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Reference models for data analysis with data warehouses may consist of multidimen-
sional reference models and analysis graphs. Multidimensional reference models are best-
practice domain-specific data models for online analytical processing. Analysis graphs
are reference models of analysis processes for event-driven data analysis. Small and
medium-sized enterprises (SMEs) as well as large multinational companies may benefit
from the use of reference models for data analysis. The availability of multidimensional
reference models lowers the obstacles that inhibit SMEs from using business intelligence
(BI) technology. Multinational companies may define multidimensional reference models
for increased compliance among subsidiaries and departments. Furthermore, the defini-
tion of analysis graphs facilitates the handling of business events for both SMEs and large
companies. Modelers may customize the chosen reference models, tailoring the models
to the specific needs of the individual company or local subsidiary. Customizations may
consist of additions, omissions, and modifications with respect to the reference model. In
this paper, we propose a metamodel and customization approach for multidimensional
reference models and analysis graphs. We specifically address the explicit modeling of key
performance indicators as well as the definition of analysis situations and analysis graphs.

Keywords: Conceptual modeling; business intelligence; online analytical processing;
dimensional fact model; metadata management; data warehouses.

*Corresponding author.

This is an Open Access article published by World Scientific Publishing Company. It is distributed

under the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution
of this work is permitted, provided the original work is properly cited.

1650006-1


http://dx.doi.org/10.1142/S0218843016500064

C. G. Schuetz et al.

1. Introduction

Reference models may describe both structural and behavioral aspects of data anal-
ysis. Structural aspects of data analysis comprise fact classes and dimensions of a
data warehouse, key performance indicators (KPIs), and business terms of inter-
est for a particular domain. Multidimensional reference models represent common,
best-practice instances of data analysis structures which may be customized to the
specific needs of a particular use case. Behavioral aspects of data analysis, on the
other hand, comprise the analysis processes followed by analysts in order to solve
a particular analytical task. An analysis graph defines a common, best-practice
course of action to solve an analytical task, modeling the succession of individual
analysis situations. An analysis situation represents a specific view on the data that
analysts employ to solve the analytical task at hand.

Many small and medium-sized enterprises (SMEs) refrain from adopting busi-
ness intelligence (BI) technology but reference models allow these companies to
overcome the obstacles associated with the introduction of BI solutions. The fac-
tors for nonproliferation of BI technology among SMEs include the nonexistence of
a coherent definition of KPIs within the company, the mismatch between business
needs and BI functionalities, the perceived complexity of handling and report build-
ing, and unqualified personnel as well as poorly structured data.! Other factors are
a lack of Bl-related know-how and the costs for implementation and deployment of
a BI solution.? By providing a starting point for BI projects, reference models have
the potential to reduce implementation and deployment costs for BI solutions and
serve as a basis for requirements analysis together with business analysts.>* Ser-
vice providers may offer a set of preconfigured multidimensional reference models,
including a catalog of KPIs, for different industries. These reference models for-
malize best-practice multidimensional models® which can be tailored to the specific
needs of a company.>® Furthermore, the use of reference models facilitates inter-
company data analysis, thus increasing the potential benefits from BI for SMEs
which individually might not generate sufficient amounts of data for insightful data
analysis. Analysis graphs, on the other hand, externalize tacit knowledge of analysts
about best-practice analysis processes. The explicit representation and documenta-
tion of such knowledge facilitates data exploration for unexperienced personnel.

Multinational companies also benefit from the employment of reference mod-
els for data analysis. Multidimensional reference models facilitate the integration
of reporting systems of acquired branches into the company-wide data warehouse
infrastructure. Multidimensional reference models also support the enforcement of
corporate policies and legal requirements® across different subsidiaries and depart-
ments as well as the establishment of a shared understanding of KPIs and business
terms.”® Analysis graphs allow for a uniform handling of business situations that
require specific information needs.

Following the guidelines for design-science research,”’ we present BIRD — Busi-
ness Intelligence Reference Modeling for Data Analysis — a lightweight reference
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modeling approach for relational OLAP (ROLAP) that covers not only multidi-
mensional reference models but also analysis graphs; the individual components of
BIRD reference models are customizable. The outcome of this paper is a design
artifact which proposes a solution to the resource-intensive, time-consuming task
of implementing BI solutions with high demands for specific know-how. For mul-
tidimensional reference modeling, the BIRD approach adapts the dimensional fact
model'® (DFM) — a popular approach for conceptual data warehouse modeling;
SQL serves as definition language for KPIs and business terms. The reliance on well-
known methodologies and ubiquitous technology, such as DFM and SQL, has sev-
eral advantages. In order to avoid a mismatch between business needs and available
data, business analysts should be involved in the customization process.® Prefer-
ably, multidimensional reference models are simple, understandable, and thus easily
customized by the average business analyst since the necessary customization effort
determines the benefit of a reference model.* Both the DFM and SQL should be
easy to understand for business analysts who are spared from learning a complex
reference modeling language. The use of SQL and star schema also potentially
facilitates integration into existing infrastructure since many companies employ
relational databases.

The contribution of BIRD is not another approach to conceptual multidimen-
sional modeling but rather represents a methodology for the definition of reference
models for data analysis and their customization as well as the generation of logical
schemas and queries. BIRD specifically focuses on the explicit representation of
calculated measures and business concepts, which is otherwise often down to the
intuition of the business analyst and thus elusive to unexperienced business ana-
lysts. BIRD also focuses on the representation of analysis processes, which assist
unexperienced business analysts with satisfying their analysis needs. As opposed
to mere multidimensional modeling approaches, BIRD also considers the possibil-
ity of customizations. The BIRD metamodel for multidimensional reference models
condenses and simplifies existing conceptual modeling approaches for the purposes
of reference modeling, thereby allowing business analysts who are nonexperts in BI
technology to take part in the customization process. We refer to existing works
for general issues in multidimensional modeling, for example, the study of sum-
marizability'!1?
Romero and Abellé*? offer a comprehensive overview on multidimensional modeling
approaches.

We illustrate the BIRD approach with a use case inspired by one of our indus-
try partners, KOTI Kobra, the Austrian subsidiary of the KOTI group. The KOTI
group® is a European manufacturer of various sorts of brushes such as industrial and
technical brushes, strip and sealing brushes, work tool brushes, sweeping and clean-
ing brushes, runway brushes for airports, hygiene brushes, as well as entrance brush

and the definition of general consistency criteria. In this regard,

2https: //www.koti-eu.com/en/home.
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mats. Different departments have similar requirements regarding data analysis but
due to differences in the manufacturing processes data models require customiza-
tion. The evaluation section (Sec. 4), in addition, discusses how the BIRD approach
can be employed in the agriProKnow project, an experimental development collab-
oration between industry and academia for data analysis in precision dairy farming.
Proof-of-concept prototypes demonstrate feasibility of the BIRD approach.

This paper is a revised and extended version of a previous conference paper.™*
Whereas the original conference paper focused on structural reference model-
ing, this paper also concentrates on the behavioral aspects of reference model-
ing for data analysis by adding analysis graphs. Analysis graphs are the result
of the Semantic Cockpit project” (semCockpit) from a previous industry collabo-
715,16 we also consider
the interdependencies of analysis graphs and multidimensional reference models,
the customization of analysis graphs as well as the generation of parameterized
queries for analysis situations and workflow models based on State Chart XML7
(SCXML). We choose SCXML due to its simplicity and extensibility, allowing for
the machine-readable representation of workflow models for analysis graphs, self-
contained along with the analysis situation and auxiliary queries. We stress, though,
that the concept of analysis graphs is independent of any particular representation
format.

The remainder of this paper is organized as follows. In Sec. 2 we present the
approach for the representation of multidimensional reference models and their cus-
tomization as well as the generation of corresponding star schema tables. In Sec. 3
we present the approach for the modeling of analysis situations and analysis graphs

ration. With respect to previous works on analysis graphs

based on multidimensional reference models as well as the generation of parame-
terized queries and workflow models. In Sec. 4 we evaluate the BIRD approach.
In Sec. 5 we review related works and discuss the relationship between BIRD and
related works. In Sec. 6 we conclude the paper.

2. Multidimensional Models

In this section, we discuss multidimensional reference modeling, the customization
of multidimensional reference models, and the derivation of star schema tables for
specific customizations of reference models.

2.1. Reference modeling

We adapt existing multidimensional modeling approaches in data warehousing for
the needs of reference modeling. A multidimensional reference model consists of
fact classes and dimensions, calculated measures, and predicates for the definition
of business terms. Reference models must be customizable to the specific needs of a
particular business and ideally allow automatic generation of executable code which
BIRD achieves through injection of SQL fragments in reference models.
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Measure 1 * FactClass *
«id» name ! «id» name !
dataType : |
* |
MeasureToFactClass HierarchyToFactClass
isMandatory : Boolean isMandatory : Boolean
DimensionToFactClass HierarchyToDimension
isMandatory : Boolean - isMandatory : Boolean
1. |
Dimension 1
«id» name
1
1.* 1.% 1.*
Attribute ) Level 1 N Hierarchy
«id» /identifier [——T————<@] «id» /identifier — T «id» fidentifier
name I name | |name
dataType
| 0..1 | superLevel |
| |
AttributeToLevel LevelToHierarchy
isMandatory : Boolean * | isMandatory : Boolean
Fig. 1. The metamodel of multidimensional reference models as UML class diagram.

2.1.1. Dimensions and facts

We derive the metamodel for multidimensional reference models mainly from the

1,10 although the metamodel elements can be considered a

dimensional fact mode
common denominator of existing multidimensional models.'® Figure 1 defines as
UML class diagram the elements of a fact schema in a reference model. The central
element of a multidimensional reference model is the fact class (class FactClass). A
fact class refers to one or more dimensions (Dimension) each consisting of several
levels (Level); attributes (Attribute) further describe a level. An attribute belongs to
a single level and, thus, to a single dimension. Attribute names are unique within a
dimension. Each level has a name which is unique within the dimension. Levels are
organized in hierarchies (Hierarchy). Within a hierarchy, a level has either exactly
one superlevel or is the hierarchy’s top level. Parallel aggregation paths within a
dimension are realized as different hierarchies. Fact classes may also employ only a
subset of the hierarchies that the dimensions of the fact class define. To this end,
the association between FactClass and Hierarchy explicitly determines the employ-
ment of hierarchies by a fact class. A fact class must, however, employ at least
one hierarchy of each dimension of the fact class. At least one measure (Measure)
quantifies the facts that the fact class represents.
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A consistent multidimensional reference model must satisfy the integrity con-
straints commonly associated with multidimensional models. In particular, level
hierarchies must be acyclic and level hierarchies of the same dimension must not
contradict each other regarding level order. All levels in a hierarchy must belong to
the same dimension that the hierarchy belongs to, a level must only have super lev-
els from the same hierarchy. A fact class may only have hierarchies which belong to
one of the dimensions of the fact class. These integrity constraints are not distinctive
to reference modeling but correspond to those constraints proposed by academia
for simple hierarchies'® or implemented by database vendors.'?

Nonstrict hierarchies, represented as multiple arcs in the DFM,2° may be
incorporated into the BIRD metamodel, thus allowing many-to-many relationships
between levels or between the fact class and a base level. Then, the Level ToHierarchy
association class would have a hasMultipleArc attribute that indicates whether the
outgoing superLevel attribute represents a multiple arc. Similarly, the Hierarchy-
ToFactClass association class would have a hasMultipleArc attribute that indicates
whether the fact class references multiple instances of the respective hierarchy’s
base level. In order to avoid introducing additional complexity, however, we try to

18

model separate dimensions'® in our industry projects (see Sec. 4.2) instead of mul-

tiple arcs, which generally facilitates analysis for the user at the cost of redundancy.

Example 2.1 (Fact classes dimensions). Figure 2 illustrates, using a DFM-
based notation, fact classes and dimensions of an example multidimensional refer-
ence model for manufacturing companies; the running example adapts and extends
an example from previous work.!® Boxes denote fact classes, circles denote lev-
els, and arrows between circles denote roll-up relationships. The first compartment
of a box contains the name of the fact class, the second compartment contains
measures. Due to space considerations the graphical representation in Fig. 2 does
not include hierarchy names. Dashed boxes attached to levels represent dimension
predicates (see Sec. 2.1.3). The mandatory stereotype attached to an arrow from a
fact class to a level denotes a mandatory dimension for the particular fact class.
The mandatory stereotype next to a level name denotes a mandatory level for a
particular hierarchy. Note, however, that the DFM-based notation is for illustra-
tion purposes only. The MaterialUsedForProduct fact class has mandatory Time,
Product, and Material dimensions as well as optional Customer and Factory dimen-
sions. The Time dimension consists of two hierarchies, the first with mandatory day
level, optional week level, and mandatory year level, the second with mandatory
day, month, and year levels as well as an optional quarter level. The Product dimen-
sion consists of a single hierarchy with mandatory productOrder level and optional
productCategory level. The productOrder level has minTemperature, maxTemperature,
and minLifeTime attributes. The Customer dimension consists of three hierarchies,
the first with customer and consumerGroup levels, the second with customer and
industry levels, and the third with customer and customerRegion levels. The Fac-
tory dimension consists of a single hierarchy with building, site, and country levels.
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Product Time

productCategory year

«mandatory»

nl—_le_ail'«:e_sleaDt_P_rcld_ugt_ l---\ maxTemperature quarter
[ COARETPIOAUET I\ minTemperature
--------------- - k month
i DurableProduct b - LifeT wee
............... '\\\ minLite'ime «mandatory»
productOrder day sa
«mandatory»
Customer «mandatory»
«mandatory» «mandatory» «mandatory»
consumer-
Group MaterialUsedForProduct MateriallnSupplyOrder
industry plannedQuantity costs «mandatory»
actualQuantity «mandatory» shippingCosts
plannedCosts /totalCosts
actualCosts «mandatory» /totalCostsYTD
customer- customer | /plannedCostsPerUnit /totalCostsToPrevWeek
Region /actualCostsPerUnit «mandatory»
/actualCostsYTD
/actualCostsToPreviousDay
building
site «mandatory» «mandatory»
country
material
Factory «mandatory»/ minTemperature

maxTemperature

materlaICategory

Material

Fig. 2. An example multidimensional reference model for manufacturing companies.

The Material dimension consists of a single hierarchy with mandatory material and
optional materialCategory levels. The material level has minTemperature and max-
Temperature attributes. The MateriallnSupplyOrder fact class has mandatory Time
and Material dimensions.

As opposed to elements of ordinary multidimensional models, reference model
elements may be flagged mandatory, rendering illegal the deselection of the thus
flagged elements during customization (see Sec. 2.2). The isMandatory attribute of
association classes in the metamodel (Fig. 1) indicates classes of model elements
possibly flagged mandatory. Measures, dimensions, and hierarchies of a fact class
may be flagged mandatory, meaning that a link in the reference model between a
particular measure, dimension, or hierarchy to a fact class must be present in the
finally generated, derived model as well. Furthermore, hierarchies of a dimension,
levels of a hierarchy, and attributes of a level may be marked mandatory, too. The
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possibility of declaring certain model elements mandatory allows for the definition of
least common semantics for these elements, a requirement for ensuring the capabil-
ity of reference models to enforce intercompany and interdepartmental compliance
with regulations while allowing for the customization of reference models.

Reference model elements are named. For FactClass, Measure, and Dimension the
name attribute is identifier. Instances of these classes are independent entities. The
Hierarchy, Level, and Attribute classes have a derived identifier. Instances of these
classes exist only as a component of other entities. The identifiers of hierarchies,
levels, and attributes consist of the name of the dimension and the name of the
respective model element, separated by a dot. The sets of level names and attribute
names of a dimension must be disjoint, owing to the translation of dimensions
in the multidimensional reference model into dimension tables in the generated
logical model, with each level and attribute of a dimension becoming a column in
the respective dimension table.

Measures quantify facts and are the actual focus of interest in a data warehouse.
A measure (class Measure in Fig. 1) may belong to multiple fact classes; a measure
has a unique name and a data type. In its most basic form a measure is just a
value obtained from an operational data source during the extract, transform, and
load (ETL) process. Such a measure is referred to as base measure, as opposed to
a calculated measure which derives from other measures (see Sec. 2.1.2).

Example 2.2 (Base measures). The MaterialUsedForProduct fact class (Fig. 2)
has base measures plannedQuantity, actualQuantity, plannedCosts, and actualCosts.
Measures actualQuantity and actualCosts are mandatory base measures of Material-
UsedForProduct. The MaterialInSupplyOrder fact class has base measures costs and
shippingCosts, with costs being mandatory. The graphical representation in Fig. 2
does not show data types. The measures are numbers.

An additivity matrix?!

the individual dimensions’ level hierarchies. The additivity matrix allows for the
detection of logically invalid queries with summarizability problems, a feature that
could be incorporated in a CASE tool for the modeling of analysis situations (see
Sec. 3.1.1). An additivity matrix could be incorporated in the BIRD metamodel,
indicating the aggregation operators that can be applied to the measure of a fact
class. We do not specifically address summarizability problems but refer to related
works'12 for the study of summarizability.

may indicate sensible aggregation of measures along

2.1.2. Calculated measures

Figure 3 defines the different kinds of measures available for reference modeling. A
measure is either base (class BaseMeasure) or calculated (CalculatedMeasure), and
never both. A base measure is an asserted value that is directly obtained from the
operational databases during the ETL process, possibly after cleansing. A calcu-
lated measure, on the other hand, is ultimately derived from base measures. The
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/overMeasure
CalcMeasureToMeasure 1 Measure

isMandatory : Boolean

{disjoint}

Attribute /*overAttr — CalculatedMeasure

| calculationRule

| isFinal
CalcMeasureToAttribute
disjoint
isMandatory : Boolean {disjoint}
- /joinDimension - -
Comparison " - II Dimension |
joinCondition fjoinLevel *
* /overLevel
ArithmeticMeasure CumulativeMeasure JoverDimension

Fig. 3. Kinds of measures in the metamodel of multidimensional reference models.

most basic form of calculated measure is arithmetic (ArithmeticMeasure) which com-
bines base measures using arithmetic operations such as addition/subtraction and
multiplication/division. Cumulative measures (CumulativeMeasure) and compara-
tive measures (Comparison) are special cases of calculated measures. Calculated
measures may also be marked final, preventing the redefinition of the calculation
rule during customization (see Sec. 2.2.2).

A calculated measure has a calculation rule (attribute calculationRule) defined
as an SQL expression. Individual components of a calculation rule may be flagged
mandatory, allowing for the definition of common semantics across different cus-
tomizations, which may redefine calculated measures (see Sec. 2.2.2) The calcula-
tion rule refers to measures by their names in conjunction with the Fact qualifier as
generic alias for the respective fact table in the ultimately generated star schema.

Example 2.3 (Arithmetic measures). The plannedCostsPerUnit and actual-
CostsPerUnit measures as employed by the MaterialUsedForProduct fact class in
Fig. 2 are arithmetic. The SQL expression Fact.plannedCosts/Fact.planned-
Quantity is the calculation rule for the plannedCostsPerUnit measure. The SQL
expression Fact.actualCosts/Fact.actualQuantity is the calculation rule for
the actualCostsPerUnit measure. Furthermore, the totalCosts measure as employed
by the MateriallnSupplyOrder fact class is arithmetic. The SQL expression
Fact.costs + Fact.shippingCosts is the calculation rule for the totalCosts
measure.

The Fact qualifier in the calculation rule of a calculated measure refers to the
measure’s fact class which may change depending on the context. Since a measure
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may feature in multiple fact classes, at query time the Fact qualifier refers to differ-
ent fact tables, depending on the context the measure value is actually calculated
in. The reasons for the importance of the Fact qualifier in the definitions of cal-
culation rules are twofold. First, SQL expressions are intended to be used directly
for the generation of SQL queries (see Sec. 2.3). Second, besides referring to other
measures, the calculation rule of a calculated measure may also contain references
to attributes of levels. It is thus necessary to distinguish measures from attributes
through the use of different qualifiers since the names of these model elements may
overlap. In order to reference an attribute, the name of the attribute’s dimension is
used as a qualifier, which is possible since the attribute names are unique within a
dimension. In other words, attributes in calculation rules are referred to by attribute
identifier. Note that a measure that is based on an attribute may only be used in
fact classes that actually use the hierarchy of this attribute’s level.

Example 2.4 (Arithmetic measure based on attribute). The SQL expres-
sion Fact.plannedCosts/Product.minLifetime defines planned costs of material
per year of the final product’s (minimum) lifetime based on plannedCosts and the
productOrder level’s minLifetime attribute.

A link between a calculated measure and a fact class signifies, in general, that
the calculated measure is available for facts at the base granularity of the fact class.
In this sense calculated measures are not unlike base measures.

Cumulative measures represent aggregated values that are not obtained through
roll-up; analysis situations define aggregation through roll-up (see Sec. 3.1.1). A
cumulative measure partitions facts into groups. Within these groups the facts are
ordered and their measure values accumulated. Year-to-date measures are typical
examples of cumulative measures, for example, a company’s revenue within a year
accumulated until a particular month. In SQL the PARTITION BY clause allows for
the definition of cumulative measures, providing GROUP BY functionality without
actually altering the granularity of the table.

Example 2.5 (Cumulative measure). The actualCostsYTD measure as
employed by the MaterialUsedForProduct fact class in Fig. 2 is cumulative. The
SQL expression SUM(Fact.actualCosts) OVER (PARTITION BY Time.year, Fact.
Product, Fact.Customer, Fact.Factory, Fact.Material ORDER BY Time.day)
defines the year-to-date actual costs of material used in manufacturing of prod-
ucts by day. Furthermore, the totalCostsYTD measure as employed by the Material-
InSupplyOrder fact class is cumulative. The SQL expression SUM(Fact.costs +
Fact.shippingCosts) OVER (PARTITION BY Time.year, Fact.Material ORDER BY
Time.day) defines the year-to-date total costs of material in supply orders by day.
The actualCostsYTD and totalCostsYTD measures are not aggregable.

Even though cumulative measures feature an aggregation operation, this aggre-
gation does not correspond to the roll-up of facts. A cumulative measure that is
associated with a fact class is available for facts at some granularity level defined by
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the attributes in the calculation expression’s OVER clause. Commonly, cumulative
measures cannot be further aggregated in a sensible way.

The third class of calculated measures are comparisons or comparative measures.
Measure values may be compared with measure values from a different time period,
geographic location, etc., of comparison. A comparative measure corresponds to a
join of a cube with itself in order to compute ratios between measure values of indi-
vidual facts and the respective facts of comparison. A comparative measure also has
a join condition expressed in SQL over dimensions (association end joinDimension
to Dimension from Comparison) and levels (association end joinLevel to Level). A
comparative measure may only be associated with a fact class that references the
join dimensions and the hierarchies that contain the join levels. In the calculation
rule and join condition of comparative measures, the ComparisonFact qualifier refers
to the fact of comparison that is obtained when applying the comparative measure’s
join condition. The ComparisonFact qualifier, just like the Fact qualifier, is context-
dependent. Additional context-dependent qualifiers, for example, ComparisonTime,
ComparisonMaterial, and ComparisonSupplier, refer to the dimensions of the fact of
comparison.

Example 2.6 (Comparison). The actualCostsToPreviousDay measure as
employed by the MaterialUsedForProduct fact class in Fig. 2 is a comparison.
The SQL expression Fact.actualCosts/ComparisonFact.actualCosts is the
calculation rule for the actualCostsToPreviousDay measure. The SQL expression
Time.day = DATEADD(day, 1, ComparisonTime.day) AND Fact.Product =
ComparisonFact. Product AND Fact.Customer = ComparisonFact.Customer AND
Fact.Factory = ComparisonFact.Factory AND Fact.Material = Comparison-
Fact.Material is the join condition of the actualCostsToPreviousDay measure.
Furthermore, the totalCostsToPrevWeek measure as employed by the Materialln
SupplyOrder fact class is a comparison. The SQL expression (Fact.costs + Fact.
shippingCosts)/(ComparisonFact.costs + ComparisonFact.shipping Costs)
is the calculation rule for the totalCostsToPrevWeek measure. The SQL expres-
sion Time.day = DATEADD(week, 1, ComparisonTime.day) AND Fact.Material =
ComparisonFact.Material is the join condition of the totalCostsToPrevWeek mea-
sure. Note that the DATEADD function is specific to Microsoft SQL Server but
other database vendors provide similar functions; dialect-specific expressions may
be incorporated into BIRD reference models.

In the metamodel for calculated measures (Fig. 3), a derived association repre-
sents the referencing of measures and attributes in calculation rules of calculated
measures. The overMeasure and overAttribute association ends may be automati-
cally derived from the SQL expression that defines the calculation rule. Similarly,
the overDimension and overlLevel association ends from CumulativeMeasure to Dimen-
sion and Level, respectively, may be automatically derived from the calculation rule.
The joinDimension and joinLevel association ends from Comparison to Dimension and
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Level, respectively, may be automatically derived from the SQL expression that
defines the join condition of the comparative measure.

A multidimensional reference model contains a catalog of calculated measures
where each measure may be referenced by a number of fact classes. A calculated
measure represents a KPI and the catalog of calculated measures provides uniform
definitions and promotes a shared understanding of KPIs. Standard catalogs of
KPIs from industry associations?? and academia?®24 may serve as a starting point
for the development of reference models for a particular industry which may then
be customized for individual companies.

2.1.3. Predicates

Predicates formalize and unambiguously define business terms. Rather than leaving
the definition of business terms to the business analyst, who usually defines these
terms in an ad hoc manner during the analysis, the multidimensional reference
model may provide a shared conceptualization of business terms. In this sense,
predicates are similar to concepts of a multidimensional ontology.”

A dimension predicate (class DimensionPredicate in Fig. 4) is defined by a
Boolean SQL expression over a single dimension. A dimension predicate, however,
may refer to several attributes of the same dimension. A dimension predicate may
also refer to the implicit name attribute of levels, for example, use Product.product-
Category to express a condition over the name of the product category that the pred-
icate applies to. A multidimensional predicate (class MultidimensionalPredicate, not
shown in figures) is defined by an SQL expression over multiple dimensions. A mea-
sure predicate (MeasurePredicate, not shown in figures), in addition to attributes,
allows for the definition of Boolean SQL expressions over measures. Referenced
attributes and measures in predicate expressions may be flagged mandatory, simi-
larly to measures and attributes in calculation rules of calculated measures. Predi-
cates may also be marked final for preventing redefinitions during customization.

Example 2.7 (Dimension predicates). The example multidimensional ref-
erence model in Fig. 2 contains the HeatResistantProduct, ColdResistantProduct,
and DurableProduct predicates for the Product dimension as well as the Heat

DimensionPredicateToAttribute

isMandatory : Boolean
|
|

| Attribute I L I DimensionPredicate - - L I Dimension |
/attribute /dimension

«id» name
expression
isFinal

Fig. 4. Dimension predicates in the metamodel of multidimensional reference models. Multidi-
mensional and measure predicates are defined analogously.
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ResistantMaterial and ColdResistantMaterial predicates for the Material dimen-
sion. The SQL expression Product.maxTemperature > 50 defines HeatResistant-
Product, Product.minTemperature < —10 defines ColdResistantProduct, and
Product.minLifeTime > 5 defines DurableProduct. The SQL expressions for
HeatResistantMaterial and ColdResistantMaterial are similarly defined. A predi-
cate HeatResistantBristleMaterial may define the heat-resistance property for a
particular material category as Material.maxTemperature > 60 AND Material.
materialCategory = ‘Bristle Material’.

Example 2.8 (Multidimensional predicate). Heat-resistant materials in
durable products may be defined by the SQL expression Material.max-
Temperature > 60 AND Product.minLifeTime > 5.

Example 2.9 (Measure predicate). Expensive heat-resistant materials in
durable products may be defined by the SQL expression Material.max-
Temperature > 60 AND Product.minLifeTime > 5 AND (Fact.actualCosts/
Fact.actualQuantity) > 100.

For better manageability, predicates could be organized in subsumption hierar-
chies. Previous work” has employed semantic technologies and automated reasoners
for the organization of (multi)dimensional concepts into subsumption hierarchies.
Future work could adapt this approach for multidimensional reference modeling
with SQL-defined predicates, thereby eliminating the need for a separate multidi-
mensional ontology language and instead relying on a standard query language.

2.2. Customization

An important characteristic of reference models is the possibility of customization
for specific requirements imposed by a particular IT infrastructure and business
environment. BIRD provides facilities for deselecting and adding model elements
as well as for the redefinition of calculated measures and business terms.

2.2.1. Dimensions and facts

Customizations of a multidimensional reference model’s fact classes and dimensions
consist of additions and omissions. Figure 5 illustrates the elements of cus-
tomizations of fact classes and their dimensions. A customization (class FactClass-
Customization) applies to a single fact class. A customization may deselect measures
(association end deselectedMeasure to Measure), dimensions (deselectedDimension to
Dimension), and hierarchies (deselectedHierarchy to Hierarchy) that are associated
with the customization’s fact class. A customization may also deselect individ-
ual levels (deselectedLevel to Level) — as well as attributes (deselectedAttribute
to Attribute) of these levels — of the dimensions of the fact class. Besides omis-
sions, a customization may also add measures (addedMeasure), dimensions (added-
Dimension), and hierarchies (addedHierarchy) to a fact class.
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deselectedLevel | =
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Fig. 5. The definition of customizations in the metamodel of multidimensional reference models.

When adding measures, dimensions, and hierarchies to a fact class, a customiza-
tion may add existing model elements that previously had not been associated with
the customization’s fact class. On the one hand, a customization may add suitable
elements from other fact classes. On the other hand, the multidimensional ref-
erence model may contain a multitude of measures, dimensions, and hierarchies
that are not associated with any fact class, thereby providing additional options
for customization. When adding a hierarchy of a dimension that is not already
associated with the fact class, the customization must also add the hierarchy’s
dimension. For simplicity, and in order to avoid conflicts with contradicting level
hierarchies, a customization cannot add individual levels. A new level could be
falsely added between two levels while it should actually be higher up or lower
down the hierarchy, for example, when adding region above country rather than
below country and above site. The addition of another dimension is usually orthogo-
nal and thus less error prone. Similarly, a customization cannot introduce additional
attributes.

Example 2.10 (Customization of fact classes and dimensions). Figure 6
illustrates a customization of the MaterialUsedForProduct and MateriallnSupplyOrder
fact classes as well as the associated dimensions from the multidimensional refer-
ence model in Fig. 2. In the Time dimension the customizations of the fact classes
deselect the quarter level. In the Product dimension the customizations deselect the
productCategory level. The Material dimension remains unchanged. In the Customer
dimension the customization of the MaterialUsedForProduct fact class deselects the
consumerGroup level and the corresponding hierarchy. The Factory dimension is des-
elected altogether. The customization of the MateriallnSupplyOrder fact class adds
the Supplier dimension as well as the measures orderedQuantity, deliveredQuantity,
and totalCostsPerUnit while deselecting the shippingCosts measure.
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Fig. 6. An example customization of the multidimensional reference model in Fig. 2.

A customization may only deselect nonmandatory elements. The levels of a
mandatory dimension do not inherit the mandatory feature and thus, by default, a
customization may deselect levels of mandatory dimensions if not explicitly stated
otherwise. At least one level of a mandatory dimension must remain in the cus-
tomization. The levels of a mandatory hierarchy cannot be deselected by a cus-
tomization. In this sense, the isMandatory property of hierarchies is much stronger
than the isMandatory property of dimensions. This interpretation makes sense since
a dimension is a rather generic construct. The association of a fact class with a
dimension defines a certain dimensionality. A hierarchy, however, is a much more
specialized construct, its main trait being the definition of level order.

In some cases, the isMandatory property of one model element prevents the
deselection of other, a priori nonmandatory, model elements. A mandatory hier-
archy prevents an otherwise nonmandatory dimension from being deselected. The
isMandatory property of an individual level, being an attribute of the association
between a level and its hierarchy, should not constrain the deselection of dimensions
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FactClassCustomization

*

*

redefinedMeasure I
MeasureRedefinition -1 CalculatedMeasure

«id» /identifier
calculationRule
/overMeasure : Measure [1..%]
JoverAttr : Attribute [*]

A {redefines redefinedMeasure}
redefinedMeasure
—| ArithmeticMeasureRedefinition I* *I ArithmeticMeasure |

{redefines redefinedMeasure}

- — redefinedMeasure
CumulativeMeasureRedefinition m I CumulativeMeasure |

—1 /overDimension : Dimension [*]
/overLevel : Level [*]

{redefines redefinedMeasure}
redefinedMeasure T
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/joinDimension : Dimension [*]
fjoinLevel : Level [*]

Fig. 7. Measure redefinitions in the metamodel of multidimensional reference models.

and hierarchies. A mandatory level is mandatory only within the hierarchy and des-
election of the hierarchy or dimension results in the level being not mandatory for
the fact class anymore. Similarly, the isMandatory property of an attribute does not
constrain the deselection of levels.

2.2.2. Calculated measures

Customizations of multidimensional reference models may provide redefinitions of
calculated measures. Figure 7 defines the metamodel for measure redefinitions. A
measure redefinition (class MeasureRedefinition) overrides, in the context of cus-
tomizations, the original calculation rule of the redefined measure. A redefinition
of a comparison (ComparisonRedefinition) also overrides the join condition. A final
measure cannot be redefined.

Each dependency of a calculated measure on another measure or attribute may
be marked mandatory. Thus marked measures or attributes must be referred to
in redefinitions of the calculated measure. Full compliance checking, mandated by
legal regulations and policies, is outside the scope of this paper.

Redefinitions of measures can be necessary in case of deselection. When a mea-
sure m is deselected, the customization must either deselect any dependent calcu-
lated measure m’ as well, or provide a redefinition of m’ that does not reference m.
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If the deselected measure m is a mandatory component of m’, or m’ is final, there
exists no valid redefinition of m’; the customization must deselect m/. If the des-
elected measure m is a mandatory component of a mandatory calculated measure
m’ the deselection of m is invalid.

Example 2.11 (Redefined measure). The multidimensional reference model
may define the totalCosts measure as Fact.costs + Fact.shippingCosts,
the totalCostsPerUnit measure as (Fact.costs + Fact.shippingCosts)/Fact.
orderedQuantity. The customization in Fig. 6, due to the deselection of the
shippingCosts measure, must redefine the totalCosts and totalCostsPerUnit measures,
for example, by selecting only the costs measure or by adding a constant amount,
say 40, as handling fee instead of the shippingCosts measure, Fact.costs + 40.

2.2.3. Predicates

A customization may redefine predicates. Figure 8 defines the metamodel for the
redefinition of dimension predicates; other types of predicates are redefined anal-
ogously. The feature of predicate redefinition is convenient since business terms
are interpreted slightly differently across enterprises, local subsidiaries, and depart-
ments. Predicates are used for the definition of reference analysis situations (see
Sec. 3.1.1) which represent condensed views of interest on the data warehouse.
Queries that employ particular predicates might be useful in multiple companies,
local subsidiaries, and departments. For example, a reference analysis situation
that returns the costs of heat-resistant materials might be considered useful by
several local subsidiaries producing different types of brushes for different applica-
tion domains. The exact definition of “heat-resistant material” may differ, however,
depending on whether brushes are used on airfields, in industrial production, or for
hygiene purposes. A redefinition of the corresponding predicate allows for the use
of the same analysis situation in different contexts.

Just like redefinitions of measures, redefinitions of predicates may become neces-
sary in case of deselections. In case of an attribute’s deselection — or the correspond-
ing level’s, dimension’s, or hierarchy’s deselection — the customization must either

| FactClassCustomization |

*

*

DimensionPredicateRedefinition - =1

«id» identifier
expression

/attribute: Attribute [1..%]
/dimension : Dimension

Fig. 8. Dimension predicate redefinitions in the metamodel of multidimensional reference models.
Redefinitions of multidimensional and measure predicates are defined analogously.
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deselect all dependent predicates as well or provide a redefinition that does not fea-
ture the deselected attribute. If the deselected attribute, however, is a mandatory
component of a predicate, or the predicate is final, there exists no valid redefinition
and the customization must deselect the predicate.

2.3. Star schema generation

Conceptual data warehouse models are often translated into relational data mod-
els.'0:18 The translation process from conceptual data warehouse model to logical,
relational data model can be automated. The Indyco Builder,? for example, allows
for the automatic generation of star schemas from dimensional fact models. The
resulting relational models may either be queried directly using SQL or serve as
the basis for other dedicated reporting tools such as Microsoft SQL Server Analysis
Services or Saiku Business Analytics.®

After taking into account the customizations we translate the multidimensional
reference model’s fact class and dimensions into a star schema with denormalized,
flat dimension tables that each have a surrogate key.2> The star schema data model
is arguably the most popular relational form of organization for data warehouses.
The star schema data model is easy to implement and understand. A star schema
consists of a single fact table, which corresponds to a fact class, the tuples of which
represent the facts. The fact table has a column for each measure and for each
dimension of the fact class. The fact table references the dimension tables which
store the roll-up hierarchies and the attributes of the levels. Note that only base
measures translate into columns in the fact tables. Calculated measures correspond
to combinations of base measure columns. Allowing nonstrict hierarchies (or multi-
ple arcs) in the multidimensional reference model would result in a generated logical
model with bridge tables and weight attributes.

Example 2.12 (Star schema). The generated star schema for the customization
of the MaterialUsedForProduct and MateriallnSupplyOrder fact classes as defined in
Fig. 6 consists of the following tables; primary keys are underlined, names of tables
are system-generated:

Time#1(id, day, week, month, year);

Product#1(id, productOrder, minTemperature, maxTemperature, minLifeTime);
Customer#1(id, customer, customerRegion, industry);
Material#1(id, material, minTemperature, maxTemperature, materialCategory);
Supplier#1(id, supplier, supplierRegion);
MaterialUsedForProduct#1(time, product, customer, material,
plannedQuantity, actualQuantity, plannedCosts, actualCosts);
MateriallnSupplyOrder#1(time, material, supplier,
orderedQuantity, deliveredQuantity, costs).

Phttp: //www.indyco.com/builder/
Chttp: //www.meteorite.bi/products/saiku
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In this example the star schema tables derive from two customizations at once, the
customizations of the MaterialUsedForProduct fact class and the MateriallnSupply-
Order fact class. Shared dimensions, in this case, do not translate into different
dimension tables. The simultaneous generation of dimension tables from two cus-
tomizations only works if the shared dimensions apply the same customizations
to these dimensions. Otherwise separate dimension tables must be generated dur-
ing customization. The tables Time#1, Product#1, Customer#1, Material#1, and
Supplier#1 are dimension tables. The fact tables MaterialUsedForProduct#1 and
MateriallnSupplyOrder#1 reference the id column of the dimension tables as defined
by the following inclusion dependencies which represent foreign key constraints:

MaterialUsedForProduct#1(time) C Time#1(id),
MaterialUsedForProduct#1(product) C Product#1(id),
MaterialUsedForProduct#1(customer) C Customer#1(id),
MaterialUsedForProduct#1(material) C Material#1(id),
MateriallnSupplyOrder#1(time) C Time#1(id),
MateriallnSupplyOrder#1(material) C Material#1(id),
MateriallnSupplyOrder#1(supplier) C Supplier#1(id).

3. Analysis Processes

In this section we discuss the modeling and customization of analysis processes,
using a revised and extended example from previous work.'® Analysis process mod-
els externalize knowledge about how to obtain the information required for an
appropriate reaction to a given business situation, sparing business analysts from
ad hoc query formulation in cases of urgent information needs.

3.1. Reference modeling

An analysis graph models the succession of analysis situations during the analysis.
Transitions in the analysis graph apply OLAP operations in order to transform a
source analysis situation into a target analysis situation.

3.1.1. Analysis situations

An analysis situation is a view of interest over a fact class which analysts obtain
through the application of slice and dice as well as roll-up operations on the base
data. Typically, the specification of analysis situations contains a number of variable
elements that are to be provided by the analyst during the actual analysis. For
example, an analysis situation may see the retrieval of quantity and cost of material
used in the production process of products during a particular time period. This
analysis situation may occur frequently, with analysts providing concrete values
for the products and time period of interest. Thus, the specification of an analysis

1650006-19



C. G. Schuetz et al.

AnalysisSituation 1 FactClass |
«id» name
T = I Measure |
* * I
* * I
Multidimensional Measure MeasureTo * Aggregation
Predicate Predicate || AnalysisSituation Operation
- - — - I DimensionPredicate |
sliceCondition
— — —| DimensionToAnalysisSituation
* 0..1
- I Node |
- diceNode
* member | *
1.* 0..1 | granularity 0..1 | diceLevel
Dimension | | Level !

I

Fig. 9. The metamodel of analysis situations as UML class diagram.

situation corresponds to a generic query; the analyst may provide concrete values
for an analysis situation’s variables in order to obtain an executable query.

Figure 9 illustrates the metamodel for the specification of analysis situations.
An analysis situation (class AnalysisSituation) has a unique name and refers to a sin-
gle fact class. An analysis situation refers to at least one measure of this fact class.
For each dimension of the fact class the analysis situation may restrict the facts
to be included in the query result by associating a number of dimension predicates
and dice nodes. The DimensionToAnalysisSituation association class attaches to the
analysis situation the slice conditions as well as granularity and dice parameters.
Multidimensional and measure predicates represent slice conditions of an analy-
sis situation. An arbitrary number of dimension predicates (association end slice-
Condition from DimensionToAnalysisSituation to DimensionPredicate) further governs
the selection of facts based on attributes of the dimension. An analysis situation
may also refer to only a region (or subcube) defined by nodes from the different
dimensions of the fact class (diceNode to Node). A node is member of a level, for
example, Bristle Material is a materialCategory-level node in the Material dimension.
Furthermore, an analysis situation may represent the result of a roll-up operation
to some granularity level (granularity to Level). In that case, the query result applies
a set of given aggregation functions, as defined individually for each measure by
the MeasureToAnalysisSituation association class, to the measures of interest.

Elements in the specification of an analysis situation may also be variables the
concrete values of which are to be provided by the analyst while conducting the
actual analysis. A variable has a name which by convention starts with a question
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mark. Formally, for each of the classes Measure, AggregationOperation, Dimension-
Predicate, MultidimensionalPredicate, MeasurePredicate, Node, and Level there exists
a corresponding Variable subclass with a name attribute. In order to provide guid-
ance to the analyst, an analysis situation in a reference model may specify the
level of an expected dice node (association end dicelLevel from DimensionToAnalysis-
Situation to Level in Fig. 9), thereby constraining possible instantiations of variables
for the diceNode association end.

Example 3.1 (Analysis situation). The CostsInPeriodOfMaterialOfCategory-
WithPropertylnSupplyOrder analysis situation in Fig. 10 refers to the Materialln-
SupplyOrder fact class and from this fact class selects the costs measure. The anal-
ysis situation requires the analyst to provide as dice coordinates a node from the
Time dimension (variable ?tm) as well as a materialCategory-level node from the
Material dimension (?mat). The analyst must specify the desired granularity level
in the Time dimension (?tmGranularity) whereas the granularity level for the Mate-
rial dimension is fixed to material. The analyst must provide a predicate in the
Material dimension as selection criteria (?prop) to select only data about materials
with a specified property.

Through the inclusion of variables, an analysis situation becomes a reusable
query schema. Analysts provide specific values in order to reuse this analysis sit-
uation. For example, by providing specific values for the variables in the Costsln-
PeriodOfMaterial OfCategoryWithPropertylnSupplyOrder analysis situation in Fig. 10,
an analyst may obtain the monthly costs in the year 2015 — with month as the Time
dimension’s granularity, and 2015 as the dice node — for orders of heat-resistant
materials in the Bristle Material category — with the HeatResistantMaterial pred-
icate as the Material dimension’s slice condition, and Bristle Material as the dice
node.

3.1.2. Analysis graphs

Analysis graphs define default analysis processes triggered by business events, for
example, a delayed supply order. An adequate reaction to business events requires
information. Analysis graphs indicate how the analyst may obtain required informa-
tion for considered reactions to business events. An analysis graph consists of anal-
ysis situations linked by OLAP operations which transform one analysis situation
into another. Figure 11 shows an unrefined, bird’s-eye view of an analysis graph that
represents an analysis process triggered in the event of a material supply order’s can-
cellation. Each rounded box corresponds to an analysis situation whereas the arrows
between boxes correspond to OLAP operations. Supply orders may be canceled due
to various reasons, for example, the inability of a supplier to deliver required mate-
rial within a given time frame. The cancellation of a supply order necessitates
the replacement of the undelivered material in the manufacturing processes that
depend on the canceled order. In order to react adequately to the cancellation the
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Fig. 10.

analyst must first identify quantity and expected delivery time of the material from
the canceled supply order. The identification of other supply orders for the same
material may already resolve the shortage of material. Otherwise, the analyst must
identify products affected by the cancellation. The analyst may then either identify

:Level

id = "Material.material"

The specification of an example analysis situation as UML object diagram.
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Fig. 11. An unrefined analysis graph for analysis in the event of order cancellation.
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Fig. 12. The metamodel of analysis graphs as UML class diagram.

alternative materials with similar properties in other orders or compile a list of
affected customers that the company cannot serve due to material shortage.

Figure 12 defines, using UML notation, the metamodel for the specification of
analysis graphs. An analysis graph, which has a unique name, consists of anal-
ysis situations and navigation steps (class NavigationStep). Each navigation step
has a label as well as a source analysis situation and a target analysis situation.
A navigation step applies a number of OLAP operations to the source analysis
situation in order to obtain the target situation. Conceptually, the analysis graph
consists of specifications of analysis situations with variables, the bindings of which
are changed at runtime by navigation steps. An analysis graph is similar to a state
chart (or UML state machine diagram), the states being analysis situations and the
transitions being invocations of OLAP operations. Technically, an analysis graph
moves from one cube to another, the cubes being results of queries defined by the
analysis situations.
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Table 1. Navigation operators in analysis graphs.

Dice
moveToNode(D,L,N) Replace the dice node in dimension D with node N at level L.
SLICE
addSliceCondition(D, P) Add dimension predicate P to the slice conditions of
dimension D.
removeSliceCondition(D, P) Remove dimension predicate P from the slice conditions of
dimension D.
addSliceCondition(P) Add predicate P to the slice conditions of the analysis
situation.
removeSliceCondition(P) Remove predicate P from the slice conditions of the analysis
situation.
GRANULARITY
changeGranularity(D,L) Replace the granularity in dimension D with level L. This

operation corresponds to roll-up or drill-down if L is
coarser or finer, respectively, than the original granularity.
setAggregationFunction(M,F)  Set aggregation function F for the roll-up of measure M.
ProJECTION

addMeasure(M) Select measure M for display.
removeMeasure(M) Project away measure M.
changeFactClass(F) Select fact class F for display. For dimensions shared by

source and target situations slice and dice conditions
remain; common measures remain.

The navigation steps between analysis situations model the transformation of
one analysis situation into another, defining the “delta” in terms of OLAP oper-
ations between the connected analysis situations. Table 1 provides an overview
of OLAP operations for the modeling of navigation steps, grouped into the four
broad categories Dice, Slice, Granularity, and Projection. An additional operator
for selection of groups, similar to the HAVING clause in SQL, may also be incorpo-
rated. The moveToNode operation replaces the dice node of an analysis situation
in a given dimension with another node, possibly reducing or expanding the num-
ber of facts that are considered in the query result. The addSliceCondition and
removeSliceCondition operations add and remove predicates, respectively. Depend-
ing on the parameters, the predicate is either a dimension predicate or multidi-
mensional /measure predicate. The changeGranularity operation changes the level
of granularity of an analysis situation. The setAggregationFunction operation sets
an aggregation function to be used for the roll-up of a particular measure. The
addMeasure and removeMeasure operations change the measures that are returned
by the query. The changeFactClass operation allows for changing the fact class that
serves as the basis for the analysis. The list of operators may be extended further and
refined.

In the specification of analysis graphs the parameters of OLAP operations may
be either concrete values or variables. Analysts must provide concrete values for
variables upon actually taking a navigation step. Concrete values may constrain
the variables in the specification, for example, a concrete value for the level in the
specification of a dice operation restricts possible values for the node.
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Example 3.2 (Analysis graph). Figure 13 illustrates an analysis graph that
consists of four analysis situations. The first analysis situation, CostsOfMaterial-
SupplyOrder, returns the totalCosts base measure as well as the calculated measures
totalCostsPerUnit, totalCostsYTD, and totalCostsToPreviousWeek from the Material-
InSupplyOrder fact class. The CostsOfMaterialSupplyOrder analysis situation restricts
facts to particular material-level nodes and allows for an arbitrary restriction of
the time period. The CostsOfMaterialSupplyOrder analysis situation performs no
aggregation. The navigation step labeled DisplayMonthlyCosts transforms CostsOf-
MaterialSupplyOrder into MonthlyCostsOfMaterialSupplyOrder by removing measures
totalCostsPerUnit, totalCostsYTD, and totalCostsToPreviousWeek, performing a roll-
up operation to the month level, and selecting the totalCostsYTDRollUpByMonth
measure, a cumulative measure specifically defined for the selected granularity. The
navigation step labeled FocusOnMaterialUse subsequently changes the analyzed fact
class to MaterialUsedForProduct. Parameters for common dimensions of Materialln-
SupplyOrder and MaterialUsedForProduct remain. The navigation step labeled Focus-
OnProperty narrows the slice condition in the Material dimension and restricts the
product category.

3.2. Customization

Analysis situations and graphs are reference models that may be customized. Cus-
tomizations of analysis situations and graphs are not independent from the cus-
tomization of the underlying multidimensional reference model.

3.2.1. Analysis situations

The customization of an analysis situation may deselect or add measures, deselect
or add predicates, and change the analysis situation’s granularity and dice prop-
erties. In particular, a customization may replace variables in the specification of
an analysis situation with a concrete value. The deselection of a measure from an
analysis situation upon which other measures depend has no consequences on the
dependent measures. An analysis situation is merely a view over the fact class.
The values of the measures in the analysis situation are obtained from the original
facts. The deselection of a measure from the analysis situation does not remove the
measure from the fact class.

Analysis situations referencing particular predicates might be useful in different
companies even though business terms are interpreted slightly differently across
enterprises (see predicate redefinition in Sec. 2.2). For example, a reference anal-
ysis situation on the order costs for heat-resistant material might be considered
useful by several companies. Nevertheless, the exact definition of “heat-resistant
material” may differ, depending on the application scenario. A redefinition of the
corresponding predicate allows for the use of the same analysis situation in different
contexts.
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CostsOfMaterialSupplyOrder : AnalysisSituation

factClass = MateriallnSupplyOrder
measure = {totalCosts, totalCostsPerUnit, totalCostsYTD, totalCostsToPreviousWeek}

MaterialParameters TimeParameters
diceLevel = material diceLevel = ?tmLevel
diceNode = ?mat diceNode = ?tm

removeMeasure(totalCostsPerUnit)
removeMeasure(totalCostsYTD)
removeMeasure(totalCostsToPreviousWeek)
changeGranularity(Time, Time.month)
addMeasure(totalCostsY TDRollUpByMonth)
setAggregationFunction(totalCosts, SUM)

Display-
MonthlyCosts

MonthlyCostsOfMaterialSupplyOrder : AnalysisSituation

factClass = MateriallnSupplyOrder
measure = {SUM(totalCosts), totalCostsYTDRollUpByMonth}

MaterialParameters TimeParameters
diceLevel = material diceLevel = ?tmLevel
diceNode = ?mat diceNode = ?tm

granularity = Time.month

changeFactClass(MaterialUsedForProduct)
addMeasure(actualCosts)
setAggregationFunction(actualCosts, SUM)

FocusOn-
MaterialUse

MonthlyCostsOfMaterialUse : AnalysisSituation

factClass = MaterialUsedForProduct
measure = {SUM(actualCosts)}

MaterialParameters TimeParameters
diceLevel = material diceLevel = ?tmLevel
diceNode = ?mat diceNode = ?tm

granularity = Time.month

addSliceCondition(Material, ?prop)
moveToNode(Product, Product.product-
Category, ?prodCat)

FocusOn-

o | Property

MonthlyCostsOfMaterialSupplyOrderWithProperty : AnalysisSituation

factClass = MaterialUsedForProduct
measure = {SUM(actualCosts)}

MaterialParameters TimeParameters ProductParameters
diceLevel = material diceLevel = ?tmLevel diceLevel =
diceNode = ?mat diceNode = ?tm Product.productCategory
sliceCondition = ?prop granularity = Time.month diceNode = ?prodCat

Fig. 13.  An example analysis graph.
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3.2.2. Analysis graphs

An analysis graph customization may add or deselect analysis situations and navi-
gation steps. On the one hand, this allows for the introduction of additional paths
in the specification of an analysis graph. On the other hand, existing paths from
the reference model may be refined by introducing additional steps in the analysis
graph. Likewise, existing paths may be shortened by removing analysis situations
and redefining the navigation steps.

Figure 14 shows the metamodel for the customization of analysis graphs. The
customization of an analysis graph (class AnalysisGraphCustomization) refers to a
single analysis graph and may have a number of step redefinitions (StepRedefinition)
which refer to existing navigation steps, redefining source and target situations as
well as the performed operations. A redefinition of a navigation step may become
necessary when customizing analysis situations. In that case navigation steps must
be kept consistent with source and target analysis situations as navigation steps
specify the “delta” between these situations. An analysis graph customization
requires a customization for each fact class referenced by any of the analysis situa-
tion in the analysis graph (customization).

An analysis graph customization also associates each fact class used in one of the
analysis graph’s analysis situations with at most one fact class customization. Thus,
an analysis situation customization must also take into account a customization
of the analysis situation’s fact class. An analysis graph customization does not
associate multiple fact class customizations with a fact class.

AnalysisGraph | | FactCIassl | FactClassCustomization |

1 0.1
— —| FactClassToAGCust -

N

AnalysisGraphCustomization - - @
«id» name addedStep
: remove dStep* NavigationStep
* addedSituation*
' removedSituation* AnalysisSituation
; ’ ' 1

*

AnalysisSituationCustomization I .

Fig. 14. The metamodel of analysis graph customizations as UML class diagram.
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3.3. Schema generation

Analysis situations translate into (parameterized) queries that represent views over
the data warehouse. Analysis graphs translate into State Chart XML documents.

3.3.1. Analysis views

An analysis situation translates into an OLAP query over the star schema tables.
The use of surrogate keys in the star schema tables facilitates the automated gen-
eration of analysis views. In all dimension tables, the fact table references the id
attribute. The calculation rules of calculated measures are in the SELECT clause;
references to other calculated measures must be resolved prior to code generation.
When translating an analysis situation with more than a single comparative mea-
sure, nested queries must be used to define the view. Otherwise, due to the use of the
ComparisonFact qualifier in join conditions, the query would have faulty joins. Each
comparative measure then has its own subquery. Base, arithmetic, and cumulative
measures are in another subquery. An outer query then performs a natural join
over the dimension attributes before grouping the result according to the specified
roll-up levels with the specified aggregation operators.

Example 3.3 (Analysis view). The query in Listing 1 is an instantiation of the
CostsOfMaterialSupplyOrder analysis situation in Fig. 13. The example illustrates
the use of cumulative measures and comparisons. Notice the inclusion of the cal-
culation rules in the SELECT clause of the query. The comparison features a special
join condition. Since only one comparative measure is present there is no need for
subqueries. The WHERE clause shows the selection of particular dice nodes.

Listing 1. Generated query for the CostsOfMaterialSupplyOrder analysis situation
in Fig. 13.

1 SELECT (Fact.costs + 40) AS totalCosts,

2 Fact.costs/Fact.deliveredQuantity

3 AS totalCostsPerUnit,

4 SUM(Fact.costs) OVER (

5 PARTITION BY

6 Time.year, Fact.material, Fact.supplier
7 ORDER BY Time.day

8 ) AS totalCostsYTD,

9 Fact.costs/ComparisonFact.costs

10 AS totalCostsToPreviousWeek,

11 Fact.time, Material.id, Supplier.id
12 FROM MaterialInSupplyOrder#1 Fact JOIN

13 Time#1 Time ON Fact.time = Time.id JOIN
14 Material#1l Material ON

15 Fact.material = Material.id JOIN
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16 Supplier#1 Supplier ON

17 Fact.supplier = Supplier.id LEFT OUTER JOIN (
18 MaterialInSupplyOrder#1 ComparisonFact JOIN
19 Time#1 ComparisonTime ON

20 ComparisonFact.time =

21 ComparisonTime.id JOIN

22 Material#1 ComparisonMaterial ON

23 ComparisonFact.material =

24 ComparisonMaterial.id JOIN

25 Supplier#1 ComparisonSupplier ON

26 ComparisonFact.supplier =

27 ComparisonSupplier.id

28 ) ON Time.day =

29 DATEADD(week, 1, ComparisonTime.day) AND
30 Fact.Material = ComparisonFact.Material AND
31 Fact.Supplier = ComparisonFact.Supplier

32 WHERE Time.year = 2015 AND

33 Material.material = ‘Bristle Material’

Since cumulative measures cannot be sensibly aggregated, special variants of
cumulative measures may be defined to be displayed at different roll-up levels, with
only an additional aggregation operator added to the calculation rule and a slightly
changed ORDER BY clause. For example, the totalCostsYTDRollUpByMonth measure
could define year-to-date total costs for each month. In case the code generator
generates an outer query which performs the roll-up, with several subqueries in the
FROM clause for selecting base and comparative measures, the cumulative measure
for this roll-up level becomes part of the outer query instead of the subqueries.

Example 3.4 (Analysis view). The query in Listing 2 is a possible instantiation
of the MonthlyCostsOfMaterialSupplyOrder analysis situation in Fig. 13. The query
performs a roll-up to the month level, requiring the definition of an aggregation
operation for the base and calculated measures. The totalCostsYTDRollUpByMonth
has no aggregation operator specified, instead being a cumulative measure specifi-
cally defined to be displayed at this roll-up granularity.

Listing 2. Generated query for the MonthlyCostsOfMaterialSupplyOrder analysis
situation in Fig. 13.

1 SELECT SUM(Fact.costs + 40) AS totalCosts,

2 SUM(SUM(Fact.costs + 40)) OVER (

3 PARTITION BY

4 Time.year, Fact.material, Fact.supplier
) ORDER BY Time.pmonth

6 ) AS totalCostsYTDRollUpByMonth,
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7 Time.month, Time.year,

8 Fact.material, Fact.supplier

9 FROM MaterialInSupplyOrder#1 Fact JOIN

10 Time#1 Time ON Fact.time = Time.id JOIN
11 Material#1 Material ON

12 Fact.material = Material.id JOIN

13 Supplier#1 Supplier ON

14 Fact.supplier = Supplier.id

15 WHERE Time.year = 2015 AND

16 Material.material = ‘Bristle Material’
17 GROUP BY Time.month, Time.year,

18 Fact.material, Fact.supplier

Multiple arcs in the multidimensional model could result in additional bridge
tables in the star schema, which must be incorporated accordingly in the generated
queries. Instead of referencing a single table for each dimension, a subquery for
each dimension must first join the dimension and bridge tables. Roll-up queries and
calculated measures must take into account the weight attribute or assume an equal
split of weights. We refer to general literature!® for handling bridge tables.

Note that Listings 1 and 2 contain specific instantiations of analysis situations.
In case of variables being present in the definition of analysis situations, the queries
are parameterized. These parameterized queries contain placeholders to be replaced
by specific string values that are selected at runtime.

3.3.2. Workflow model

Analysis graphs must be translated into workflow models that are self-contained,
executable models with all the necessary information to perform the analysis. We
propose a representation of workflow models of analysis graphs in State Chart
XML,'" a W3C recommendation for the representation of state charts (or state
machine diagrams) in XML. State charts are a natural fit for the representation
of analysis graphs, each analysis situation being considered a state. SCXML is a
lightweight language for representing state charts in a machine-readable format.
The logical representation of analysis graphs, however, may also employ another
representation format.

The basic idea of an analysis graph workflow model is that each analysis sit-
uation becomes a state in the state chart. Transitions represent navigation steps,
the event that triggers these transitions is the label of the corresponding naviga-
tion step in the reference model. The operations are realized as SCXML custom
action elements. These custom action elements also hold the definitions of calcu-
lated measures and predicates as well as allowed nodes and levels for the selection
as argument by the analyst, in order to make the workflow model self-contained.
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The operations may be implemented in XQuery or another programming language,
for example, Java.

Example 3.5 (Workflow model). The workflow model in Listing 3 corresponds
to the analysis graph in Fig. 13. Analysis situations translate into state elements
in the SCXML workflow model, the id attribute containing the name of the analy-
sis situation. The transition elements under the state elements represent navigation
steps of the analysis graph. The child elements of the transition elements represent
the operations associated with the navigation steps. For example, the addSlice-
Condition element represents the addSliceCondition operation, the moveToNode ele-
ment represents the moveToNode operation. The var elements under these action
elements contain the possible values of bind variables or queries on the instance data
that allow to retrieve the possible values. For example, the addSliceCondition ele-
ment, in this case, provides inline definitions of the predicates, taking into account
possible customizations, that can be selected as value for the ?prop variable. The
moveToNode element provides a query for the retrieval of productCategory-level
nodes in the product dimension, which can be selected as value for the ?prodCat
variable. The datamodel element of the SCXML workflow model contains a data
element for each bind variable, each initially empty, and a data element for each
analysis situation that contains a parameterized query.

4. Rationale and Evaluation

In this section, we discuss how BIRD meets certain requirements for lightweight
reference modeling approaches. We discuss applicability of BIRD to real-world
projects. We conclude with a short presentation of proof-of-concept prototypes.

4.1. Requirements

The BIRD approach aims at lowering the obstacles that inhibit SMEs from employ-
ing BI technology by allowing for the use of industry-specific best practices repre-
sented as reference models. From the general aim of BIRD we derive the following
design goals:

(i) A lightweight approach for domain-specific reference modeling of static and

behavioral aspects of data analysis with data warehouses.

(ii) Support for the flexible adaptation of industry-specific best-practice reference
models to the needs of individual companies.

(iii) Contribution to the implementation of BI solutions.

(iv) Adequacy for SMEs with regard to technological and methodological limita-
tions of IT infrastructure and personnel of SMEs.

(v) Simplicity, understandability, and ease of application for business analysts.
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Listing 3. Extract of the workflow model for a customization of the analysis
graph in Fig. 13.

© 00 N O T = W N~

W W W W W W W W W W NNDNDDDDDNDDNDNDDND DN /= = e
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[l <scxml

El<sc
El<sc

initial="MonthlyCostsOfMaterialUse"

xmlns:sc="http://www.w3.o0org/TR/scxml"
xmlns:ag="http://www.dke. jku.at/AnalysisGraph">
Bl <sc:datamodel>
El<sc:
El<sc:
El<sc:

data id="?mat"/>
data id="7?tmLevel"/>
data id="7tm"/>

:data id="7prop"/>

:data id="7prodCat"/>

M <data id="CostsOfMaterialSupplyOrder"> SELECT ..
M <data id="MonthlyCostsOfMaterialSupplyOrder"> SELECT ..
H <data id="MonthlyCostsOfMatertalUse"> SELECT ..
[H <data 1d="MonthlyCostsOfMatertalSupplyOrderWithProper ..
- </sc:datamodel>

H <sc:state id="CostsOfMaterialSupplyOrder"

H <sc:state id="MonthlyCostsOfMaterialSupplyOrder"
El<sc:state id="MonthlyCostsOfMaterialUse">
Bl <sc:
target="MonthlyCostsOfMaterialSupply-

transition event="FocusOnProperty"

OrderWithProperty">

El<ag:addSliceCondition dimension="Material"
predicate="7prop">
<ag:var name="7prop">

</ag:var>
- </ag:addSliceCondition>
] <ag:moveToNode dimension="Product"
level="Product.productCategory"
node="7prodCat">
<ag:var name="7prodCat">
SELECT DISTINCT Product.productCategory
FROM Product#1 Product
</ag:var>

- </ag:moveToNode >

[l <ag:predicate name="HeatResistantMaterial" expr="...
El <ag:predicate name="ColdResistantMaterial" expr="..

- </sc:transition>
- </sc:state>

H <state id="MonthlyCostsOfMaterialSupplyOrderWithProper ...
- </sc:scxml>
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The BIRD approach does not cover all aspects of data warehousing. ETL pro-
cesses, which heavily depend on the company’s operational source systems, are
difficult to generalize with reference models and, therefore, the representation of
ETL processes is out of BIRD’s scope. Assuming that data visualization does not
differ much between different industrial sectors and companies but depends heavily
on the available visualization frontend, domain-specific reference modeling of data
visualization is out of BIRD’s scope.

In the following, we derive from design goals and scope the requirements for the
development of the BIRD approach. We discuss the rationale behind each individual
requirement and evaluate BIRD’s compliance with the respective requirement.

Requirement 1 (Definition of business ratios). The proposed reference mod-
eling approach should support the reuse, adaptation, and multidimensional analysis
of business ratios.

Rationale: At the core of any BI solution are business ratios, calculated from data
coming from operational systems, serving as KPIs. Typically, analysts inspect busi-
ness ratios for different parts of a business at various levels of granularity (multi-
dimensional analysis) in order to monitor business performance and assess success.
Many business ratios are domain-specific, i.e. specific to an industrial sector. Com-
panies may specify additional company-specific business ratios and may adapt the
definition of business ratios to their specific setting, taking into account the data
that is actually available in the operational systems. Thus, business ratios are well
suited for representation in reference models as well as the subsequent reuse and
customization.

FEvaluation: BIRD represents business ratios as calculated measures, each with a
calculation rule that can be adapted to the data available in the data warehouse
of a specific company. The association of a calculated measure with multiple fact
classes (association class MeasureToFactClass in Fig. 1) in a multidimensional refer-
ence model may be regarded as a family of business ratios with the same calculation
rule but with different base data, possibly at different granularities, that go into the
calculation. A calculated measure associated with a fact class serves as the core for
the definition of a KPI. A KPI's full definition?%27 additionally comprises the asso-
ciation of the calculated measure with the organizational context (responsibilities,
goals, justifications, etc.) and is outside of BIRD’s scope.

Requirement 2 (Definition of business terms). The proposed reference mod-
eling approach should support the reuse and adaptation of business terms as well
as their use in multidimensional analyses.

Rationale: Business analysts communicate with each other analysts, managers, and
executives using business terms. The meaning of business terms typically is not
precisely defined, let alone explicitly represented in BI systems. Business terms are
typically translated into queries against the data warehouse in an ad hoc manner,
again and again for every single analysis. The ad hoc translation of business terms
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into queries inhibits the understanding of the rationale behind analytical queries,
hindering the reuse and interpretation of queries. Therefore, business terms should
be explicitly represented in BI systems together with a specification that makes
business terms usable for analytical queries. Business terms are domain-specific, i.e.
specific to a particular industrial sector. Every company may have its own ‘business
dialect’, with slightly different meanings of business terms. The translation of busi-
ness terms into queries against the data warehouse must consider the available data
which may differ across companies or departments. Business terms are predisposed
for reference modeling as well as subsequent reuse and customization.

Evaluation: The BIRD approach has the reference modeler translate the mean-
ing of business terms into query fragments against the multidimensional schema,
constituting named predicates for reuse in multiple models. Predicates may be cus-
tomized to the specific needs of a particular company or department. Predicates
may be reused in different analysis situations and analysis graphs.

Requirement 3 (Definition of queries and analyses). The proposed reference
modeling approach should support the reuse and adaptation of queries and analyses
on an ad hoc basis.

Rationale: Different business situations impose different information needs. Often
such information needs cannot be satisfied by a single multidimensional query but
require a set of interrelated queries. Companies in the same industrial sector expe-
rience similar business situations with similar information needs, making analysis
process modeling a case for reference modeling. Since it is impossible to foresee every
information need during customization there should be an ad hoc reuse mechanism
that provides patterns or templates that can be reused to satisfy information needs
occurring in different, yet similar situations in day-to-day analysis work.

Evaluation: BIRD’s analysis situations provide a very flexible query-reuse mecha-
nism. Every part of an analysis situation may be a variable which can be set during
customization but can also be left open to be set by the business analyst at query
time. BIRD’s analysis graphs allow for the representation of a set of analytical
queries with relationships between each other.

Requirement 4 (Standard IT infrastructure). The proposed reference model-
ing approach should generate code, models, or configurations in standard languages
deployable on IT infrastructure available in most SMEs and maintainable by IT
personnel of SMEs.

Rationale: We assume that a typical SME has a small IT department with limited
budget. IT personnel at SMEs typically consists of IT generalists, not BI experts,
yet able to set up a (relational) database management system (DBMS). IT per-
sonnel should nevertheless be able to understand and maintain code as well as
troubleshoot problems. IT management, however, is often reluctant to introduce
new technology and will prefer systems that match the skills of existing person-
nel. Thus, nonexpert IT personnel should be able to deploy the generated code.
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Standard and widely-known technologies facilitate the adoption of BI for IT gen-
eralists. The IT infrastructure necessary for running the code should be readily
available in most SMEs or it should be easy for nonexpert I'T personnel to set up
the infrastructure.

Evaluation: BIRD is ROLAP approach with generation of SQL data definition and
query statements, thus running on a relational DBMS. The use of a star schema
logical model requires no specific hardware or specific DBMS but allows for the
employment of readily available software solutions.

Requirement 5 (Intuitive modeling language). The proposed reference mod-
eling approach should employ a modeling language based on standard and intuitive
modeling language(s) and methodologies.

Rationale: Business analysts should be able to use the reference modeling language.
We assume that a typical business analyst in an SME holds a bachelor’s degree in
business administration or similar. A business analyst is assumed to have basic skills
in data and process modeling, SQL, as well as spreadsheet software, taught as part
of many business administration curricula. With these basic IT skills a business
analyst should be able to use the approach without much additional learning effort.
Basing the approach on standard languages should facilitate the employment and
extension of existing modeling and CASE tools for reference modeling.

FEvaluation: The BIRD reference modeling language is based on UML, the DFM,
and state charts interspersed with fragments of SQL. Existing modeling tools can
be adapted for reference modeling as demonstrated by a proof-of-concept proto-
type that employs Indyco Builder for multidimensional reference modeling and star
schema generation (see Sec. 4.3).

4.2. Applicability to real world projects

The agriProKnow project,? as a joint experimental research effort between indus-
try and academia, investigates the possibilities of data analysis in precision dairy
farming. Modern milk production generates vast amounts of data, tracking various
indicators from animal movement to milk quality and quantity to animal health.
The available data may be analyzed in order to improve animal wellbeing and, con-
sequently, increase animal productivity. Farmers often diagnose sickness only when
symptoms become apparent. Data analysis promises the timely diagnosis of sickness
which then triggers appropriate countermeasures in order to find the source of the
sickness and combat its effects.

An interfarm data warehouse integrates data from several dairy farms in order to
allow for the generation of metaknowledge. Domain experts in veterinary medicine
employ the interfarm data warehouse for discovering indicators and early warning

dhttp: //www.agriProKnow.com/
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signs for specific sicknesses. Based on these findings, the domain experts in col-
laboration with BI experts define queries of interest and analysis processes that
guide dairy farm managers in managing animal wellbeing and optimize production
output of the dairy herd.

Farm-specific data warehouses organize the data generated in dairy production
in a representation format fit for day-to-day analysis work at individual dairy farms.
Dairy farm managers operate on farm-specific data warehouses by executing the
queries of interest and analysis processes discovered by domain experts using the
interfarm data warehouse. When warning signs are detected in the data, for exam-
ple, an indicator for ketosis, the system alerts the dairy farm manager who can
follow a specified analysis process to discover the source of the problem.

The availability of BIRD reference models facilitates the development of farm-
specific data warehouses. Although similar, the schemas of farm-specific data ware-
houses vary due to different machines, tracking devices, and screening programs in
place. The data sources for milk quality are, on the one hand, milking parlors that
automatically analyze milk contents; the accuracy and kinds of measures vary by
vendor. On the other hand, Dairy Herd Improvement Associations conduct labora-
tory analyses of the produced milk. Food quantity, contents, and individual intake
may be precisely tracked by feeding machines or estimated. Movement data are
captured using earmarks and trackers of different vendors, some vendors being able
to classify movement type and capture rumination activity. Some dairy farms also
follow screening programs for different sicknesses.

The multidimensional models developed for the agriProKnow project consist
of fact classes for body condition, blood samples, feeding, fresh cow parameters,
climate data, milk production, calvings, and animal activity. The fact classes have
the animal and time dimensions. The fact class for the tracking of activity and
climate data also has a function area. The animal and time dimensions function-
ally determine the farm where a fact occurred as well as the lactation cycle and
days in milk of the animal. In order to avoid multiple arcs — animals may change
farms, have multiple lactation cycles — we represent these dependent attributes
as separate dimensions, thus denormalizing the fact tables. The farm-specific data
warehouses are then constructed by customization of multidimensional reference
models. Individual farms may deselect specific measures, for example, milk qual-
ity data supplied by milking parlors, food quantity data supplied by automated
feeding machines, blood test data for individual sicknesses, and activity tracking
data. Individual farms may also deselect specific levels, for example, capturing cli-
mate data at a coarser time granularity. Furthermore, redefinitions of predicates
are also common, with different farms potentially employing different definitions of
the concept of active cow or division of a lactation cycle into the different lactation
phases.

With dairy farm managers hardly being experts in data analysis, the defini-
tion of analysis situations and analysis graphs considerably facilitates the task of
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dairy farm managers. Dairy farm managers are spared the task of formulating com-
plex SQL queries and may follow instead analysis graphs. Commercial dairy herd
management software, for example, DairyComp,® provides related query features
with a focus on operational data. The representation of many-to-many relationships
as separate dimensions in the multidimensional models facilitates the definition of
analysis situations. The agriProKnow project extends BIRD analysis situations
with parameterized predicates — subqueries, essentially — and a HAVING clause.
Both extensions neatly fit into the BIRD approach and are minor extensions.

4.3. Proof-of-concept prototypes

A proof-of-concept prototype?® demonstrates how modelers may use Indyco
Builder, BaseX, and XQuery for the design, management, and customization of
BIRD reference models. Indyco Builder, a CASE tool for DFM models, then serves
as a modeling component for multidimensional reference models. Using comment
fields, additional information such as the mandatory nature of levels is incorpo-
rated in the DFM models. Indyco Builder employs XML as serialization format for
DFM models. Customizations are defined in separate catalogs stored in an XML
database. XQuery functions apply these customizations to the DFM models. The
resulting DFM files are opened in Indyco Builder which can then generate the
logical schema from the customized DFM model. Similarly, analysis graphs and
analysis graph customizations are defined in XML and transformed into SCXML
by XQuery functions.

A visual editor,?? implemented in MetaEdit+,! facilitates the design of analysis
graphs. The visual editor autocompletes the target analysis situation of a navigation
step in line with the associated operations. The corresponding execution environ-
ment, implemented in Java, allows for the execution of analysis processes modeled
with analysis graphs. When executing the analysis processes, the execution envi-
ronment sends SQL queries that correspond to the current analysis situation and
the current bindings of the variables to the database. The execution environment
visualizes the result of the queries using pie charts and bar charts.

5. Related Work

In this section we review related works and highlight the similarities, and differences,
between BIRD and related works as well as our previous work. First, we discuss
the related works in modeling for data warehousing and OLAP. Second, we discuss
reference modeling in general followed by reference modeling for data warehousing
and OLAP. Finally, we review further related works concerning schema adaptation
and evolution in data warehousing and OLAP.

¢http: //web.vas.com/en/Products/Detail /4570
fhttp: //www.metacase.com/products.html
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5.1. Modeling for data warehousing and OLAP

Apart from the reference modeling features, BIRD is a coherent set of simple tech-
niques for conceptual modeling and model-driven development for data warehousing
and relational OLAP, with a focus on representing calculated measures and busi-
ness concepts. In this regard, BIRD builds on our experience from the Semantic
Cockpit project” which developed an ontology-based framework for interactive data
analysis. Apart from fostering reuse through reference modeling, the overall goal
in the design of BIRD is a simplification of the semCockpit approach, both with
regard to employed technology and with regard to the complexity of the modeling
language and models.

Multidimensional modeling in BIRD largely builds on the dimensional fact
model,'® although most features are present in other approaches as well. Multi-
DimER' supports different kinds of hierarchies, for example, nonstrict hierarchies
with many-to-many relationships between levels, a feature also present in later
elaborations of the DFM.2° Trujillo et al.3 present an object-oriented modeling
approach for data warehouses based on UML; our paper employs UML for the rep-
resentation of the metamodel rather than the actual reference models themselves.
The Common Warehouse Metamodel3! (CWM) is a comprehensive, but also heavy-
weight, standard for the specification of data warehouse schemas. The CWM could
serve as the fundamental for the representation of BIRD’s dimensions, fact classes,
and analysis situations especially for exporting them to OLAP engines such as
Mondrian.8

Procedures for the derivation of relational implementations from conceptual
models complement data warehouse modeling approaches. Golfarelli and Rizzi%?
propose a method for logical schema design based on DFM models, Vaisman and
Ziményi33 describe a method for MultiDimER. models. Based on these procedures,
CASE tools may automate parts of the implementation. Battaglia et al.?* describe
QBX, a CASE tool with a graphical DFM editor and automatic generation of rela-
tional star and snowflake schemas from DFM models. Indyco Builder, a commer-
cial CASE tool, provides similar features. The BIRD approach may serve as basis
for extending such CASE tools with analysis process and reference modeling. The
BIRD approach, similar to QBX and Indyco Builder, focuses on relational OLAP.
Some BIRD elements contain SQL fragments which are used in the generated SQL
queries, which are related to UML/P3% where UML diagrams are enriched with
Java code.

The semCockpit approach’ introduces dimensional and multidimensional con-
cepts®® specified in a proprietary language then translated simultaneously into SQL
for querying and into OWL for subsumption checking. Concepts in semCockpit
are similar to predicates in BIRD where SQL query fragments represent pred-
icate expressions, which are then employed in WHERE clauses of generated SQL

ghttp: //mondrian.pentaho.com
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queries, thus avoiding additional complexity arising from the introduction of a new
language.

The conceptual modeling of measures and KPIs has only recently received
increased research interest. Maté et al.?6 employ Semantics of Business Vocabulary
and Business Rules (SBVR) for the definition of atomic and composite KPIs which
resemble (aggregations of) base and calculated measures, respectively, in BIRD;
SBVR representation of KPIs are then translated? into OCL4AOLAP (see below).
The conceptual modeling of KPIs?6:27
(e.g. goals and organizational roles associated with the KPI), which is outside the
scope of the core BIRD approach. The semCockpit approach? comes with its own
language constructs for the definition of complex measures, where the definition

also concerns their organizational context

of a complex measure also incorporates a single aggregation operation (e.g. having
aggregated measures totalPlannedCosts and avgPlannedCosts). With respect to the
semCockpit approach, BIRD simplifies the definition of complex measures, first,
by employing SQL for the specification of the calculation expression and, second,
by leaving the specification of the aggregation operation to the definition of the
analysis situation.

5.2. Modeling of analytical queries and processes

Analysis situations and graphs for the conceptual modeling of reusable and param-
eterizable analytical queries and processes have been introduced in the semCockpit
project, in both a simple variant'® and a fully-elaborated” that focuses on compar-
ative data analysis. BIRD builds on a consolidated lightweight variant'® of analysis
situations and graphs that is well-suited for modeling more traditional OLAP ses-
sions, with a specific focus on customization.

Conceptual modeling of analytical queries or views has not received much atten-
tion so far. The OCL4OLAP approach3” employs OCL for the definition of OLAP
queries as part of conceptual multidimensional models; the OCL expressions can
subsequently be translated to SQL queries or MDX expressions. MetaMIS for
Reporting3® has investigated the conceptual modeling of reports. DEM!? comes
with a simple textual notation for expressing queries over a multidimensional
schema. BIRD’s analysis situations generalize DFM query expressions by allowing,
for each element of the conceptual query specification, variables that are assigned
specific values at runtime.

Analysis graphs are inspired by WebML3® (meanwhile promoted OMG standard
as IFML*?) which describes how data and their relationships may be traversed.
The navigation model of WebML is a graph of units and links. A unit represents an
object or set of objects retrieved by a parameterized SQL query associated with the
unit. A link relates the objects of source and target units. Changes in the parameters
of the source unit and, thus, the represented object(s), propagate to the target unit
through information transported by the link, binding parameters of target unit
to the source unit, thereby leading to changes of the objects represented in the
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target unit; Changes are either automatic or dependent on user input. Similarly,
an analysis situation in analysis graphs represents a parameterized SQL query. A
navigation step between analysis situations binds parameters of the target situation
to the source situation, potentially depending on user input.

Trujillo et al.*' employ UML state machine diagrams to represent valid exe-
cution orders of operations on OLAP cubes. Trujillo et al. propose the modeling
of a separate state machine diagram for each dimension of an OLAP cube. In
these diagrams the states represent the individual dimensions at different roll-up
granularities, transitions represent changes in granularity and slice conditions. The
BIRD approach also employs a state machine variant, namely State Chart XML, for
the representation of executable analysis graphs. Analysis graphs, however, model
transitions between states that represent analysis situations. Each analysis situa-
tion is characterized by slice and dice conditions as well as a roll-up granularity for
each dimension of the corresponding OLAP cube. Rather than specifying OLAP
operations for each dimension independently, analysis graphs specify OLAP oper-
ations for analysis situations characterized by parameters affecting several dimen-
sions. Analysis graphs aim at the modeling of best-practice analysis processes
as opposed to a focus on requirements specification for the conception of OLAP
systems.

As opposed to analysis graphs, which support proactive modeling of best prac-
tice and useful analysis processes, other works*?43 follow a sort of process mining
approach, analyzing previous analysis sessions in order to recommend an analysis
process. Analysis graphs may also be complemented with a representation of the
interactive dynamics for visual analysis.** Other work®® has proposed a multidimen-
sional algebra which allows for the description of analytical sessions, providing oper-
ators similar to the navigation operators in analysis graphs. Selection corresponds
to the slice conditions in analysis situations that can be expressed by dimensional,
multidimensional, and measure predicates. Analysis situations in BIRD also fea-
ture a roll-up and projection component. The changeFactClass in BIRD analysis
situations is similar to a base change. Multidimensional algebras are orthogonal
to analysis graphs: The set of navigation operators can be extended with existing
operators from the literature. Note that in this paper we only present a simpli-
fied version of analysis graphs for reference modeling; future work will present
more advanced concepts such as history, loops, backtracking, and drill-across
operations.

Other work® employs BPMN for modeling ETL processes, in a similar way
business intelligence tools employ proprietary languages, for example, Pentaho Data
Integration,® for the model-driven development of ETL processes. Modeling ETL
processes is outside the scope of this paper since we assume that ETL processes
are highly dependent on the specific I'T infrastructure and thus hard to generalize
in reference models.

hhttp: //community.pentaho.com /projects/data-integration/
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5.3. Reference modeling

Reference modeling has received a certain amount of research interest as a reuse
mechanism in business engineering and business process management, with the
ARIS House of Business Engineering®” as a notable outcome. Reference modeling
is about utilizing “business knowledge contained in reference models for the con-
struction of specific information models”,*® it is “motivated by the Design by Reuse
paradigm”.*? Thomas provides an overview®® of the different meanings of the term
‘reference model’ in the information systems literature. The common denominator
of these meanings, following Fettke and vom Brocke,’! is that reference models are
models that are (intended to be) reused for the construction of specific models, and,
as opposed to metamodeling, reference model and specific models are on the same
modeling level.

Becker et al.>? distinguish configuration and generic adaptation mechanisms for
the derivation of specific models from reference models. In configurable reference
modeling, the different possible configurations are already encoded in the reference

49 are a notable example of config-

model. Configurable event-driven process chains
urable reference modeling languages. Generic adaptation mechanisms are instan-
tiation, specialization, and aggregation of (parts of) reference models, as well as
conclusion by analogy.?® BIRD supports generic adaptation through instantiation,
specialization, and aggregation. Analysis graphs are adapted through instantiation
by replacement of variables with constants. Analysis graphs and multidimensional
reference models are adapted through specialization by addition and omission of
model elements, through aggregation by integration of model elements originally
designed for other reference models.

There exist different approaches to utilize reference models for the develop-
ment and deployment of company-specific software. First, requirements engineers
and system modelers use reference models as starting point for the creation of
company-specific conceptual models which may subsequently guide the design and
implementation process.? Second, large enterprise software products, such as SAP
ERP, implement reference models and are documented by reference models®* which
help in customizing the software for company-specific settings. Such software prod-
ucts can typically be customized to the specific needs of a company by setting
parameters, deselecting features, and extending the software at predefined extension
points. In a wider sense, the customizable software can itself be regarded as a kind
of reference model (the term reference model subsumes software frameworks®!).
Third, in a model-driven setting, the implementation or the configuration of the
system is generated from customized reference models.?® BIRD follows the latter,
model-driven-development approach.

5.4. Reference modeling for data warehousing and OLAP

In data warehousing, reference modeling aims at facilitating the conceptualization
and development of BI solutions.? ® In particular, the H2 metamodeling toolset has
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been employed for configurative reference modeling for data warehousing.?® A rule-
based approach allows reference modelers to define different variants of conceptual
domain models. Configuration parameters govern the selection of these variants
in particular situations. Depending on the values of parameters at customization
time, the tool generates the specific conceptual domain model. H2 for Report-
ing (H2fR) is a language based on the H2 toolset for the conceptual modeling of
reporting requirements with a special focus on ensuring compliance with regulatory
requirements.%

Orthogonal to the configurative approach of H2, BIRD builds on generic adapta-
tion mechanisms, namely instantiation, specialization, and aggregation of (parts of)
reference models. Rather than anticipating various situations, the reference mod-
eler provides a set of model elements which, at customization time, are quickly
adapted through additions, omissions, and redefinitions of model elements. Both
reference model and customization are rapidly developed due to a comprehensible
amount of customization possibilities, making it especially appropriate for the use in
SMEs.

Another major difference between BIRD and the H2 approach to data ware-
house reference modeling is the level of abstraction. H2 aims at conceptual domain
modeling for data warehousing and reporting, which is a precursor to the con-
crete design and implementation of the data warehouse and reporting systems. As
opposed to H2, BIRD aims primarily at model-driven development: SQL tables,
dynamic SQL views, and XML-based workflow models are directly generated from
customized multidimensional models and analysis graphs.

6. Conclusion

BIRD is a lightweight reference modeling approach for multidimensional models
and analysis processes that builds on widely-available standard technology. Key
performance indicators and predicates, which formalize business terms, are defined
using SQL. Customized reference models translate into star schema tables, SQL
queries, and State Chart XML documents.

Design-science research is an iterative search process,” each iteration leading
to a design artifact which represents an approximate solution to the investigated
research problem. We identify the following future research directions for the BIRD
approach to multidimensional reference modeling:

e Reference modeling of guidance and judgment rules: In the semCockpit project,
guidance and judgment rules®” complement analysis graphs, providing hints to
analysis in the course of the analysts. Guidance and judgment rules could be
subject to redefinitions in the spirit of predicates and calculated measures.

e Reference modeling of events: The business events that trigger and instantiate
specific analysis graphs could also be incorporated into the reference model. As
opposed to active data warehouses, where events in analytical systems trigger
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actions in operational systems,’® analysis graphs are processes in analytical sys-

tems triggered by actions in operational or analytical systems.

e Techniques to associate BIRD’s data analysis models with their organizational
context in the line of Strecker?” and Maté?®: The organizational context could
incorporate explanations of the semantics of customizations, indicating the ratio-
nale between specific deselections, additions, or redefinitions of model elements
in the context of the organization.

e Compliance criteria checking: Techniques that allow reference modelers to specify
more fine-grained compliance criteria could be useful in areas where compliance
with legal regulations is of critical importance.
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