element variables.

Relation members that are generated by the generative template section are
represented by XQuery-variable GTRes. Finally, the union of all newly generated relation
members and all relation members comprised within the input scheme's logical
representation is computed. The computation of the union of relation members is depicted
in LINE 39 of FIGURE 6.33. The resulting set of relation members is the overall result of the
execution of the XQuery statement and in turn the output of process apply transformer.

<RM sig="Entity">

 <AI att="entity" id="ent1"/>

 <AI att="name" id="Paper"/>

</RM>

<RM sig="Page">

 <AI att="page" id="page1"/>

 <AI att="name" id="PaperPage"/>

</RM>

Figure 6.41: Fragments of the output of process apply transformer.

EXAMPLE 6.26: FIGURE 6.41 depicts fragments of the output of process apply

transformer resulting from applying transformer IndexPCForET to the CMA scheme.
The relation member depicted in the upper part of FIGURE 6.41, represents entity
type Paper and the connection of this entity type to its name. The relation member
depicted in the lower part of FIGURE 6.41, represents newly generated page class
PaperPage and the connection of this page class to its name. The second relation
member was generated by executing the XQuery statement, whereas the first relation
member was given by the input scheme, i.e. the CMA scheme.

6.4.3.3 Mapping the output scheme to its native representation

This section describes process to native representation, i.e. it is described how the
output scheme's logical representation is mapped to its representation in terms of WebML.

IMPLEMENTATION OF PROCESSES 145

An XSLT stylesheet implements process to native representation, which is
subsequently called mapper.

<RM sig="page">

 <AI att="page" id="page1"/>

 <AI att="name" id="Paper"/>

</RM>

<PAPER id="page1" name="Paper"/>

Figure 6.42: Fragment of the output scheme in notation of WebML (bottom)
and its logical representation (top).

The mapper traverses the relation members of the output scheme and generates the
represented WebML scheme elements. For example, relation members of signature page
result in a corresponding page class. Therefore, the mapper comprises one template rule for
each relation, i.e. sort of scheme elements.

EXAMPLE 6.27: The upper part of FIGURE 6.42 depicts the relation member representing
the connection from page class page1 to its name. The lower part of FIGURE 6.42
depicts the WebML scheme element resulting from applying the mapper. The actual
mapping is self-explanatory.

7 Related Work

Content
7.1 Approaches to scheme transformations 147

7.1.1 Scheme transformations in WebML 148
7.1.2 Scheme transformations in ARANEUS 148
7.1.3 Scheme transformations in OO-H 148
7.1.4 Comparison of approaches to scheme transformations 150

7.2 The graphical editor TransEd 152

7.2.1 Transformer definition mode 153
7.2.2 Scheme development mode 155

This chapter presents work related to the prototype TBE-engine developed in this diploma
thesis. SECTION 7.1 compares TBE to other approaches to scheme transformations.
SECTION 7.2 briefly describes the graphical editor TransEd that facilitates the definition of
schemes and templates for WebML. This graphical editor is currently being developed
within a related diploma thesis [Wab04] and can be pluged in seamlesly as graphical editor
within the TBE-system developed in this diploma thesis. In Chapter 4 it has been described
how WebRatio can be used off-the-shelf as graphical editor. Allthough this approach
works it is quite inconvenient for modelleres to annotate TBE-directives in textual form.
TransEd provides for a convenient, graphical specification of TBE-directives.

7.1 Approaches to scheme transformations

Approaches to scheme transformations are rare [CFB00, GCP01, MAM03] and, besides
that of TBE, provided by model-driven development methods. The subsequent sections
illustrate the respective approaches. Finally SECTION 7.1.4 compares the respective
approaches.

148 RELATED WORK

7.1.1 Scheme transformations in WebML

The development method WebML [CFB00] provides the possibility of generating a default
hypertext scheme out of a content scheme. This approach to scheme transformations is
based on a fixed and predefined set of transformation rules. Each transformation rule
defines the generation of hypertext scheme elements according to one content scheme
element. Examples for such transformation rules are:

• "For each entity type, generate a data unit that contains all of the entity type's
attributes" [LS04]. This rule aims at presenting details of a single member of a
certain entity type.

• "For each entity type, generate an index unit" [LS04]. This rule aims at presenting
all members of a certain entity type as a list.

However, the approach to scheme transformations defined in WebML is not implemented
in the supporting CASE tool.

7.1.2 Scheme transformations in ARANEUS

The approach to scheme transformations defined in the development method ARANEUS
[MAM03] is comparable to the one defined in WebML. Predefined scheme
transformations are provided for enabling quick prototyping and achieved through a fixed
and predefined set of transformation rules.

One such transformation rule is, for example, "PS-FROM-NE", which leads to the
generation of a page class from an entity type. The name of the generated page class is
thereby computed by concatenating string "Page" to the name of the entity type. Note that
"PS" and "NE" is short for page scheme and navigational entity, which correspond to page
classes and entity types, respectively. HOMER, the CASE tool supporting ARANEUS
implements the defined approach to scheme transformations.

7.1.3 Scheme transformations in OO-H

The development method OO-H [GCP01] provides a set of patterns for performing scheme
transformations. These patterns are textually described in the style suggested by
Buschmann [BMRSS96] and grouped into three main categories as follows:

APPROACHES TO SCHEME TRANSFORMATIONS 149

• Information patterns: for performing modelling tasks that originate from providing
the user with application context information. One such pattern is, for example, the
"Location" pattern where a page is refined in some way to provide the user with
information about his or her current location context inside the application.

• Interaction patterns: for performing modelling tasks that originate from providing
user interface communication issues. The "Index" pattern, for example, refines a
page to list all members of a certain entity type.

• User scheme evolution patterns: for performing modelling tasks that originate from
covering advanced structural features. The "Multiview" pattern, for example, lets
the designer present various views, i.e. pages, of the same set of entity types.

Such patterns are implemented by one or more transformation rule instantiations. A
transformation rule can be regarded as a template specifying criterions, which must be
fulfilled by transformation rule instantiations in order of being a valid implementation for
the particular pattern. Both, the transformation rule and the transformation rule
instantiation are specified in an OCL like syntax [oql04]. The transformation rule
instantiation specifies a sequence of scheme modification operations tailored to the internal
representation of OO-H schemes. Thus, applying a particular pattern, i.e. a particular
scheme transformation, is achieved through executing the sequence of scheme
modification operations specified by the corresponding transformation rule instantiation.

[

landMarkPage = <APDScheme> -> select(name = <landMarkPageName>);

sourcePages = <APDScheme> -> select(type = 'Tstruct');

sourcePages -> AddLink(<landMarkPage>);

]

Figure 7.1: Transformation rule for the Landmark pattern.

A transformation rule and its possible instantiation is subsequently illustrated by the fictive
example of a "Landmark" pattern. The "Landmark" pattern specifies that a certain
hypertext page is to be reachable from every other hypertext page. Thus, every hypertext
page has to define a link pointing to the landmark hypertext page.

150 RELATED WORK

Example 7.1: Figure 7.1 depicts the Landmark pattern's transformation rule. The first line
specifies that a certain hypertext page (landMarkPage) is selected. In OO-H a
hypertext scheme enhanced with presentational features is called abstract
presentation diagram. The landMarkPage is identified by selecting the one hypertext
page from the APDScheme, which is named landMarkPageName. The second line
specifies the selection of all hypertext pages (sourcePages), to which a link to the
landMarkPage will be added.

In OO-H all scheme elements are typed. Thereby, scheme elements of type Tstruct
correspond to hypertext pages. Thus, the set of sourcePages is identified by
selecting all scheme elements from the APDScheme that are of type Tstruct. The
last line specifies, that a link to the landMarkPage is added to all sourcePages.

landMarkPage = ConfScheme -> select(name = 'ConfPage');

sourcePages = ConfScheme -> select(type = 'Tstruct');

sourcePages -> AddLink(landMarkPage);

Figure 7.2: A possible transformation rule instantiation for the "Landmark" pattern.

Example 7.2: A possible transformation rule instantiation, specifying that a hypertext page
called ConfPage has to be used as landmark page, for the "Landmark"
transformation rule is depicted in Figure 7.2. The interpretation of this example is
straightforward. The first line selects the landmark page called ConfPage from the
conference scheme (ConfScheme). The remaining lines are copied from the
transformation rule and therefore not further explained.

7.1.4 Comparison of approaches to scheme transformations

The introduced approaches to scheme transformations are compared using general
requirements on the specification and application of transformers [Lec04]. These
requirements are subsequently listed:

• Easy to understand: Transformers shall be easy to understand for average
modellers. This is basically a matter of disciplined documentation, which in turn
should be facilitated by the system with which transformers are defined.

APPROACHES TO SCHEME TRANSFORMATIONS 151

• Easy to define: Transformers shall be easy to define for average modellers. This
requires a proper representation of schemes and a proper language for manipulating
these schemes.

• Flexibility: with each application of a transformer, it shall be possible to adapt its
behaviour to the requirements of the particular application. This concerns two
aspects, namely (1) to localize the part of a scheme to be considered/affected, and
(2) to adapt the way new scheme elements are generated.

• Proper expressive power: Transformer shall provide enough expressive power such
that their applicability is not restricted to some selected, simple modelling tasks.

• Independency of particular modelling languages: As there is a large number of
different modelling languages, it would be beneficial, if the approach to the
definition and application of transformers could be followed in any modelling
language. This requirement is orthogonally to the before mentioned ones.

The results of the comparison of the respective approaches to scheme transformations are
summarized in TABLE 7.1. Thereby, Y denotes that a distinctive approach satisfies a certain
requirement and N denotes the opposite. Subsequently for each approach it is explained
which requirements are satisfied and which not.

Requirement Approach

 WebML ARANEUS OO-H TBE

Easy to understand Y Y Y Y

Easy to define N N N Y

Proper expressive power N N N Y

Independency N N N Y

Flexibility N N Y Y

Implementation N Y Y N

Table 7.1: Comparison of approaches to scheme transformations.

The approaches of WebML and ARANEUS both target on enabling quick prototyping.
Although their scheme transformations are easy to understand, they have the disadvantages
of being fixed and predefined. Thus it is neither in WebML nor in ARANEUS possible to

152 RELATED WORK

define individual schema transformations or to adapt schema transformations at application
time. The expressive power of these approaches is relatively small, as just a fixed set of
scheme transformations aiming at quick prototyping are supported. Further, these
approaches cannot be adapted to cooperate with other modelling languages, as they are
tailored to the scheme elements provided by the particular modelling language. Besides
those common disadvantages the approach of WebML further lacks of an implementation.

The approach offered by OO-H enables the flexible use of scheme transformations, called
transformation rules, as multiple implementations, called transformation rule instantiations,
are possible. Furthermore, the description of schema transformations, called patterns, in the
style suggested by Buschmann [BMRSS96] makes them easy to be understood. Still this
approach has major disadvantages. First of all the definition of scheme transformations, i.e.
transformation rules, is inconvenient, as a special OCL [oql04] like syntax has to be used.
Second, there is a lack of proper expressive power, as only scheme transformations can be
defined, that manipulate hypertext- and presentation schemes, which are melted to one
scheme, called abstract presentation diagram. As scheme transformations are defined as a
sequence of scheme modification operations over an internal representation of OO-H
schemes, it is not possible to adopt the approach to cooperate with other modelling
languages.

The approach offered by TBE, which is described in CHAPTER 2, for performing scheme
transformations fits the identified requirements best. First, by-example transformers are
easy to understand, as their behaviour is graphically described in terms of the particular
modelling language used for design. Second, the by-example approach for defining
transformer allows users to easily define scheme transformations, as the modelling
language used for defining schemes is also used for defining transformers and only a few
textual instructions, called directives, are additionally needed. Third, transformers may be
flexibly used, as their behaviour can be easily modified at application time. Last, the
expressive power of by-example transformers is adequate, because all scheme elements, a
particular modelling language defines, can be affected by a scheme transformation.

7.2 The graphical editor TransEd

This chapter describes TransEd, which is a graphical editor for specifying WebML
schemes and furthermore definitions and applications of transformers for WebML
schemes. WebML schemes edited within TransEd respectively WebRatio, which is the

THE GRAPHICAL EDITOR TRANSED 153

CASE tool support for WebML, are interchangeable, since both editors enable the
specification of WebML schemes on the basis of the normative WebML DTD.

The combination of our TBE-engine and TransEd builds the prototype implementation of
the TBE-system. Thereby, transformers that are graphically specified within TransEd are
compiled into transformer definitions in terms of TBE by the TBE-engine. Further,
transformer applications, which are graphically specified within TransEd, are performed by
the TBE-engine. The outcome of such transformer applications, i.e. a WebML scheme, is
again visualized by TransEd.

TransEd offers one mode for specifying WebML schemes and applications of transformers
to such schemes, which is called scheme development mode. Another mode, which is
called transformer definition mode, offered by TransEd provides for defining transformers.
SECTION 7.2.1 illustrates the transformer definition mode of TransEd. SECTION 7.2.2
illustrates the scheme development mode of TransEd.

7.2.1 Transformer definition mode

The transformer definition mode of TransEd provides for defining query templates and
generative templates in an overall scheme view. Therefore, it is possible to define
templates that require scheme elements of different sub-schemes, like, for example, the
content scheme or the hypertext scheme, in one view.

Example 7.3: FIGURE 7.3 depicts the definition of transformer DemoTrans. In the upper
part of FIGURE 7.3 the definition of the query template is shown by means of an
overall scheme view. Therefore, it is possible to define the page classes and the entity
types of the query template in one view. The definition of the generative template is
shown in the lower part of FIGURE 7.3. The transformer itself is only for illustration
purpose and therefore not explained.

TransEd supports the definition of variables by providing distinctive forms for each type of
scheme elements. For example, the right part of FIGURE 7.4 illustrates forms for entering
the properties of scheme elements of type "page class". Please ignore section "Visibility"
for the moment. Thereby, it is provided for entering variable names, specifying the kind of
the variable, and attaching construction expressions, if desired. In contrast, the left part of
FIGURE 7.4 shows the form for editing properties of page classes in the scheme

154 RELATED WORK

development mode, where obviously the fields required for specifying variables are not
shown. Besides the "Visibility" section, this form corresponds to a property from as
usually provided by WebRatio.

Figure 7.3: Overall scheme view of a transformer definition in TransEd

Furthermore, TransEd is aware of the syntax and semantics of transformers and can
thereby assist modellers in defining transformers. Besides alerting errors, the system
highlights interdependencies between different parts of a transformer. For example, if the
mouse pointer is over a parameter variable of the generative template, the corresponding
result variable of the query template is highlighted.

THE GRAPHICAL EDITOR TRANSED 155

Figure 7.4: Forms for editing properties of page classes in the
scheme development mode (left) and the transformer definition mode (right).

7.2.2 Scheme development mode

The scheme development mode of TransEd provides for specifying WebML schemes as
well as it provides for specifying graphical applications of transformers. In order to
facilitate graphical applications of transformers whose templates mix scheme elements, i.e.
variables, of different sub-schemes, TransEd also provides an overall scheme view in the
scheme development mode. In order to express in which view a particular scheme element
shall be presented, one can individually specify the visibility in the scheme element's
property form, which is illustrated in FIGURE 7.4.

For selecting a transformer to be applied TransEd visualizes all transformers currently
stored into its transformer repository as a list. When a transformer is selected, it is
visualized at the overall scheme view. For individualizing the transformer application
TransEd provides for connecting scheme elements to the graphical representation of the
transformer via drawing dashed lines. Although, the scheme elements, which are addressed
by individualizing a transformer can be specified by drawing such lines it is not possible to
determine the required variables of the transformer, since they are not visualized within the
graphical representation of the transformer. Therefore, the names of variables have to be
explicitly added to such connection lines.

156 RELATED WORK

=SRC_IU

=SRC_ENT

Figure 7.5: Graphical application of a transformer DemoTrans in TransEd.

Example 7.4: FIGURE 7.5 illustrates the graphical application of transformer DemoTrans,
which is represented by a rounded rectangle including the transformer's name. The
transfomer's definition is not repeated in this graphical shape but is shown in a
separate window below. Application-specific constraints can be expressed by lines
connecting scheme elements to the graphical application, and the transformer
variable to be addressed is notated at the line. For the graphical application
depicted in FIGURE 7.5, entity type Paper as well as index unit Paper Index are to be
attached to the graphical application of transformer DemoTrans. For that purpose,
both scheme elements are shown in the overall scheme view.

8 Conclusion

We have presented a prototype implementation of the basic concepts of Transformers By-
Example (TBE), which is a language for defining and applying scheme transformers. A
TBE-system comprises two building blocks: The first building block is the TBE-engine
that provides for compiling native transformer definitions into transformer definitions in
terms of TBE and for performing transformer applications. The second building block is
the graphical editor that facilitates the definition of schemes and templates.

We have achieved that the implementation of the graphical editor is exchangeable without
requiring adaptations of the TBE-engine and vice versa since their interface is the internal
representation of schemes of the respective modelling language, which is typically
normative. For example, the internal representation of WebML schemes is an XML
representation that adheres to the WebML DTD.

The implemented TBE-engine comprises model-dependent and model-independent
components, where the latter make up the TBE-framework. The development of the TBE-
framework has been focused within this diploma thesis. The independency of the TBE-
framework from a particular modelling language L has been fundamentally achieved by
processing the logical representation of schemes instead of processing the internal
representation of schemes of modelling language L directly.

The major components of the TBE-framework are the Generator and the Applicator,
which provide for generating transformer definitions in terms of TBE and provide for
performing the application of such transformers definitions to input schemes in logical
representation, respectively. We have demonstrated the implementation of an applicator
that uses an XQuery statement, expressing the respective transformer definition in terms of
TBE, for transforming an input scheme in logical representation. Because of the distinctive
design of interfaces, representing the components of the TBE-framework, we have
achieved that other applicators can be plugged in the TBE-framework easily as well.

We have demonstrated the application of the TBE-framework to modelling language
WebML, i.e. we have implemented the few model-dependent components of the TBE-
engine as required by WebML.

158 CONCLUSION

Further, we have demonstrated how WebRatio, which is the CASE-tool for WebML, can
be used off-the-shelf as graphical editor for defining and applying transformers. In order to
specify TBE-directives within WebRatio modellers annotate such directives in textual
form. We have developed a syntax specifying this textual representation of TBE-directives.

List of Figures

Figure 1.1: WebML scheme of the CMA: content scheme (left) and hypertext scheme (right). 15
Figure 1.2: By-example definition of transformer IndexPCForET in notation of WebML. 17
Figure 1.3: Building blocks of a TBE-system - Graphical editor and TBE-engine. 20
Figure 1.4: Components of a model-specific TBE-engine. 25
Figure 1.5: Components of a generic TBE-engine. 26
Figure 1.6: Framework for TBE-engines and the WebML TBE-engine. 28
Figure 2.1: Phases in the WebML development process. 32
Figure 2.2: Extended content scheme of the CMA. 35
Figure 2.3: Extended hypertext scheme of the CMA. 36
Figure 2.4: Sub DTDs comprised within the WebML DTD. 38
Figure 2.5: Structure DTD fragment declaring scheme elements of sort entity type. 38
Figure 2.6: XML representation of entity type Author. 39
Figure 2.7: Screnn shot of the user interface of WebRatio. 41
Figure 3.1: Precise graphical notation of transformer IndexPCForET´s query template. 48
Figure 3.2: Transformer IndexPCForET´s query template in terms of DRC. 50
Figure 3.3: Precise graphical notation of transformer IndexPCForET's generative template. 54
Figure 3.4: Sample input for transformer IndexPCForET´s generative template. 57
Figure 3.5: Sample output of transformer IndexPCForET´s generative template. 57
Figure 3.6: Transformer IndexPCForET. 58
Figure 4.1: General syntax of directives in textual representation. 63
Figure 4.2: Annotating directives to WebML schemes. 63
Figure 4.3: Syntax of TBE-directives result variable and parameter variable in textual representation. 64
Figure 4.4: Graphical representation (left) and textual representation (right) of TBE-directive tag

result variable. 64
Figure 4.5: Syntax of TBE-directive constraint in textual representation. 65
Figure 4.6: Syntax of TBE-directive construction expression in textual representation. 66
Figure 4.7: Syntax of customized-directive alias. 67
Figure 4.8: Specifying customized-directive alias. 67
Figure 4.9: Syntax of customized-directive anchor. 69
Figure 4.10: WorkArea of WebRatio when a new project is opened. 70
Figure 4.11: A newly added entity type (right) and its properties (left). 70
Figure 4.12: Result variable ENT (right) and its properties (left). 71
Figure 4.13: Definition of directive alias: Identifier - $ENT_ID;. 71
Figure 4.14: Definition of directive alias: Identifier - ATT_ID;. 72
Figure 4.15 New-element variable SV_ID and corresponding directives. 72
Figure 4.16: New-element variables PC and PC_ID and corresponding directives. 73
Figure 4.17 New-element variables IU and IU_ID and corresponding directives. 73

160 LIST OF FIGURES

Figure 4.18: Customized-directive anchor. 74
Figure 4.19: Content scheme of the CMA web application. 75
Figure 4.20: Individualizing the application of transformer IndexPCForET. 76
Figure 4.21: Result of the individualized application of transformer IndexPCForET to the CMA

scheme. 77
Figure 5.1: Base architecture of the TBE-engine. 80
Figure 5.2: Processes for compiling transformer definitions and their inputs and outputs. 82
Figure 5.3: Processes and their inputs and outputs required for applying transformers. 85
Figure 5.4: Datastructures LogicalRepresentation and

LogicalRepresentationSpecification. 88
Figure 5.5: Overview of datastructure TransformerDefinition (top) and required OCL expressions

(bottom). 91
Figure 5.6: Type hierarchy of constraints. 92
Figure 5.7: Structure of complex constraints. 92
Figure 5.8: Structure of membership constraints. 93
Figure 5.9: Structure of comparison constraints. 94
Figure 5.10: Structure of relation constructors. 95
Figure 5.11: Structure of new-element variables. 96
Figure 5.12 Structure of function construction expressions. 96
Figure 6.1: Technologies for implementing components for compiling transformer definitions. 102
Figure 6.2: Technologies for implementing components for applying transformers. 106
Figure 6.3: Allocation of process-implementations. 108
Figure 6.4: Interface Mapper. 110
Figure 6.5: Interface Applicator. 111
Figure 6.6: Abstract class XQueryApplicator. 111
Figure 6.7: Interface Generator. 112
Figure 6.8: Abstract class Generator. 113
Figure 6.9: Allocation of datastructure-implementations. 114
Figure 6.10: Syntax of identifiers. 116
Figure 6.11: Refined datastructure LogicalRepresentationSpecification. 116
Figure 6.12: Illustration of class LogicalRepresentationSpecification. 117
Figure 6.13: XML-schema specifying datastructure LogicalRepresentationSpecification. 118
Figure 6.14: Fragment of the specification of the logical representation of WebML schemes in terms of XML.

 122
Figure 6.15: XML-schema specifying datastructure Logical Representation. 123
Figure 6.16: Illustration of class LogicalRepresentation. 123
Figure 6.17: Illustration of class TransformerDefinition. 124
Figure 6.18: Illustration of class TBEDirectivesContainer. 125
Figure 6.19: Illustration of the compressed logical representations of schemes. 126
Figure 6.20: Reconstructing universe members. 127
Figure 6.21: Variables ENT, ENT_ID and ATT_ID in notation of WebML (top) and resolved aliases

(bottom). 128
Figure 6.22: Fragment of the query template of transformer IndexPCForET in notation of WebML (top) and

its logical representation (bottom). 129

LIST OF FIGURES 161

Figure 6.23: TBE-directives in notation of WebML (top) and their textual representation (bottom) 129
Figure 6.24: Customized-directive anchor in notation of WebML (top) and its textual representation

(bottom). 130
Figure 6.25: New-element variables and construction expressions for generating coordinates of new scheme

elements. 132
Figure 6.26: Preparing the generation of variables ANCH_X and ANCH_Y. 133
Figure 6.27: Preparation the generation of new-element variables for coordinates. 133
Figure 6.28: Generating variables. 135
Figure 6.29: Generating membership constraints. 135
Figure 6.30: Generating relation constructors. 136
Figure 6.31: Generating new-element variables. 136
Figure 6.32: Individualized definition of transformer IndexPCForET. 137
Figure 6.33: Partial XQuery statement representing transformer IndexPCForET. 139
Figure 6.34: Partial signature of relation Entity. 140
Figure 6.35: XML representation of result variable ENT_ID and ENT. 141
Figure 6.36: XML representation of a membership constraint of transformer IndexPCForET. 141
Figure 6.37: XML representation of a complex constraint of individualized transformer IndexPCForET.

 141
Figure 6.38: XML representation of parameter variables ENT_ID and ENT. 142
Figure 6.39: XML representation of new-element variables PC_ID and PC. 143
Figure 6.40: XML representation of a relation constructor of transformer IndexPCForET's generative

template. 143
Figure 6.41: Fragments of the output of process apply transformer. 144
Figure 6.42: Fragment of the output scheme in notation of WebML (bottom) and its logical representation

(top). 145
Figure 7.1: Transformation rule for the Landmark pattern. 149
Figure 7.2: A possible transformation rule instantiation for the "Landmark" pattern. 150
Figure 7.3: Overall scheme view of a transformer definition in TransEd 154
Figure 7.4: Forms for editing properties of page classes in the scheme development mode (left) and the

transformer definition mode (right). 155
Figure 7.5: Graphical application of a transformer DemoTrans in TransEd. 156

Bibliography

[antlr04] AntLR Parser Generator. http://www.antlr.org/, [September 2004].

[BMRSS96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. A System
of Patterns, volume 1 of Pattern-Oriented Software Architecture. Wiley &
Sons, New York, hardcover edition, 1996.

[Boe85] B. Boehm. A spiral model of software development and enhancement. In J.
Wileden and M. Dowson, editors, Proceedings of the 2nd International
Software Process Workshop, pages 22-42, March 1985.

[CCP01] Jaime Comez, Christina Cachero, and Oscar Pastor. Conceptual modeling of
device-independent web applications. IEEE Web Engineering, 8(2):26-39,
2001.

[CFB00] Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web modeling language
(webml): a modeling language for designing web sites. In Proceedings of
the 9th international World Wide Web conference on Computer networks :
the international journal of computer and telecommunications netowrking,
pages 137-157. North-Holland Publishing Co., 2000.

[Che76] Peter Pin-Shan Chen. The entity-relationship modeltoward a unified view of
data. ACM Trans. Database Syst., 1(1):9-36, 1976.

[Con99] Jim Conallen. Modeling web application architectures with uml. Commun.
ACM, 42(10):63-70, 1999.

[Dro97] Offer Drori. Hypertext implications for case environments. SIGSOFT
Softw. Eng. Notes, 22(4):35-38, 1997.

[Fra99] Piero Fraternali. Tools and approaches for developing data-intensive web
applications: a survey. ACM Comput. Surv., 31(3):227-263, 1999.

[Lec04] Stephan Lechner. Transformers-by-example. Dissertation, Johannes Kepler
University Linz, Departement for Data & Knowledge Engineering, 2004.

164 BIBLIOGRAPHY

[LS03] S. Lechner, M. Schrefl. Defining web schema transformers by example. In
Proceedings of DEXA'03. Springer, 2003.

[LS04] Stephan Lechner and Michael Schrefl. Trasformers-by-example: pushing
reuse in conceptual web application modelling. In Proceedings of the 2004
ACM symposium on Applied computing, pages 1654-1661. ACM Press,
2004.

[MAM03] Paolo Merialdo, Paolo Atzeni, and Giansalvatore Mecca. Design and
development of data-intensive web sites: The araneus approach. ACM
Trans. Inter. Tech., 3(1):49-92, 2003.

[MMCF03] M. Matera, A. Maurino, S. Ceri, and P. Fraternali. Model-driven design of
collaborative web applications. Softw. Pract. Exper., 33(8):701-732, 2003.

[oopsla04] Conference on Object Oriented Programming Systems Languages and
Applications. http://www.oopsla.org, [April 2004].

[oql04] The Object Query Language. http://www.odmg.org, [September 2004].

[RG00] R. Ramakrishnan, J. Gehrke. Database management systems. McGraw-Hill,
2000.

[RLS99] Gustavo Rossi, Fernando Daniel Lyardet, and Daniel Schwabe. Developing
hypermedia applications with methods and patterns. ACM Comput. Surv.,
31(4es):8, 1999.

[sax04] SAXON - The XSLT and XQuery Processor. http://saxon.sourceforge.net/,
[September 2004].

[uml04] The Unified Modelling Language. http://www.omg.org, [September 2004].

[Wab04] A. Wabro. Editor für ein Template-basiertes Navigationsmodell. Diploma
thesis, Johannes Kepler University Linz, Departement for Data &
Knowledge Engineering, 2004.

[webml04] WebML Users Guide 3.0. http://www.webml.org, [April 2004].

[Wir77] Niklaus Wirth: What Can We Do about the Unnecessary Diversity of
Notation for Syntactic Definitions? Commun. ACM 20 (11): 822-823
(1977)

BIBLIOGRAPHY 165

[WK98] J. Warmer and A. Kleppe. The Object Constraint Language: Precise
Modeling with UML. Addison-Wesley, paperback edition, 1998.

[xal04] Xalan-Java version 2.6.0. http://xml.apache.org/xalan-j/, [September 2004].

[xml04] The Extensible Markup Language. http://www.w3.org/xml, [September
2004].

APPENDIX A 167

WebML DTD Logical Representation

 Relation Universe
<!ATTLIST ENTITY Entity (
id ID #REQUIRED entity Entity
name CDATA #IMPLIED name Name
superEntity CDATA #IMPLIED superEntity Entity
value CDATA #IMPLIED value Dummy
>)

<!ELEMENT ENTITY (ATTRIBUTE*, RELATIONSHIP*, PROPERTY*, COMMENT?)>

WebML DTD Logical Representation

 Relation Universe

<!ATTLIST ATTRIBUTE Attribute (
id ID #REQUIRED attribute Attribute
name CDATA #IMPLIED name Name
type %WebMLTypes% #IMPLIED type Dummy
contentType CDATA #IMPLIED contentType Dummy
userType IDREF #IMPLIED userType Dummy
value CDATA #IMPLIED value Dummy
 definedAt Entity
>)

<!ELEMENT ATTRIBUTE (PROPERTY*, COMMENT?)>

WebML DTD Logical Representation

 Relation Universe
<!ATTLIST RELATIONSHIP RelRole (
id ID #REQUIRED relRole RelRole
name CDATA #IMPLIED relShipName Name
roleName CDATA #IMPLIED name Name
to IDREF #REQUIRED to Entity
inverse IDREF #REQUIRED inverse RelRole
minCard CDATA #REQUIRED minCard Cardinality
maxCard CDATA #REQUIRED maxCard Cardinality
value CDATA #IMPLIED value Dummy
 from Entity
>)

<!ELEMENT RELATIONSHIP (PROPERTY*, COMMENT?)>

WebML DTD Logical Representation

 Relation Universe
<!ATTLIST graph:Node EntityPos (
id ID #REQUIRED pos EntityPos
x NUMBER #REQUIRED xValue XPosValue
y NUMBER #REQUIRED yValue YPosValue
element IDREF #REQUIRED element Entity
>)

<!ELEMENT graph:Node EMPTY>

168 MERGED RELATIONS

WebML DTD Logical Representation

 Relation Universe
<!ATTLIST graph:Connection RelRolePos (
id ID #REQUIRED pos RelRolePos
x NUMBER #REQUIRED xValue XPosValue
y NUMBER #REQUIRED yValue YPosValue
element IDREF #REQUIRED element RelRole
>)

<!ELEMENT graph:Connection EMPTY>

WebML DTD Logical Representation

 Relation Universe
<!ATTLIST SITEVIEW SiteView (
id ID #REQUIRED siteView SiteView
name CDATA #IMPLIED name Name
protected (yes|no) 'no' protected Dummy
homePage IDREF #IMPLIED homePage Dummy
>)

<!ELEMENT SITEVIEW (AREA*, PAGE*, OPERATIONUNITS, GLOBALPARAMETER*, COMMENT?)>

WebML DTD Logical Representation

 Relation Universe
<!ATTLIST PAGE Page (
id ID #REQUIRED page Page
name CDATA #IMPLIED name Name
landmark (yes|no) 'no' landmark Dummy
 definedAt SiteView
>)

<!ELEMENT PAGE (CONTENTUNITS, PAGE*, ALTERNATIVE*, LINK*, PROPERTY*)>

WebML DTD Logical Representation

 Relation Universe
<!ATTLIST LINK Link (
id ID #REQUIRED link Link
name CDATA #IMPLIED name Name
to IDREFS #REQUIRED destPage Page
 destDataUnit DataUnit
 destIndexUnit IndexUnit
 destScrollerUnit ScrollerUnit
 destDeleteUnit DeleteUnit
 destModifyUnit ModifyUnit
 destCreateUnit CreateUnit
type (normal|automatic|transport) 'normal' type Dummy
newWindow (yes|no) 'no' newWindow Dummy
 startDataUnit DataUnit
 startIndexUnit IndexUnit
 startScrollerUnit ScrollerUnit
 startDeleteUnit DeleteUnit
 startModifyUnit ModifyUnit
 startCreateUnit CreateUnit
 startPage Page
>)

<!ELEMENT LINK (LINKPARAMETER*, PROPERTY*, COMMENT?)>

APPENDIX A 169

WebML DTD Logical Representation

 Relation Universe
<!ATTLIST DATAUNIT DataUnit (
id ID #REQUIRED dataUnit DataUnit
name CDATA #IMPLIED name Name
entity IDREF #IMPLIED entity Entity
 definedAt Page
>)

<!ELEMENT DATAUNIT (SELECTOR?, (DISPLAYALL|DISPLAYATTRIBUTE*), LINK*, COMMENT?)>

WebML DTD Logical Representation

 Relation Universe
<!ATTLIST INDEXUNIT IndexUnit (
id ID #REQUIRED indexUnit IndexUnit
name CDATA #IMPLIED name Name
entity IDREF #IMPLIED entity Entity
distinct (yes|no) 'no' distinct Dummy
 definedAt Page
>)

<!ELEMENT INDEXUNIT (SELECTOR?, DISPLAYATTRIBUTE*, SORTATTRIBUTE*, LINK*, PROPERTY*)>

WebML DTD Logical Representation

 Relation Universe
<!ATTLIST ENTRYUNIT EntryUnit (
id ID #REQUIRED entryUnit EntryUnit
name CDATA #IMPLIED name Name
 definedAt Page
>)

<!ELEMENT ENTRYUNIT (FIELD*, SELECTIONFIELD*, LINK*, PROPERTY*, COMMENT?)>

WebML DTD Logical Representation

 Relation Universe
<!ATTLIST SCROLLERUNIT ScrollerUnit (
id ID #REQUIRED scrollerUnit ScrollerUnit
name CDATA #IMPLIED name Name
entity IDREF #IMPLIED entity Entity
blockFactor CDATA #IMPLIED blockFactor Dummy
 definedAt Page
>)

<!ELEMENT SCROLLERUNIT (SELECTOR?, SORTATTRIBUTE*, LINK, PROPERTY*, COMMENT?)>

WebML DTD Logical Representation

 Relation Universe
<!ATTLIST CREATEUNIT CreateUnit (
id ID #REQUIRED createUnit CreateUnit
name CDATA #IMPLIED name Name
entity IDREF #REQUIRED entity Entity
 definedAt SiteView
>)

<!ELEMENT CREATEUNIT (LINK*, OK-LINK*, KO-LINK*, PROPERTY*, COMMENT?)>

170 MERGED RELATIONS

WebML DTD Logical Representation

 Relation Universe
<!ATTLIST DELETEUNIT DeleteUnit (
id ID #REQUIRED deleteUnit DeleteUnit
name CDATA #IMPLIED name Name
entity IDREF #REQUIRED entity Entity
 definedAt SiteView
>)

<!ELEMENT DELETEUNIT (SELECTOR?, LINK*, OK-LINK*, KO-LINK*, PROPERTY*, COMMENT?)>

WebML DTD Logical Representation

 Relation Universe
<!ATTLIST MODIFYUNIT ModifyUnit (
id ID #REQUIRED modifyUnit ModifyUnit
name CDATA #IMPLIED name Name
entity IDREF #REQUIRED entity Entity
 definedAt SiteView
>)

<!ELEMENT MODIFYUNIT (LINK*, OK-LINK*, KO-LINK*, PROPERTY*, COMMENT?)>

WebML DTD Logical Representation

 Relation Universe
<!ATTLIST graph:Node PagePos (
id ID #REQUIRED pos PagePos
x NUMBER #REQUIRED xValue XPosValue
y NUMBER #REQUIRED yValue YPosValue
element IDREF #REQUIRED element Page
>)

<!ELEMENT graph:Node EMPTY>

WebML DTD Logical Representation

 Relation Universe
<!ATTLIST graph:Connection LinkPos (
id ID #REQUIRED pos LinkPos
x NUMBER #REQUIRED xValue XPosValue
y NUMBER #REQUIRED yValue YPosValue
element IDREF #REQUIRED element Link
>)

<!ELEMENT graph:Node EMPTY>

WebML DTD Logical Representation

 Relation Universe
<!ATTLIST graph:Node IndexUnitPos (
id ID #REQUIRED pos IndexUnitPos
x NUMBER #REQUIRED xValue XPosValue
y NUMBER #REQUIRED yValue YPosValue
element IDREF #REQUIRED element IndexUnit
>)

<!ELEMENT graph:Node EMPTY>

APPENDIX A 171

WebML DTD Logical Representation

 Relation Universe
<!ATTLIST graph:Node DataUnitPos (
id ID #REQUIRED pos DataUnitPos
x NUMBER #REQUIRED xValue XPosValue
y NUMBER #REQUIRED yValue YPosValue
element IDREF #REQUIRED element DataUnit
>)

<!ELEMENT graph:Node EMPTY>

WebRatio Representation Logical Representation

 Relation Universe
<!ATTLIST graph:Node EntryUnitPos (
id ID #REQUIRED pos EntryUnitPos
x NUMBER #REQUIRED xValue XPosValue
y NUMBER #REQUIRED yValue YPosValue
element IDREF #REQUIRED element EntryUnit
>)

<!ELEMENT graph:Node EMPTY>

WebRatio Representation Logical Representation

 Relation Universe
<!ATTLIST graph:Node ScrollerUnitPos (
id ID #REQUIRED pos ScrollerUnitPos
x NUMBER #REQUIRED xValue XPosValue
y NUMBER #REQUIRED yValue YPosValue
element IDREF #REQUIRED element ScrollerUnit
>)

<!ELEMENT graph:Node EMPTY>

WebRatio Representation Logical Representation

 Relation Universe
<!ATTLIST graph:Node CreateUnitPos (
id ID #REQUIRED pos CreateUnitPos
x NUMBER #REQUIRED xValue XPosValue
y NUMBER #REQUIRED yValue YPosValue
element IDREF #REQUIRED element CreateUnit
>)

<!ELEMENT graph:Node EMPTY>

WebRatio Representation Logical Representation

 Relation Universe
<!ATTLIST graph:Node DeleteUnitPos (
id ID #REQUIRED pos DeleteUnitPos
x NUMBER #REQUIRED xValue XPosValue
y NUMBER #REQUIRED yValue YPosValue
element IDREF #REQUIRED element DeleteUnit
>)

<!ELEMENT graph:Node EMPTY>

172 MERGED RELATIONS

WebRatio Representation Logical Representation

 Relation Universe
<!ATTLIST graph:Node ModifyUnitPos (
id ID #REQUIRED pos ModifyUnitPos
x NUMBER #REQUIRED xValue XPosValue
y NUMBER #REQUIRED yValue YPosValue
element IDREF #REQUIRED element ModifyUnit
>)

<!ELEMENT graph:Node EMPTY>

APPENDIX B 173

<?xml version="1.0" encoding="UTF-8"?>

<LogicalRepresentationSpecification
 xmlns="http://www.dke.jku.at/tbe/data/logrepspec"
 xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.dke.jku.at/tbe/data/logrepspec
 LogicalRepresentationSpecification.xsd"
 name="WebML">

 <Universe name="Name"/>
 <Universe name="Cardinality"/>
 <Universe name="XPosValue"/>
 <Universe name="YPosValue"/>
 <Universe name="Entity" prefix="ent"/>
 <Universe name="Attribute" prefix="att"/>
 <Universe name="RelRole" prefix="rel"/>
 <Universe name="SiteView" prefix="sv"/>
 <Universe name="Page" prefix="page"/>
 <Universe name="Link" prefix="ln"/>
 <Universe name="DataUnit" prefix="dau"/>
 <Universe name="IndexUnit" prefix="inu"/>
 <Universe name="EntryUnit" prefix="flu"/>
 <Universe name="ScrollerUnit" prefix="scu"/>
 <Universe name="CreateUnit" prefix="cru"/>
 <Universe name="DeleteUnit" prefix="dlu"/>
 <Universe name="ModifyUnit" prefix="mfu"/>
 <Universe name="EntityPos" prefix="ent" suffix="_go"/>
 <Universe name="RelRolePos" prefix="rel" suffix="_go"/>
 <Universe name="PagePos" prefix="page" suffix="_go"/>
 <Universe name="LinkPos" prefix="ln" suffix="_go"/>
 <Universe name="DataUnitPos" prefix="dau" suffix="_go"/>
 <Universe name="IndexUnitPos" prefix="inu" suffix="_go"/>
 <Universe name="EntryUnitPos" prefix="flu" suffix="_go"/>
 <Universe name="ScrollerUnitPos" prefix="scu" suffix="_go"/>
 <Universe name="CreateUnitPos" prefix="cru" suffix="_go"/>
 <Universe name="DeleteUnitPos" prefix="dlu" suffix="_go"/>
 <Universe name="ModifyUnitPos" prefix="mfu" suffix="_go"/>

 <Relation name="Entity">
 <Attribute name="entity" universe="Entity"/>
 <Attribute name="name" universe="Name"/>
 </Relation>
 <Relation name="Attribute">
 <Attribute name="attribute" universe="Attribute"/>
 <Attribute name="name" universe="Name"/>
 <Attribute name="definedAt" universe="Entity"/>
 </Relation>
 <Relation name="RelRole">
 <Attribute name="relRole" universe="RelRole"/>
 <Attribute name="relShipName" universe="Name"/>
 <Attribute name="name" universe="Name"/>
 <Attribute name="to" universe="Entity"/>
 <Attribute name="inverse" universe="RelRole"/>
 <Attribute name="minCard" universe="Cardinality"/>
 <Attribute name="maxCard" universe="Cardinality"/>
 <Attribute name="from" universe="Entity"/>
 </Relation>
 <Relation name="EntityPos">

174 SPECIFICATION OF THE LOGICAL REPRESENTATION OF WEBML SCHEMES

 <Attribute name="pos" universe="EntityPos"/>
 <Attribute name="element" universe="Entity"/>
 <Attribute name="xValue" universe="XPosValue"/>
 <Attribute name="yValue" universe="YPosValue"/>
 </Relation>
 <Relation name="RelRolePos">
 <Attribute name="pos" universe="RelRolePos"/>
 <Attribute name="element" universe="RelRole"/>
 <Attribute name="xValue" universe="XPosValue"/>
 <Attribute name="yValue" universe="YPosValue"/>
 </Relation>
 <Relation name="SiteView">
 <Attribute name="siteView" universe="SiteView"/>
 <Attribute name="name" universe="Name"/>
 </Relation>
 <Relation name="Page">
 <Attribute name="page" universe="Page"/>
 <Attribute name="name" universe="Name"/>
 <Attribute name="definedAt" universe="SiteView"/>
 </Relation>
 <Relation name="Link">
 <Attribute name="link" universe="Link"/>
 <Attribute name="name" universe="Name"/>
 <Attribute name="destPage" universe="Page"/>
 <Attribute name="destDataUnit" universe="DataUnit"/>
 <Attribute name="destIndexUnit" universe="IndexUnit"/>
 <Attribute name="destScrollerUnit" universe="ScrollerUnit"/>
 <Attribute name="destDeleteUnit" universe="DeleteUnit"/>
 <Attribute name="destModifyUnit" universe="ModifyUnit"/>
 <Attribute name="destCreatUnit" universe="CreateUnit"/>
 <Attribute name="startPage" universe="Page"/>
 <Attribute name="startDataUnit" universe="DataUnit"/>
 <Attribute name="startIndexUnit" universe="IndexUnit"/>
 <Attribute name="startScrollerUnit" universe="ScrollerUnit"/>
 <Attribute name="startDeleteUnit" universe="DeleteUnit"/>
 <Attribute name="startModifyUnit" universe="ModifyUnit"/>
 <Attribute name="startCreatUnit" universe="CreateUnit"/>
 </Relation>
 <Relation name="DataUnit">
 <Attribute name="dataUnit" universe="DataUnit"/>
 <Attribute name="name" universe="Name"/>
 <Attribute name="entity" universe="Entity"/>
 <Attribute name="definedAt" universe="Page"/>
 </Relation>
 <Relation name="IndexUnit">
 <Attribute name="indexUnit" universe="IndexUnit"/>
 <Attribute name="name" universe="Name"/>
 <Attribute name="entity" universe="Entity"/>
 <Attribute name="definedAt" universe="Page"/>
 </Relation>
 <Relation name="EntryUnit">
 <Attribute name="entryUnit" universe="EntryUnit"/>
 <Attribute name="name" universe="Name"/>
 <Attribute name="definedAt" universe="Page"/>
 </Relation>
 <Relation name="ScrollerUnit">
 <Attribute name="scrollerUnit" universe="ScrollerUnit"/>
 <Attribute name="name" universe="Name"/>

APPENDIX B 175

 <Attribute name="entity" universe="Entity"/>
 <Attribute name="definedAt" universe="Page"/>
 </Relation>
 <Relation name="CreateUnit">
 <Attribute name="createUnit" universe="CreateUnit"/>
 <Attribute name="name" universe="Name"/>
 <Attribute name="entity" universe="Entity"/>
 <Attribute name="definedAt" universe="SiteView"/>
 </Relation>
 <Relation name="DeleteUnit">
 <Attribute name="deleteUnit" universe="DeleteUnit"/>
 <Attribute name="name" universe="Name"/>
 <Attribute name="entity" universe="Entity"/>
 <Attribute name="definedAt" universe="SiteView"/>
 </Relation>
 <Relation name="ModifyUnit">
 <Attribute name="modifyUnit" universe="ModifyUnit"/>
 <Attribute name="name" universe="Name"/>
 <Attribute name="entity" universe="Entity"/>
 <Attribute name="definedAt" universe="SiteView"/>
 </Relation>
 <Relation name="PagePos">
 <Attribute name="pos" universe="PagePos"/>
 <Attribute name="element" universe="Page"/>
 <Attribute name="xValue" universe="XPosValue"/>
 <Attribute name="yValue" universe="YPosValue"/>
 </Relation>
 <Relation name="DataUnitPos">
 <Attribute name="pos" universe="DataUnitPos"/>
 <Attribute name="element" universe="DataUnit"/>
 <Attribute name="xValue" universe="XPosValue"/>
 <Attribute name="yValue" universe="YPosValue"/>
 </Relation>
 <Relation name="IndexUnitPos">
 <Attribute name="pos" universe="IndexUnitPos"/>
 <Attribute name="element" universe="IndexUnit"/>
 <Attribute name="xValue" universe="XPosValue"/>
 <Attribute name="yValue" universe="YPosValue"/>
 </Relation>
 <Relation name="EntryUnitPos">
 <Attribute name="pos" universe="EntryUnitPos"/>
 <Attribute name="element" universe="EntryUnit"/>
 <Attribute name="xValue" universe="XPosValue"/>
 <Attribute name="yValue" universe="YPosValue"/>
 </Relation>
 <Relation name="ScrollerUnitPos">
 <Attribute name="pos" universe="ScrollerUnitPos"/>
 <Attribute name="element" universe="ScrollerUnit"/>
 <Attribute name="xValue" universe="XPosValue"/>
 <Attribute name="yValue" universe="YPosValue"/>
 </Relation>
 <Relation name="CreateUnitPos">
 <Attribute name="pos" universe="CreateUnitPos"/>
 <Attribute name="element" universe="CreateUnit"/>
 <Attribute name="xValue" universe="XPosValue"/>
 <Attribute name="yValue" universe="YPosValue"/>
 </Relation>

176 SPECIFICATION OF THE LOGICAL REPRESENTATION OF WEBML SCHEMES

 <Relation name="DeleteUnitPos">
 <Attribute name="pos" universe="DeleteUnitPos"/>
 <Attribute name="element" universe="DeleteUnit"/>
 <Attribute name="xValue" universe="XPosValue"/>
 <Attribute name="yValue" universe="YPosValue"/>
 </Relation>
 <Relation name="ModifyUnitPos">
 <Attribute name="pos" universe="ModifyUnitPos"/>
 <Attribute name="element" universe="ModifyUnit"/>
 <Attribute name="xValue" universe="XPosValue"/>
 <Attribute name="yValue" universe="YPosValue"/>
 </Relation>
 <Relation name="LinkPos">
 <Attribute name="pos" universe="LinkPos"/>
 <Attribute name="element" universe="Link"/>
 <Attribute name="xValue" universe="XPosValue"/>
 <Attribute name="yValue" universe="YPosValue"/>
 </Relation>
</LogicalRepresentationSpecification>

APPENDIX C 177

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE WebML SYSTEM "WebML.dtd">

<WebML xmlns:auxiliary="http://www.webml.org/auxiliary"
 xmlns:graphmetadata="http://www.webml.org/graphmetadata"
 xmlns:presentation="http://www.webml.org/presentation" auxiliary:compileJavaFiles="yes"
 auxiliary:deploy-with-names="no" auxiliary:http-port="8080" auxiliary:https-port="8443"
 auxiliary:layoutUseUnderscore="no" auxiliary:scramble-url="no" auxiliary:secure-url="no"
 auxiliary:structured-deploy="no" siteName="Untitled" version="3.0.14">
 <Structure graphmetadata:go="Structure_go" id="Structure">
 <ENTITY auxiliary:attributesVisible="true" auxiliary:testCaseCount="20"
 graphmetadata:go="User_go" id="User" name="User">
 <ATTRIBUTE id="userOID" name="OID" type="OID"/>
 <ATTRIBUTE auxiliary:testCaseFile="default.txt" id="userName" name="UserName"
 type="String"/>
 <ATTRIBUTE auxiliary:testCaseFile="default.txt" id="password" name="Password"
 type="Password"/>
 <ATTRIBUTE auxiliary:testCaseFile="default.txt" id="email" name="EMail" type="String"/>
 <RELATIONSHIP auxiliary:testCaseCount="20" graphmetadata:go="User2Group_go"
 id="User2Group" inverse="Group2User" maxCard="N" minCard="1"
 name="User_Group" roleName="User2Group" to="Group"/>
 <RELATIONSHIP auxiliary:testCaseCount="20"
 graphmetadata:go="User2DefaultGroup_go" id="User2DefaultGroup"
 inverse="DefaultGroup2User" maxCard="1" minCard="1" name="User_DefaultGroup"
 roleName="User2DefaultGroup" to="Group"/>
 </ENTITY>
 <ENTITY auxiliary:attributesVisible="true" auxiliary:testCaseCount="20"
 graphmetadata:go="Group_go" id="Group" name="Group">
 <ATTRIBUTE id="groupOID" name="OID" type="OID"/>
 <ATTRIBUTE auxiliary:testCaseFile="default.txt" id="groupName" name="GroupName"
 type="String"/>
 <RELATIONSHIP auxiliary:testCaseCount="20" graphmetadata:go="" id="Group2User"
 inverse="User2Group" maxCard="N" minCard="1" name="User_Group"
 roleName="Group2User" to="User"/>
 <RELATIONSHIP auxiliary:testCaseCount="20" graphmetadata:go=""
 id="DefaultGroup2User" inverse="User2DefaultGroup" maxCard="N" minCard="0"
 name="User_DefaultGroup" roleName="DefaultGroup2User" to="User"/>
 <RELATIONSHIP auxiliary:testCaseCount="20" graphmetadata:go="Group2SiteView_go"
 id="Group2SiteView" inverse="SiteView2Group" maxCard="1" minCard="1"
 name="Group_SiteView" roleName="Group2SiteView" to="SiteView"/>
 </ENTITY>
 <ENTITY auxiliary:attributesVisible="true" auxiliary:testCaseCount="20"
 graphmetadata:go="SiteView_go" id="SiteView" name="SiteView">
 <ATTRIBUTE id="siteViewOID" name="OID" type="OID"/>
 <ATTRIBUTE auxiliary:testCaseFile="default.txt" id="siteViewID" name="SiteViewID"
 type="String"/>
 <RELATIONSHIP auxiliary:testCaseCount="20" graphmetadata:go="" id="SiteView2Group"
 inverse="Group2SiteView" maxCard="N" minCard="1" name="Group_SiteView"
 roleName="SiteView2Group" to="Group"/>
 </ENTITY>
 <ENTITY auxiliary:attributesVisible="true" graphmetadata:go="ent1_go" id="ent1"
 name="$ENT">
 <ATTRIBUTE id="att1" name="OID" type="OID"/>
 <ATTRIBUTE id="att2" name="" type="String">
 <PROPERTY id="prop2" name="Identifier - ATT_ID;" value="alias:"/>
 </ATTRIBUTE>
 <PROPERTY id="prop1" name="Identifier - $ENT_ID;" value="alias:"/>
 </ENTITY>

178 QUERY TEMPLATE OF TRANSFORMER INDEXPCFORET IN WEBML

 </Structure>
 <MetaStructure graphmetadata:go="MetaStructure_go" id="MetaStructure">
 <DOMAIN id="meta$LogPriority" name="Log Priority">
 <DOMAINVALUE value="ERROR"/>
 <DOMAINVALUE value="WARN"/>
 <DOMAINVALUE value="INFO"/>
 <DOMAINVALUE value="DEBUG"/>
 </DOMAIN>
 <DOMAIN id="meta$RTServiceType" name="RTService Type">
 <DOMAINVALUE value="READ"/>
 <DOMAINVALUE value="WRITE"/>
 <DOMAINVALUE value="LINK"/>
 <DOMAINVALUE value="PERMISSION"/>
 <DOMAINVALUE value="OTHER"/>
 </DOMAIN>
 <ENTITY auxiliary:attributesVisible="false" auxiliary:testCaseCount="20"
 graphmetadata:go="meta$LogEvent_go" id="meta$LogEvent" name="LogEvent">
 <ATTRIBUTE auxiliary:testCaseFile="default.txt" id="meta$LogEvent$index" name="index"
 type="Integer"/>
 <ATTRIBUTE auxiliary:testCaseFile="default.txt" id="meta$LogEvent$timestamp"
 name="timestamp" type="String"/>
 <ATTRIBUTE auxiliary:testCaseFile="default.txt" id="meta$LogEvent$priority"
 name="priority" userType="meta$LogPriority"/>
 <ATTRIBUTE id="meta$LogEvent$rtServiceID" name="rtServiceID" type="String"
 value="Self.meta$LogEvent$RelatedTo.meta$RTService$identifier"/>
 <ATTRIBUTE auxiliary:testCaseFile="default.txt" id="meta$LogEvent$message"
 name="message" type="String"/>
 <ATTRIBUTE auxiliary:testCaseFile="default.txt" id="meta$LogEvent$throwable"
 name="throwable" type="Text"/>
 <RELATIONSHIP auxiliary:testCaseCount="20"
 graphmetadata:go="meta$LogEvent$RelatedTo_go"
 id="meta$LogEvent$RelatedTo" inverse="meta$RTService$LoggedEvents"
 maxCard="1" minCard="1" name="LogEvent_RTService" roleName="RelatedTo"
 to="meta$RTService"/>
 </ENTITY>
 <ENTITY auxiliary:attributesVisible="false" auxiliary:testCaseCount="20"
 graphmetadata:go="meta$RTService_go" id="meta$RTService" name="RTService">
 <ATTRIBUTE auxiliary:testCaseFile="default.txt" id="meta$RTService$identifier"
 name="identifier" type="String"/>
 <ATTRIBUTE auxiliary:testCaseFile="default.txt" id="meta$RTService$type" name="type"
 userType="meta$RTServiceType"/>
 <ATTRIBUTE auxiliary:testCaseFile="default.txt" id="meta$RTService$hitCount"
 name="hitCount" type="Integer"/>
 <RELATIONSHIP auxiliary:testCaseCount="20" graphmetadata:go=""
 id="meta$RTService$LoggedEvents" inverse="meta$LogEvent$RelatedTo"
 maxCard="N" minCard="0" name="LogEvent_RTService"
 roleName="LoggedEvents" to="meta$LogEvent"/>
 </ENTITY>
 </MetaStructure>
 <Navigation>
 <GLOBALPARAMETER duration="session" entity="User" id="UserCtxParam"
 name="UserCtxParam"/>
 <GLOBALPARAMETER duration="session" entity="Group" id="GroupCtxParam"
 name="GroupCtxParam"/>
 </Navigation>
 <Mapping>
 <rdbms:RDBMSMapping xmlns:rdbms="http://www.webml.org/mapping/rdbms"/>
 </Mapping>

APPENDIX C 179

 <auxiliary:GraphMetaData>
 <graphmetadata:Drawing element="Structure" id="Structure_go" scale="1.0" x="-116.0"
 y="-314.5"/>
 <graphmetadata:Node element="User" id="User_go" x="-382.0" y="-370.5"/>
 <graphmetadata:Node element="Group" id="Group_go" x="-295.0" y="-377.0"/>
 <graphmetadata:Node element="SiteView" id="SiteView_go" x="-214.5" y="-377.0"/>
 <graphmetadata:Node element="ent1" id="ent1_go" x="-379.0" y="-282.0"/>
 <graphmetadata:Connection element="User2Group" id="User2Group_go" x="-340.5"
 y="-353.5"/>
 <graphmetadata:Connection element="User2DefaultGroup" id="User2DefaultGroup_go"
 x="-341.0" y="-401.0"/>
 <graphmetadata:Connection element="Group2SiteView" id="Group2SiteView_go" x="" y=""/>
 </auxiliary:GraphMetaData>
 <auxiliary:ProjectDependentOptions>
 <auxiliary:Option name="SHOW_CARDINALITY" type="BOOLEAN" value="false"/>
 <auxiliary:Option name="SHOW_MASTER_OBJECT" type="BOOLEAN" value="true"/>
 <auxiliary:Option name="SHOW_ROLES" type="BOOLEAN" value="true"/>
 <auxiliary:Option name="SHOW_PARAMETER_LINK_SYMBOL" type="BOOLEAN"
 value="true"/>
 <auxiliary:Option name="SHOW_CARDINALITY_UML_STYLE" type="BOOLEAN"
 value="true"/>
 <auxiliary:Option name="SHOW_ATTRIBUTES_INSIDE_ENTITIES" type="BOOLEAN"
 value="true"/>
 </auxiliary:ProjectDependentOptions>
</WebML>

APPENDIX D 181

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE WebML SYSTEM "WebML.dtd">

<WebML xmlns:auxiliary="http://www.webml.org/auxiliary"
 xmlns:graphmetadata="http://www.webml.org/graphmetadata"
 xmlns:presentation="http://www.webml.org/presentation" auxiliary:compileJavaFiles="yes"
 auxiliary:deploy-with-names="no" auxiliary:http-port="8080" auxiliary:https-port="8443"
 auxiliary:layoutUseUnderscore="no" auxiliary:scramble-url="no" auxiliary:secure-url="no"
 auxiliary:structured-deploy="no" siteName="Untitled" version="3.0.14">
 <Structure graphmetadata:go="Structure_go" id="Structure">
 <ENTITY auxiliary:attributesVisible="true" auxiliary:testCaseCount="20"
 graphmetadata:go="User_go" id="User" name="User">
 <ATTRIBUTE id="userOID" name="OID" type="OID"/>
 <ATTRIBUTE auxiliary:testCaseFile="default.txt" id="userName" name="UserName"
 type="String"/>
 <ATTRIBUTE auxiliary:testCaseFile="default.txt" id="password" name="Password"
 type="Password"/>
 <ATTRIBUTE auxiliary:testCaseFile="default.txt" id="email" name="EMail" type="String"/>
 <RELATIONSHIP auxiliary:testCaseCount="20" graphmetadata:go="User2Group_go"
 id="User2Group" inverse="Group2User" maxCard="N" minCard="1"
 name="User_Group" roleName="User2Group" to="Group"/>
 <RELATIONSHIP auxiliary:testCaseCount="20"
 graphmetadata:go="User2DefaultGroup_go" id="User2DefaultGroup"
 inverse="DefaultGroup2User" maxCard="1" minCard="1" name="User_DefaultGroup"
 roleName="User2DefaultGroup" to="Group"/>
 </ENTITY>
 <ENTITY auxiliary:attributesVisible="true" auxiliary:testCaseCount="20"
 graphmetadata:go="Group_go" id="Group" name="Group">
 <ATTRIBUTE id="groupOID" name="OID" type="OID"/>
 <ATTRIBUTE auxiliary:testCaseFile="default.txt" id="groupName" name="GroupName"
 type="String"/>
 <RELATIONSHIP auxiliary:testCaseCount="20" graphmetadata:go="" id="Group2User"
 inverse="User2Group" maxCard="N" minCard="1" name="User_Group"
 roleName="Group2User" to="User"/>
 <RELATIONSHIP auxiliary:testCaseCount="20" graphmetadata:go=""
 id="DefaultGroup2User" inverse="User2DefaultGroup" maxCard="N" minCard="0"
 name="User_DefaultGroup" roleName="DefaultGroup2User" to="User"/>
 <RELATIONSHIP auxiliary:testCaseCount="20" graphmetadata:go="Group2SiteView_go"
 id="Group2SiteView" inverse="SiteView2Group" maxCard="1" minCard="1"
 name="Group_SiteView" roleName="Group2SiteView" to="SiteView"/>
 </ENTITY>
 <ENTITY auxiliary:attributesVisible="true" auxiliary:testCaseCount="20"
 graphmetadata:go="SiteView_go" id="SiteView" name="SiteView">
 <ATTRIBUTE id="siteViewOID" name="OID" type="OID"/>
 <ATTRIBUTE auxiliary:testCaseFile="default.txt" id="siteViewID" name="SiteViewID"
 type="String"/>
 <RELATIONSHIP auxiliary:testCaseCount="20" graphmetadata:go="" id="SiteView2Group"
 inverse="Group2SiteView" maxCard="N" minCard="1" name="Group_SiteView"
 roleName="SiteView2Group" to="Group"/>
 </ENTITY>
 <ENTITY auxiliary:attributesVisible="true" graphmetadata:go="ent1_go" id="ent1"
 name="$ENT">
 <ATTRIBUTE id="att1" name="OID" type="OID"/>
 <PROPERTY id="prop1" name="Identifier - $ENT_ID;" value="alias:"/>
 <PROPERTY id="prop2" name="ENT_ID;" value="anchor:;"/>
 </ENTITY>
 </Structure>
 <MetaStructure graphmetadata:go="MetaStructure_go" id="MetaStructure">

182 GENERATIVE TEMPLATE OF TRANSFORMER INDEXPCFORET IN WEBML

 <DOMAIN id="meta$LogPriority" name="Log Priority">
 <DOMAINVALUE value="ERROR"/>
 <DOMAINVALUE value="WARN"/>
 <DOMAINVALUE value="INFO"/>
 <DOMAINVALUE value="DEBUG"/>
 </DOMAIN>
 <DOMAIN id="meta$RTServiceType" name="RTService Type">
 <DOMAINVALUE value="READ"/>
 <DOMAINVALUE value="WRITE"/>
 <DOMAINVALUE value="LINK"/>
 <DOMAINVALUE value="PERMISSION"/>
 <DOMAINVALUE value="OTHER"/>
 </DOMAIN>
 <ENTITY auxiliary:attributesVisible="false" auxiliary:testCaseCount="20"
 graphmetadata:go="meta$LogEvent_go" id="meta$LogEvent" name="LogEvent">
 <ATTRIBUTE auxiliary:testCaseFile="default.txt" id="meta$LogEvent$index" name="index"
 type="Integer"/>
 <ATTRIBUTE auxiliary:testCaseFile="default.txt" id="meta$LogEvent$timestamp"
 name="timestamp" type="String"/>
 <ATTRIBUTE auxiliary:testCaseFile="default.txt" id="meta$LogEvent$priority"
 name="priority" userType="meta$LogPriority"/>
 <ATTRIBUTE id="meta$LogEvent$rtServiceID" name="rtServiceID" type="String"
 value="Self.meta$LogEvent$RelatedTo.meta$RTService$identifier"/>
 <ATTRIBUTE auxiliary:testCaseFile="default.txt" id="meta$LogEvent$message"
 name="message" type="String"/>
 <ATTRIBUTE auxiliary:testCaseFile="default.txt" id="meta$LogEvent$throwable"
 name="throwable" type="Text"/>
 <RELATIONSHIP auxiliary:testCaseCount="20"
 graphmetadata:go="meta$LogEvent$RelatedTo_go" id="meta$LogEvent$RelatedTo"
 inverse="meta$RTService$LoggedEvents" maxCard="1" minCard="1"
 name="LogEvent_RTService" roleName="RelatedTo" to="meta$RTService"/>
 </ENTITY>
 <ENTITY auxiliary:attributesVisible="false" auxiliary:testCaseCount="20"
 graphmetadata:go="meta$RTService_go" id="meta$RTService" name="RTService">
 <ATTRIBUTE auxiliary:testCaseFile="default.txt" id="meta$RTService$identifier"
 name="identifier" type="String"/>
 <ATTRIBUTE auxiliary:testCaseFile="default.txt" id="meta$RTService$type" name="type"
 userType="meta$RTServiceType"/>
 <ATTRIBUTE auxiliary:testCaseFile="default.txt" id="meta$RTService$hitCount"
 name="hitCount" type="Integer"/>
 <RELATIONSHIP auxiliary:testCaseCount="20" graphmetadata:go=""
 id="meta$RTService$LoggedEvents" inverse="meta$LogEvent$RelatedTo"
 maxCard="N" minCard="0" name="LogEvent_RTService" roleName="LoggedEvents"
 to="meta$LogEvent"/>
 </ENTITY>
 </MetaStructure>
 <Navigation>
 <SITEVIEW graphmetadata:go="sv1_go" id="sv1" localize="no" name="" protected="no"
 secure="no">
 <OPERATIONUNITS/>
 <PAGE graphmetadata:go="page1_go" id="page1" landmark="no" localize="no"
 name="PC" secure="no">
 <CONTENTUNITS>
 <INDEXUNIT distinct="no" entity="ent1" graphmetadata:go="inu1_go" id="inu1"
 name="IU">
 <PROPERTY id="prop4" name="Identifier - IU_ID;" value="alias:"/>
 <PROPERTY id="prop11" name="IU=concat(ENT,'List');" value="expression:"/>
 </INDEXUNIT>

APPENDIX D 183

 </CONTENTUNITS>
 <PROPERTY id="prop3" name="Identifier - PC_ID;" value="alias:"/>
 <PROPERTY id="prop5" name="PC=concat(ENT,'Page');" value="expression:"/>
 <presentation:grid colcount="3" rowcount="3">
 <presentation:row>
 <presentation:cell/>
 <presentation:cell/>
 <presentation:cell/>
 </presentation:row>
 <presentation:row>
 <presentation:cell/>
 <presentation:cell/>
 <presentation:cell/>
 </presentation:row>
 <presentation:row>
 <presentation:cell/>
 <presentation:cell/>
 <presentation:cell/>
 </presentation:row>
 </presentation:grid>
 </PAGE>
 <PROPERTY id="prop8" name="Identifier - SV_ID;" value="alias:"/>
 <PROPERTY id="prop13" name="ENT_ID;" value="anchor:"/>
 <PROPERTY id="prop14" name="SV_ID='sv1';" value="expression:"/>
 </SITEVIEW>
 <GLOBALPARAMETER duration="session" entity="User" id="UserCtxParam"
 name="UserCtxParam"/>
 <GLOBALPARAMETER duration="session" entity="Group" id="GroupCtxParam"
 name="GroupCtxParam"/>
 </Navigation>
 <Mapping>
 <rdbms:RDBMSMapping xmlns:rdbms="http://www.webml.org/mapping/rdbms"/>
 </Mapping>
 <auxiliary:GraphMetaData>
 <graphmetadata:Drawing element="Structure" id="Structure_go" scale="0.5" x="34.0"
 y="35.0"/>
 <graphmetadata:Node element="User" id="User_go" x="34.0" y="35.0"/>
 <graphmetadata:Node element="Group" id="Group_go" x="188.0" y="25.0"/>
 <graphmetadata:Node element="SiteView" id="SiteView_go" x="188.0" y="103.0"/>
 <graphmetadata:Node element="ent1" id="ent1_go" x="-49.5" y="174.0"/>
 <graphmetadata:Connection element="User2Group" id="User2Group_go" x="106.0"
 y="48.5"/>
 <graphmetadata:Connection element="User2DefaultGroup" id="User2DefaultGroup_go"
 x="107.0" y="12.5"/>
 <graphmetadata:Connection element="Group2SiteView" id="Group2SiteView_go" x="" y=""/>
 <graphmetadata:Drawing element="sv1" id="sv1_go" scale="1.0" x="443.0" y="533.0"/>
 <graphmetadata:Node element="inu1" id="inu1_go" x="255.0" y="467.0"/>
 <graphmetadata:Node element="page1" id="page1_go" x="255.0" y="468.25"/>
 </auxiliary:GraphMetaData>
 <auxiliary:ProjectDependentOptions>
 <auxiliary:Option name="SHOW_CARDINALITY" type="BOOLEAN" value="true"/>
 <auxiliary:Option name="SHOW_MASTER_OBJECT" type="BOOLEAN" value="true"/>
 <auxiliary:Option name="SHOW_ROLES" type="BOOLEAN" value="true"/>
 <auxiliary:Option name="SHOW_PARAMETER_LINK_SYMBOL" type="BOOLEAN"
 value="true"/>
 <auxiliary:Option name="SHOW_CARDINALITY_UML_STYLE" type="BOOLEAN"
 value="true"/>

184 GENERATIVE TEMPLATE OF TRANSFORMER INDEXPCFORET IN WEBML

 <auxiliary:Option name="SHOW_ATTRIBUTES_INSIDE_ENTITIES" type="BOOLEAN"
 value="true"/>
 </auxiliary:ProjectDependentOptions>
</WebML>

APPENDIX E 185

<?xml version="1.0" encoding="UTF-8"?>

<LR logRepSpec="WebML">
 <RM relation="WebML">
 <AI name="id" value="gen-N400001"/>
 <AI name="auxiliary:compileJavaFiles" value="yes"/>
 <AI name="auxiliary:deploy-with-names" value="no"/>
 <AI name="auxiliary:http-port" value="8080"/>
 <AI name="auxiliary:https-port" value="8443"/>
 <AI name="auxiliary:layoutUseUnderscore" value="no"/>
 <AI name="auxiliary:scramble-url" value="no"/>
 <AI name="auxiliary:secure-url" value="no"/>
 <AI name="auxiliary:structured-deploy" value="no"/>
 <AI name="siteName" value="Untitled"/>
 <AI name="version" value="3.0.14"/>
 </RM>
 <RM relation="Structure">
 <AI name="parent" value="gen-N400001"/>
 <AI name="graphmetadata:go" value="Structure_go"/>
 <AI name="id" value="Structure"/>
 </RM>
 <RM relation="Entity">
 <AI name="auxiliary:attributesVisible" value="true"/>
 <AI name="auxiliary:testCaseCount" value="20"/>
 <AI name="graphmetadata:go" value="User_go"/>
 <AI name="entity" value="User"/>
 <AI name="name" value="User"/>
 </RM>
 <RM relation="Attribute">
 <AI name="definedAt" value="User"/>
 <AI name="attribute" value="userOID"/>
 <AI name="name" value="OID"/>
 <AI name="type" value="OID"/>
 </RM>
 <RM relation="Attribute">
 <AI name="definedAt" value="User"/>
 <AI name="auxiliary:testCaseFile" value="default.txt"/>
 <AI name="attribute" value="userName"/>
 <AI name="name" value="UserName"/>
 <AI name="type" value="String"/>
 </RM>
 <RM relation="Attribute">
 <AI name="definedAt" value="User"/>
 <AI name="auxiliary:testCaseFile" value="default.txt"/>
 <AI name="attribute" value="password"/>
 <AI name="name" value="Password"/>
 <AI name="type" value="Password"/>
 </RM>
 <RM relation="Attribute">
 <AI name="definedAt" value="User"/>
 <AI name="auxiliary:testCaseFile" value="default.txt"/>
 <AI name="attribute" value="email"/>
 <AI name="name" value="EMail"/>
 <AI name="type" value="String"/>
 </RM>
 <RM relation="RelRole">
 <AI name="from" value="User"/>
 <AI name="auxiliary:testCaseCount" value="20"/>

186 GENERATIVE TEMPLATE OF TRANSFORMER INDEXPCFORET IN LOGICAL REP

 <AI name="graphmetadata:go" value="User2Group_go"/>
 <AI name="relRole" value="User2Group"/>
 <AI name="inverse" value="Group2User"/>
 <AI name="maxCard" value="N"/>
 <AI name="minCard" value="1"/>
 <AI name="relShipName" value="User_Group"/>
 <AI name="relRoleName" value="User2Group"/>
 <AI name="to" value="Group"/>
 </RM>
 <RM relation="RelRole">
 <AI name="from" value="User"/>
 <AI name="auxiliary:testCaseCount" value="20"/>
 <AI name="graphmetadata:go" value="User2DefaultGroup_go"/>
 <AI name="relRole" value="User2DefaultGroup"/>
 <AI name="inverse" value="DefaultGroup2User"/>
 <AI name="maxCard" value="1"/>
 <AI name="minCard" value="1"/>
 <AI name="relShipName" value="User_DefaultGroup"/>
 <AI name="relRoleName" value="User2DefaultGroup"/>
 <AI name="to" value="Group"/>
 </RM>
 <RM relation="Entity">
 <AI name="auxiliary:attributesVisible" value="true"/>
 <AI name="auxiliary:testCaseCount" value="20"/>
 <AI name="graphmetadata:go" value="Group_go"/>
 <AI name="entity" value="Group"/>
 <AI name="name" value="Group"/>
 </RM>
 <RM relation="Attribute">
 <AI name="definedAt" value="Group"/>
 <AI name="attribute" value="groupOID"/>
 <AI name="name" value="OID"/>
 <AI name="type" value="OID"/>
 </RM>
 <RM relation="Attribute">
 <AI name="definedAt" value="Group"/>
 <AI name="auxiliary:testCaseFile" value="default.txt"/>
 <AI name="attribute" value="groupName"/>
 <AI name="name" value="GroupName"/>
 <AI name="type" value="String"/>
 </RM>
 <RM relation="RelRole">
 <AI name="from" value="Group"/>
 <AI name="auxiliary:testCaseCount" value="20"/>
 <AI name="relRole" value="Group2User"/>
 <AI name="inverse" value="User2Group"/>
 <AI name="maxCard" value="N"/>
 <AI name="minCard" value="1"/>
 <AI name="relShipName" value="User_Group"/>
 <AI name="relRoleName" value="Group2User"/>
 <AI name="to" value="User"/>
 </RM>
 <RM relation="RelRole">
 <AI name="from" value="Group"/>
 <AI name="auxiliary:testCaseCount" value="20"/>
 <AI name="relRole" value="DefaultGroup2User"/>
 <AI name="inverse" value="User2DefaultGroup"/>
 <AI name="maxCard" value="N"/>

APPENDIX E 187

 <AI name="minCard" value="0"/>
 <AI name="relShipName" value="User_DefaultGroup"/>
 <AI name="relRoleName" value="DefaultGroup2User"/>
 <AI name="to" value="User"/>
 </RM>
 <RM relation="RelRole">
 <AI name="from" value="Group"/>
 <AI name="auxiliary:testCaseCount" value="20"/>
 <AI name="graphmetadata:go" value="Group2SiteView_go"/>
 <AI name="relRole" value="Group2SiteView"/>
 <AI name="inverse" value="SiteView2Group"/>
 <AI name="maxCard" value="1"/>
 <AI name="minCard" value="1"/>
 <AI name="relShipName" value="Group_SiteView"/>
 <AI name="relRoleName" value="Group2SiteView"/>
 <AI name="to" value="SiteView"/>
 </RM>
 <RM relation="Entity">
 <AI name="auxiliary:attributesVisible" value="true"/>
 <AI name="auxiliary:testCaseCount" value="20"/>
 <AI name="graphmetadata:go" value="SiteView_go"/>
 <AI name="entity" value="SiteView"/>
 <AI name="name" value="SiteView"/>
 </RM>
 <RM relation="Attribute">
 <AI name="definedAt" value="SiteView"/>
 <AI name="attribute" value="siteViewOID"/>
 <AI name="name" value="OID"/>
 <AI name="type" value="OID"/>
 </RM>
 <RM relation="Attribute">
 <AI name="definedAt" value="SiteView"/>
 <AI name="auxiliary:testCaseFile" value="default.txt"/>
 <AI name="attribute" value="siteViewID"/>
 <AI name="name" value="SiteViewID"/>
 <AI name="type" value="String"/>
 </RM>
 <RM relation="RelRole">
 <AI name="from" value="SiteView"/>
 <AI name="auxiliary:testCaseCount" value="20"/>
 <AI name="relRole" value="SiteView2Group"/>
 <AI name="inverse" value="Group2SiteView"/>
 <AI name="maxCard" value="N"/>
 <AI name="minCard" value="1"/>
 <AI name="relShipName" value="Group_SiteView"/>
 <AI name="relRoleName" value="SiteView2Group"/>
 <AI name="to" value="Group"/>
 </RM>
 <RM relation="Entity">
 <AI name="auxiliary:attributesVisible" value="true"/>
 <AI name="graphmetadata:go" value="ent1_go"/>
 <AI name="entity" value="ENT_ID"/>
 <AI name="name" value="ENT"/>
 </RM>
 <RM relation="Attribute">
 <AI name="definedAt" value="ENT_ID"/>
 <AI name="attribute" value="att1"/>

188 GENERATIVE TEMPLATE OF TRANSFORMER INDEXPCFORET IN LOGICAL REP

 <AI name="name" value="OID"/>
 <AI name="type" value="OID"/>
 </RM>
 <RM relation="PROPERTY">
 <AI name="parent" value="ENT_ID"/>
 <AI name="id" value="prop1"/>
 <AI name="name" value="Identifier - $ENT_ID;"/>
 <AI name="value" value="alias:"/>
 </RM>
 <RM relation="PROPERTY">
 <AI name="parent" value="ENT_ID"/>
 <AI name="id" value="prop2"/>
 <AI name="name" value="ENT_ID;"/>
 <AI name="value" value="anchor:;"/>
 </RM>
 <RM relation="MetaStructure">
 <AI name="parent" value="gen-N400001"/>
 <AI name="graphmetadata:go" value="MetaStructure_go"/>
 <AI name="id" value="MetaStructure"/>
 </RM>
 <RM relation="DOMAIN">
 <AI name="parent" value="MetaStructure"/>
 <AI name="id" value="meta$LogPriority"/>
 <AI name="name" value="Log Priority"/>
 </RM>
 <RM relation="DOMAINVALUE">
 <AI name="parent" value="meta$LogPriority"/>
 <AI name="id" value="gen-N4000BB"/>
 <AI name="value" value="ERROR"/>
 </RM>
 <RM relation="DOMAINVALUE">
 <AI name="parent" value="meta$LogPriority"/>
 <AI name="id" value="gen-N4000BE"/>
 <AI name="value" value="WARN"/>
 </RM>
 <RM relation="DOMAINVALUE">
 <AI name="parent" value="meta$LogPriority"/>
 <AI name="id" value="gen-N4000C1"/>
 <AI name="value" value="INFO"/>
 </RM>
 <RM relation="DOMAINVALUE">
 <AI name="parent" value="meta$LogPriority"/>
 <AI name="id" value="gen-N4000C4"/>
 <AI name="value" value="DEBUG"/>
 </RM>
 <RM relation="DOMAIN">
 <AI name="parent" value="MetaStructure"/>
 <AI name="id" value="meta$RTServiceType"/>
 <AI name="name" value="RTService Type"/>
 </RM>
 <RM relation="DOMAINVALUE">
 <AI name="parent" value="meta$RTServiceType"/>
 <AI name="id" value="gen-N4000CC"/>
 <AI name="value" value="READ"/>
 </RM>
 <RM relation="DOMAINVALUE">
 <AI name="parent" value="meta$RTServiceType"/>
 <AI name="id" value="gen-N4000CF"/>

APPENDIX E 189

 <AI name="value" value="WRITE"/>
 </RM>
 <RM relation="DOMAINVALUE">
 <AI name="parent" value="meta$RTServiceType"/>
 <AI name="id" value="gen-N4000D2"/>
 <AI name="value" value="LINK"/>
 </RM>
 <RM relation="DOMAINVALUE">
 <AI name="parent" value="meta$RTServiceType"/>
 <AI name="id" value="gen-N4000D5"/>
 <AI name="value" value="PERMISSION"/>
 </RM>
 <RM relation="DOMAINVALUE">
 <AI name="parent" value="meta$RTServiceType"/>
 <AI name="id" value="gen-N4000D8"/>
 <AI name="value" value="OTHER"/>
 </RM>
 <RM relation="ENTITY">
 <AI name="parent" value="MetaStructure"/>
 <AI name="auxiliary:attributesVisible" value="false"/>
 <AI name="auxiliary:testCaseCount" value="20"/>
 <AI name="graphmetadata:go" value="meta$LogEvent_go"/>
 <AI name="id" value="meta$LogEvent"/>
 <AI name="name" value="LogEvent"/>
 </RM>
 <RM relation="ATTRIBUTE">
 <AI name="parent" value="meta$LogEvent"/>
 <AI name="auxiliary:testCaseFile" value="default.txt"/>
 <AI name="id" value="meta$LogEvent$index"/>
 <AI name="name" value="index"/>
 <AI name="type" value="Integer"/>
 </RM>
 <RM relation="ATTRIBUTE">
 <AI name="parent" value="meta$LogEvent"/>
 <AI name="auxiliary:testCaseFile" value="default.txt"/>
 <AI name="id" value="meta$LogEvent$timestamp"/>
 <AI name="name" value="timestamp"/>
 <AI name="type" value="String"/>
 </RM>
 <RM relation="ATTRIBUTE">
 <AI name="parent" value="meta$LogEvent"/>
 <AI name="auxiliary:testCaseFile" value="default.txt"/>
 <AI name="id" value="meta$LogEvent$priority"/>
 <AI name="name" value="priority"/>
 <AI name="userType" value="meta$LogPriority"/>
 </RM>
 <RM relation="ATTRIBUTE">
 <AI name="parent" value="meta$LogEvent"/>
 <AI name="id" value="meta$LogEvent$rtServiceID"/>
 <AI name="name" value="rtServiceID"/>
 <AI name="type" value="String"/>
 <AI name="value" value="Self.meta$LogEvent$RelatedTo.meta$RTService$identifier"/>
 </RM>
 <RM relation="ATTRIBUTE">
 <AI name="parent" value="meta$LogEvent"/>
 <AI name="auxiliary:testCaseFile" value="default.txt"/>
 <AI name="id" value="meta$LogEvent$message"/>

190 GENERATIVE TEMPLATE OF TRANSFORMER INDEXPCFORET IN LOGICAL REP

 <AI name="name" value="message"/>
 <AI name="type" value="String"/>
 </RM>
 <RM relation="ATTRIBUTE">
 <AI name="parent" value="meta$LogEvent"/>
 <AI name="auxiliary:testCaseFile" value="default.txt"/>
 <AI name="id" value="meta$LogEvent$throwable"/>
 <AI name="name" value="throwable"/>
 <AI name="type" value="Text"/>
 </RM>
 <RM relation="RELATIONSHIP">
 <AI name="parent" value="meta$LogEvent"/>
 <AI name="auxiliary:testCaseCount" value="20"/>
 <AI name="graphmetadata:go" value="meta$LogEvent$RelatedTo_go"/>
 <AI name="id" value="meta$LogEvent$RelatedTo"/>
 <AI name="inverse" value="meta$RTService$LoggedEvents"/>
 <AI name="maxCard" value="1"/>
 <AI name="minCard" value="1"/>
 <AI name="name" value="LogEvent_RTService"/>
 <AI name="roleName" value="RelatedTo"/>
 <AI name="to" value="meta$RTService"/>
 </RM>
 <RM relation="ENTITY">
 <AI name="parent" value="MetaStructure"/>
 <AI name="auxiliary:attributesVisible" value="false"/>
 <AI name="auxiliary:testCaseCount" value="20"/>
 <AI name="graphmetadata:go" value="meta$RTService_go"/>
 <AI name="id" value="meta$RTService"/>
 <AI name="name" value="RTService"/>
 </RM>
 <RM relation="ATTRIBUTE">
 <AI name="parent" value="meta$RTService"/>
 <AI name="auxiliary:testCaseFile" value="default.txt"/>
 <AI name="id" value="meta$RTService$identifier"/>
 <AI name="name" value="identifier"/>
 <AI name="type" value="String"/>
 </RM>
 <RM relation="ATTRIBUTE">
 <AI name="parent" value="meta$RTService"/>
 <AI name="auxiliary:testCaseFile" value="default.txt"/>
 <AI name="id" value="meta$RTService$type"/>
 <AI name="name" value="type"/>
 <AI name="userType" value="meta$RTServiceType"/>
 </RM>
 <RM relation="ATTRIBUTE">
 <AI name="parent" value="meta$RTService"/>
 <AI name="auxiliary:testCaseFile" value="default.txt"/>
 <AI name="id" value="meta$RTService$hitCount"/>
 <AI name="name" value="hitCount"/>
 <AI name="type" value="Integer"/>
 </RM>
 <RM relation="RELATIONSHIP">
 <AI name="parent" value="meta$RTService"/>
 <AI name="auxiliary:testCaseCount" value="20"/>
 <AI name="id" value="meta$RTService$LoggedEvents"/>
 <AI name="inverse" value="meta$LogEvent$RelatedTo"/>
 <AI name="maxCard" value="N"/>
 <AI name="minCard" value="0"/>

APPENDIX E 191

 <AI name="name" value="LogEvent_RTService"/>
 <AI name="roleName" value="LoggedEvents"/>
 <AI name="to" value="meta$LogEvent"/>
 </RM>
 <RM relation="Navigation">
 <AI name="parent" value="gen-N400001"/>
 <AI name="id" value="gen-N400139"/>
 </RM>
 <RM relation="SiteView">
 <AI name="graphmetadata:go" value="sv1_go"/>
 <AI name="siteView" value="SV_ID"/>
 <AI name="localize" value="no"/>
 <AI name="protected" value="no"/>
 <AI name="secure" value="no"/>
 </RM>
 <RM relation="OPERATIONUNITS">
 <AI name="parent" value="SV_ID"/>
 <AI name="id" value="gen-N400143"/>
 </RM>
 <RM relation="Page">
 <AI name="definedAt" value="SV_ID"/>
 <AI name="graphmetadata:go" value="page1_go"/>
 <AI name="page" value="PC_ID"/>
 <AI name="landmark" value="no"/>
 <AI name="localize" value="no"/>
 <AI name="name" value="PC"/>
 <AI name="secure" value="no"/>
 </RM>
 <RM relation="CONTENTUNITS">
 <AI name="parent" value="PC_ID"/>
 <AI name="id" value="gen-N40014D"/>
 </RM>
 <RM relation="IndexUnit">
 <AI name="definedAt" value="PC_ID"/>
 <AI name="distinct" value="no"/>
 <AI name="entity" value="ENT_ID"/>
 <AI name="graphmetadata:go" value="inu1_go"/>
 <AI name="indexUnit" value="IU_ID"/>
 <AI name="name" value="IU"/>
 </RM>
 <RM relation="PROPERTY">
 <AI name="parent" value="IU_ID"/>
 <AI name="id" value="prop4"/>
 <AI name="name" value="Identifier - IU_ID;"/>
 <AI name="value" value="alias:"/>
 </RM>
 <RM relation="PROPERTY">
 <AI name="parent" value="IU_ID"/>
 <AI name="id" value="prop11"/>
 <AI name="name" value="IU=concat(ENT,'List');"/>
 <AI name="value" value="expression:"/>
 </RM>
 <RM relation="PROPERTY">
 <AI name="parent" value="PC_ID"/>
 <AI name="id" value="prop3"/>
 <AI name="name" value="Identifier - PC_ID;"/>
 <AI name="value" value="alias:"/>

192 GENERATIVE TEMPLATE OF TRANSFORMER INDEXPCFORET IN LOGICAL REP

 </RM>
 <RM relation="PROPERTY">
 <AI name="parent" value="PC_ID"/>
 <AI name="id" value="prop5"/>
 <AI name="name" value="PC=concat(ENT,'Page');"/>
 <AI name="value" value="expression:"/>
 </RM>
 <RM relation="presentation:grid">
 <AI name="parent" value="PC_ID"/>
 <AI name="id" value="gen-N40016C"/>
 <AI name="colcount" value="3"/>
 <AI name="rowcount" value="3"/>
 </RM>
 <RM relation="presentation:row">
 <AI name="parent" value="gen-N40016C"/>
 <AI name="id" value="gen-N400170"/>
 </RM>
 <RM relation="presentation:cell">
 <AI name="parent" value="gen-N400170"/>
 <AI name="id" value="gen-N400172"/>
 </RM>
 <RM relation="presentation:cell">
 <AI name="parent" value="gen-N400170"/>
 <AI name="id" value="gen-N400174"/>
 </RM>
 <RM relation="presentation:cell">
 <AI name="parent" value="gen-N400170"/>
 <AI name="id" value="gen-N400176"/>
 </RM>
 <RM relation="presentation:row">
 <AI name="parent" value="gen-N40016C"/>
 <AI name="id" value="gen-N400179"/>
 </RM>
 <RM relation="presentation:cell">
 <AI name="parent" value="gen-N400179"/>
 <AI name="id" value="gen-N40017B"/>
 </RM>
 <RM relation="presentation:cell">
 <AI name="parent" value="gen-N400179"/>
 <AI name="id" value="gen-N40017D"/>
 </RM>
 <RM relation="presentation:cell">
 <AI name="parent" value="gen-N400179"/>
 <AI name="id" value="gen-N40017F"/>
 </RM>
 <RM relation="presentation:row">
 <AI name="parent" value="gen-N40016C"/>
 <AI name="id" value="gen-N400182"/>
 </RM>
 <RM relation="presentation:cell">
 <AI name="parent" value="gen-N400182"/>
 <AI name="id" value="gen-N400184"/>
 </RM>
 <RM relation="presentation:cell">
 <AI name="parent" value="gen-N400182"/>
 <AI name="id" value="gen-N400186"/>
 </RM>
 <RM relation="presentation:cell">

APPENDIX E 193

 <AI name="parent" value="gen-N400182"/>
 <AI name="id" value="gen-N400188"/>
 </RM>
 <RM relation="PROPERTY">
 <AI name="parent" value="SV_ID"/>
 <AI name="id" value="prop8"/>
 <AI name="name" value="Identifier - SV_ID;"/>
 <AI name="value" value="alias:"/>
 </RM>
 <RM relation="PROPERTY">
 <AI name="parent" value="SV_ID"/>
 <AI name="id" value="prop13"/>
 <AI name="name" value="ENT_ID;"/>
 <AI name="value" value="anchor:"/>
 </RM>
 <RM relation="PROPERTY">
 <AI name="parent" value="SV_ID"/>
 <AI name="id" value="prop14"/>
 <AI name="name" value="SV_ID='sv1';"/>
 <AI name="value" value="expression:"/>
 </RM>
 <RM relation="GLOBALPARAMETER">
 <AI name="parent" value="gen-N400139"/>
 <AI name="duration" value="session"/>
 <AI name="entity" value="User"/>
 <AI name="id" value="UserCtxParam"/>
 <AI name="name" value="UserCtxParam"/>
 </RM>
 <RM relation="GLOBALPARAMETER">
 <AI name="parent" value="gen-N400139"/>
 <AI name="duration" value="session"/>
 <AI name="entity" value="Group"/>
 <AI name="id" value="GroupCtxParam"/>
 <AI name="name" value="GroupCtxParam"/>
 </RM>
 <RM relation="Mapping">
 <AI name="parent" value="gen-N400001"/>
 <AI name="id" value="gen-N4001AA"/>
 </RM>
 <RM relation="rdbms:RDBMSMapping">
 <AI name="parent" value="gen-N4001AA"/>
 <AI name="id" value="gen-N4001AC"/>
 </RM>
 <RM relation="auxiliary:GraphMetaData">
 <AI name="parent" value="gen-N400001"/>
 <AI name="id" value="gen-N4001B0"/>
 </RM>
 <RM relation="graphmetadata:Drawing">
 <AI name="parent" value="gen-N4001B0"/>
 <AI name="element" value="Structure"/>
 <AI name="id" value="Structure_go"/>
 <AI name="scale" value="0.5"/>
 <AI name="x" value="34.0"/>
 <AI name="y" value="35.0"/>
 </RM>
 <RM relation="graphmetadata:Node">
 <AI name="parent" value="gen-N4001B0"/>

194 GENERATIVE TEMPLATE OF TRANSFORMER INDEXPCFORET IN LOGICAL REP

 <AI name="element" value="User"/>
 <AI name="id" value="User_go"/>
 <AI name="x" value="34.0"/>
 <AI name="y" value="35.0"/>
 </RM>
 <RM relation="graphmetadata:Node">
 <AI name="parent" value="gen-N4001B0"/>
 <AI name="element" value="Group"/>
 <AI name="id" value="Group_go"/>
 <AI name="x" value="188.0"/>
 <AI name="y" value="25.0"/>
 </RM>
 <RM relation="graphmetadata:Node">
 <AI name="parent" value="gen-N4001B0"/>
 <AI name="element" value="SiteView"/>
 <AI name="id" value="SiteView_go"/>
 <AI name="x" value="188.0"/>
 <AI name="y" value="103.0"/>
 </RM>
 <RM relation="EntityPos">
 <AI name="element" value="ENT_ID"/>
 <AI name="pos" value="ent1_go"/>
 <AI name="xValue" value="-49.5"/>
 <AI name="yValue" value="174.0"/>
 </RM>
 <RM relation="graphmetadata:Connection">
 <AI name="parent" value="gen-N4001B0"/>
 <AI name="element" value="User2Group"/>
 <AI name="id" value="User2Group_go"/>
 <AI name="x" value="106.0"/>
 <AI name="y" value="48.5"/>
 </RM>
 <RM relation="graphmetadata:Connection">
 <AI name="parent" value="gen-N4001B0"/>
 <AI name="element" value="User2DefaultGroup"/>
 <AI name="id" value="User2DefaultGroup_go"/>
 <AI name="x" value="107.0"/>
 <AI name="y" value="12.5"/>
 </RM>
 <RM relation="graphmetadata:Connection">
 <AI name="parent" value="gen-N4001B0"/>
 <AI name="element" value="Group2SiteView"/>
 <AI name="id" value="Group2SiteView_go"/>
 </RM>
 <RM relation="graphmetadata:Drawing">
 <AI name="parent" value="gen-N4001B0"/>
 <AI name="element" value="SV_ID"/>
 <AI name="id" value="sv1_go"/>
 <AI name="scale" value="1.0"/>
 <AI name="x" value="443.0"/>
 <AI name="y" value="533.0"/>
 </RM>
 <RM relation="IndexUnitPos">
 <AI name="element" value="IU_ID"/>
 <AI name="pos" value="inu1_go"/>
 <AI name="xValue" value="255.0"/>
 <AI name="yValue" value="467.0"/>
 </RM>

APPENDIX E 195

 <RM relation="PagePos">
 <AI name="element" value="PC_ID"/>
 <AI name="pos" value="page1_go"/>
 <AI name="xValue" value="255.0"/>
 <AI name="yValue" value="468.25"/>
 </RM>
 <RM relation="auxiliary:ProjectDependentOptions">
 <AI name="parent" value="gen-N400001"/>
 <AI name="id" value="gen-N4001F7"/>
 </RM>
 <RM relation="auxiliary:Option">
 <AI name="parent" value="gen-N4001F7"/>
 <AI name="id" value="gen-N4001F9"/>
 <AI name="name" value="SHOW_CARDINALITY"/>
 <AI name="type" value="BOOLEAN"/>
 <AI name="value" value="true"/>
 </RM>
 <RM relation="auxiliary:Option">
 <AI name="parent" value="gen-N4001F7"/>
 <AI name="id" value="gen-N4001FE"/>
 <AI name="name" value="SHOW_MASTER_OBJECT"/>
 <AI name="type" value="BOOLEAN"/>
 <AI name="value" value="true"/>
 </RM>
 <RM relation="auxiliary:Option">
 <AI name="parent" value="gen-N4001F7"/>
 <AI name="id" value="gen-N400203"/>
 <AI name="name" value="SHOW_ROLES"/>
 <AI name="type" value="BOOLEAN"/>
 <AI name="value" value="true"/>
 </RM>
 <RM relation="auxiliary:Option">
 <AI name="parent" value="gen-N4001F7"/>
 <AI name="id" value="gen-N400208"/>
 <AI name="name" value="SHOW_PARAMETER_LINK_SYMBOL"/>
 <AI name="type" value="BOOLEAN"/>
 <AI name="value" value="true"/>
 </RM>
 <RM relation="auxiliary:Option">
 <AI name="parent" value="gen-N4001F7"/>
 <AI name="id" value="gen-N40020D"/>
 <AI name="name" value="SHOW_CARDINALITY_UML_STYLE"/>
 <AI name="type" value="BOOLEAN"/>
 <AI name="value" value="true"/>
 </RM>
 <RM relation="auxiliary:Option">
 <AI name="parent" value="gen-N4001F7"/>
 <AI name="id" value="gen-N400212"/>
 <AI name="name" value="SHOW_ATTRIBUTES_INSIDE_ENTITIES"/>
 <AI name="type" value="BOOLEAN"/>
 <AI name="value" value="true"/>
 </RM>
</LR>

APPENDIX F 197

<?xml version="1.0" encoding="UTF-8"?>

<LR logRepSpec="WebML">
 <RM relation="WebML">
 <AI name="id" value="gen-N400001"/>
 <AI name="auxiliary:compileJavaFiles" value="yes"/>
 <AI name="auxiliary:deploy-with-names" value="no"/>
 <AI name="auxiliary:http-port" value="8080"/>
 <AI name="auxiliary:https-port" value="8443"/>
 <AI name="auxiliary:layoutUseUnderscore" value="no"/>
 <AI name="auxiliary:scramble-url" value="no"/>
 <AI name="auxiliary:secure-url" value="no"/>
 <AI name="auxiliary:structured-deploy" value="no"/>
 <AI name="siteName" value="Untitled"/>
 <AI name="version" value="3.0.14"/>
 </RM>
 <RM relation="Structure">
 <AI name="parent" value="gen-N400001"/>
 <AI name="graphmetadata:go" value="Structure_go"/>
 <AI name="id" value="Structure"/>
 </RM>
 <RM relation="Entity">
 <AI name="auxiliary:attributesVisible" value="true"/>
 <AI name="auxiliary:testCaseCount" value="20"/>
 <AI name="graphmetadata:go" value="User_go"/>
 <AI name="entity" value="User"/>
 <AI name="name" value="User"/>
 </RM>
 <RM relation="Attribute">
 <AI name="definedAt" value="User"/>
 <AI name="attribute" value="userOID"/>
 <AI name="name" value="OID"/>
 <AI name="type" value="OID"/>
 </RM>
 <RM relation="Attribute">
 <AI name="definedAt" value="User"/>
 <AI name="auxiliary:testCaseFile" value="default.txt"/>
 <AI name="attribute" value="userName"/>
 <AI name="name" value="UserName"/>
 <AI name="type" value="String"/>
 </RM>
 <RM relation="Attribute">
 <AI name="definedAt" value="User"/>
 <AI name="auxiliary:testCaseFile" value="default.txt"/>
 <AI name="attribute" value="password"/>
 <AI name="name" value="Password"/>
 <AI name="type" value="Password"/>
 </RM>
 <RM relation="Attribute">
 <AI name="definedAt" value="User"/>
 <AI name="auxiliary:testCaseFile" value="default.txt"/>
 <AI name="attribute" value="email"/>
 <AI name="name" value="EMail"/>
 <AI name="type" value="String"/>
 </RM>
 <RM relation="RelRole">
 <AI name="from" value="User"/>
 <AI name="auxiliary:testCaseCount" value="20"/>

198 QUERY TEMPLATE OF TRANSFORMER INDEXPCFORET IN LOGICAL REP

 <AI name="graphmetadata:go" value="User2Group_go"/>
 <AI name="relRole" value="User2Group"/>
 <AI name="inverse" value="Group2User"/>
 <AI name="maxCard" value="N"/>
 <AI name="minCard" value="1"/>
 <AI name="relShipName" value="User_Group"/>
 <AI name="relRoleName" value="User2Group"/>
 <AI name="to" value="Group"/>
 </RM>
 <RM relation="RelRole">
 <AI name="from" value="User"/>
 <AI name="auxiliary:testCaseCount" value="20"/>
 <AI name="graphmetadata:go" value="User2DefaultGroup_go"/>
 <AI name="relRole" value="User2DefaultGroup"/>
 <AI name="inverse" value="DefaultGroup2User"/>
 <AI name="maxCard" value="1"/>
 <AI name="minCard" value="1"/>
 <AI name="relShipName" value="User_DefaultGroup"/>
 <AI name="relRoleName" value="User2DefaultGroup"/>
 <AI name="to" value="Group"/>
 </RM>
 <RM relation="Entity">
 <AI name="auxiliary:attributesVisible" value="true"/>
 <AI name="auxiliary:testCaseCount" value="20"/>
 <AI name="graphmetadata:go" value="Group_go"/>
 <AI name="entity" value="Group"/>
 <AI name="name" value="Group"/>
 </RM>
 <RM relation="Attribute">
 <AI name="definedAt" value="Group"/>
 <AI name="attribute" value="groupOID"/>
 <AI name="name" value="OID"/>
 <AI name="type" value="OID"/>
 </RM>
 <RM relation="Attribute">
 <AI name="definedAt" value="Group"/>
 <AI name="auxiliary:testCaseFile" value="default.txt"/>
 <AI name="attribute" value="groupName"/>
 <AI name="name" value="GroupName"/>
 <AI name="type" value="String"/>
 </RM>
 <RM relation="RelRole">
 <AI name="from" value="Group"/>
 <AI name="auxiliary:testCaseCount" value="20"/>
 <AI name="relRole" value="Group2User"/>
 <AI name="inverse" value="User2Group"/>
 <AI name="maxCard" value="N"/>
 <AI name="minCard" value="1"/>
 <AI name="relShipName" value="User_Group"/>
 <AI name="relRoleName" value="Group2User"/>
 <AI name="to" value="User"/>
 </RM>
 <RM relation="RelRole">
 <AI name="from" value="Group"/>
 <AI name="auxiliary:testCaseCount" value="20"/>
 <AI name="relRole" value="DefaultGroup2User"/>
 <AI name="inverse" value="User2DefaultGroup"/>
 <AI name="maxCard" value="N"/>

APPENDIX F 199

 <AI name="minCard" value="0"/>
 <AI name="relShipName" value="User_DefaultGroup"/>
 <AI name="relRoleName" value="DefaultGroup2User"/>
 <AI name="to" value="User"/>
 </RM>
 <RM relation="RelRole">
 <AI name="from" value="Group"/>
 <AI name="auxiliary:testCaseCount" value="20"/>
 <AI name="graphmetadata:go" value="Group2SiteView_go"/>
 <AI name="relRole" value="Group2SiteView"/>
 <AI name="inverse" value="SiteView2Group"/>
 <AI name="maxCard" value="1"/>
 <AI name="minCard" value="1"/>
 <AI name="relShipName" value="Group_SiteView"/>
 <AI name="relRoleName" value="Group2SiteView"/>
 <AI name="to" value="SiteView"/>
 </RM>
 <RM relation="Entity">
 <AI name="auxiliary:attributesVisible" value="true"/>
 <AI name="auxiliary:testCaseCount" value="20"/>
 <AI name="graphmetadata:go" value="SiteView_go"/>
 <AI name="entity" value="SiteView"/>
 <AI name="name" value="SiteView"/>
 </RM>
 <RM relation="Attribute">
 <AI name="definedAt" value="SiteView"/>
 <AI name="attribute" value="siteViewOID"/>
 <AI name="name" value="OID"/>
 <AI name="type" value="OID"/>
 </RM>
 <RM relation="Attribute">
 <AI name="definedAt" value="SiteView"/>
 <AI name="auxiliary:testCaseFile" value="default.txt"/>
 <AI name="attribute" value="siteViewID"/>
 <AI name="name" value="SiteViewID"/>
 <AI name="type" value="String"/>
 </RM>
 <RM relation="RelRole">
 <AI name="from" value="SiteView"/>
 <AI name="auxiliary:testCaseCount" value="20"/>
 <AI name="relRole" value="SiteView2Group"/>
 <AI name="inverse" value="Group2SiteView"/>
 <AI name="maxCard" value="N"/>
 <AI name="minCard" value="1"/>
 <AI name="relShipName" value="Group_SiteView"/>
 <AI name="relRoleName" value="SiteView2Group"/>
 <AI name="to" value="Group"/>
 </RM>
 <RM relation="Entity">
 <AI name="auxiliary:attributesVisible" value="true"/>
 <AI name="graphmetadata:go" value="ent1_go"/>
 <AI name="entity" value="ENT_ID"/>
 <AI name="name" value="ENT"/>
 </RM>
 <RM relation="Attribute">
 <AI name="definedAt" value="ENT_ID"/>
 <AI name="attribute" value="att1"/>

200 QUERY TEMPLATE OF TRANSFORMER INDEXPCFORET IN LOGICAL REP

 <AI name="name" value="OID"/>
 <AI name="type" value="OID"/>
 </RM>
 <RM relation="Attribute">
 <AI name="definedAt" value="ENT_ID"/>
 <AI name="attribute" value="ATT_ID"/>
 <AI name="type" value="String"/>
 </RM>
 <RM relation="PROPERTY">
 <AI name="parent" value="ATT_ID"/>
 <AI name="id" value="prop2"/>
 <AI name="name" value="Identifier - ATT_ID;"/>
 <AI name="value" value="alias:"/>
 </RM>
 <RM relation="PROPERTY">
 <AI name="parent" value="ENT_ID"/>
 <AI name="id" value="prop1"/>
 <AI name="name" value="Identifier - $ENT_ID;"/>
 <AI name="value" value="alias:"/>
 </RM>
 <RM relation="MetaStructure">
 <AI name="parent" value="gen-N400001"/>
 <AI name="graphmetadata:go" value="MetaStructure_go"/>
 <AI name="id" value="MetaStructure"/>
 </RM>
 <RM relation="DOMAIN">
 <AI name="parent" value="MetaStructure"/>
 <AI name="id" value="meta$LogPriority"/>
 <AI name="name" value="Log Priority"/>
 </RM>
 <RM relation="DOMAINVALUE">
 <AI name="parent" value="meta$LogPriority"/>
 <AI name="id" value="gen-N4000C1"/>
 <AI name="value" value="ERROR"/>
 </RM>
 <RM relation="DOMAINVALUE">
 <AI name="parent" value="meta$LogPriority"/>
 <AI name="id" value="gen-N4000C4"/>
 <AI name="value" value="WARN"/>
 </RM>
 <RM relation="DOMAINVALUE">
 <AI name="parent" value="meta$LogPriority"/>
 <AI name="id" value="gen-N4000C7"/>
 <AI name="value" value="INFO"/>
 </RM>
 <RM relation="DOMAINVALUE">
 <AI name="parent" value="meta$LogPriority"/>
 <AI name="id" value="gen-N4000CA"/>
 <AI name="value" value="DEBUG"/>
 </RM>
 <RM relation="DOMAIN">
 <AI name="parent" value="MetaStructure"/>
 <AI name="id" value="meta$RTServiceType"/>
 <AI name="name" value="RTService Type"/>
 </RM>
 <RM relation="DOMAINVALUE">
 <AI name="parent" value="meta$RTServiceType"/>
 <AI name="id" value="gen-N4000D2"/>

APPENDIX F 201

 <AI name="value" value="READ"/>
 </RM>
 <RM relation="DOMAINVALUE">
 <AI name="parent" value="meta$RTServiceType"/>
 <AI name="id" value="gen-N4000D5"/>
 <AI name="value" value="WRITE"/>
 </RM>
 <RM relation="DOMAINVALUE">
 <AI name="parent" value="meta$RTServiceType"/>
 <AI name="id" value="gen-N4000D8"/>
 <AI name="value" value="LINK"/>
 </RM>
 <RM relation="DOMAINVALUE">
 <AI name="parent" value="meta$RTServiceType"/>
 <AI name="id" value="gen-N4000DB"/>
 <AI name="value" value="PERMISSION"/>
 </RM>
 <RM relation="DOMAINVALUE">
 <AI name="parent" value="meta$RTServiceType"/>
 <AI name="id" value="gen-N4000DE"/>
 <AI name="value" value="OTHER"/>
 </RM>
 <RM relation="ENTITY">
 <AI name="parent" value="MetaStructure"/>
 <AI name="auxiliary:attributesVisible" value="false"/>
 <AI name="auxiliary:testCaseCount" value="20"/>
 <AI name="graphmetadata:go" value="meta$LogEvent_go"/>
 <AI name="id" value="meta$LogEvent"/>
 <AI name="name" value="LogEvent"/>
 </RM>
 <RM relation="ATTRIBUTE">
 <AI name="parent" value="meta$LogEvent"/>
 <AI name="auxiliary:testCaseFile" value="default.txt"/>
 <AI name="id" value="meta$LogEvent$index"/>
 <AI name="name" value="index"/>
 <AI name="type" value="Integer"/>
 </RM>
 <RM relation="ATTRIBUTE">
 <AI name="parent" value="meta$LogEvent"/>
 <AI name="auxiliary:testCaseFile" value="default.txt"/>
 <AI name="id" value="meta$LogEvent$timestamp"/>
 <AI name="name" value="timestamp"/>
 <AI name="type" value="String"/>
 </RM>
 <RM relation="ATTRIBUTE">
 <AI name="parent" value="meta$LogEvent"/>
 <AI name="auxiliary:testCaseFile" value="default.txt"/>
 <AI name="id" value="meta$LogEvent$priority"/>
 <AI name="name" value="priority"/>
 <AI name="userType" value="meta$LogPriority"/>
 </RM>
 <RM relation="ATTRIBUTE">
 <AI name="parent" value="meta$LogEvent"/>
 <AI name="id" value="meta$LogEvent$rtServiceID"/>
 <AI name="name" value="rtServiceID"/>
 <AI name="type" value="String"/>
 <AI name="value" value="Self.meta$LogEvent$RelatedTo.meta$RTService$identifier"/>

202 QUERY TEMPLATE OF TRANSFORMER INDEXPCFORET IN LOGICAL REP

 </RM>
 <RM relation="ATTRIBUTE">
 <AI name="parent" value="meta$LogEvent"/>
 <AI name="auxiliary:testCaseFile" value="default.txt"/>
 <AI name="id" value="meta$LogEvent$message"/>
 <AI name="name" value="message"/>
 <AI name="type" value="String"/>
 </RM>
 <RM relation="ATTRIBUTE">
 <AI name="parent" value="meta$LogEvent"/>
 <AI name="auxiliary:testCaseFile" value="default.txt"/>
 <AI name="id" value="meta$LogEvent$throwable"/>
 <AI name="name" value="throwable"/>
 <AI name="type" value="Text"/>
 </RM>
 <RM relation="RELATIONSHIP">
 <AI name="parent" value="meta$LogEvent"/>
 <AI name="auxiliary:testCaseCount" value="20"/>
 <AI name="graphmetadata:go" value="meta$LogEvent$RelatedTo_go"/>
 <AI name="id" value="meta$LogEvent$RelatedTo"/>
 <AI name="inverse" value="meta$RTService$LoggedEvents"/>
 <AI name="maxCard" value="1"/>
 <AI name="minCard" value="1"/>
 <AI name="name" value="LogEvent_RTService"/>
 <AI name="roleName" value="RelatedTo"/>
 <AI name="to" value="meta$RTService"/>
 </RM>
 <RM relation="ENTITY">
 <AI name="parent" value="MetaStructure"/>
 <AI name="auxiliary:attributesVisible" value="false"/>
 <AI name="auxiliary:testCaseCount" value="20"/>
 <AI name="graphmetadata:go" value="meta$RTService_go"/>
 <AI name="id" value="meta$RTService"/>
 <AI name="name" value="RTService"/>
 </RM>
 <RM relation="ATTRIBUTE">
 <AI name="parent" value="meta$RTService"/>
 <AI name="auxiliary:testCaseFile" value="default.txt"/>
 <AI name="id" value="meta$RTService$identifier"/>
 <AI name="name" value="identifier"/>
 <AI name="type" value="String"/>
 </RM>
 <RM relation="ATTRIBUTE">
 <AI name="parent" value="meta$RTService"/>
 <AI name="auxiliary:testCaseFile" value="default.txt"/>
 <AI name="id" value="meta$RTService$type"/>
 <AI name="name" value="type"/>
 <AI name="userType" value="meta$RTServiceType"/>
 </RM>
 <RM relation="ATTRIBUTE">
 <AI name="parent" value="meta$RTService"/>
 <AI name="auxiliary:testCaseFile" value="default.txt"/>
 <AI name="id" value="meta$RTService$hitCount"/>
 <AI name="name" value="hitCount"/>
 <AI name="type" value="Integer"/>
 </RM>
 <RM relation="RELATIONSHIP">
 <AI name="parent" value="meta$RTService"/>

APPENDIX F 203

 <AI name="auxiliary:testCaseCount" value="20"/>
 <AI name="id" value="meta$RTService$LoggedEvents"/>
 <AI name="inverse" value="meta$LogEvent$RelatedTo"/>
 <AI name="maxCard" value="N"/>
 <AI name="minCard" value="0"/>
 <AI name="name" value="LogEvent_RTService"/>
 <AI name="roleName" value="LoggedEvents"/>
 <AI name="to" value="meta$LogEvent"/>
 </RM>
 <RM relation="Navigation">
 <AI name="parent" value="gen-N400001"/>
 <AI name="id" value="gen-N40013F"/>
 </RM>
 <RM relation="GLOBALPARAMETER">
 <AI name="parent" value="gen-N40013F"/>
 <AI name="duration" value="session"/>
 <AI name="entity" value="User"/>
 <AI name="id" value="UserCtxParam"/>
 <AI name="name" value="UserCtxParam"/>
 </RM>
 <RM relation="GLOBALPARAMETER">
 <AI name="parent" value="gen-N40013F"/>
 <AI name="duration" value="session"/>
 <AI name="entity" value="Group"/>
 <AI name="id" value="GroupCtxParam"/>
 <AI name="name" value="GroupCtxParam"/>
 </RM>
 <RM relation="Mapping">
 <AI name="parent" value="gen-N400001"/>
 <AI name="id" value="gen-N40014E"/>
 </RM>
 <RM relation="rdbms:RDBMSMapping">
 <AI name="parent" value="gen-N40014E"/>
 <AI name="id" value="gen-N400150"/>
 </RM>
 <RM relation="auxiliary:GraphMetaData">
 <AI name="parent" value="gen-N400001"/>
 <AI name="id" value="gen-N400154"/>
 </RM>
 <RM relation="graphmetadata:Drawing">
 <AI name="parent" value="gen-N400154"/>
 <AI name="element" value="Structure"/>
 <AI name="id" value="Structure_go"/>
 <AI name="scale" value="1.0"/>
 <AI name="x" value="-116.0"/>
 <AI name="y" value="-314.5"/>
 </RM>
 <RM relation="graphmetadata:Node">
 <AI name="parent" value="gen-N400154"/>
 <AI name="element" value="User"/>
 <AI name="id" value="User_go"/>
 <AI name="x" value="-382.0"/>
 <AI name="y" value="-370.5"/>
 </RM>
 <RM relation="graphmetadata:Node">
 <AI name="parent" value="gen-N400154"/>
 <AI name="element" value="Group"/>

204 QUERY TEMPLATE OF TRANSFORMER INDEXPCFORET IN LOGICAL REP

 <AI name="id" value="Group_go"/>
 <AI name="x" value="-295.0"/>
 <AI name="y" value="-377.0"/>
 </RM>
 <RM relation="graphmetadata:Node">
 <AI name="parent" value="gen-N400154"/>
 <AI name="element" value="SiteView"/>
 <AI name="id" value="SiteView_go"/>
 <AI name="x" value="-214.5"/>
 <AI name="y" value="-377.0"/>
 </RM>
 <RM relation="EntityPos">
 <AI name="element" value="ENT_ID"/>
 <AI name="pos" value="ent1_go"/>
 <AI name="xValue" value="-379.0"/>
 <AI name="yValue" value="-282.0"/>
 </RM>
 <RM relation="graphmetadata:Connection">
 <AI name="parent" value="gen-N400154"/>
 <AI name="element" value="User2Group"/>
 <AI name="id" value="User2Group_go"/>
 <AI name="x" value="-340.5"/>
 <AI name="y" value="-353.5"/>
 </RM>
 <RM relation="graphmetadata:Connection">
 <AI name="parent" value="gen-N400154"/>
 <AI name="element" value="User2DefaultGroup"/>
 <AI name="id" value="User2DefaultGroup_go"/>
 <AI name="x" value="-341.0"/>
 <AI name="y" value="-401.0"/>
 </RM>
 <RM relation="graphmetadata:Connection">
 <AI name="parent" value="gen-N400154"/>
 <AI name="element" value="Group2SiteView"/>
 <AI name="id" value="Group2SiteView_go"/>
 </RM>
 <RM relation="auxiliary:ProjectDependentOptions">
 <AI name="parent" value="gen-N400001"/>
 <AI name="id" value="gen-N400188"/>
 </RM>
 <RM relation="auxiliary:Option">
 <AI name="parent" value="gen-N400188"/>
 <AI name="id" value="gen-N40018A"/>
 <AI name="name" value="SHOW_CARDINALITY"/>
 <AI name="type" value="BOOLEAN"/>
 <AI name="value" value="false"/>
 </RM>
 <RM relation="auxiliary:Option">
 <AI name="parent" value="gen-N400188"/>
 <AI name="id" value="gen-N40018F"/>
 <AI name="name" value="SHOW_MASTER_OBJECT"/>
 <AI name="type" value="BOOLEAN"/>
 <AI name="value" value="true"/>
 </RM>
 <RM relation="auxiliary:Option">
 <AI name="parent" value="gen-N400188"/>
 <AI name="id" value="gen-N400194"/>
 <AI name="name" value="SHOW_ROLES"/>

APPENDIX F 205

 <AI name="type" value="BOOLEAN"/>
 <AI name="value" value="true"/>
 </RM>
 <RM relation="auxiliary:Option">
 <AI name="parent" value="gen-N400188"/>
 <AI name="id" value="gen-N400199"/>
 <AI name="name" value="SHOW_PARAMETER_LINK_SYMBOL"/>
 <AI name="type" value="BOOLEAN"/>
 <AI name="value" value="true"/>
 </RM>
 <RM relation="auxiliary:Option">
 <AI name="parent" value="gen-N400188"/>
 <AI name="id" value="gen-N40019E"/>
 <AI name="name" value="SHOW_CARDINALITY_UML_STYLE"/>
 <AI name="type" value="BOOLEAN"/>
 <AI name="value" value="true"/>
 </RM>
 <RM relation="auxiliary:Option">
 <AI name="parent" value="gen-N400188"/>
 <AI name="id" value="gen-N4001A3"/>
 <AI name="name" value="SHOW_ATTRIBUTES_INSIDE_ENTITIES"/>
 <AI name="type" value="BOOLEAN"/>
 <AI name="value" value="true"/>
 </RM>
</LR>

Appendix G 207

let $schemaIns := input()/LRI,
 $relMems := $schemaIns/RM,
 $rAttribute := $relMems[@relation eq 'Attribute'],
 $rEntity := $relMems[@relation eq 'Entity'],
 $rEntityPos := $relMems[@relation eq 'EntityPos'],
 $uPagePos := distinct-values($relMems[@relation eq 'PagePos']/AI[@name eq
 'pos']/@value),
 $uSiteView := distinct-values($relMems[@relation eq 'SiteView']/AI[@name eq
 'siteView']/@value union
 $relMems[@relation eq 'Page']/AI[@name eq 'definedAt']/@value union
 $relMems[@relation eq 'CreateUnit']/AI[@name eq 'definedAt']/@value union
 $relMems[@relation eq 'DeleteUnit']/AI[@name eq 'definedAt']/@value union
 $relMems[@relation eq 'ModifyUnit']/AI[@name eq 'definedAt']/@value),
 $uAttribute := distinct-values($relMems[@relation eq 'Attribute']/AI[@name eq
 'attribute']/@value),
 $uXPosValue := distinct-values($relMems[@relation eq 'EntityPos']/AI[@name eq
 'xValue']/@value union
 $relMems[@relation eq 'RelRolePos']/AI[@name eq 'xValue']/@value union
 $relMems[@relation eq 'PagePos']/AI[@name eq 'xValue']/@value union
 $relMems[@relation eq 'DataUnitPos']/AI[@name eq 'xValue']/@value union
 $relMems[@relation eq 'IndexUnitPos']/AI[@name eq 'xValue']/@value union
 $relMems[@relation eq 'EntryUnitPos']/AI[@name eq 'xValue']/@value union
 $relMems[@relation eq 'ScrollerUnitPos']/AI[@name eq 'xValue']/@value union
 $relMems[@relation eq 'CreateUnitPos']/AI[@name eq 'xValue']/@value union
 $relMems[@relation eq 'DeleteUnitPos']/AI[@name eq 'xValue']/@value union
 $relMems[@relation eq 'ModifyUnitPos']/AI[@name eq 'xValue']/@value union
 $relMems[@relation eq 'LinkPos']/AI[@name eq 'xValue']/@value),
 $uIndexUnitPos := distinct-values($relMems[@relation eq 'IndexUnitPos']/AI[@name eq
 'pos']/@value),
 $uEntity := distinct-values($relMems[@relation eq 'Entity']/AI[@name eq 'entity']/@value union
 $relMems[@relation eq 'Attribute']/AI[@name eq 'definedAt']/@value union
 $relMems[@relation eq 'RelRole']/AI[@name eq 'to']/@value union
 $relMems[@relation eq 'RelRole']/AI[@name eq 'from']/@value union
 $relMems[@relation eq 'EntityPos']/AI[@name eq 'element']/@value union
 $relMems[@relation eq 'DataUnit']/AI[@name eq 'entity']/@value union
 $relMems[@relation eq 'IndexUnit']/AI[@name eq 'entity']/@value union
 $relMems[@relation eq 'ScrollerUnit']/AI[@name eq 'entity']/@value union
 $relMems[@relation eq 'CreateUnit']/AI[@name eq 'entity']/@value union
 $relMems[@relation eq 'DeleteUnit']/AI[@name eq 'entity']/@value union
 $relMems[@relation eq 'ModifyUnit']/AI[@name eq 'entity']/@value),
 $uEntityPos := distinct-values($relMems[@relation eq 'EntityPos']/AI[@name eq 'pos']/@value),
 $uIndexUnit := distinct-values($relMems[@relation eq 'Link']/AI[@name eq
 'destIndexUnit']/@value union
 $relMems[@relation eq 'Link']/AI[@name eq 'startIndexUnit']/@value union
 $relMems[@relation eq 'IndexUnit']/AI[@name eq 'indexUnit']/@value union
 $relMems[@relation eq 'IndexUnitPos']/AI[@name eq 'element']/@value),
 $uName := distinct-values($relMems[@relation eq 'Entity']/AI[@name eq 'name']/@value union
 $relMems[@relation eq 'Attribute']/AI[@name eq 'name']/@value union
 $relMems[@relation eq 'RelRole']/AI[@name eq 'relShipName']/@value union
 $relMems[@relation eq 'RelRole']/AI[@name eq 'name']/@value union
 $relMems[@relation eq 'SiteView']/AI[@name eq 'name']/@value union
 $relMems[@relation eq 'Page']/AI[@name eq 'name']/@value union
 $relMems[@relation eq 'Link']/AI[@name eq 'name']/@value union
 $relMems[@relation eq 'DataUnit']/AI[@name eq 'name']/@value union
 $relMems[@relation eq 'IndexUnit']/AI[@name eq 'name']/@value union
 $relMems[@relation eq 'EntryUnit']/AI[@name eq 'name']/@value union
 $relMems[@relation eq 'ScrollerUnit']/AI[@name eq 'name']/@value union
 $relMems[@relation eq 'CreateUnit']/AI[@name eq 'name']/@value union

208 TRANSFORMER INDEXPCFORET IN TERMS OF XQUERY

 $relMems[@relation eq 'DeleteUnit']/AI[@name eq 'name']/@value union
 $relMems[@relation eq 'ModifyUnit']/AI[@name eq 'name']/@value),
 $uYPosValue := distinct-values($relMems[@relation eq 'EntityPos']/AI[@name eq
 'yValue']/@value union
 $relMems[@relation eq 'RelRolePos']/AI[@name eq 'yValue']/@value union
 $relMems[@relation eq 'PagePos']/AI[@name eq 'yValue']/@value union
 $relMems[@relation eq 'DataUnitPos']/AI[@name eq 'yValue']/@value union
 $relMems[@relation eq 'IndexUnitPos']/AI[@name eq 'yValue']/@value union
 $relMems[@relation eq 'EntryUnitPos']/AI[@name eq 'yValue']/@value union
 $relMems[@relation eq 'ScrollerUnitPos']/AI[@name eq 'yValue']/@value union
 $relMems[@relation eq 'CreateUnitPos']/AI[@name eq 'yValue']/@value union
 $relMems[@relation eq 'DeleteUnitPos']/AI[@name eq 'yValue']/@value union
 $relMems[@relation eq 'ModifyUnitPos']/AI[@name eq 'yValue']/@value union
 $relMems[@relation eq 'LinkPos']/AI[@name eq 'yValue']/@value),
 $uPage := distinct-values($relMems[@relation eq 'Page']/AI[@name eq 'page']/@value union
 $relMems[@relation eq 'Link']/AI[@name eq 'destPage']/@value union
 $relMems[@relation eq 'Link']/AI[@name eq 'startPage']/@value union
 $relMems[@relation eq 'DataUnit']/AI[@name eq 'definedAt']/@value union
 $relMems[@relation eq 'IndexUnit']/AI[@name eq 'definedAt']/@value union
 $relMems[@relation eq 'EntryUnit']/AI[@name eq 'definedAt']/@value union
 $relMems[@relation eq 'ScrollerUnit']/AI[@name eq 'definedAt']/@value union
 $relMems[@relation eq 'PagePos']/AI[@name eq 'element']/@value)
 let $outerQTRes := (

 let $innerQTRes1 := (

 for $Y_ANCH in $uYPosValue,
 $X_ANCH in $uXPosValue
 where
 (exists(for $rEntityPos_ in $rEntityPos
 where $rEntityPos_/AI[@name eq 'xValue' and @value eq $X_ANCH] and
 $rEntityPos_/AI[@name eq 'yValue' and @value eq $Y_ANCH]
 return $rEntityPos_))
 return <tuple>
 <Y_ANCH>{$Y_ANCH}</Y_ANCH>
 <X_ANCH>{$X_ANCH}</X_ANCH>
 </tuple>
)

 return <outerQTRes>
 {
 for $innerQTRes1_ in $innerQTRes1,
 $ENT in $uName,
 $ENT_ID in $uEntity
 let $Y_ANCH := data($innerQTRes1_/Y_ANCH),
 $X_ANCH := data($innerQTRes1_/X_ANCH)
 where
 (exists(for $rEntity_ in $rEntity
 where $rEntity_/AI[@name eq 'entity' and @value eq $ENT_ID] and
 $rEntity_/AI[@name eq 'name' and @value eq $ENT]
 return $rEntity_)) and
 (exists(for $rAttribute_ in $rAttribute
 where $rAttribute_/AI[@name eq 'definedAt' and @value eq $ENT_ID]
 return $rAttribute_)) and
 (exists(for $rEntityPos_ in $rEntityPos
 where $rEntityPos_/AI[@name eq 'element' and @value eq $ENT_ID] and
 $rEntityPos_/AI[@name eq 'xValue' and @value eq $X_ANCH] and
 $rEntityPos_/AI[@name eq 'yValue' and @value eq $Y_ANCH]

Appendix G 209

 return $rEntityPos_)) and(
 (($ENT eq 'Author')) or
 (($ENT eq 'Paper'))
)
 return <tuple>
 <Y_ANCH>{$Y_ANCH}</Y_ANCH>
 <X_ANCH>{$X_ANCH}</X_ANCH>
 <ENT>{$ENT}</ENT>
 <ENT_ID>{$ENT_ID}</ENT_ID>
 </tuple>
 }
 </outerQTRes>

)

return <LRI>{
let $hPagePos := max(for $id in $uPagePos
 where starts-with($id, 'page') and ends-with($id, '_go')
 return substring-before(substring-after($id, 'page'), '_go')),
 $hIndexUnitPos := max(for $id in $uIndexUnitPos
 where starts-with($id, 'inu') and ends-with($id, '_go')
 return substring-before(substring-after($id, 'inu'), '_go')),
 $hIndexUnit := max(for $id in $uIndexUnit
 where starts-with($id, 'inu')
 return substring-after($id, 'inu')),
 $hPage := max(for $id in $uPage
 where starts-with($id, 'page')
 return substring-after($id, 'page')),
 $gtRes := (
for $counter in 1 to count($outerQTRes/tuple)
let $ENT_ID := data(item-at($outerQTRes/tuple,$counter)/ENT_ID),
 $ENT := data(item-at($outerQTRes/tuple,$counter)/ENT),
 $X_ANCH := data(item-at($outerQTRes/tuple,$counter)/X_ANCH),
 $Y_ANCH := data(item-at($outerQTRes/tuple,$counter)/Y_ANCH),
 $SV_ID := 'sv1',
 $PC_ID := concat('page', string(xs:decimal(max((($hPage),(xs:string(0))))) + 1 + 1 * ($counter
 -1))),
 $PC := concat($ENT ,'Page'),
 $IU_ID := concat('inu', string(xs:decimal(max((($hIndexUnit),(xs:string(0))))) + 1 + 1 * ($counter
 -1))),
 $IU := concat($ENT ,'List'),
 $POS_1 := concat(concat('inu', string(xs:decimal(max((($hIndexUnitPos),(xs:string(0))))) + 1 +
 1 * ($counter -1))), '_go'),
 $X_VAL_1 := $X_ANCH + 634.0,
 $Y_VAL_1 := $Y_ANCH + 749.0,
 $POS_2 := concat(concat('page', string(xs:decimal(max((($hPagePos),(xs:string(0))))) + 1 + 1
 * ($counter -1))), '_go'),
 $X_VAL_2 := $X_ANCH + 634.0,
 $Y_VAL_2 := $Y_ANCH + 750.25
return <tuple>
 <RM relation="SiteView">
 <AI name="siteView" value="{$SV_ID}"/>
 </RM>
 <RM relation="Page">
 <AI name="page" value="{$PC_ID}"/>
 <AI name="name" value="{$PC}"/>
 <AI name="definedAt" value="{$SV_ID}"/>

210 TRANSFORMER INDEXPCFORET IN TERMS OF XQUERY

 </RM>
 <RM relation="IndexUnit">
 <AI name="indexUnit" value="{$IU_ID}"/>
 <AI name="name" value="{$IU}"/>
 <AI name="entity" value="{$ENT_ID}"/>
 <AI name="definedAt" value="{$PC_ID}"/>
 </RM>
 <RM relation="IndexUnitPos">
 <AI name="pos" value="{$POS_1}"/>
 <AI name="element" value="{$IU_ID}"/>
 <AI name="xValue" value="{$X_VAL_1}"/>
 <AI name="yValue" value="{$Y_VAL_1}"/>
 </RM>
 <RM relation="PagePos">
 <AI name="pos" value="{$POS_2}"/>
 <AI name="element" value="{$PC_ID}"/>
 <AI name="xValue" value="{$X_VAL_2}"/>
 <AI name="yValue" value="{$Y_VAL_2}"/>
 </RM>
 </tuple>)
return $gtRes/RM union $relMems
}</LRI>

